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Abstract

We consider mixed states and coherent states with the same (Poissonian) statistics. By
analyzing various properties connected with o�-diagonal elements of the density matrix for both
states, we �nd which of them are able (or not) to distinguish these states. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Extensive study of quantum states of the radiation �eld has been developed since the
pioneer work by Glauber [1], after the discovery of the laser in 1960. Various quantum
e�ects in the light �eld have been investigated since 1977 with the detection of photon
antibunching [2], constituting the �rst conspicuous proof of a quantum e�ect exhibited
by the radiation �eld. Sub-Poissonian statistics [3], squeezing [4,5], oscillations in the
photon-statistics and interference in the phase space [6] are other nonclassical e�ects
observed in the quantized electromagnetic �eld.
Many states of a single-mode electromagnetic �eld, like number states |n〉 [7], phase

states |�m〉 [8–10], squeezed states |z; �〉 [4,5] and so on, manifest some of these
properties. On the other hand, coherent states, eigenstates of the annihilation opera-
tor â, possess Poisson statistics and minimal uncertainty in the �eld quadratures; these
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states lie on the border between the classical and the quantum worlds. A way to
establish whether a given state is classical or not is to �nd the corresponding Glauber
quasi-distribution function P(�), the representation of its density operator in the coher-
ent basis. Classical states have positive de�nite P functions while for nonclassical states
the P functions assume negative values or are more singular than a delta function. A
coherent state |�0〉, for which P(�)= �(2)(�− �0) , and a thermal (chaotic) state, which
has a Gaussian–Glauber distribution, are classical while number, phase and squeezed
states are highly nonclassical. Actually, all pure states which are not coherent, are
nonclassical [11].
In the last two decades, the study of nonclassical properties shown by several states

of the quantized radiation �eld has become one of the main goals in quantum optics.
More recently, comparison between two states possessing some identical properties has
also become a topic of investigation as, for example, pure states having statistics of
thermal states [12,13] and noncoherent pure states having statistics of coherent states
[14]. The aim of the present work is to discuss the mixtures of number states having
Poissonian statistics, which will be referred to as Poissonian mixed states (PMS),
comparing their properties with those of coherent states (CS) for which the statistics
is also Poissonian. The general point raised here is: how to distinguish states having
the same statistics? Although we will restrict the analysis to the �eld of quantum
optics, many aspects of the discussion can be applied to any system modeled by a
liner quantum oscillator.
This paper is organized as follows: in Section 2, we introduce the PMS, discuss their

generation and comment on their statistical properties. In Section 3, we determine the
quadrature variances and the phase distribution as properties that distinguish between
PMS and CS. The atomic population inversion and the atomic scattering due to atom–
�eld interaction for both kinds of states are discussed in Section 4 while the phase-space
representations are presented in Section 5. In Section 6, �nal remarks are made.

2. De�nition and generation of PMS

A general mixture of number states of a single mode of the quantized radiation �eld
is represented by a density matrix in the form

�̂=
∞∑
m=0

pm|m〉〈m| ; (2.1)

where the probability weights pm must be normalized to satisfy
∑∞

m=0 pm = 1, which
guarantee that �̂ has unit trace. If one chooses the coe�cients pm such that

pm = e− �n �n
m

m!
; (2.2)

where �n is the mean photon number

�n=
∞∑
m=0

mpm ; (2.3)
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then it follows immediately that this mixed state possesses Poissonian statistics, that
is 〈(�n̂)2〉 = �n, and thus such a mixed state has the same statistics as a CS [15].
In other words, all indicators of the nature of the statistics, like the Mandel factor
Q = (〈(�n̂)2〉 − �n)= �n and the second-order correlation function for zero time delay
g(2)(0) = Q + 1, will take the coherent state values (Q = 0, g(2)(0) = 1) and so it is
impossible to distinguish statistically between a Poissonian superposition of all number
states (a CS) and a mixture of all number states with Poissonian weights (a PMS).
A PMS can be generated in a simple way since it corresponds to a CS with random

phase [16,17], that is, a state with density matrix given by

�̂=
1
2�

∫ 2�

0
d�|�〉〈�| ; (2.4)

where �= |�|exp(i�). In fact,

〈m|�̂|m′〉= 1
2�

∫ 2�

0
d�〈m|�〉〈�|m′〉

= e−|�|2 |�|m|�|m′

√
m!

√
m′!

1
2�

∫ 2�

0
d� ei(m−m′)� = e−|�|2 |�|2m

m!
�m;m′ ; (2.5)

so that, if one �xes |�|2 = �n, Eq. (2.4) coincides with (2.1), that is, the density matrix
of the PMS with mean number of photons �n is

�̂PMS = e
− �n

∞∑
m=0

�nm

m!
|m〉〈m|= 1

2�

∫ 2�

0
d�|

√
�nei�〉〈

√
�nei�| : (2.6)

A coherent state can be easily produced since all states of a single-mode radiation �eld
generated by classical currents are coherent [1]; also, lasers operating well above the
threshold create coherent light �elds. A PMS can then be generated by losing control
on the phase of the source of an initially coherent �eld and this can be realized as a
traveling wave as well as a �eld con�ned inside a cavity.
It is easy to see that a PMS tends to the vacuum state |0〉 as �n → 0. For �n 6= 0,

one can indicate the degree of loss of purity, measuring the departure of the density
matrix from the idempotent property, by calculating the trace of �̂2PMS:

D=Tr [�̂2PMS] = Tr

[ ∞∑
m=0

p2m|m〉〈m|
]

= e−2 �n
∞∑
m=0

�n2m

(m!)2
= e−2 �nI0(2 �n) ; (2.7)

where we have used the series representation of the modi�ed Bessel function of �rst
kind [18]

I0(z) =
∞∑
n=0

z2n

4n(n!)2
: (2.8)
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Fig. 1. Trace of the square of density matrix for a PMS, D, plotted as a function of the mean number of
photons.

Fig. 1 presents a plot of D versus �n showing that it decreases monotonically as �n
grows, tending to zero when �n → ∞ as expected.
To distinguish a PMS, which is a �eld prepared from an incoherent mixture with

a Poisson distribution, from a CS, one has either to perform phase-sensitive mea-
surements, such as those involving quadratures variances, or to probe other properties
depending on o�-diagonal elements of �̂ in the Fock’s basis.

3. Quadrature variances and phase distribution

The quadrature operators corresponding to a �eld mode are de�ned by

x̂j = i1−j(â− (−1) jâ†); j = 1; 2 (3.1)

and therefore their commutator, in units of ˝, is [x̂1; x̂2]=2i. The mean values of these
quadrature operators vanish for a PMS; in fact, using (2.6) one has

〈x̂j〉PMS = Tr(�̂PMS x̂j)

=
∞∑

n;m=0

pm〈n|m〉〈m|x̂j|n〉=
∞∑
n=0

pn〈n|i1−j(â− (−1) jâ†)|n〉= 0 : (3.2)

On the other hand,

〈x̂2j 〉PMS =
∞∑
n=0

pn〈n|i2−2j(â− (−1) jâ†)2|n〉=
∞∑
n=0

pn〈n|(2 â†â+ 1)|n〉= 2 �n+ 1 ;

(3.3)
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Fig. 2. Quadrature variances diagram: the point C represents all CS and M stands for a PMS; both coordinates
of M are equal to

√
1 + 2 �n: The hyperbola �x1�x2 = 1 represents the Heisenberg relation boundary.

so that the quadrature variances of a PMS are given by

〈(�x̂j)2〉PMS = 2 �n+ 1 (3.4)

for both j = 1; 2 .
One sees immediately that the above expression depends exclusively on the fact that

the density matrix of a PMS is diagonal in the Fock’s basis and therefore it holds for
all mixtures of number states. In particular, the quadrature variances of a thermal state,
for which the density matrix is given by (2.6) with [16]

pm =
1

1 + �n

(
�n

1 + �n

)m

; �n= (e˝!=kT − 1)−1 ; (3.5)

where ! is the �eld frequency and T stands for the temperature of the radiation source,
are identical to that of a PMS with the same value of �n showing that the results (3.4)
have nothing to do with the statistics. Notice also that if the mean number of photons
is an integer, �n= l, then (3.4) coincides with the quadrature variances of the number
state |l〉.
Although a PMS has the same (Poissonian) statistics as a CS, it is not a minimal

uncertainty state; its quadrature noise enhances as its intensity is increased. In the
diagram of quadrature variances shown in Fig. 2, the point C represents all CS while
the point M represents a PMS, and also all mixtures of number states with mean
number of photons �n; since �n is a real number, M runs continuously from C along the
diagonal line �x1 = �x2¿1 . In the limiting case where M → C, that is �n → 0, the
PMS tends to the vacuo state.
One should also expect to distinguish a PMS from a CS by looking at their phase

distributions, but to do so quantum-mechanically one has to de�ne a phase observable.
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One proposal is the Pegg–Barnett Hermitian phase operator, de�ned in the (N + 1)-
dimensional Hilbert space as [8–10]

�̂PB =
N∑

m=0

�m|�m〉〈�m| ; (3.6)

where the kets

|�m〉= 1√
N + 1

N∑
k=0

exp(ik�m)|k〉 ; (3.7)

with �m = �0 + 2�m(N + 1)−1, form a basis in this truncated space. In this case,
it follows that

〈�̂PB〉N = Tr(�̂N�̂PB) =
N∑

r; s=0

〈r|�̂N|s〉〈s|�̂PB|r〉=
N∑

m=0

�mP(N)m ; (3.8)

where

P(N)m =
1

N + 1

N∑
r; s=0

exp[i(s− r)�m] 〈r|�̂N|s〉 : (3.9)

Notice that, for any mixture of number states, for which �̂N =
∑N

r=0 pr|r〉〈r|, one �nds
P(N)m = (N + 1)−1

∑N
r=0 pr . Now, de�ning the phase probability density as

P(�) = lim
N→∞

[
N + 1
2� P(N)m

]
(3.10)

one sees that

〈�̂〉= lim
N→∞

〈�̂PB〉N →
∫ �0+2�

�0
d��P(�) : (3.11)

In the case of a PMS, and actually for all mixtures of number states, one obtains

PPMS(�) =
1
2� ⇒ 〈�̂〉PMS = �0 + � (3.12)

and 〈(��̂)2〉PMS = �2=3, which are the same results as those for a number state; as
expected, all mixtures of number states have random phase. For a CS |�〉 with � =
|�|exp(i�), however, one �nds, in the limit of large amplitude (|�|/1), 〈�̂〉CS = � and
〈(��̂)2〉CS = (2|�|)−2 showing that, in this case, the coherent state has a well-de�ned
phase [8–10].

4. Atomic population inversion and atomic scattering

Another way to distinguish a PMS from a CS possessing the same mean number
of photons is to investigate properties which involve the interaction of the �eld with
atoms since they also depend on o�-diagonal elements of the density matrix of the
�eld. One of these properties is the population inversion for a two-level (Rydberg)
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atom interacting with the �eld as described by the single-photon Jaynes–Cummings
model in the rotating wave approximation,

Ĥ =
˝!0
2

�̂3 + ˝!â†â+ ˝�(�̂+â+ �̂− â†) ; (4.1)

where !0 is the frequency of the transition between the ground and the excited atomic
states (˝!0=E|e〉−E|g〉); ! is the �eld-mode frequency and � is the atom-�eld coupling
parameter. In the above equation, �̂3 is a Pauli matrix and �̂+ and �̂− correspond to
the raising and lowering operators in the atomic two-level basis, which are given by

�̂3 =
(
1 0
0 −1

)
; �̂+ =

(
0 1
0 0

)
; �̂− =

(
0 0
1 0

)
: (4.2)

In this case, the time evolution operator, Û (t; 0) = exp(−iĤ t=˝), has the following
matrix representation in the atomic Hilbert space [19]:

Û (t; 0) = e−i!n̂t
(

Ô11 Ô12
Ô21 Ô22

)
; (4.3)

where

Ô11 = e−i!t=2
[
cos(�t

√
�̂+ 1)− i�

2
sin(�t

√
�̂+ 1)√

�̂+ 1

]
; (4.4)

Ô12 =−i e−i!t=2 â sin(�t
√
�̂)√

�̂
; (4.5)

Ô21 =−i ei!t=2 â† sin(�t
√
�̂+ 1)√

�̂+ 1
; (4.6)

Ô22 = ei!t=2

[
cos(�t

√
�̂) +

i�
2
sin(�t

√
�̂)√

�̂

]
; (4.7)

in which �= (!0 − !)�−1 and �̂= n̂+ �2=4 with n̂= â†â. For the atom–�eld system
initially in a pure state | AF(0)〉, one can determine | AF(t)〉= Û (t; 0)| AF(0)〉 and then
�nd the atomic inversion W (t) = 〈 AF(t)|�̂3| AF(t)〉, as done in Ref. [20]. To include
the case of mixed states, one has to deal with the density matrices instead of wave
functions.
Assume that the atom is initially in a normalized superposition of its ground and

excited states, | A(0)〉= cg|g〉+ ce|e〉, and the �eld is described by the density matrix
�̂F(0), so that �̂AF(0) = | A(0)〉〈 A(0)| ⊗ �̂F(0). At time t, the density matrix of the
atom–�eld system is given by

�̂AF(t) = Û (t; 0) �̂AF(0) Û
†
(t; 0)

= e−i!n̂t
(
Â11 Â12
Â21 Â22

)
ei!n̂t ; (4.8)
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where

Â11 = |ce|2 Ô11�̂F(0) Ô
†
11 + cec∗g Ô11�̂F(0)Ô

†
12

+ c∗e cgÔ12�̂F(0)Ô
†
11 + |cg|2Ô12�̂F(0) Ô

†
12 ; (4.9)

Â22 = |ce|2Ô21�̂F(0)Ô
†
21 + cec∗g Ô21�̂F(0)Ô

†
22

+ c∗e cgÔ22�̂F(0)Ô
†
21 + |cg|2Ô22�̂F(0)Ô

†
22 : (4.10)

Similar expressions for Â12 and Â21 will not be presented, since they do not interfere in
the calculation of averages of observables that are diagonal in the matrix representation
in the atomic space. The atomic inversion then becomes

W (t) = Tr[�̂AF(t) �̂3] = TrF [e
−i!n̂t(Â11 −Â22)ei!n̂t] (4.11)

which, in the Fock’s basis, is given by (including detuning �)

W�(t) = |ce|2
{
1− 2

∞∑
n=0

n+ 1
�+ 1

sin2(�t
√
�+ 1)〈n|�̂F(0)|n〉

}

− |cg|2
{
1− 2

∞∑
n=0

n
�
sin2(�t

√
�)〈n|�̂F(0)|n〉

}

+2|ce| |cg|
∞∑
n=0

√
n+ 1

[
sin(�+ 
)

sin(2�t
√
�+ 1)√

�+ 1

+ � cos(�+ 
)
sin2(�t

√
�+ 1)

�+ 1

]
|〈n|�̂F(0)|n+ 1〉| ; (4.12)

where �=n+�2=4, with � and 
 de�ned by ce c∗g = |ce| |cg| exp(−i�) and 〈n|�̂F(0)|n+
1〉= |〈n|�̂F(0)|n+ 1〉|exp(−i
). For a pure state this expression reduces to that found
by Chaba et al. [20]. For the resonant case, �= 0, Eq. (4.12) reduces to

W0(t) = |ce|2
∞∑
n=0

cos(2�t
√
n+ 1)〈n|�̂F(0)|n〉

− |cg|2
∞∑
n=0

cos(2�t
√
n)〈n|�̂F(0)|n〉

+2|ce| |cg|
∞∑
n=0

sin(�+ 
)sin(2�t
√
n+ 1)|〈n|�̂F(0)|n+ 1〉| : (4.13)

One sees immediately that the last term in the expression of W�(t) is identically null
for a PMS since it involves o�-diagonal elements of the density matrix, but survives
for a coherent state in many circumstances. Naturally, if the atom starts in either
the ground or the excited states then no distinction can be made between the atomic
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inversion due to interaction with the �eld in a PMS or in a coherent state with the
same mean number of photons since, by construction, 〈n|�̂PMS(0)|n〉= 〈n|�̂CS(0)|n〉=
( �n)nexp(− �n)=n!. However, if the initial atomic state is a superposition cg|g〉 + ce|e〉
the �eld being in a coherent state |�〉, with � = |�|exp(i�), one has 
 = �, the atomic
interference term does not vanish (except in the special case of zero detuning and
� + � = k �) and the atomic population inversion distinguishes the PMS from the
coherent state. This situation is illustrated in the �gures below, where we consider
some atomic superpositions and the �eld with frequency in resonance with the atomic
transition. In Fig. 3 we have plotted the atomic inversion when the �eld is initially in
the PMS, while in Fig. 4 the �eld starts in a coherent state with �=�=2−�, a choice
which maximizes the atomic interference term. One sees that the well-known collapses
and revivals occurring in the case of a coherent �eld, are practically una�ected by the
weights in the atomic superposition while for the PMS they are signi�cantly depressed
and coherent trapping occurs when one reaches an equally weighted superposition. The
situation shown in Fig. 4 happens, for example, if the atomic superposition is in phase
(� = 0) and the coherent state has � = iy0 or when � is real and the atomic state
components are in quadrature (� = �=2). If the �eld frequency is detuned relative to
the atomic transition then, no matter the value of �+ �, the atomic inversion will be
distinct for a PMS and a coherent state.
One can also distinguish a PMS from a CS, with the same �n, by looking at the

scattering of two-level atoms by the �eld. As shown in Ref. [21], the scattering of
Rydberg atoms through a node of a standing coherent �eld reveals a nonsymmetric
momentum distribution of the atoms right after the interaction which yields the atomic
endoscopy of the �eld state, since this allows one to reconstruct its number state
representation. Recent studies [22] have shown that the atomic scattering by pure states
possessing symmetric Wigner functions around the origin in phase space leads to a
symmetric distribution of scattered momenta which does not allow atomic endoscopy.
As it will be shown in the next section, the Wigner function of a PMS is symmetric
in phase space and, therefore, the atomic scattering by a �eld in a PMS will produce a
symmetric distribution of scattered atoms. As a consequence, by comparing the results
for a PMS and a CS, the atomic scattering is able to distinguish these states.

5. Phase-space representations

A de�nitive way to distinguish a PMS from a CS with the same mean number of
photons is to look at their representations in phase space, which is done below.

5.1. Glauber P function

The P representation, which is a diagonal representation in the coherent basis,
is de�ned by

�̂=
∫
d2� P(�)|�〉〈�| ; (5.1)
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Fig. 3. Atomic population inversion for zero detuning, W0, as a function of � = �t for a �eld in a PMS
with �n=25 and some atomic superpositions: (a) |c2e |=0:8 and |c2g|=0:2 ; (b) |c2e |=0:6 and |c2g|=0:4 ; (c)
|c2e | = |c2g| = 0:5:

where � = x + iy and d2� = dx dy. It follows immediately that, for a coherent state
|�〉, the P function is given by

PCS(�) = �(2)(� − �) : (5.2)
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Fig. 4. Zero detuning atomic population inversion, W0, as a function of � = �t for a �eld in a CS with
|�2|=25 and some atomic superpositions satisfying �+ �= �=2: (a) |c2e |=0:8 and |c2g|=0:2 ; (b) |c2e |=0:6
and |c2g| = 0:4 ; (c) |c2e | = |c2g| = 0:5:

Using this expression and the coherent basis representation of �̂PMS, one �nds, for a
PMS with mean number of photons �n [16,17],

PPMS(�) =
1
2�

∫ 2�

0
d� �(2)(� −

√
�nei�) =

1

2�
√
�n
�(|�| −

√
�n) : (5.3)

One sees that the singular nature of the P function is maintained but the distribution
for the PMS becomes symmetric around the origin in the � plane.
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5.2. Q function

The Q function is a regular and nonnegative representation de�ned as the diagonal
matrix elements of the density operator in a coherent state

Q(�) =
1
� 〈�|�̂|�〉 : (5.4)

For example, the Q-function for a coherent state |�〉, with �= x0 + iy0, is given by the
well-known expression (with � = x + iy)

QCS(x; y) =
1
�exp[− (x − x0)2 − (y − y0)2] : (5.5)

On the other hand, the Q-function of the PMS is given by

QPMS(x; y) =
1
� 〈x + iy|�̂PMS|x + iy〉

=
1
� e

− �n
∞∑
n=0

�nn

n!
|〈x + iy|n〉|2 = 1

� e
− �n−x2−y2

∞∑
n=0

[√
�n
√

x2 + y2
]2n

(n!)2

=
1
�exp(−x2 − y2 − �n)I0(2

√
�n
√

x2 + y2) ; (5.6)

where we have used the representation (2.8) of I0. This Q function can also be obtained
from the coherent state expansion of �̂PMS given by (2.6). One veri�es immediately
that QPMS, which possesses a volcano shape, is symmetric around the origin in the
xy-plane, as one should expect since the PMS corresponds to a coherent state with
random phase, while QCS is a Gaussian bell centered at the point �0 = x0 + iy0. These
two Q-functions are illustrated in the Fig. 5, where we have taken �n= |�2|= 5:0.

5.3. Wigner function

The Wigner function, which may be de�ned as the Fourier transform of the sym-
metrically ordered characteristic function of the density matrix, can be expressed as

W (�) =
1
�2

∫
d2� exp

(
−1
2
��∗ + �∗� − ��∗

)
Tr[e−�∗â�̂ e�â

†
] : (5.7)

For a coherent state, one has Tr[e−�∗â|�〉〈�|e�â†] = exp[− �∗� + ��∗] and performing
the � integration by completing the squares, one �nds the known expression [15]

WCS(x; y) =
2
�exp[− 2(x − x0)2 − 2(y − y0)2] : (5.8)

In the case of a PMS, for which the density matrix is given by (2.6), one �nds similarly

WPMS(x; y) =
1
�2

∫ 2�

0
d� exp[− 2(� −

√
�nei�)(�∗ −

√
�ne−i�)]

=
1
�2 exp[− 2(x

2 + y2 + �n)]
∫ 2�

0
d� exp[− 4

√
�n(x cos �+ y sin �)]
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Fig. 5. Q function for (a) the coherent state |√5〉 and (b) for the Poissonian mixed state with �n = 5:

=
2
�exp[− 2(x

2 + y2 + �n)] I0(4
√
�n
√

x2 + y2) ; (5.9)

using the formula [14]∫ 2�

0
d� exp[− (q cos �+ p sin �)] = 2�I0(

√
q2 + p2) : (5.10)

A comparison between the Wigner functions of a CS and a PMS is shown in Fig. 6.
One should notice the similarities between the Wigner and the Q functions of the PMS:
both have a volcano’s shape but the Wigner function is sharper than the Q function,
irrespective of the height scales. This is apparently a strange result since the Wigner
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Fig. 6. Wigner function for (a) the CS |√5〉 and (b) for the PMS with �n = 5:

function may assume negative values whereas the Q function is always nonnegative.
However, both are Gaussian convolutions of the P function

W (�) =
2
�

∫
d2�P(�) e−2|�−�|2 ; Q(�) =

1
�

∫
d2�P(�)e−|�−�|2 ; (5.11)

and, therefore, whenever the P function is a positive regular function or a delta function
(which is the case for a PMS), the Wigner and the Q functions of the considered
state will have similar shapes. This happens also for thermal state, for which these
distributions are Gaussian, and holds in general for classical states of the �eld.
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6. Conclusions

We have discussed the properties of Poissonian mixed states of a mode of the elec-
tromagnetic �eld comparing them with those of pure coherent states, which correspond
to Poissonian superpositions of number states, with the same mean numbers of pho-
tons. Quadrature variances of a PMS increase linearly with its mean number of photons
while all CS are minimal uncertainty states. So, quadrature dispersions better distinguish
between a PMS and a CS when one has states of high excitation. This also happens
with the �eld-phase distribution which is randomic for the PMS while the CS possesses
a de�ned phase in the limit of large intensity. A clear cut distinction between a PMS
and a CS is their phase-space representations because the P; Q and Wigner functions
manifest explicitly the randomization of the phase of the PMS. Since a PMS and a
CS (with same �n), by their de�nitions, possess the same statistics, they may also be
distinguished by probing other properties that depend on o�-diagonal elements of the
density matrix in the Fock’s basis. It was shown that the atomic population inversion
and the scattering of Rydberg atoms interacting with the �eld provide a way to test
whether the �eld is in a PMS or in a CS. These are some of the properties which might
be investigated whenever one needs to verify if a source of coherent radiation has, by
any means, become randomic in the phase of the �eld. Naturally, if the states (PMS
or CS) concern with a traveling �eld, there are simpler ways to distinguish them, for
example, by making a Young-interference experiment. Such a test, however, cannot
be applied to stationary �eld states con�ned inside a high-Q cavity. In this case, the
distinctive properties studied above become relevant.
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