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a b s t r a c t

A model consisting of a system of five ordinary differential equations to simulate the
interactions between normal cells, cancer cells, endothelial cells, chemotherapy agent and
anti-angiogenic agent in tumour growth is developed. By a partial analysis of the cancer-
free subspace, it is shown how the anti-angiogenic agent may help the chemotherapy
agent in controlling the cancer. This is illustrated by numerical examples and bifurcation
diagrams.
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1. Introduction

Neoplastic diseases are responsible for 12% of deaths around the world. They puzzle researchers of several disciplines
with ever newand intriguing challenges in relation to the dynamics and control of tumour growth. In recent years,multiscale
models for cancer therapies have been of great interest [1,2]. In order to analyse vascular tumour growth for which the
number of cells is very large (tumour diameter D > 2 mm), it is reasonable to base our model on a continuum assumption,
namely that cell growth is an essentially continuous process. Thus cell growth models have mostly consisted of differential
equations [3,4], and more specifically ordinary differential equations (ODEs) in the case of modelling tumour growth
subjected to therapy [5–7]. In this case the spatial heterogeneity of the cells is neglected as a first approximation, assuming
homogeneous distributions of the cells in a single well-mixed tissue, in such a way that the therapy agents act on the cells’
compartments.

Frequently the interaction between normal cells (NCs) and cancer cells (CCs) is thought of as a competition for bodily
nutrients [8], and themost common chemical treatment (chemotherapy) as a killing relationship between the chemotherapy
agent (CA) and both NCs and CCs, as assumed by some of us in [9]. We consider CA to be a cell-cycle non-specific
chemotherapeutic drug (e.g. cyclophosphamide [10]) that does not distinguish proliferating and non-proliferating cells.

In the specific case ofmalignant tumours that reach a certain size, however, CCs createmechanisms to provide themselves
with the necessary nutrients for their rapid growth [11,12]. This means that CCs induce substances that lead to the
development and growth of an additional endothelial cell (EC) population [13,14], which have several effects on the NCs
and CCs. Firstly the ECs cause blood cells to proliferate and to bring oxygen and nutrients to the tumour: this mechanism
is known as tumour angiogenesis [15]. Hence the ECs effectively increase the carrying capacity of the CCs [16] due to neo-
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vascularization. Since the tumour induces the occurrence of angiogenesis in its neighbourhood, it is reasonable to neglect
the effect of ECs in the carrying capacity of NCs.

In order to affect the angiogenic process, an anti-angiogenic agent (AA) is introduced in many treatments [17,18]. It
happens that AA is particularly efficient for slow growing solid tumours [19]. This has a saturated mass action effect in
reducing the growth rate of ECs. In the case of co-administration of AA andCA, AA is found to increase the efficiency of CA [20]
since it destroys the excess of ECs that contributes to the formation of an irregular structure of blood vessels, normalizing
the tumour vasculature. However, the vasculature should not be completely destroyed as a certain amount of vasculature is
necessary to allow for the flux of CA. Therefore, the concomitant presence of both ECs and AA leads to a net result of making
the oxygen and chemotherapy delivery more efficient [21,22].

With the purpose of analysing the response of chemo-resistant tumours to the co-administration of CA and AA, it is
reasonable to neglect the CA action on ECs in comparison to that of AA on the same ECs. Even the CA administration in the
case of chemo-resistant tumours seems to have a negligible anti-angiogenic side effect [23]. It is important to point out
that, although the change from the conventional chemotherapy schedule to almost continuous schedule may increase the
anti-angiogenic side effect of CA, this is not so important as the killing effect of AA on ECs and enhanced killing action of CA
on CCs.

In order to model the above considerations, we develop below a system of five ODEs for the interactions between the
three compartments of cells, NCs, CCs and ECs, and the two compartments of agents, CA and AA. We assume continuous
infusion of the agents to simulate the response to chemo-resistant tumours. Of course, a complete analysis of such a model,
or even of its 3- and 4-dimensional subspaces is mathematically intractable. Note that other models have been proposed to
analyse a combined CA+AA treatment: in [1], amultiscalemodel is considered, inwhich CA treatment followsAA treatment;
in [24], an ODE model that does not consider an NC compartment is investigated.

Aswell-known from clinical observations, sometimes chemotherapy is able to eradicate the cancer possibly after surgery
and/or other treatments (eg. immunotherapy, radiotherapy), but sometimes not. It is also generally known that AA itself
cannot drive cancer to extinction [1,22,25]. The purpose of this paper is to show that the AA may aid the CA in cancer
treatment and, in fact, may even facilitate a ‘‘reversal of outcome’’. An example of this is given in [26] where certain drug
resistant tumours in mice are shown to respond positively to a combined therapy eliminating the tumour. Further, such a
combined therapy is recommended for humans, for instance, in the case of colorectal tumours [27]. Hence this paper is able
to add credence to certain (possibly controversial) experimental results.

We may anticipate the two main issues and contributions of this work. In the first place, the co-administration of CA
and AA is able to eliminate the tumour in the case of drug-resistant tumours, promoting a reversal of outcome. Our analysis
indicates that this positive scenario may be reached due to the fact that the AA kills ECs, but it also causes an enhancement
of the CA killing action on CCs. Secondly, from the modelling point of view, our CA and AA continuous infusion approach
gives rise to a discussion about the reduction of time intervals between infusions, which was already discussed from the
experimental point of view [26].

We consider the subspaceswhere the CCs are absent and check for the equilibria (or absence thereof) both in the absence
and presence of AA.We refer to such equilibria as the ‘‘cure states’’. We then develop criteria for such cure states to not exist
or be unstable in the CC direction in the absence of AA but to be asymptotically stable in the CC direction in the presence of
AA. We illustrate this with numerical examples. This gives a partial picture of how AA can aid CA in eradicating CCs (to be
elaborated in the discussion section).

The paper is organized as follows. In the next section we state our model and prove some elementary properties. In
Section 3, we look at the sub-models in the absence of CA or AA, in Section 4, in the presence of both CA and AA. This is
followed in Section 5 with numerical examples and bifurcation diagrams. We end with a discussion in the final section.

2. The model

We now present our model of interactions between NCs, CCs, ECs, CA and AA. Xi(t) is the concentration of NCs, CCs,
and ECs, respectively, for i = 1, 2, 3; Y (t) is the concentration of the chemotherapy agent and W (t) is the concentration
of the anti-angiogenic agent for t ≥ 0. The model is based on the considerations discussed in the Introduction, which we
summarize below.

(1) Both X1(t) and X2(t) exhibit logistic proliferation rates and compete for available resources.
(2) X3(t) is regulated by the net result of chemical factors produced byX2(t) aswell as by amuch slower logistic proliferation

rate.
(3) Y (t) acts as a killer, with different intensities, of on X1(t) and X2(t), according to a Holling type 2 function [28]. W (t)

acts only on X3(t).
(4) Y (t) andW (t) increase due to their continuous infusions into the system [9].
(5) Both Y (t) and W (t) decrease due to its action on the cells and also because of the washout process for both therapies.
(6) The killing action of Y (t) depends on the vascularization (X3(t)) and on its normalization set up byW (t).
(7) The chemical and anti-angiogenic therapies are applied simultaneously, i.e., by co-administration [26].
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Hence, we take as our model the following system of ODEs:

Ẋ1(t) = α1X1(t)

1 −

X1(t)
K1


− Q1X1(t)X2(t) − P1(X3(t),W (t))

X1(t)Y (t)
A1 + X1(t)

,

Ẋ2(t) = α2X2(t)

1 −

X2(t)
K2 + Γ X3(t)


− Q2X1(t)X2(t) − P2(X3(t),W (t))

X2(t)Y (t)
A2 + X2(t)

,

Ẋ3(t) = B X2(t) + α3 X3(t)

1 −

X3(t)
K3


−

P3 X3(t)W (t)
A3 + X3(t)

,

Ẏ (t) = δ −


ξ + d1

X1(t)
A1 + X1(t)

+ d2
X2(t)

A2 + X2(t)


Y (t),

Ẇ (t) = φ −


η +

d3X3(t)
A3 + X3(t)


W (t),

(1)

with˙= d/dt and

Pi(X3(t),W (t)) = Pi0 + Pi1X3(t) + Pi2W (t), i = 1, 2. (2)

Initial conditions are given by X1(t = 0) = X10 ≥ 0, X2(t = 0) = X20 ≥ 0, X3(t = 0) = X30 ≥ 0, Y (t = 0) = Y0 ≥ 0,
W (t = 0) = W0 ≥ 0.

The model parameters assume positive values and may be interpreted as follows.

– αi and Ki, i = 1, 2, 3, are the proliferation rates and carrying capacities of Xi;
– Qi, i = 1, 2, is the competition coefficient between X1 and X2;
– B is the rate of creation of CCs due to ECs;
– Γ is the proportion of ECs responsible for the tumour angiogenesis;
– Pi0, i = 1, 2, is the killing rate of chemotherapy on Xi in the absence of X3 and W respectively;
– Pij, i, j = 1, 2, is the rate of increased killing on Xi by CA per concentration of X3 (j = 1) and W (j = 2);
– P3 is the killing rate of anti-angiogenic therapy on X3;
– Ai, i = 1, 2, 3, is the Holling type 2 constant for Xi;
– δ and φ are the respective infusion rates of CA and AA;
– ξ and η are, respectively, the washout rates from the system of CA and AA;
– di, i = 1, 2, 3, is the rate at which AA and CA combine with Xi (note that Pi0 and di, i = 1, 2 as well as P3 and d3 may be

proportionally related).

We now simplify the model by eliminating three of the parameters. If we let xi(t) = Xi(t)/Ki, i = 1, 2, 3, y(t) = Y (t)
and w(t) = W (t); q1 = Q1K2, q2 = Q2K1, ai = Ai/Ki, i = 1, 2, 3, γ = Γ K3/K2, β = BK2/K3, pi0 = Pi0/Ki, i = 1, 2, pi1 =

PiK3/Ki, i = 1, 2, pi2 = Pi2/Ki, i = 1, 2, p3 = P3/K3, then our model becomes:

ẋ1(t) = α1x1(t)(1 − x1(t)) − q1x1(t)x2(t) − p1(x3(t), w(t))
x1(t)y(t)
a1 + x1(t)

,

ẋ2(t) = α2x2(t)

1 −

x2(t)
1 + γ x3(t)


− q2x1(t)x2(t) − p2(x3(t), w(t))

x2(t)y(t)
a2 + x2(t)

,

ẋ3(t) = β x2(t) + α3 x3(t) [1 − x3(t)] −
p3 x3(t) w(t)
a3 + x3(t)

,

ẏ(t) = δ −


ξ + d1

x1(t)
a1 + x1(t)

+ d2
x2(t)

a2 + x2(t)


y(t),

ẇ(t) = φ −


η +

d3x3(t)
a3 + x3(t)


w(t).

(3)

with pi(x3(t), w(t)) = pi0 + pi1x3(t) + pi2w(t) i = 1, 2 and xi(0) ≥ 0, i = 1, 2, 3, y(0) ≥ 0, w(0) ≥ 0.
It is important to note that, when x2 = 0, the subspace {(x1, 0, x3, y, w) : x1 ≥ 0, x3 ≥ 0, y ≥ 0, w ≥ 0} is invariant

under (3). The same is valid for the subspacewhere x1 = 0 but x2 > 0. Note also that the system (3), which is an autonomous
system with differentiable functions, satisfies existence and uniqueness of initial value problems [29,9]. Finally, it is easy to
see that, by the invariance of the x1 and x2 axes, and by the fact that ẋ3(t)x3=0 ≥ 0, ẏ(t)y=0 > 0, ẇ(t)w=0 > 0, all solutions
with nonnegative initial conditions remain in the nonnegative orthant.

We now show that our system is dissipative, i.e., there exists a compact region in the nonnegative orthant R such that
all solutions initiating in R remain there, and all solutions initiating outside R in the nonnegative orthant enter it in finite
time.
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Theorem 1. System (3) is dissipative.

Proof. Since the initial conditions are nonnegative, so are the solutions. From the first equation of system (3), it follows that

ẋ1(t) ≤ α1x1(t)(1 − x1(t)).

From the standard Kamke comparison theory we get

lim
t→∞

sup x1(t) ≤ 1.

Since di > 0, with i = 1, 2, we obtain from the fourth equation of system (3):

ẏ(t) ≤ δ − ξy,

which implies

lim
t→∞

sup y(t) ≤
δ

ξ
.

Similarly, from the fifth equation of system (3),

lim
t→∞

supw(t) ≤
φ

η
.

After some calculations, the third equation of system (3) leads to:

lim
t→∞

sup x3(t) ≤ M1,

where

M1 =
1
2


1 +

γ β

α3


+

1
2


1 +

βγ

α3

2

+
4β
α3

.

From the second equation of system (3),

lim
t→∞

sup x2(t) ≤ 1 + γM1.

Hence, the region

R = {(x1, x2, x3, y, w) ∈ R5
+
/0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 + γM1, 0 ≤ x3 ≤ M1, 0 ≤ y ≤ ξ−1δ, 0 ≤ w ≤ η−1φ}

is an attracting region, proving the property. �

As a final comment in this section, we wish to define more precisely what wemean by the ‘cancer hypothesis’ [9,30]. We
actually mean that, in the absence of treatment, CCs always win the competition with NCs for the considered cancer tissue.
So, when we state that the ‘cancer hypothesis’ is valid, we do not take into account the individuals for which the natural
immune response is able to win the fight against the disease, even in the absence of any treatment. Biologically, the most
common situation leads to the death of the individual. Mathematically, for our model, ‘cancer hypothesis’ is the condition
under which the solution to the system (3), with Y ≡ 0 andW ≡ 0, satisfies limt→∞(x1(t), x2(t)) = (0, 1). Let us note that,
in the case of no endothelial cells, the first two equations of system (3) satisfy

ẋ1(t) = α1x1(t)(1 − x1(t)) − q1x1(t)x2(t),
ẋ2(t) = α2x2(t)(1 − x2(t)) − q2x1(t)x2(t)

(4)

in which we must have, if x1(0) ≥ 0, x2(0) > 0, then limt→∞(x1(t), x2(t)) = (0, 1) holds. From [31], this implies that the
‘cancer hypothesis’ consists in the conditions

α1 − q1 < 0 and α2 − q2 > 0, (5)

whichwe assume to be valid throughout this paper. The conditions (5) guarantee the global stability of the equilibriumwith
no NCs in the absence of treatment. Since the parameter q2 is related to the immunological response of NCs in the presence
of CCs [8], it is consistent that its values are limited by conditions (5). Moreover, note that they are sufficient conditions in
the presence of ECs.

In the next sections, we perform a comparative study of the action of therapies based on analytical and numerical results
for the model.

3. Analytical results in sub-models

In this section we consider two sub-models, each of them involving only one cancer-destroying agent.



S.T.R. Pinho et al. / Nonlinear Analysis: Real World Applications 14 (2013) 815–828 819

3.1. No chemotherapy

In this case y ≡ 0 (and δ = 0). Now the model becomes

ẋ1(t) = α1x1(t)(1 − x1(t)) − q1x1(t)x2(t)

ẋ2(t) = α2x2(t)

1 −

x2(t)
1 + γ x3(t)


− q2x1(t)x2(t)

ẋ3(t) = β x2(t) + α3 x3(t) [1 − x3(t)] −
p3 x3(t) w(t)
a3 + x3(t)

ẇ(t) = φ −


η +

d3x3(t)
a3 + x3(t)


w(t),

(6)

with

xi(0) ≥ 0, i = 1, 2, 3, w(0) ≥ 0. (7)

From the first two of these equations we get

ẋ1(t) = α1x1(t)(1 − x1(t)) − q1x1(t)x2(t),
ẋ2(t) ≥ α2x2(t)(1 − x2(t)) − q2x1(t)x2(t).

(8)

Since by (5) solutions of (4) satisfy limt→∞ x1(t) = 0, then by Theorem 1.7.1 of [32], limt→∞ x1(t) = 0 for system (8).
Further lim inft→∞ x2(t) > 0 by the same theorem in [32].

Remark 1. AA by itself is not able to eliminate the cancer cells.

3.2. No anti-angiogenic therapy

In this case w ≡ 0 (and φ = 0). Now the model becomes

ẋ1(t) = α1x1(t)(1 − x1(t)) − q1x1(t)x2(t) − p1(x3(t))
x1(t)y(t)
a1 + x1(t)

,

ẋ2(t) = α2x2(t)

1 −

x2(t)
1 + γ x3(t)


− q2x1(t)x2(t) − p2(x3(t))

x2(t)y(t)
a2 + x2(t)

ẋ3(t) = β x2(t) + α3 x3(t) [1 − x3(t)]

ẏ(t) = δ −


ξ + d1

x1(t)
a1 + x1(t)

+ d2
x2(t)

a2 + x2(t)


y(t),

(9)

with

xi(0) ≥ 0, i = 1, 2, 3, y(0) ≥ 0. (10)

Here we are interested to knowwhether a cure state exists or not. Hence we look for the equilibrium F̂(x̂1, 0, x̂3, ŷ) with
x̂1 > 0. This requires us to solve the algebraic system

α1(1 − x1) − (p10 + p11x3)y/(a1 + x1) = 0
α3 x3 (1 − x3) = 0
δ − ξ y − d1x1/(a1 + x1) y = 0.

(11)

Then clearly x̂3 = 0 or x̂3 = 1. However, in the x1 − x3 − y subspace, x3(t) ≡ 0 only if x3(0) = 0, otherwise limt→∞

x3(t) = 1. The case of no endothelial cells and no anti-angiogenic agent has been analysed previously [9]. In any case, if
there are no endothelial cells, there will be no angiogenic process and hence no need forw. Hence we consider only the case
x3 = 1.

Now our problem reduces to solving the system of two equations:

ŷ =
α1(1 − x̂1)(a1 + x̂1)

p10 + p11

ŷ =
(a1 + x̂1)δ

(ξ + d1)x̂1 + ξa1
. (12)
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Fig. 1. Curves C1 and C2 for the following conditions: (a) δ/ξa1 < α1/(p10 + p11), with one cure state; (b) δ/ξa1 > α1/(p10 + p11), with two cure states;
(c) δ/ξa1 > α1/(p10 + p11), with no cure states.

Eliminating ŷ in (12) gives the positive solution

x̂1 =
(−ξa1 + ξ + d1) +


(ξa1 − ξ − d1)2 − 4(ξ + d1) [(p10 + p11)δ/α1 − ξa1]

2(ξ + d1)
,

which provides, together with x̂3 = 1 and (12), the cure solution F̂ .
Consider the two curves given by u = α1(1 − x1)(a1 + x1)/(p10 + p11) and u = (a1 + x1)δ/[(ξ + d1)x1 + ξa1] shown

as C1 and C2 in Fig. 1 in the x1 − u plane. As illustrated in Fig. 1, there may be 2, 1, or 0 positive solutions according to the
following scheme:

(i) if δ/ξa1 < α1/(p10 + p11) there is one cure state;
(ii) if δ/ξa1 > α1/(p10 + p11) there are two or no cure states.

In the case of no cure state, x̂1 > 0 does not exist so that the positive x1 − y plane, which is itself invariant, can have no
invariant sets. Therefore, limt→∞ x2(t) = 0 cannot happen if x1(t) > 0 holds, i.e. cancer cells cannot be eliminated.

If x̂1 > 0 exists, then ŷ > 0 also exists according to (12). In this case, we are interested in the stability of F̂(x̂1, 0, 1, ŷ)
with x̂1 > 0 in the x2 (cancer) direction.

We now compute the variational matrix of system (3) about the equilibrium F̂ , which then takes the form:

M̂ =

m̂11 m̂12 m̂13 m̂14
0 m̂22 0 0
0 β −α3 0

m̂41 m̂42 0 m̂44

 . (13)

Clearly the eigenvalue in the x2 (cancer) direction is

λ̂2 = m̂22 = α2 − q2x̂1 − (p20 + p21)ŷ/a2. (14)

If m̂22 < 0, then it may be the case that cancer cells can be eliminated using chemotherapy alone. However, if m̂22 > 0,
then it may not be possible to eliminate the cancer cells using only chemotherapy. We are particularly interested in this last
case. In order to obtain a firm result of this type, we first derive a condition for the non-existence of any nontrivial closed
orbits in the positive x1 − y plane when x3 = 1.
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Theorem 2. Consider the system given by

ẋ1 = α1x1(1 − x1) −
(p10 + p11)x1y

a1 + x1
(15)

ẏ = δ −


ξ +

d1x1
a1 + x1


y.

Then, if a1 ≥ 1, there are no nontrivial closed orbit solutions in the positive orthant.

Proof. Write our system as ẋ1 = F(x1, y), ẋ2 = G(x1, y) and let

B(x, y) = (a1 + x1)/x1y.

Then we compute

D(x1, y) =
∂

∂x1
(B(x1, y)F(x1, y)) +

∂

∂y
(B(x1, y)G(x1, y))

=
∂

∂x1


α1(1 − x1)(a1 + x1)

y
− (p10 + p11)


+

∂

∂y


δ(a1 + x1)

x1y
−

ξ(a1 + x1)
x1

− d1


=

α1(1 − a1) − 2xα1

y
−

δ(a1 + x1)
x1y2

< 0 (16)

whenever x1 > 0, y > 0, a1 ≥ 1. Hence, by Dulac’s theorem [33], no closed orbit solutions exist in the region x > 0, y
> 0. �

The above result can be combined with ideas of persistence theory [34] and with the fact that x2(t) → 0 then x3 → 1,
leading to the following

Theorem 3. Let a1 ≥ 1 and m̂22 > 0 (if it exists) be given by (14). Then system (9) exhibits persistence.

An interpretation of the above result is that, if no cure state exists or if one exists but is unstable in the x2-direction, then
CCs cannot be eliminated by chemotherapy alone, provided a1 ≥ 1. That means that CA kills CCs but does not eliminate
the tumour as it is observed for drug-resistant tumours [26]. Note that the condition a1 ≥ 1 is a necessary condition to
guarantee that the system evolves to the interior equilibrium with NCs and CCs: a1 ≥ 1 corresponds to an actual situation
for which the saturation of the killing action of CA on NCs is not negligible. This is associated with a cytotoxic effect of CA.

4. Analytical results in the full model

We now come back to analyse in part system (3). We are once more interested in the case where there is an equilibrium
of the form x2 = 0, x1 > 0.We denote such an equilibrium as E∗(x∗

1, 0, x
∗

3, y
∗, w∗), obtained by solving the algebraic system

α1(1 − x1) − (p10 + p11x3 + p12w)y/(a1 + x1) = 0
α3 (1 − x3) − p3 w/(a3 + x3) = 0
δ − [ξ + d1x1/(a1 + x1)] y = 0
φ − [η + d3x3(a3 + x3)] w = 0.

(17)

As before, we do not consider the case where x∗

3 = 0. Then we wish to solve the system of two equations:

w =
α3(1 − x3)(a3 + x3)

p3

w =
(a3 + x3)φ

(η + d3)x3 + ηa3
. (18)

Eliminating w in (18) and writing out the resulting quadratic equation we obtain

α3(η + d3)x23 + α3(ηa3 − η − d3)x3 + (p3φ − α3ηa3) = 0.

Note that if p3φ < α3ηa3 then, by Descarte’s rule of signs, there must exist exactly one positive root of this quadratic
equation given by

x∗

3 =
(−ηa3 + η + d3) +


(ηa3 − η − d3)2 − 4(η + d3) [φ(p3)/α3 − ηa3]

2(η + d3)
. (19)
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Now, having found w∗ and x∗

3 given by (18) and (19) respectively, we solve
α1(1 − x1) − (p10 + p11x∗

3 + p12w∗)y/(a1 + x1) = 0
δ − [ξ + d1x1/(a1 + x1)] y = 0, (20)

or

y∗
=

α1(1 − x∗

1)(a1 + x∗

1)

(p10 + p11x∗

3 + p12w∗)

y∗
=

(a1 + x∗

1)δ

(ξ + d1)x∗

1 + ηa1
.

As x∗

1 increases from 0 to 1, in the first equation of the above equations, y∗ goes from α1a1/(p10 + p11x∗

1 + p12w∗) to 0
(strictly decreasing after some value of x∗

1). In the second equation for y∗, as x∗

1 goes from 0 to 1, y∗ decreases from δ/ξ to
(a1 + 1)δ/[(a1 + 1)ξ + d1]. Hence, if δ/ξ < α1a1/(p10 + p11x∗

3 + p12w∗), x∗

1 > 0 always exists and so also must y∗. In this
case, x∗

1 is given by

x∗

1 =
(ξ + d1 − ξa1) + [(ξ + d1 − ξa1)]2 − 4(ξ + d1)[p1(x∗

3, w
∗)δ/α1 − ξa1]1/2

2(ξ + d1)
(21)

with p1(x∗

3, w
∗) = p10 + p11x∗

3 + p12w∗. This provides, together with (18) and (19), the cure solution E∗.
To determine the stability of E∗, one may compute the variational matrix of system (3) about E∗ given by

M∗
=


m∗

11 m∗

12 m∗

13 m∗

14 m∗

15
0 m∗

22 0 0 0
0 β m∗

33 0 m∗

35
m∗

41 m∗

42 0 m∗

44 0
0 0 m∗

53 0 m∗

55

 . (22)

However, to simply get the local stability of E∗ in the x2-direction, it is sufficient to note that one of the eigenvalues
(λ∗

2 = m∗

22) must satisfy the following inequality

λ∗

2 = m∗

22 = α2 − q2x∗

1 − (p20 + p21x∗

3 + p22w∗)y∗/a2 < 0. (23)

There is now the possibility of a reversal of outcome. Suppose that λ̂2 > 0 (see Eq. (14)), so that the cure state of the
no anti-angiogenic model is not attainable. However, if λ∗

2 < 0, the system can be brought by whatever means sufficiently
close to E∗, so that limt→∞ x2(t) = 0 may be achieved and the outcome is reversed. Therefore we obtain the following.

Remark 2. The region of parameter space where a reversal of outcome occurs is such that λ̂2, given by (14), is positive and
λ∗

2 , given by (23), is negative.

These analytical results of Sections 3 and 4 are illustrated by the numerical examples in the next section.

5. Numerical results

In order to performnumerical integrations of themodel, it is necessary to restrict the parameter space taking into account
realistic values. As in the model introduced in [9], besides the conditions (5), we also impose some restrictions on the
parameters of system (1) based on the following inequalities.

(a) CCs grow at a faster rate than NCs: α2 > α1. For some human tumours, it is observed that the proliferation rate α2 is
about 10−2 day−1 [35];

(b) The chemical agent must be considerably more effective in killing CCs than NCs: P20 ≫ P10 [36]; analogously d2 > d1.
(c) The competition effect on NCs is more effective than on CCs (Q1 > Q2).
(d) The cell death rate of ECs is smaller than its proliferation rate due to the tumour (α3 < B) [4]; it is also smaller than the

proliferation rate of NCs (α3 < α1) [37].
(e) The saturation parameters A1 and A2 are similar to the inverse values of carrying capacities of NCs and CCs respectively.
(f) The assistances of ECs and AA to the CA are smaller than their own action (P1i ≤ P10), i = 1, 2.
(g) The used numerical values of infusion rates of CA (δ) and AA (φ) are based on their actual doses per tumour mass,

e.g., 170 mg/(kg)(day) of cyclophosphamide and 12.5 mg/(kg)(day) of TNP-470 respectively [26]. The doses are almost
continuous (very short periods between the infusions) since they are administered in a 6 day dosage for 7 cycles. As
stated in [26], the relation between the chemotherapeutic and anti-angiogenic doses is such that δ = 14φ.

(h) Analogously the relation between the washout of CA (ξ ) and AA (η) is based on the relation between the half-life of CA
(cyclophosphamide) [38] and AA (TNP-40) [39] in mice: η = 7.5ξ .
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Table 1
Parameters of the model.

Description Parameter Value Comment/reference

NCs proliferation rate α1 0.0068 day−1 α1 < α2
CCs proliferation rate α2 0.01 day−1 Experimental data [35]
ECs proliferation rate α3 0.002 day−1 α3 < α1 [37]
Carrying capacity of NCs K1 200 Normalized factor for X1
Carrying capacity of CCs K2 195 Normalized factor for X2
Carrying capacity of ECs K3 210 Normalized factor for X3
Competition coefficient for NCs Q1 3.6×10−5 day−1 Cancer hypothesis
Competition coefficient for CCs Q2 3.6×10−6 day−1 Q2 < Q1
Proportion of ECs due to angiogenesis Γ 0.15 Γ < 1
Rate of creation of CCs due to ECs B 0.004 day−1 B > α3 [4]
Saturation rate of the agent on NCs A1 220 A1 > K1 (Theorem 2)
Saturation rate of the agent on CCs A2 901 A2 ≈ K2
Saturation rate of the agent on ECs A3 980 A3 ≈ K3
Rate at which CA combines with NCs d1 0.0002 day−1 Estimated value
Rate at which CA combines with CCs d2 0.032 day−1 d2 ≫ d1
Rate at which AA combines with ECs d3 0.032 day−1 d3 ≥ d2 [18]
Killing rate of CA on NCs P10 2.4×10−5 day−1 Estimated value
Killing rate of CA on CCs P20 4.0 × 10 day−1 P20 ≫ P10 [36]
Killing rate of AA on ECs P3 3.6 × 102 day−1 P3 ≥ P20
Rate of ECs assistance on CA for NCs P11 4.0×10−8 day−1 P11 < P10
Rate of ECs assistance on CA for CCs P21 4.0×10−3 day−1 P21 > P11
Rate of AA assistance on CA for NCs P12 2.0×10−5 day−1 P12 < P10
Rate of AA assistance on CA for CCs P22 3.8 × 103 day−1 P22 > P12
Chemical infusion rate δ 3.3×10−3 day−1 Almost continuous [26]
Chemical washout rate ξ 0.01813 day−1 Half-life of CA [38]
Anti-angiogenic infusion rate φ 2.4×10−4 day−1 δ = 14φ [26]
Anti-angiogenic washout rate η 0.136 day−1 η = 7.5ξ [39]

Table 2
Parameters of the normalized model.

Parameter Normalized relation Value

α1 – 0.0068 day−1

α2 – 0.01 day−1

α3 – 0.002 day−1

q1 Q1K2 0.00702 day−1

q2 Q2K1 0.00072 day−1

γ Γ K3/K2 0.1615
β BK2/K3 0.00371 day−1

a1 A1/K1 1.10
a2 A2/K2 4.6205
a3 A3/K3 4.6666
d1 – 0.0002 day−1

d2 – 0.032 day−1

d3 – 0.032 day−1

p10 P10/K1 1.2×10−7 day−1

p20 P20/K2 0.2051 day−1

p3 P3/K3 1.7143 day−1

p11 P11K3/K1 4.2×10−8 day−1

p12 P12/K1 1.0×10−7 day−1

p21 P21K3/K2 0.00431 day−1

p22 P22/K2 19.4872 day−1

δ – 3.3×10−3 day−1

ξ – 0.01813 day−1

φ – 2.4×10−4 day−1

η – 0.136 day−1

In Table 1 we present the parameter values for the original model (1) with some comments and/or references. The
estimated values for d1 and P10 are related to the existence and unstable character of the cure state in the no anti-angiogenic
model. Table 2 shows the normalized parameter values adopted on the numerical integrations, according to their relations
to the parameters in Table 1.

In Figs. 2 and 3 we present numerical examples of the main result of our paper. In Fig. 2, an example of time evolution of
the no anti-angiogenic sub-model (9) under the conditions of Theorems 2 and 3 is shown. It simulates a situation in which
the CCs are not eliminated. On the other hand, Fig. 3 shows a positive scenario described by Remark 2 for which the full



824 S.T.R. Pinho et al. / Nonlinear Analysis: Real World Applications 14 (2013) 815–828

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time (days) 

xi

Fig. 2. Time evolution of the no anti-angiogenic sub-model using parameter values in Table 2. Thick line—NCs; dashed line—CCs; dotted line—ECs. The ini-
tial conditions are: x1(0) = 0.6, x2(0) = 0.006; x3(0) = y(0) = w(0) = 0. The systemevolves to the internal steady state: x1 = 0.681396, x2 = 0.308617,
x3 = 1.40727, y = 0.163258.
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Fig. 3. Time evolution of the full model using parameter values in Table 2. Thick line—NCs; dashed line—CCs; dotted line—ECs. The initial conditions are:
x1(0) = 0.6, x2(0) = 0.6; x3(0) = y(0) = w(0) = 0. The system evolves to the cure steady state: x1 = 0.999998, x2 = 0.0, x3 = 0.728255, y =

0.181034, w = 0.00171038.

model (3) evolves to a cure state. Note that this simulates a reversal of outcome, i.e., the co-administration leads to the
elimination of CCs, not just to a reduction of tumour size.

The influence of the CA infusion rates, which are easily controlled in real cases and may assume quite different values,
is illustrated by the bifurcation diagrams in Figs. 4 and 5, There it is possible to follow the evolution from the worst to best
scenarios: CCs win the fight with NCs (cancer state), the reduction of tumour size (internal state), and the elimination of CCs
(cure state). These diagram bifurcations were obtained numerically [40]. In all cases, there are transcritical bifurcations both
from the cancer to the internal state, and from the internal to the cure state. They provide a comparing view of the transitions
between the steady states – cure state (x2 = 0), internal state and cancer state (x1 = 0) – of the no anti-angiogenic sub-
model and the full model, shown in Figs. 4 and 5 respectively.

For the full model, the cure state is observed for a larger range of values of δ. In case the system evolves to an internal
state, it is also easy to see in Fig. 5(b) that, for a fixed value of δ, the CCs population is reduced more effectively for the
full model than for the no anti-angiogenic model. Note that the relative deviation of the value of δ for the cure transition
between the no anti-angiogenic sub-model and the full model is about 15% = |0.0032 − 0.0037|100/0.0032.
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a b

c

Fig. 4. Bifurcation diagrams of the no anti-angiogenic sub-model for NC (a), CC (b) and EC (c) densities in terms of the chemotherapy infusion rate δ.
Parameter values of the sub-model are taken from Table 2, except for δ which varies from 0 to 0.01 day−1 . Two transcritical bifurcations (BP) are indicated:
from the cancer to the internal state at δ = 0.001623 day−1; from the internal to the cure state at δ = 0.003732 day−1 .

Since the parameter p22 affects the full model but not the no anti-angiogenic model, we show in Fig. 6 a two-dimensional
bifurcation diagram for the full model thatmakes evident how the cure region of the parameter spacemay be increased. This
points out a very important issue: increasing the AA efficiency in vascularization normalizing, represented by the parameter
p22 in our model, is a good strategy to reach a cure state by reducing the chemical infusion rate δ.

6. Discussion and concluding remarks

In this paper we present amodel of cancer treatment including anti-angiogenic drugs which aid chemotherapeutic drugs
for chemo-resistant tumours. We take into account the competition between NCs and CCs as well as the growth of the ECs
population associatedwith the angiogenic process, which helps the tumour growth.We prove that the fullmodel is bounded
and dissipative (Theorem 1). We also impose the main assumption of a ‘cancer hypothesis’ in the no therapy case, i.e., the
system evolves to a cancer state [9], provided conditions (5) hold. Under this hypothesis, we prove that anti-angiogenic
therapy alone is not able to drive the system to a cure state. This conclusion, stated by Remark 1, was already pointed out
in [22,25].

Theorems 2 and 3 determine the conditions for which the no anti-angiogenic model does not lead to the cure state,
which is also evident in Fig. 2. However, including anti-angiogenic drugs may lead to a reversal of outcome as pointed out
in Remark 2, and illustrated in Fig. 3. This behaviour has been observed for the co-administration of both chemical and
anti-angiogenic drugs for drug-resistant tumours in mice [26]. The enhancement of the combined action of CA and AA is
evident when we compare the bifurcation diagrams shown in Figs. 4 and 5. The bifurcation diagram for the full model (see
Fig. 5) also shows the situation for which the tumour is reduced more effectively for the combined therapies than for the
chemotherapy alone as was observed for some tumour types [22].

Finally, based on the two-parameter diagram bifurcation of the full model (see Fig. 6) it is possible to reduce the
chemotherapy infusion (δ) and to increase the anti-angiogenic assistance effect to the conventional chemotherapy action
(p22) in order to get a better response in the treatment of cancer. For actual situations, to increase p22 means to use anti-
angiogenic drugs that are more effective in normalizing the vascularization; simultaneously, decreasing the chemotherapy
infusion corresponds to reducing the cytotoxic effect on NCs.
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a b

c

Fig. 5. Bifurcation diagrams of the full model for NC (a), CC (b) and EC (c) densities in terms of the chemotherapy infusion rate δ. Parameter values are
taken from Table 2, except for δ which varies from 0 to 0.01. Grey and black lines correspond, respectively, to the full model and the no anti-angiogenic
sub-model. Two transcritical bifurcations (BP) are indicated: from the cancer to the internal state at δ = 0.001341 day−1; from the internal to the cure
state at δ = 0.003253 day−1 . This value of δ is almost 15% smaller than the corresponding cure transition value in the no anti-angiogenic sub-model.

Fig. 6. Two parameters bifurcation diagram p22 × δ for the full model in the parameter region where the bifurcation from the internal to the cure state is
observed. Parameter values are taken from Table 2, except for δ and p22 , that vary, respectively, from 0 to 0.0038 day−1 , and from 0 to 30 day−1 .

Summarizing, the results of our models show relevant clinical features of the therapies as follows.

(a) It is not possible to eliminate the cancer cells by anti-angiogenic therapy alone.
(b) If a drug-resistant tumour cannot be eliminated by chemotherapy alone, a reversal of outcome may be attained by

combining simultaneously chemotherapy and anti-angiogenic therapies, as was pointed out by some experiments with
mice [26].
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(c) The co-administration of chemical and anti-angiogenic agents is able to promote a larger reduction of the tumour than
the chemotherapy alone.

Initially, Folkman [17] argued that anti-angiogenic agent may lead to cure, although nowadays it is generally assumed
that this is not true. Here we lend credence to this assumption in our models. In addition we indicate that this scenario may
be attained using AA that are efficient in helping the delivery of CA due to the normalization of the vasculature.

Moreover, the continuous treatmentmay be thought as a limiting case of small intervals between infusions, as in Ref. [26].
In some sense our analysis of combining continuous infusions of CA and AA leads to a discussion about the elimination of
tumours with smaller doses of CA, which are applied simultaneously with AA. This strategy also has the effect of reducing
the cytotoxic effect on NCs.

While in this work we analyse the response of drug-resistant tumours to the co-administration of CA and AA, the
investigation on different schedules of chemotherapy for chemo-sensitive tumours [41] has been pushed forward by one of
us andother collaborators. In such a case, the anti-angiogenic side effect of chemotherapy is explicitly taken into account. Our
aim is to compare the conventional (maximal tolerated dose) schedule of chemotherapy with metronomic chemotherapy
schedule with small intervals between infusions.

In future research, we intend to consider the case where there is a time delay between the tumour growth and the neo-
vascularization of the tumour, which is observed in some experiments with mice [42]. A change in vascularization does
not immediately affect the tumour growth. Some events take place in the time interval limited by the instant in which
angiogenic factors are released from the solid tumour to the instant when vascularization takes place [14].
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