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Abstract. A transfer matrix approach is used to calculate the partition function of the 
Ising model on the Koch curve. In zero magnetic field it is possible to obtain an exact 
analytic result. In the presence of a field the problem becomes more difficult. A procedure, 
based on an expansion about H = 0, is developed which shows that the spontaneous 
magnetisation vanishes identically and which makes it possible to give the zero field 
susceptibility as a power series in a small temperature dependent parameter. 

It has recently been recognised that some phenomena of physical relevance, such as 
the threshold of percolating clusters and the behaviour of polymer chains, may be 
represented by self-similar structures called fractals (Mandelbrot 1977, 1982). In 
general, fractals are constructed in steps starting from a given shape, and rescaling it 
continuously down to a 'microscopic' length scale. The resulting geometrical shape, 
drawn in a d-dimensional Euclidean space, is characterised by a fractal (or Hausdorff) 
dimensionality D, which is usually different from d and non-integer. 

Some preliminary investigations of critical phenomena on fractal lattices, via the 
renormalisation group technique, have been reported by Gefen et a1 (1980, 1983). 
In these works a decimation procedure is used to study the critical behaviour of an 
Ising model on a Koch curve with fractal dimensionality D =In 4/ln 3. In the present 
work we show that it is possible to use the transfer matrix technique to obtain exact 
analytic results for some thermodynamic functions of the Ising model on the Koch 
curve. If we restrict the spin interactions to nearest neighbours along the curve, the 
solution of the problem is trivial. However, if the spin interactions are between nearest 
neighbours in the plane, the decimation procedure is not exact, and the problem 
becomes an interesting example of the study of a system without translational symmetry. 

The initial stages of the construction of the Koch curve are shown in figure 1. The 
spins on the lattice sites (s, = *1 ,V i )  are assumed to interact with their nearest 
neighbours in the plane. There are two kinds of exchange parameters: (i) J, for nearest 
neighbours along the curve; (ii) and J ' ,  for nearest neighbours which do not correspond 
to bonds along the curve, as 2 and 4, 6 and 8, 8 and 10 etc, in figure 1. Then we may 
write the Ising Hamiltonian 
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Figure 1. The first two stages of the construction of the Koch curve. Spins are placed on 
each site of the curve and interactions are allowed between nearest neighbours only. 
Broken lines indicate those interactions with exchange parameter J ‘ .  

where N indicates the N t h  step of the  construction, 8 = 4N is the total number of 
spins, H is the applied magnetic field, and we assume periodic boundary conditions 
in each stage of the construction. It should be remarked that the Koch curve, although 
embedded in a two-dimensional Euclidean space, is still one-dimensional from the 
topological point of view. Indeed, it is possible to  isolate finite portions of the curve 
by the removal of two sites only. Also, there is no translational symmetry, and the 
fractal character of the lattice clearly governs the places where an interaction J’ should 
be added. 

If we define the matrix elements 

(SIPIS’) = exp(PJ’ss’), 

(slRls’) = exp[PJss’+iPH(  s + s’)], 
and 

where P = ( k T ) - ‘ ,  the partition function of the first stage of the construction is given 
by 

Z(  T, H, fi = 4) = C exp(-PXl) 
(5) 

(slQ21s‘) = (sIR21s‘)(sIPIs’), ( 5 )  
and R I  = Q2R2,  we have Z( T, H,  4) = Tr  R I .  In the next step of the construction we 
have Z( T, H ,  fi = 16) = T r  R2, where R2 = Q2R2Q2Q2Q2R2Q2R2. In general, it is 
easy t o  see that for all N we have Z (  T, H, 4”) = T r  RN, where RN is given by the 
product of the matrices R 2  and Q2 in a well defined sequence, according to  the presence 
of pair interactions along bonds which may o r  may not belong to  the curve. Of course, 
this form of R, reflects the lack of translational invariance of the Koch curve. 

In zero field the matrices Q2 and R 2  commute and can be diagonalised simul- 
taneously. The trace of RN may be written as 

(6) T r  RN = vfl-h;-+ t7f-h;- 
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where 7, and v2 ,  and A ,  and A 2 ,  are the eigenvalues of Q 2  and R 2  respectively, and 
the subscript 1 denotes the largest eigenvalues of these matrices. The exponents a,, 
which are given by 

count the number of times the matrices Q2 and R 2  appear in the product RN. In the 
thermodynamic limit it is easy to calculate the free energy per spin 

f ( T , H = O )  =-#T ln(v:A,), (8) 
where 

1 7  

7, = 2 e’J’( cosh 2pJ + e-2pJ’ 

and 

A ,  = 4 cosh2 PJ. 

(9) 

For J, J‘> 0, the ground state is ferromagnetic. In the presence of competing interac- 
tions, however, the ground state may become antiferromagnetic and highly degenerate. 
For J > 0, and -J’ > J, there is a residual entropy per spin given by s = f k  In 2. 

In the presence of an applied field the matrices Q 2  and R 2  do not commute. 
Moreover, since the fractals are not translationally invariant, this makes it very difficult 
to find an expression for the free energy f ( T ,  H ) .  However, it is possible to establish 
the recursion relation 

RN = Rk-lSRk-1 (11) 
where S = R-’Q2. In general, it is awkward to write the eigenvalues of RN-l  in terms 
of those of RN and S,  although this is not difficult if we perform expansions for small 
H and keep terms up to order H 2 .  In the former case we are faced with quite 
untractable nonlinear difference equations, while in the latter case the equations are 
linear. In the remainder of this paper we show how this can be done and obtain, as 
an example, the zero field susceptibility as a power series in a small temperature 
dependent parameter. As it should be expected, the spontaneous magnetisation 
vanishes and the susceptibility is well behaved except at T = 0. 

If we expand about H=O,  the matrices Q2 and R 2  may be written as 

A =  c + ~ H D + ~ ~ H ~ E + o ( H ~ ) ,  (12) 

where C and E are matrices of the form 

with eigenvalues c , , ~  = c ,  * c2, while D has the form 

with eigenvalues 
given by 

= * ( d t - d : ) ” 2 .  Thus, the eigenvalues of A, up to order H 2 ,  are 

~ l . 2 = ~ 1 . 2 + P 2 ~ 2 [ ~ 1 . 2 ~ ~ 2 / ( ~ 1 - ~ * ) 1 ,  (15) 
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where a re  the eigenvalues of E, and a 2  = 8: = 8:. If we notice that the product of 
matrices of the form given by equation (12) still keeps the same form up t o  terms of 
order H 2 ,  it is possible to write RN as in equation (12). So, the eigenvalues of RN 
are given by equation (15) with all quantities denoted by an  additional superscript N 
The matrix S, on the other hand, may be explicitly written in the form 

S =  s , + ~ H s ,  + ~ ’ H ’ S ~ + O ( H ~ ) ,  (16) 

with eigenvalues T ~ , ~  given by 

7 1 . 2 =  #,1,2+P2H2[W1,2f Y2/(#,l-42)l> (17) 

where 

4 1.2 - - L ~ P J ’ ( ~ Z P J  +e-2PJ)  * 2 e-PJ’l/(ePJ + e-PJ)2, 

y1 , 2  = + Jy’ = * 2i e2PJ (ePJ’ - e-PJ’)/ (e2P.I - e -2PJ)2, (18) 
= (eP”-e-PJ’)(4+5 e2PJ +e-2PJ) / (e2PJ  -e-2PJ)2 (19) 

are the eigenvalues of the matrices So, SI,  and S 2 ,  respectively. A t  this point we a re  
prepared to  undertake the calculations to  obtain recursion relations for the eigenvalues 
of RN+l in terms of those of RN and S. It is then straightforward to  show that 

and 
& 1 N + 1 )  = 4 4 , , 2 ~ ( 1 : ) [ d ? I ~  + 24I,2[d;’l2[s ( N i  1 2 

1,2 

+ w1.2[~:~)]4+(d,N)+ a$N)){(a:Ni+ C T $ ~ ) ) # , , , , [ S ( ~ ~ ] ~  

+ 2iyld$N’[aj~’]2}. (22) 
However, we should still eliminate from these equations the matrix element d:” of 
DN. This is finally accomplished by the relation 

(NI  (NI 2 2iYl[VI (+2 1 div+1) = 

+ [a:Ni + a$”]{ 41[a:N’]2+ 42[a$N’]2}d~”. (23) 
From equations (20)-(23) we formally obtain the eigenvalues of RN, for all values of 

Indeed, it 
is quite simple to write the partition function in the form 

(24) 

N, as functions of the known quantities w ~ , ~ ,  y 2 , u:o:, E\?: and 

Z(T,  H,  4 N )  = dp[i  + c z ~ ’  + 4 N p 2 ~ 2 ( ~ : N i +  U : ~ ) ) I + O ( H ~ ) ,  

ay’ = # , y 3 [ # , 1  1 / 3 ayl l ]4  ’ 
where 

(25) 

c = (#,1/#,2)1’3, (26)  
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- 1  4i+l x [u1[uj0)]-2c-’( 1 + 2 ~ 2 4 ‘  + 2 c - 1 ~ 2 ~ 4 ’  + ~ ~ 2 ~ ~ ~ ‘ )  + w 2 4 2  z 

+2y2C3221$;2t122x4i( 1 + cz4’)]. (29) 

In equations (27) and (28) we have 

1-1 1- I 
1 -  - C z 2 ( 4 k - f )  n ( 1  + cz4’ + c-1z2x4p + z 2 x 4 p ) ,  

k = O  p = k + l  

I 

k =O 
q1 = n ( ~ + 2 C Z 4 k + ~ c ~ + 2 c - 1 ) z 2 x 4 k + 4 z 3 x 4 k  + ( ~ - 2 + 2 c ) ~ 4 x 4 k + 2 c - 1 ~ 5 x 4 k  + z ~ ~ ~ ~ ) .  

(32) 

Since the partition function is given as a power series in the variable z S 1,  we do not 
expect any non-analytic behaviour, except at T=O, when z=1. Indeed, the free 
energy per spin in the thermodynamic limit is given by 

l n ( ~ $ t ’ ~ v \ ~ ’ ) +  lim - - I ~ I [ ~ + ~ ” ~ ~ H ~ ( ~ \ ” ~ + u ~ ” ’ ) ] } + O ( H ~ ) .  1 (33)  
N-rm 4” 

The magnetisation is 

which vanishes identically for H = 0. On the other hand, the zero field susceptibility 
is given by 

where U ]  = limN+, v\” is a well behaved function of temperature, and limN+m U:”) = 0. 
In conclusion, we have used the transfer matrix technique to obtain an exact analytic 

expression for the free energy per spin of the zero field Ising model on a Koch curve. 
For H # 0, the transfer matrix for the whole curve is written as a non-periodic n-fold 
product of non-commuting matrices, and the problem of finding its largest eigenvalues 
becomes quite difficult. We show, however, that the spontaneous magnetisation 
vanishes and the zero field susceptibility may be written as a power series in a small 
temperature dependent parameter. 
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