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Abstract. The Laplace transform is generalized by using giexponential functione; =

[1+ (1 — ¢q)x]Y2~9 that emerges from Tsallis’ non-extensive statistical mechanics, and some
of its properties are obtained. The usual transform is recovered as a limitingicasd ). The use

of theg-Laplace transform is illustrated by establishing a relation between the classical canonical
g-partition function and the density of states.

1. Introduction

Among the integral transforms, Laplace’s occupies a special place, mainly because of its
usefulness in solving differential equations of functions of exponential order with initial value
conditions or semi-infinite boundary value conditions. It has applications in various areas of
science and engineering. A particular use of the Laplace transform within Boltzmann—-Gibbs
extensive statistical mechanics is to establish the connection between the density of states (an
entirely mechanical property) and the canonical partition function.

There is an increasing focus on non-extensive phenomena in the physics literature and
particularly on the Tsallis generalization of statistical mechanics. Since its formulation [1, 2],
the theoretical body of the formalism has expanded significantly (see [3] for a recent and
broad review). It has been applied to a variety of systems, among which we mentioevghe L
[4] and correlated [5] anomalous diffusion, self-gravitating systems [6], peculiar velocities of
galaxies [7], turbulence in pure electron plasma [8], solar neutrinos [9] and quantum scattering
of spinless particles [10].

The present work is included in the formal developments of mathematical methods
associated with Tsallis statistical mechanics. Some previous works along these lines are on
distribution functions [11], linear response theory [12], perturbative and variational methods
[13], Green's functions [14], path integral and Bloch equations [15], consistent testing [16]
and trigonometric and hyperbolic functions [17].

The starting point of the mathematical developments associated with the Tsallis formalism
is the definition of the generalizedlogarithm and;-exponential functions [17, 18]

exp,x=¢€ =[1+(1- g)x]Y -9, (1)
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These functions are a kind gfdeformation of the usual ones and are reduced to them in the
limit ¢ — 1. Their definitions allow one to write a sharp analogy between Boltzmann—Gibbs
statistical mechanics and Tsallis generalization. For instance, the generalized entropy of the
microcanonical ensemble is written §s = kIn, W (k € R > 0 andW is the number of
microstates).

In the Tsallis non-extensive statistical mechanics, there is a generajipedtition
function Z,. We show that the density of states may be recovered #grby an inverse
g-Laplace transform.

2. g-Laplace transform

In order to obtain a generalization of the Laplace transform of a fungtion

oo

LLFD}s) = F(s) = / J (@) expy(—st) dt )

0
motivated by non-extensive Tsallis ideas, we consider the replacement,¢f8xpby ag-
exponential. We can achieve this by the following simple possibilities: replace the kernel
exp,(—st) by
(b) [exp, (—1)]*, or
(c) [exp,(+n)] .
All of these possibilities reduce to the usual kerngl én the limitg — 1. In the present
work we consider the second case and defingthaplace transform of a functiofi by

L f(O}s) = Fy(s) = /0 f®[exp, (—=0)]° dr. 3)

We shall show that this particular generalization has a variety of interesting properties; the other
two possible generalizations will be commented on later. This definition has the usual Laplace
transform as a particular case, whgn— 1. Forg < 1, we must use aut-off essentially

the same as that used in the non-extensive statistical mechaniesd#resity matrix for the
canonical ensemble of a system with Hamiltonfiris given by [2]

A 1 n _
py=[1-A-gpa]""" (4)
q
with
Z,=Tr[l—A—qpH]"". (5)

In order to retain a consistent probabilistic interpretation (eigenvalugg afust be non-
negative real numbers monotonically decreasing with the energy) a cut-off condition is
introduced, which imposes(E,) = 0 wheneve1 — (1 — q),Bﬁ] < 0 ({E,} is the set
of eigenvalues of the HamiltoniaH). To be coherent with the non-extensive formalism, we
also adopt the cut-off condition: exp-t) = 0 whenever [1- (1 — ¢)t] < 0.

We shall begin with the following definition: a functiofi(r) defined on the interval
a <t < oo is said to be ofj-exponential ordewy (0p € R) if there existsM € R such
that|[equ(—t)]"0 f (t)| < M. To demonstrate the existence of fidaplace transform, let
f(¢t) be measurable and gfexponential ordesy. Then, following Lebesgue’s dominated
convergence theorem, we hdw@(r)[equ(—z)]‘| < g(r) where

[1-@a- q)t]—(d—do)/(q—l) g>1
HOES

oo (6)
[1— Q=] @Dy gy g <1
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The functiong () is obviously integrable. Thus, the integfg"ﬁ dr f(r)[exp, (—1)]° converges
for Re(s) > op + (¢ — 1).
The inverse of theg-Laplace transform is given by

ctioo

1
LRGN0 = F0 = 5 [ Folem, 0] 0 ds @)

c—ioo
wherec is a real constant that exceeds the real part of all the singulariti&s(of. The proof
is found by checking the identities

f@) =L MLAf O (8)
and

Fy(s) = Lo{LHF(9)}). 9)
The first identity is proved as follows:

1 c+ioo
LAHLASON = 5~ / LSO~ A= )] O s

= > / _ _ 18/ A=q) 4./
=) [/0 f@H[1-A-qr] dt:|

x[1— (@1 —g)]/D1ds
3 00 f(l‘/) 1 ctioorq (1-— q)t/ s/(1—q) )
_/o [L—@—gx] {ﬁ/m [1— (1—q>r} ds}dt
_ /°° f@)

o 1-Q1-9)1]

1 ctioo 1— (1 _ q)t, 1/(1-q) ,
X {% /c_ioo expl<s Inl[—1 e ] ) ds} dr’. (20)

If we take into account the representation of the Dirdanction

1 ctioo

ctico
S(x) = P /C‘_ioo exp, (ex) do (12)
and also the property of a functigf(x) with a single, simple root at
1
S(f(x) = ————8(x — x0) 12
R TTITR (12)

we can find equation (8) straightforwardly.
We can check equation (9) by defining
ctioo

g =5—|  F@lexp,(n]" " d (13)

where F,(s) = L,{g(#)} andc is such that the above integral converges. FHeaplace
transform ofg(z) is

ctioo

1 o ,
Lale®) = o [ drlexp,(-np [z Fy@lexp, (-] (14
0 c—ioco
Interchanging the order of the integrals (uniform convergence required), we have
ctioo

Lolg®)} = %/ ' dz Fq(z)/0 dr [equ(_;)]s—z—(l—q)_ (15)
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We require R&) = ¢ < Re(s) in order to guarantee the convergence of the second integral.
We find, then

c+ioo F.(z
LAg®)} = %/ A dz Sq_(ZZ)‘ (16)

In order to evaluate this integral, we choose a contour defined by the straight line-Re

and an arc to the right such that the polis located inside it. IF, (z) has no singularities to

the right of Réz) = ¢, is of order Qz ) (i.e. |Fy(2)| < M|z|*as|z| = oo, M,k € R > 0)in

this half-plane, and the integral over the arc gives no contribution, then, by the Cauchy integral
formula, we find thag (r) and f () possess the same Laplace transfafy(s).

3. Properties of theg-Laplace transform

In the following we list some properties of the presgrtaplace transform (their proofs are
formally simple and thus are not included).

(a) Limiting values

Jim s£,(f (1)) = lim £(0) (17)

lim s Lo {f 0} = lim {[1 — 1= g)]f )} (18)
(b) Linearity

Loylaifi(t) +ax fo(t)} = a1l { 1)} + axLy{ fo(1)). (19)
(c) Scaling

1 .

Lo{f(at)} = Zqu(s/a) with ¢’ =1-(1-¢q)/a. (20)
(d) Attenuation, or substitution

Fy(s — s0) = Ly{[exp, (=D] 7 f(1)}. (21)
(e) g-shifting, org-translation

t—1to r—1o _ o \15—(1—q)
£‘1{f<1— 1- Q)t0>9(1— 1- q)to>} = (R A @2

wheref (¢) is the Heaviside step function.
() Transform of derivatives
We may express these properties in two forms:

A9, } — (0) (23)

L f )= Sﬁq{m

1" _ 1 f (@) Y _
L =se - a-ane | L0 o -5 (24)
and

d
tfgli-a-onfol) =so- 10 for s2q-1 25)

d d
efgln-a-ong-a-oso|
= S2LAf (O} — [/ (0) — sf(0) +(L—q) f(0). (26)
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The most common application of the Laplace transform is in the solution of linear
differential equations. It takes advantage of the prop&ityf (1)} = sL1{f ()} — f(0),

to transform differential equations into algebraic equations instdemain. In thisg-
generalized version, the corresponding properties (equations (23) and (25)) may also be
used, with the same purpose, for solving differential equations in which the derivatives
appear in the form ofd/d){[1 — (1 — ¢)7] f (1)}. In particular, exp(£Ar), A > 0 (theg-
exponential emerges in a variety of physical situations within the non-extensive statistical
mechanics) is a solution of the differential equation

%{[1:*:(1—61))»t]f(t)} =2 - Arf@). (27)
(g) Derivative of transforms

Fy(s) = LyfInifexp, (=01 f (1)} (28)

F{(s) = Ly{Inj[exp, (=] f (1)} (29)

(h) Transform of integrals
We have here two possible forms

d 1
ﬁq{fo F ) d/\} = mﬁq{[l - A=l f®)} (30)
and
Jo £ da 1
ﬁq{m} = LSO} (31)
(i) Integration of transforms
°° _ —f (@)
_ S 0)
/ / Fyl o {ln 1lexp, (- t)]} 53)
(i) Product of transforms
LAFOILe{g(0)} = Lo f (1) %4 g(1)} (34)

where(f x, g)(¢) is theg-convolution product, defined by [19]

t A
(f *q (1) = /0 d?»'/o di' f()gA)8(t — [A+2" — (L= )]

! t—A gd)
= da. 35
[of<l—(l—q))\)l—(l—q)k (35)

In fact, transformation (35) is a straightforward extension of pagallel product
introduced in [20]. The-convolution is commutativef(x, ¢ = g *, f), distributive with
respect to addition and multiplicatiotf &, (ag +bh) = a(f *, g) + b(f %, h)), wherea
andb are constants) and associatiyes(; (g x, 1) = (f %, g) *4 h).
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4. g-Laplace transforms of some elementary functions
Next we list theg-Laplace transforms of some particular functions:

(a) Unit function, Diracs-function and Heaviside step function:

1 s>qg—1 for ¢g>1
L} = ——— (36)
s+1l—gq s>0 for g<1
L8(1)) =1 (37)
[exp, (—tp)]**1 s>qg—1 for g>1
L0t —10)) = ——— 38
! ° s+1l—gq s>0 for ¢ <1. 38)
(b) Power functions: for integer powers, we have
_ (n —21)!
L " 1 —
A S Ao r2a =l =]
(n—-1)!
= — 39
s"0,(2—q") ( )

withn =1,23...,s >n(g—1forg>1,s>0forg <land(l—gq)=s1-q).
0.(q) is a polynomial function given by [17]

On@)=1-929 -DBq —2)---[ng — (n = D] (40)

For real (not necessarily integer) powers, we make use of the Hilhorst integral
representation of exjo—x) forg > 1 (x > 0) [21]

1 > 1/(q—1)—15—u n—(@—Dxu
e — e d 41
F(l/(q—l))/o “ 14 ‘ “D)

and the integral representation fp< 1 (x > 0) [22]

_M@-o/d-q) [* e ~(1-g) (L)
B 2 /, o (L+in)@0/0-0 & 7 (42)

which brings implicitly the cut-off, and find

[ () Ms/g =1 ~a) s>alg—1) for g>1

(g —DI'(s/(g — 1)

Cs/(1—q)+1
I (o) G/d-g+D s>0 for ¢ <1.
Q=g T(s/A-—g)ta+1)
(c) Exponential, circular and hyperbolic functions
The function ' (a > 0) is of g-exponential ordeYq, and ¢’ is of g-exponential order
for g < 1 (due to the cut-off). Theij-Laplace transforms are (see equations 3.383 5. and

3.3831. of [23]):

1 s a
e =——w(12- ; 44
Feste ™) =0y ( q-1 q—1> 49

exp, (—x) =

equ (_X)

Eq {la_l} —

1 K +a
tary __ .
Ly1{€ }——s+1_q1F1(1,1_q+2,1_q> (45)
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whereV («, y; z) and1 F1(«, y; z) are the confluent hypergeometric functions. For the
circular and hyperbolic functions, fgr < 1, we have

. i 1
Ly <a{sin(an)} = T3sviog
s ia S —ia
Fill —+2 —1F(1l, ——+2, —— 46
X[l l( 1-gq 1—61) ! 1( 1-gq 1—61)} (49)
L, <1{cog t)}—1 =
g=<l “ T 2s+1l—g
s ia s —ia
Fill, —+2, ——— |+ F1|1, —— + 2 47
X[l 1<,1_q ’1—q) 1 1( ,1_q ’1—q>:| 47)
. 1 1
Ly <afsinh(at)} = Em
s a s —a
Fill, —+2, —— | —1F1(1, ——+2; —— 48
X[l 1(’1—61 1—41) ' 1( 1-g¢ 1—61)} (48)
1 1
L, <1{coshar)} = Em
s a S —a
Fq 1, +2, —— | +1F1[1, ——+2, —— ) |. 49
X[l l( l1-g¢g 1—q> ! 1( 1-g¢g 1—q>} (49)

(d) g-exponential function
The functionf(zr) = egf with ¢ = 1+ (1 — ¢g)/a is of g-exponential order: and its
q-Laplace transform is

L, le) =

1 s>a+tqg—1 for ¢g>1
{ (50)

stl—g—a s>0 for ¢ <1

We have also the following relations (see equations 3.197 3. and 3.197 5. of [23]):

1 s 1 s >0
L€} = F. 12— — g1 51
28} = L) 1<q—1 g -1 ) o1 D
Looafe ) = F( 1 ogs*iy ) $>q-2 (52)
>1 = 211 b ; ; —a
= s+2—¢q g—1"q-1 O<a<?2

1 -1 s s >0
L,1{e} = F< 1 +2; ;a) (53)
=t s+1-q> "\1-¢' 7 1—¢ la| <1

1 —s 1 s >0
L,{€) = 2F1< L +2 a‘1> (54)
= a—q) 1-q" 7" 1—¢q a>1

where, Fi(«, B; v; z) is the Gaussian hypergeometric function. From equations (51)—(54) we
find theg-Laplace transforms of thg-hyperbolic sine and cosine functions [17]

sinh, x = 3(e) —€,*) cosh x = 3(e) +¢€,7). (55)
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5. Density of states and the classical-partition function

To conclude this work we shall use thel aplace transform to establish a relation between
the classical-partition function and the density of states. We first useutmeormalized;-
expectation value as defined in [2] (here with a continuous distribution of probabjities
wherer is a dimensionless variable in the phase space)

(01, = [lpwirow dr (56)

Later on we shall focus on the so-calladrmalizedg-expectation value. The-partition
function Z, which emerges from the optimization of the generalized entropy [1]

1— [drp(m)]?

S, =k 71 (57)
with the constraint?), = constantf{ is the Hamiltonian) and the usual norm constraint

/,0(7‘) dr=1 (58)
is

2,) = [ expl-prldr (59)
which may be rewritten as

Z,B) = /Ooo g(E) exp,(—BE)dE (60)

whereg(E) is the density of states (i.e(E) dE is the number of states with energies lying
betweenE and E + dE). Now we make the change of variables= SE and introduce a
dummy parametey in equation (60) in order to identify it with equation (3),

l [o¢]
Zy(B) = Z4(B, n)}nzl = E/o g(e/B)L— (1 — q)e]" D de

n=1
1
= Eﬁq{g(é/ﬂ)}(n) ) (61)
=
According to equation (7), its inverse is given by
g(E) = —— /C N Z,(B. [l — (1 —q)e] 9 dy
270 Je—ioo .
= LHZy(B. IO - (62)

Equation (61) may be used to find thepartition function once a density of states is given,
and equation (62) may be used in the reverse procedure. Let us illustrate this point with the
classical ideal gas, whogepartition function should be rewritten as

1 dx; d®p; ANk
Zy(B) = 57 / H 3 [equ (—,3 Zj: E)} - (63)
Theg-partition function (63) for the casg < 1 becomes [24]
vV 2em \YP O T@m/A-g)+ D)
Z, = . 4
¢<1(F) N!h3N((1—q),3) F(n/A—q)+3N+1) |, (64)
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For the casg > 1, we have [21, 25]
VN < 2wm )3N/2F(17/(q -1 - 2N)
N'h3N \ (g — DB T/(g—1) |

The integration of equation (62) (see equations (20) and (22), pp 349-50 of [26]) in both cases
yields

Zq>1(/3) = (65)

VN (2am)3N/? /21
N'h3V T (3N)
which is the density of states of the classical ideal gas [27]. In order to haveaplace
transform, the density of states must beyeéxponential order. In the case where< 1, the
cut-off guarantees the admissibility condition, butin the cage®sfl, g(E) is of g-exponential
order (and, thus, admitsealLaplace transform, and thereforgggpartition function) only if
1 <gq < 1+2/(3N) (for large N). This range of validity is the same found by [21, 25] and
says, as a consequence, that there is no classical ideal gag within the thermodynamic
limit (N — o0).
Now we use theormalizedy-expectation value, introduced in [28]
o (™]40(r) dr
(o), = f[]—
JTp(r)]e dr
_ {0)g (67)
(1)4
Theg-partition function which follows from the optimization of (57) with the constraints (58)
and((H)), = U,, whereU, is the (constanty-generalized internal energy, is

g(E) =

(66)

= _ L, H) = Uy
Z,(B) = /equ[ ﬂ—f[p(r/)]q d'r/i| dr (68)
BU. 'l
=88 o | o) ©9)
whereg is the Lagrange parameté, is defined by
/ p
= 70
P = Tl ar+ @—ap, 70)
andZz; (p’) has the same functional form as the unnormalizgghrtition function (60)
Z,(B") = /0 g(E)exp,(—p'E) dE. (71)
With the change of variables= g’'E we have
1
Z,B)=2Z,B' |, = Fﬁq{g(e/ﬁ/)}m) (72)
n=1
and
g(E) = L HZy (B m}©)] _pp- (73)

We finally address the other possible kernels for defining the generalization of the Laplace
transform, suggested in the beginning of section 2. The third one consists of using the kernel
[exp, (+1)]~*. In this case, the cut-off would be introduced fo 1 andr > 1/(¢ — 1). The
case wherg < 1 would have no cut-off. A similar procedure was used in [29] in another
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context. This possibility is entirely equivalent to ours with the change of varighte? — ¢’

in equation (3), and essentially brings nothing new. Our choice has the advantage of placing the
cut-off consistently with Tsallis formalism. The use of the kernel €xp1) (first possibility)

is a different generalization and would litk (8) andg(E) by ag-Laplace transform without
needing a dummy parameter. The main difficulty of this possibility is, of course, to find its
inverse. Such a development would be very welcome.
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