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Abstract. The Laplace transform is generalized by using theq-exponential functionexq ≡
[1 + (1− q)x]1/(1−q) that emerges from Tsallis’ non-extensive statistical mechanics, and some
of its properties are obtained. The usual transform is recovered as a limiting case (q → 1). The use
of theq-Laplace transform is illustrated by establishing a relation between the classical canonical
q-partition function and the density of states.

1. Introduction

Among the integral transforms, Laplace’s occupies a special place, mainly because of its
usefulness in solving differential equations of functions of exponential order with initial value
conditions or semi-infinite boundary value conditions. It has applications in various areas of
science and engineering. A particular use of the Laplace transform within Boltzmann–Gibbs
extensive statistical mechanics is to establish the connection between the density of states (an
entirely mechanical property) and the canonical partition function.

There is an increasing focus on non-extensive phenomena in the physics literature and
particularly on the Tsallis generalization of statistical mechanics. Since its formulation [1, 2],
the theoretical body of the formalism has expanded significantly (see [3] for a recent and
broad review). It has been applied to a variety of systems, among which we mention the Lévy
[4] and correlated [5] anomalous diffusion, self-gravitating systems [6], peculiar velocities of
galaxies [7], turbulence in pure electron plasma [8], solar neutrinos [9] and quantum scattering
of spinless particles [10].

The present work is included in the formal developments of mathematical methods
associated with Tsallis statistical mechanics. Some previous works along these lines are on
distribution functions [11], linear response theory [12], perturbative and variational methods
[13], Green’s functions [14], path integral and Bloch equations [15], consistent testing [16]
and trigonometric and hyperbolic functions [17].

The starting point of the mathematical developments associated with the Tsallis formalism
is the definition of the generalizedq-logarithm andq-exponential functions [17, 18]

lnq x ≡ x1−q − 1

1− q expq x ≡ exq ≡ [1 + (1− q)x]1/(1−q). (1)
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These functions are a kind ofq-deformation of the usual ones and are reduced to them in the
limit q → 1. Their definitions allow one to write a sharp analogy between Boltzmann–Gibbs
statistical mechanics and Tsallis generalization. For instance, the generalized entropy of the
microcanonical ensemble is written asSq = k lnq W (k ∈ R > 0 andW is the number of
microstates).

In the Tsallis non-extensive statistical mechanics, there is a generalizedq-partition
functionZq . We show that the density of states may be recovered fromZq by an inverse
q-Laplace transform.

2. q-Laplace transform

In order to obtain a generalization of the Laplace transform of a functionf ,

L{f (t)}(s) ≡ F(s) ≡
∫ ∞

0
f (t) exp1(−st) dt (2)

motivated by non-extensive Tsallis ideas, we consider the replacement of exp1(−st) by aq-
exponential. We can achieve this by the following simple possibilities: replace the kernel
exp1(−st) by

(a) expq(−st),
(b) [expq(−t)]s , or
(c) [expq(+t)]

−s .

All of these possibilities reduce to the usual kernel e−st
1 in the limit q → 1. In the present

work we consider the second case and define theq-Laplace transform of a functionf by

Lq{f (t)}(s) ≡ Fq(s) ≡
∫ ∞

0
f (t)[expq(−t)]s dt. (3)

We shall show that this particular generalization has a variety of interesting properties; the other
two possible generalizations will be commented on later. This definition has the usual Laplace
transform as a particular case, whenq → 1. Forq < 1, we must use acut-off, essentially
the same as that used in the non-extensive statistical mechanics: theq-density matrix for the
canonical ensemble of a system with HamiltonianĤ is given by [2]

ρ̂q = 1

Zq

[
1− (1− q)βĤ ]1/(1−q) (4)

with

Zq = Tr
[
1− (1− q)βĤ ]1/(1−q). (5)

In order to retain a consistent probabilistic interpretation (eigenvalues ofρ̂q must be non-
negative real numbers monotonically decreasing with the energy) a cut-off condition is
introduced, which imposesρ(En) = 0 whenever

[
1 − (1 − q)βĤ ] 6 0 ({En} is the set

of eigenvalues of the Hamiltonian̂H ). To be coherent with the non-extensive formalism, we
also adopt the cut-off condition: expq(−t) ≡ 0 whenever [1− (1− q)t ] 6 0.

We shall begin with the following definition: a functionf (t) defined on the interval
a 6 t < ∞ is said to be ofq-exponential orderσ0 (σ0 ∈ R) if there existsM ∈ R such
that

∣∣[expq(−t)]σ0f (t)
∣∣ 6 M. To demonstrate the existence of theq-Laplace transform, let

f (t) be measurable and ofq-exponential orderσ0. Then, following Lebesgue’s dominated
convergence theorem, we have

∣∣f (t)[expq(−t)]s
∣∣ 6 g(t) where

g(t) =
{

[1− (1− q)t ]−(σ−σ0)/(q−1) q > 1

[1− (1− q)t ]−(σ−σ0)/(q−1)χt6(1−q)−1 q < 1.
(6)
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The functiong(t) is obviously integrable. Thus, the integral
∫∞

0 dt f (t)[expq(−t)]s converges
for Re(s) > σ0 + (q − 1).

The inverse of theq-Laplace transform is given by

L−1
q {Fq(s)}(t) = f (t) =

1

2π i

∫ c+i∞

c−i∞
Fq(s)[expq(−t)]−s−(1−q) ds (7)

wherec is a real constant that exceeds the real part of all the singularities ofFq(s). The proof
is found by checking the identities

f (t) = L−1
q {Lq{f (t)}} (8)

and

Fq(s) = Lq{L−1
q {Fq(s)}}. (9)

The first identity is proved as follows:

L−1
q {Lq{f (t)}} =

1

2π i

∫ c+i∞

c−i∞
Lq{f (t)}[1− (1− q)t ]−s/(1−q)−1 ds

= 1

2π i

∫ c+i∞

c−i∞

[∫ ∞
0
f (t ′)

[
1− (1− q)t ′]s/(1−q) dt ′

]
× [1− (1− q)t ]−s/(1−q)−1 ds

=
∫ ∞

0

f (t ′)
[1− (1− q)t ]

{
1

2π i

∫ c+i∞

c−i∞

[
1− (1− q)t ′
1− (1− q)t

]s/(1−q)
ds

}
dt ′

=
∫ ∞

0

f (t ′)
[1− (1− q)t ]

×
{

1

2π i

∫ c+i∞

c−i∞
exp1

(
s ln1

[
1− (1− q)t ′
1− (1− q)t

]1/(1−q))
ds

}
dt ′. (10)

If we take into account the representation of the Diracδ-function

δ(x) = 1

2π i

∫ c+i∞

c−i∞
exp1(αx) dα (11)

and also the property of a functionf (x) with a single, simple root atx0

δ(f (x)) = 1

|df /dx|x=x0

δ(x − x0) (12)

we can find equation (8) straightforwardly.
We can check equation (9) by defining

g(t) = 1

2π i

∫ c+i∞

c−i∞
Fq(z)[expq(−t)]−z−(1−q) dz (13)

whereFq(s) = Lq{g(t)} and c is such that the above integral converges. Theq-Laplace
transform ofg(t) is

Lq{g(t)} = 1

2π i

∫ ∞
0

dt [expq(−t)]s
∫ c+i∞

c−i∞
dz Fq(z)[expq(−t)]−z−(1−q). (14)

Interchanging the order of the integrals (uniform convergence required), we have

Lq{g(t)} = 1

2π i

∫ c+i∞

c−i∞
dz Fq(z)

∫ ∞
0

dt [expq(−t)]s−z−(1−q). (15)
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We require Re(z) = c < Re(s) in order to guarantee the convergence of the second integral.
We find, then

Lq{g(t)} = 1

2π i

∫ c+i∞

c−i∞
dz
Fq(z)

s − z . (16)

In order to evaluate this integral, we choose a contour defined by the straight line Re(z) = c
and an arc to the right such that the poles is located inside it. IfFq(z) has no singularities to
the right of Re(z) = c, is of order O(z−k) (i.e.|Fq(z)| < M|z|k as|z| → ∞,M, k ∈ R > 0) in
this half-plane, and the integral over the arc gives no contribution, then, by the Cauchy integral
formula, we find thatg(t) andf (t) possess the same Laplace transformFq(s).

3. Properties of theq-Laplace transform

In the following we list some properties of the presentq-Laplace transform (their proofs are
formally simple and thus are not included).

(a) Limiting values

lim
s→∞ sLq{f (t)} = lim

t→0
f (t) (17)

lim
s→0

sLq{f (t)} = lim
t→∞{[1− (1− q)t ]f (t)}. (18)

(b) Linearity

Lq{a1f1(t) + a2f2(t)} = a1Lq{f1(t)} + a2Lq{f2(t)}. (19)

(c) Scaling

Lq{f (at)} = 1

a
Fq ′(s/a) with q ′ = 1− (1− q)/a. (20)

(d) Attenuation, or substitution

Fq(s − s0) = Lq
{
[expq(−t)]−s0f (t)

}
. (21)

(e) q-shifting, orq-translation

Lq
{
f

(
t − t0

1− (1− q)t0

)
θ

(
t − t0

1− (1− q)t0

)}
= [expq(−t0)]s−(1−q)Fq(s) (22)

whereθ(t) is the Heaviside step function.
(f) Transform of derivatives

We may express these properties in two forms:

Lq{f ′(t)} = sLq
{

f (t)

1− (1− q)t
}
− f (0) (23)

Lq{f ′′(t)} = s(s − (1− q))Lq
{

f (t)

[1− (1− q)t ]2

}
− f ′(0)− sf (0) (24)

and

Lq
{

d

dt
[[1 − (1− q)t ]f (t)]

}
= sLq{f (t)} − f (0) for s > q − 1 (25)

Lq
{

d

dt

[
[1− (1− q)t ] d

dt
[[1 − (1− q)t ]f (t)]

]}
= s2Lq{f (t)} − f ′(0)− sf (0) + (1− q)f (0). (26)
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The most common application of the Laplace transform is in the solution of linear
differential equations. It takes advantage of the propertyL1{f (t)} = sL1{f (t)} − f (0),
to transform differential equations into algebraic equations in thes domain. In thisq-
generalized version, the corresponding properties (equations (23) and (25)) may also be
used, with the same purpose, for solving differential equations in which the derivatives
appear in the form of(d/dt){[1− (1− q)t ]f (t)}. In particular, expq(±λt), λ > 0 (theq-
exponential emerges in a variety of physical situations within the non-extensive statistical
mechanics) is a solution of the differential equation

d

dt
{[1± (1− q)λt ]f (t)} = ±(2− q)λf (t). (27)

(g) Derivative of transforms

F ′q(s) = Lq{ln1[expq(−t)]f (t)} (28)

F (n)q (s) = Lq{lnn1[expq(−t)]f (t)}. (29)

(h) Transform of integrals
We have here two possible forms

Lq
{∫ t

0
f (λ) dλ

}
= 1

s + 1− qLq{[1− (1− q)t ]f (t)} (30)

and

Lq
{ ∫ t

0 f (λ) dλ

1− (1− q)t
}
= 1

s
Lq{f (t)}. (31)

(i) Integration of transforms∫ ∞
s

Fq(u) du = Lq
{ −f (t)

ln1[expq(−t)]
}

(32)

∫ ∞
s

· · ·
∫ ∞
s

Fq(u) dnu = Lq
{

(−1)nf (t)

lnn1[expq(−t)]
}
. (33)

(j) Product of transforms

Lq{f (t)}Lq{g(t)} = Lq{f (t) ∗q g(t)} (34)

where(f ∗q g)(t) is theq-convolution product, defined by [19]

(f ∗q g)(t) ≡
∫ t

0
dλ
∫ λ

0
dλ′f (λ)g(λ′)δ(t − [λ + λ′ − (1− q)λλ′])

=
∫ t

0
f

(
t − λ

1− (1− q)λ
)

g(λ)

1− (1− q)λ dλ. (35)

In fact, transformation (35) is a straightforward extension of theparallel product
introduced in [20]. Theq-convolution is commutative (f ∗q g = g ∗q f ), distributive with
respect to addition and multiplication (f ∗q (ag + bh) = a(f ∗q g) + b(f ∗q h)), wherea
andb are constants) and associative (f ∗q (g ∗q h) = (f ∗q g) ∗q h).
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4. q-Laplace transforms of some elementary functions

Next we list theq-Laplace transforms of some particular functions:

(a) Unit function, Diracδ-function and Heaviside step function:

Lq{1} = 1

s + 1− q

{
s > q − 1 for q > 1

s > 0 for q 6 1
(36)

Lq{δ(t)} = 1 (37)

Lq{θ(t − t0)} =
[expq(−t0)]s+1−q

s + 1− q

{
s > q − 1 for q > 1

s > 0 for q 6 1.
(38)

(b) Power functions: for integer powers, we have

Lq{tn−1} = (n− 1)!

[s + (1− q)][s + 2(1− q)] · · · [s + n(1− q)]

= (n− 1)!

snQn(2− q ′) (39)

with n = 1, 2, 3 . . . , s > n(q − 1) for q > 1, s > 0 for q < 1 and(1− q) = s(1− q ′).
Qn(q) is a polynomial function given by [17]

Qn(q) ≡ 1 · q(2q − 1)(3q − 2) · · · [nq − (n− 1)]. (40)

For real (not necessarily integer) powers, we make use of the Hilhorst integral
representation of expq(−x) for q > 1 (x > 0) [21]

expq(−x) =
1

0(1/(q − 1))

∫ ∞
0
u1/(q−1)−1e−u1 e−(q−1)xu

1 du (41)

and the integral representation forq < 1 (x > 0) [22]

expq(−x) =
0((2− q)/(1− q))

2π

∫ +∞

−∞

e1+iu
1

(1 + iu)(2−q)/(1−q)
e−(1−q)(1+iu)x

1 du (42)

which brings implicitly the cut-off, and find

Lq{tα−1} =


0(α)

0(s/(q − 1)− α)
(q − 1)α0(s/(q − 1))

s > α(q − 1) for q > 1

0(α)
0(s/(1− q) + 1)

(1− q)α0(s/(1− q) + α + 1)
s > 0 for q 6 1.

(43)

(c) Exponential, circular and hyperbolic functions
The function e−at1 (a > 0) is of q-exponential order∀q, and eat1 is of q-exponential order
for q < 1 (due to the cut-off). Theirq-Laplace transforms are (see equations 3.383 5. and
3.383 1. of [23]):

Lq>1{e−at1 } =
1

q − 1
9

(
1, 2− s

q − 1
; a

q − 1

)
(44)

Lq<1{e±at1 } =
1

s + 1− q 1F 1

(
1,

s

1− q + 2; ±a
1− q

)
(45)
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where9(α, γ ; z) and1F 1(α, γ ; z) are the confluent hypergeometric functions. For the
circular and hyperbolic functions, forq < 1, we have

Lq<1{sin(at)} = − i

2

1

s + 1− q

×
[

1F 1

(
1,

s

1− q + 2; ia

1− q
)
− 1F 1

(
1,

s

1− q + 2; −ia

1− q
)]

(46)

Lq<1{cos(at)} = 1

2

1

s + 1− q

×
[

1F 1

(
1,

s

1− q + 2; ia

1− q
)

+ 1F 1

(
1,

s

1− q + 2; −ia

1− q
)]

(47)

Lq<1{sinh(at)} = 1

2

1

s + 1− q

×
[

1F 1

(
1,

s

1− q + 2; a

1− q
)
− 1F 1

(
1,

s

1− q + 2; −a
1− q

)]
(48)

Lq<1{cosh(at)} = 1

2

1

s + 1− q

×
[

1F 1

(
1,

s

1− q + 2; a

1− q
)

+ 1F 1

(
1,

s

1− q + 2; −a
1− q

)]
. (49)

(d) q-exponential function
The functionf (t) = eatq ′ with q ′ = 1 + (1− q)/a is of q-exponential ordera and its
q-Laplace transform is

Lq{eatq ′ } =
1

s + 1− q − a

{
s > a + q − 1 for q > 1

s > 0 for q < 1.
(50)

We have also the following relations (see equations 3.197 3. and 3.197 5. of [23]):

Lq>2{eatq } =
1

a(q − 2)
2F1

(
s

q − 1
, 1; 2− 1

q − 1
;−a−1

) {
s > 0

a > 1
(51)

Lq>1{e−atq } =
1

s + 2− q 2F1

(
1

q − 1
, 1; s + 1

q − 1
; 1− a

) {
s > q − 2

0< a < 2
(52)

Lq<1{e±atq } =
1

s + 1− q 2F1

( −1

1− q , 1;
s

1− q + 2;∓a
) {

s > 0

|a| < 1
(53)

Lq<1{e−atq } =
1

a(2− q) 2F1

( −s
1− q , 1;

1

1− q + 2; a−1

) {
s > 0

a > 1
(54)

where2F1(α, β; γ ; z) is the Gaussian hypergeometric function. From equations (51)–(54) we
find theq-Laplace transforms of theq-hyperbolic sine and cosine functions [17]

sinhq x = 1
2

(
exq − e−xq

)
coshq x = 1

2

(
exq + e−xq

)
. (55)
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5. Density of states and the classicalq-partition function

To conclude this work we shall use theq-Laplace transform to establish a relation between
the classicalq-partition function and the density of states. We first use theunnormalizedq-
expectation value as defined in [2] (here with a continuous distribution of probabilitiesρ(r)

wherer is a dimensionless variable in the phase space)

〈O〉q =
∫

[ρ(r)]qO(r) dr. (56)

Later on we shall focus on the so-callednormalizedq-expectation value. Theq-partition
functionZq which emerges from the optimization of the generalized entropy [1]

Sq ≡ k1− ∫ dr [ρ(r)]q

q − 1
(57)

with the constraint〈H〉q = constant (H is the Hamiltonian) and the usual norm constraint∫
ρ(r) dr = 1 (58)

is

Zq(β) =
∫

expq [−βH(r)] dr (59)

which may be rewritten as

Zq(β) =
∫ ∞

0
g(E) expq(−βE) dE (60)

whereg(E) is the density of states (i.e.g(E) dE is the number of states with energies lying
betweenE andE + dE). Now we make the change of variablesε = βE and introduce a
dummy parameterη in equation (60) in order to identify it with equation (3),

Zq(β) = Zq(β, η)
∣∣
η=1 =

1

β

∫ ∞
0
g(ε/β)[1− (1− q)ε]η/(1−q) dε

∣∣∣∣
η=1

= 1

β
Lq{g(ε/β)}(η)

∣∣∣∣
η=1

. (61)

According to equation (7), its inverse is given by

g(E) = 1

2π i

∫ c+i∞

c−i∞
Zq(β, η)[1− (1− q)ε]−η/(1−q)−1 dη

∣∣∣∣
ε=βE

= L−1
q {Zq(β, η)}(ε)

∣∣
ε=βE. (62)

Equation (61) may be used to find theq-partition function once a density of states is given,
and equation (62) may be used in the reverse procedure. Let us illustrate this point with the
classical ideal gas, whoseq-partition function should be rewritten as

Zq(β) = 1

N !

∫ ∏
i

d3xi d3pi

h3

[
expq

(
−β

∑
j

p2
j

2m

)]η∣∣∣∣
η=1

. (63)

Theq-partition function (63) for the caseq < 1 becomes [24]

Zq<1(β) = V N

N !h3N

(
2πm

(1− q)β
)3N/2

0(η/(1− q) + 1)

0
(
η/(1− q) + 3

2N + 1
) ∣∣∣∣
η=1

. (64)
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For the caseq > 1, we have [21, 25]

Zq>1(β) = V N

N !h3N

(
2πm

(q − 1)β

)3N/20
(
η/(q − 1)− 3

2N
)

0(η/(q − 1))

∣∣∣∣
η=1

. (65)

The integration of equation (62) (see equations (20) and (22), pp 349–50 of [26]) in both cases
yields

g(E) = V N

N !h3N

(2πm)3N/2

0
(

3
2N
) E3N/2−1 (66)

which is the density of states of the classical ideal gas [27]. In order to have aq-Laplace
transform, the density of states must be ofq-exponential order. In the case whereq < 1, the
cut-off guarantees the admissibility condition, but in the case ofq > 1,g(E) is ofq-exponential
order (and, thus, admits aq-Laplace transform, and therefore aq-partition function) only if
1 < q < 1 + 2/(3N) (for largeN ). This range of validity is the same found by [21, 25] and
says, as a consequence, that there is no classical ideal gas withq > 1 in the thermodynamic
limit (N →∞).

Now we use thenormalizedq-expectation value, introduced in [28]

〈〈O〉〉q =
∫

[ρ(r)]qO(r) dr∫
[ρ(r)]q dr

= 〈O〉q〈1〉q . (67)

Theq-partition function which follows from the optimization of (57) with the constraints (58)
and〈〈H〉〉q = Uq , whereUq is the (constant)q-generalized internal energy, is

Zq(β) =
∫

expq

[
−β (H(r)− Uq)∫

[ρ(r′)]q dr′

]
dr (68)

= expq

[
βUq∫

[ρ(r)]q dr

]
Z′q(β

′) (69)

whereβ is the Lagrange parameter,β ′ is defined by

β ′ ≡ β∫
[ρ(r)]q dr + (1− q)βUq (70)

andZ′q(β
′) has the same functional form as the unnormalizedq-partition function (60)

Z′q(β
′) =

∫ ∞
0
g(E) expq(−β ′E) dE. (71)

With the change of variablesε = β ′E we have

Z′q(β
′) = Z′q(β ′, η)

∣∣
η=1 =

1

β ′
Lq
{
g(ε/β ′)

}
(η)

∣∣∣∣
η=1

(72)

and

g(E) = L−1
q

{
Z′q(β

′, η)
}
(ε)
∣∣
ε=β ′E. (73)

We finally address the other possible kernels for defining the generalization of the Laplace
transform, suggested in the beginning of section 2. The third one consists of using the kernel
[expq(+t)]

−s . In this case, the cut-off would be introduced forq > 1 andt > 1/(q − 1). The
case whereq < 1 would have no cut-off. A similar procedure was used in [29] in another
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context. This possibility is entirely equivalent to ours with the change of variablesq = 2− q ′
in equation (3), and essentially brings nothing new. Our choice has the advantage of placing the
cut-off consistently with Tsallis formalism. The use of the kernel expq(−st) (first possibility)
is a different generalization and would linkZq(β) andg(E) by aq-Laplace transform without
needing a dummy parameter. The main difficulty of this possibility is, of course, to find its
inverse. Such a development would be very welcome.

Acknowledgments

We greatly acknowledge Constantino Tsallis and Domingo Prato for communicating to us their
q-convolution product before publishing. We thank CNPq/PRONEX and CAPES, and one of
us (EPB) also acknowledges Funda¸cão Escola Polit́ecnica da Bahia (Brazilian agencies) for
financial support.

References

[1] Tsallis C 1988J. Stat. Phys.52479–87
An updated bibliography may be found at the web page http://tsallis.cat.cbpf.br/biblio.htm

[2] Curado E M F andTsallis C 1991J. Phys. A: Math. Gen.24L69–72
Curado E M F andTsallis C 1991J. Phys. A: Math. Gen.243187 (corrigendum)
Curado E M F andTsallis C 1992J. Phys. A: Math. Gen.251019 (corrigendum)

[3] Tsallis C 1999Braz. J. Phys.291–35
[4] Alemany P A and Zanette D H 1994Phys. Rev.E 49R956–8

Tsallis C, Levy S V F, deSouza A M C andMaynard R 1995Phys. Rev. Lett.753589–93
Tsallis C, Levy S V F, deSouza A M C andMaynard R 1996Phys. Rev. Lett.775442 (erratum)

[5] Tsallis C and Bukman D J 1996Phys. Rev.E 54R2197–200
Compte A and Jou D 1996J. Phys. A: Math. Gen.294321–9
Stariolo D A 1997Phys. Rev.E 554806–9

[6] Plastino A R and Plastino A 1993Phys. Lett.A 174384–6
Hamity V H and Barraco D E 1996Phys. Rev. Lett.764664–6

[7] Lavagno A, Kaniadakis G, Rego-Monteiro M, Quarati P and Tsallis C 1998Astrophys. Lett. Commun.35449–55
[8] Boghosian B M 1996Phys. Rev.E 534754–63

Anteneodo C and Tsallis C 1997J. Mol. Liq.71255–67
[9] Kaniadakis G, Lavagno A and Quarati P 1996Phys. Lett.B 369308–12

Quarati P, Carbone A, Gervino G, Kaniadakis G, Lavagno A and Miraldi E 1997Nucl. Phys.A 621345–8c
[10] Ion D B and Ion M L D1998Phys. Rev. Lett.815714–7

Ion M L D and Ion D B1999Phys. Rev. Lett.83463–7
[11] Souza A M C andTsallis C 1997PhysicaA 23652–7
[12] Rajagopal A K 1996 Phys. Rev. Lett.763469–73
[13] Lenzi E K, Malacarne L C and Mendes R S 1998Phys. Rev. Lett.80218–21
[14] Rajagopal A K, Mendes R S and Lenzi E K 1998Phys. Rev. Lett.803907–10
[15] Lenzi E K, Malacarne L C and Mendes R S 1999 Path integral approach to the nonextensive canonical density

matrixPhysicato appear
[16] Tsallis C 1998Phys. Rev.E 581442–5
[17] Borges E P 1998J. Phys. A: Math. Gen.315281–8
[18] Tsallis C 1994Quimica Nova17468–71
[19] Tsallis C and Prato D Private communication
[20] Tsallis C 1981Kinam/Rev. Fis. (Mexico)3 79

Tsallis C and Magalh̃aes A C N1996Phys. Rep.268305–430
[21] Tsallis C 1994 Extensive versus nonextensive physicsNew Trends in Magnetism, Magnetic Materials and their
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