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Abstract-The nonequilibrium steady state of a direct gap semiconductor is studied under high levels of 
photoexcitation by continuous laser light. The stability of the uniform steady state of itinerant carriers 
is probed resorting to linear normal mode analysis of the nonlinear equations of evolution for the carrier 
charge density. Such analysis leads to the determination of the wavevector dependent electronic 
contribution to the dielectric function. Examination of its behavior allows us to show that in the extremely 
degenerate regime the carrier system becomes nonmetallic, and displays a coexistence of metallic and 
nonmetallic phases on leaving that regime: itinerant carriers move in the background of an extended state 
of bounded electron and hole charge densities. This introduces a new view of Mott transition in 
photoinjected semiconductors. This complex behavior is a result of collective together with dissipative 
effects in the far from equilibrium carrier system governed by nonlinear dynamic laws. 

Keyworris: Mott transition, nonequilibrium semiconductors, nonequilibrium thermodynamics, metallic to 
nonmetallic transition, 

1. INTRODUCTION 

In the last decades it has been shown that open 

systems governed by nonlinear dynamical laws, 

when sufficiently far from equilibrium, may display 

unexpected complex behavior [l, 21. In far-from- 

equilibrium conditions a system in a steady state 

plays an important role. Whereas isolated systems in 
equilibrium are characterized by a maximum of the 
thermodynamic entropy, steady states in open 
systems near equilibrium (Onsager’s linear regime) 
are characterized by a minimum production of 
entropy (Prigogine’s theorem) [3]. On the other hand, 
when far away from equilibrium (nonlinear regime) 
open systems are susceptible to present, beyond 
a critical point of excitation, self-organized ordered 
patterns in the form of temporal or spatial 
organizations (e.g. chemical clocks, chemical waves, 
morphological transitions, etc.), or to attain a 
new uniform steady state (e.g. negative differential 
resistivity, lasers, etc.). This is a remarkable aspect of 
nonlinearity in nonequilibrium thermodynamics, 
called dissipative structures after Prigogine [I, 41. 

The considerations just stated suggest that semi- 
conductors under high levels of excitation, whose 
nonequilibrium thermodynamic state is governed- 
in this strongly dissipative regimeby nonlinear 

evolution laws, require an analysis in order to 
indicate the possibility of some kind of complex 
behavior when driven far removed from equilibrium. 
We consider a semiconductor sample illuminated by 
strong continuous laser light, with a photon energy 
higher than the band gap. Electron-hole pairs are 
produced, and we assume that the laser intensity is 
strong enough to produce concentrations on the 
metallic side of the Mott transition (typically 
n 2 lOI cme3). A double plasma is then formed, i.e. 
itinerant electrons and holes (carriers) moving in 
the lattice background. After a certain transient 
period the carriers form a uniform steady state, 
characterized by photoconcentration n and a carrier 
quasitemperature T* [S]. 

We look for the possibility of the instability of 
such a uniform steady stage against the formation 
of a Prigogine-like dissipative structure in the 
charge density, either nonuniform (a morphological 
transition) or another different uniform steady state 
(e.g. bistability or other kind). For that purpose we 
look for the equations of evolution for the local 
carrier charge density; in fact we consider its Fourier 
amplitudes which allow easier handling of such 
equations in the second quantization representation. 
We resort to the use of a nonlinear quantum 
transport theory based on the nonequilibrium 
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statistical operator method {NSOM). This technique, 
described with some detail in [6], has had extensive 
applications, being previously used by our group 
in studies of ultrafast relaxation [7] and transport 
processes [8] in HEPS, where it has been briefly 
reviewed (see also [5]). We resort to Zubarev’s 
approach [9] and the so-called linear theory of 
relaxation [lo]. 

We derive, using the NSOM and RPA, the 
nonlinear equations of evolution for the Fourier 
amplitudes of the carrier charge density, the non- 
linearities consisting in bilinear terms that couple the 
different Fourier amplitudes. Zero value for them 
characterizes the uniform state of reference. We 
perform linear normal mode analysis [I 1] to find 
that the uniform steady state is stable against the 
formation of spatial order in the system. In the 
process we show that the normal mode analysis 
is equivalent to looking for the behavior of the 
wave-vector dependent static dielectric function, 
c(Q). Spatial instability would correspond to, for a 
certain 0, that c(e) at a certain distance from 
equilibrium (a critical laser intensity) vanishes and on 
increasing the intensity becomes negative; this is not 
the case. 

But, such a calculation of c(e) allows us to show 
that there exists a condensation of the itinerant 
carriers in a nonmetallic state in the extremely degen- 
erate regime. The static dielectric function ~(0 = 0), 
which is infinite for a system of itinerant electrons, 
thus characterizing the metallic state, becomes finite, 
i.e. characteristic of a dielectric state. On leaving the 
highly degenerate regime, it recovers its infinite value, 
but for non-null 0 remains smaller than the value of 
the Lindhart (RPA) dielectric function for the met- 
allic system of free electrons and holes. This suggests 
the coexistence of itinerant and condensed carriers in 
the system, i.e. coexistence of metallic and a 
nonmetallic nonequilibrium thermodynamic phases. 
Using a simple model of two fluids, we estimate the 
concentration of carriers in the condensed dielectric 
phase: this number decreases very rapidly (exponen- 
tially) with a very low characteristic temperature, 
for each concentration, at least in our numerical 
calculation appropriate for GaAs. 

In the mixed regime, itinerant carriers move in the 
background of an extended state of bounded electron 
and hole charge densities in a dielectric phase. The 
condensed polarizable state seems to correspond to 
the condensation of the electrons and holes in 
two inte~enetrated, and clamped together, infinite 
wavelength lattices, presumably forming extended 
Frenkel-like excitons. 

In the next section we show the calculations and 
numerical results for the case of a GaAs sample. In 

the final section we summarize and further discuss the 
results. 

2. STABILITY ANALYSIS 

Consider an intrinsic direct-gap polar semi- 
conductor sample illuminated by a continuous laser 
beam, with power flux It and photon frequency w,_. 
The photogenerated electron-hole pairs (carriers) 
created in photon absorption processes are supposed 
to be on the metallic side of the Mott transition, i.e. 
are describable as itinerant carriers. The open system 
of carriers relax the excess energy of equilibrium 
received from the laser source to the lattice, while 
their total number varies as it grows by photon 
absorption but diminishes in recombination 
processes. We assume a constant laser intensity 
throughout the volume of laser light focalization, and 
stimulated emission and self-absorption are neglected 
in comparison with spontaneous recombination. The 
system Hamiltonian consists of the carrier energy 
operator (electron and hole band energies in 
the effective mass approximation plus Coulomb 
interaction dealt with in the random phase approxi- 
mation); the Hamiltonian of the photon field; and the 
energy operators describing the interaction of 
carriers with lattice vibrations and with the laser and 
recombination radiation fields. We use an Einstein 
(dispersionless) model for the optical phonons and a 
Debye model for the acoustic phonons. Further, the 
carrier-radiation interaction is treated in the dipole 
approximation, with the photon field described by 
a classical field incorporated in the carrier Hamil- 
tonian. The laser source and the thermal bath, the 
latter at temperature To, are taken as ideal reservoirs, 
i.e. they are assumed to remain in stationary 
unaltered condition while constantly coupled with the 
open semiconductor sample. 

We resort to the use of the NSOM [6] in 
Zubarev’s approach [9] to describe the non- 
equilibrium macroscopic state of this system. As 
shown in previous publications the system of 
carriers attains a very rapid internal thermalization 
(subpicosecond time scale) as a result of Coulomb 
interaction [12] and can be described in terms of a 
quasi-temperature and quasi-chemical potentials (or 
photoconcentration) [S, 7,8]. On the other hand, the 
optical phonons receive part of the excess energy 
pumped by the laser source on the carrier system and 
are warmed up. This occurs in a differentiated way 
with modes in a restricted region of Brillouin zone 
being preferentially excited, but final thermalization 
of the optical phonon field and carriers follows in 
the lo-fold picosecond time scale [13]. From then on, 
the optical phonons can be described by a unique 
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quasi-temperature (equal to that of the carriers). This 
is followed by a tendency of the carriers and optical 
phonon subsystems to attain equilibrium with the 
thermal bath via anharmonic interactions with the 
acoustic phonons and heat diffusion of the latter to 
the reservoir. It is expected that in a short time 
(nanosecond time scale) the quasi-temperatures of the 
subsystems nearly equal the reservoir temperature. 
Therefore, the nonequilibrium photoinjected system 
is characterized by temperature T, and a uniform 
concentration n [S]. The latter attains a steady-state 
value in times of the order of nano- to milliseconds, 
depending on the intensity of the lase source [5]. 

Applying the nonlinear quantum transport theory 
derived from Zubarev’s NSOM [9] in the so called 
linear theory of relaxation (LTR) [lo] an equation is 
obtained [S] that gives R in terms of the laser power 
flux Z,, namely 

2n 
,FIUR(I;,9)Itfif~6(f~+E,_-ho,) 

=~(~LYL.(l -ff -fZ), (1) 

where UR is the matrix element for the recombination 
process; ti = h2k2/2m,, with m, being the excitonic 
mass m;’ = m;’ + m ; ’ (mecu are the effective masses 
of electrons and of holes); w,, is the frequency of 
the photons produced in recombination processes 
and given by cq/c z2, with 6m the high frequency 
background dielectric constant; fp) are Fermi-Dirac 
distribution functions at temperature T, and quasi- 
chemical potentials K and ph and energies cCh) = 
h2k2/2m,,,; f th) are the Fermi-Dirac distributions 
for energies (m,/m,,,)(hw, - E,); EG is the energy 
gap; and tl(wL) the photon absorption coefficient at 
the laser frequency. The concentration n and quasi- 
chemical potentials ptihl are related, in the internally 
thermalized carrier system, by the well-known 
expression [ 141 

n = nk%,2@k) = n!F,,2(,%h)v (2) 

where F,,z is the Fermi function of index one half and 

cl 
n e(h) = 2[2xmeh) lh ‘/?13” (3) 

with B = l/kT*. 

In this way, at the macroscopic thermodynamic 
level, the uniform steady state of the system is 
completely characterized. Next, as noted in the 
Introduction, we turn our attention to the study of 
the behavior of the local charge density of the carrier 
system. For that purpose we enlarge the NSOM- 
basic set of macrovariables with the inclusion of the 

non-diagonal elements of the single-particle density 
matrix, namely 

nfp(t) = Tr{C~+pG~&)~ (4a) 

&(t) = W-I-phi&)} (4b) 

where C(Ct) and h(ht) are annihilation (creation) 
operators for electrons and holes, respectively, in 
plane-wave states, used to approximate Bloch-band 
states in the neighbourhood of the zone centre. 
Further, p,(t) is Zubarev’s NSO appropriate for this 
problem, built according to the rules of the NSOM 
[6,9] in terms of the NSOM-auxiliary operator P(t) 
for this case, namely 

B(t) = exp{ --So(t) - f%(t)). (5) 

Here, S,, is the contribution associated to the uniform 
state (see eqn (14) in [5]), and 

(6) 

where &, + Sq5 ensures the normalization of the 
statistical operator of eqn (5) and F@ are the 
associated Lagrange multipliers to the operators of 
eqns (4) that appear in the variational formulation of 
the NSOM (6). 

The equations of motion for the quantities of eqns 
(4), to be coupled to eqns (1) and (2), in Zubarev’s 
approach and LTR, and using RPA to deal with the 
Coulomb interaction between carriers, are 

+,(r) = AQnE&) - 2~(QWp~@, t) 

+Wpi!&) - %Epii~(r) + Nf&), (W 

+i&)= --AE&&W + =YQ,Afkp(Q, t) 

+i@@bf&) - @$&(~) + N!&(r) (7b) 

In these equations we have introduced the notation 

AE@=&$-efh’, (84 

Af@ =.G& -ff”‘, W) 

cf”) = h2k2/2mtih,, (84 
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fi = ~r{WfiD), (84 

fk = Tr{h!$_~P}, (8e) 

V(Q) = 4ne2/Vq,Q2, (80 

&!9 t) = 7 
[ 

@j(t) +&J(t) 1 I @g) 
where e,, is the background static dielectric constant, 
V the volume of the system, and n(Q) is the amplitude 
of wave-vector e of the carrier density. 

Further, coefficients B contain the effect of laser 
light absorption, recombination and carrier-phonon 
interaction; we neglect the latter since, at low 
temperatures, it produces relaxation effects much 
smaller than those associated with recombination [5]. 
Then, coefficients B are Beh = Bhh = B” and 
Bhe = B” = Bh, where 

B@) = ALd@j + E, - ho,) + AR(c$ + EG)ffh’ 

+ same term with 6-E + 0, (9) 

and 

ti = h2k2/2m, W) 

A, = (2n2e2Eo/~,cw~m,)IL (lob) 

A, = e2EG/E,hc3m, uw 

and we recall that we have used the dipolar 
approximation to deal with the radiation fields. 

Finally, in eqns (7) Nech) are nonlinear terms given 

by 

W&(t) = 2f’(Q) & nt+~,p-~(t)--~,p-a,(t) 1 
-I 

(1 la) 

N&t)= - 2Y(e)a;p 
’ [ 

“&,p.-p(t) 

- i 1 A,6(~i+p+E,-ho,) 
@#Cl 

x ni,@(t)nlr-p,@-p(l) 
[ 

+nf+a,a-&)nh-l;, -@(t) 1 (llb) 

Clearly, the stationary (&rNh)/& = 0) uniform 
solution is @$ = 0, a fixed point solution for the 
dynamic system of carriers. To establish its stability 
we need to perform linear stability analysis [l 11. 
In particular, since we are looking for a possible 
branching point (bifurcation) of solutions giving rise 
to the emergence of a stationary nonuniform state 
(n@) # 0), we look for the existence of a zero sol- 
ution in the eigenvalue spectrum of the linearized 
equations of motion. The latter, because the reference 
solution is the homogeneous one with n@j) = 0, is 
the coupled set of eqns (7) with putting NNh) = 0. 
Putting both equations equal to zero (null eigen- 
value), solving them to find n@, adding both of 
these quantities and summing over J% we find the 
characteristic equation 

43& = 0, (12) 

where n(e) is given by eqn (8g) and 

e(e) = 1 - V(Q) c M& e>D -‘(i;, 81, (13) 
k 

where 

W% &) = Af fa AEPp + Af !p AEZ, 

- i(AfEp - Afk&Bf~ + %), (14a) 

D(i& 0) = (AEgp - iB&) 

x (AEke + Q) - B@@Q. (Mb) 
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Hence, one solution of eqn (12) is n(a) = 0, i.e. the 
one ~~sponding to the uniform state, and n(e) can 
be different from zero, a nonuniform solution, if 
t-(8) = 0. It is a quite interesting fact to note that 6 (a) 
is the static but wave-v~tor-de~ndent electronic 
contribution to the dielectric function: in fact if 
we introduce a probe charge -er,, expf -@.?}; we 
add its effect to the evolution equations, eqns (7), 
in the stationary regime, namely terms of the form 
V(Q) A$)r,; solve the coupled equations to obtain 
n(a), and use Maxwell and constitutive equations 
one finds that 

c-@) - 1 = @Jr,, (15) 

where &) is precisely the same as in eq (13). It 
should be noted that putting Be(‘) = 0 in eqns (14), the 
corresponding ~(0) becomes the Lindhart (RPA) 
dielectric function of a system of free electrons and 
holes; coefficients Beth) are the ones that introduce 
dissipative effects in the dielectric function in place of 
Landau damping in Lindhart expression, coupling 
both type of carriers. 

The imaginary part of ~(0) is null, as it should be, 
since it is an odd function of o [ 151. Performing the 
integrations required by eq (13) we find 

Ret@) = 1 - 2eZ 
st,f?2 

where, 

I,(Q)= m 
s 

dE E”*[f: (E) -J?,(E)1 
0 

x [l - C-‘(E, Q)arctgC(E, Q)], (17a) 

12(Q) = 
s 

= dE[B’(E) + Bh(E)] 
0 

x ~cfi,C~> - mfXE)larctgC(~, Q> (17b) 

with 

B’@)(E) = AL 6(E f EC - ho,) 

+ AR@ +&)&,,(E), (17~) 

W% Q, = ~Q,,‘%%Wh(E) - q,F(E)I, 

(17d) 

In the classical limit and with Q going to zero, we 
find that eqn (16) becomes 

8me2 
Ree(&- I+-----= Q&i 

tOM,Q2- l +e2’ (18) 

where QoH is the Debye-Hfickel screening wave- 
number, and so we recover the well-known result for 
the free (double component) electron gas, and no 
instability can occur. 

In general, in the limit of small Q, and using in 
eqns (17a,b) arctg x N x - x3/3, we obtain the 
approximate expression 

Rec(Q)cxl+A+$~6,, I+$, 
[ 1 (19) 

where 

If:(E) +&(.@I 
[m,B’(E) - TYZ~B~(E)]~ 

23"e2m3/2 m 

a---+ 

s wh 0 
dElm, f ;@I 

E~=I+A; Q;=a/&, 

Therefore, 6th) is always positive and conse- 
quently the stationary homogeneous state is stable 
against the formation of spatial ordering. 

But, from another point of view, we can note that 
the dielectric function tends to be smaller than the 
purely metallic one due to Lindhart for the free 
double plasma. Furthermore, let us consider the 
extremely degenerate limit (very low temperatures 
and high densities); then EX in eqn (20b) becomes very 
small and ~(0) is much smaller than the values 
it would have in the case of the free (double 
component) electron gas, the latter being 

I+ (QB-F/Q)~, where Q= is the Fermi-Thomas 
reciprocal screening length. 
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In the limit of Q going to zero, and using 

Fermi-Dirac step functions for the carrier 

distribution functions in eqn (16) we obtain 

2e2 m, 312 z 
Ree(Q)=l+ 

3Kt,ezF, s 

deEI’ 

x[,eE-,;)+beE-t:)] 

x B”(E) + Bh(E) CCC Q,, 
1 

where E;(~) are the electron (hole) Fermi energies. 

But in the last term the integral is null, because 

it is null the first square bracket in its integrand, 

the other integral is independent of Q (let us recall 

that C - Q), and therefore t(Q) is a constant for Q 

going to zero. The infinity of E(Q) for infinitely long 

wavelengths in eqn (19) is a manifestation of the 

metallic character of the system. On the contrary, 

its finite value in eqn (21) tells us that the system 

has dielectric (non-metallic) properties. 

The resulting nonmetallic carrier system should 

resemble an excitonic-like nonequilibrium phase with 

electrons and holes bounded in a nonconducting 

polarizable state. In the intermediate degenerate 

regime the screening factor has finite nonvanishing 

values; the static dielectric constant is again infinite at 

Q = 0, but E(Q) remains below the values of the one 

0 

L 

T*= IOK 

hw,=2.4ev 

0.5 I I .5 2 

LASER POWER C kW/cm*) 

Fig. 1. The concentration of photoinjected carriers as a 
function of the laser power in GaAs; carrier temperature 

is 10K. 

TWO LOWER CURVES T*= IOK 

TWO UPPER CURVES T*= 2K 

GoAs: n=10’6cm-’ 

0.2 03 0.4 0.5 

WAVENUMBER (cm-‘) 

Fig. 2. Dependence of the real part of the static dielectric 
function on the wavevector, for T* = 2 K (lower curves) and 
T* = 10 K (upper curves), and n = lOI cme3. For each pair 
of curves the dashed one corresponds to the Lindhart value 

for the free double fluid of carriers. 

corresponding to the ideal double gas of free carriers. 

Thus it is conjecturable that finite temperature 

breaks the bound state of electron-hole pairs leading 

to the formation of a nonequilibrium phase with 

coexistence of nonmetallic bounded electrons and 

holes and metallic itinerant carriers. 

We perform next numerical calculations, using 

parameters appropriate to GaAs, illuminated by a 

laser of photon frequency hw, = 2.4 eV. In Fig. 1, the 

dependence of carrier photoconcentration on the 

laser power I, is shown, obtained using eqn (1) and 

T = 10 K. The first part of the curve (low densities) 

displays the linear dependence of n with IL expected 

in the semiclassical limit. With increasing laser power, 

and therefore resulting increasing concentrations, 

the carrier system is becoming a degenerate quantum 

gas, and optical saturation follows for n nearly 

2 x 1019cm-3 and I ,_ - 20 kW cm-=. 

In Fig. 2 we show the Q-dependent dielectric 

function of eqn (19) (full line) for carrier quasi- 

temperatures T* of 2 K and 10 K. For comparison 

we have drawn the Lindhart dielectric function for 

the double free carrier system, i.e. B = 0 in eqn (19) 

(dashed line). We have used n = lOI cm-3, which can 

be obtained by continuous illumination by laser light 

of photon energy 2.4eV and power intensity of, 

roughly 4 W cm-= [from Fig. 11. Inspection of Fig. 2 

tells us that with increasing carrier quasitempera- 

ture E(Q) tends to coincide with Lindhart’s ~~(0). 

This reinforces our previous argument that between 

the nonmetallic state at the extremely degenerate 
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regime and the classical regime the carrier system 
is in a nonequilibrium thermodynamic phase with 
coexistence of carriers in both metallic and nonmetal- 
lic states. Using a simple model of two independent 
fluids for both nonequilibrium phases, we can 
obtain an estimative of the fraction of carriers in 
the condensate, i.e. in the nonequilibrium phase 
of bounded electrons and holes, say A@, n) = n*/n: 
putting ~(0) = AL,,,~@) + (1 - A)cL@), and consid- 
ering with Q going to the zero limit, that 6cond < eL 
(since the latter go to infinite and the former is finite), 
we find that 

This parameter is displayed in Fig. 3 (obtained 
for Q = 1 cm-‘) as a function of the carrier quasi- 
temperature for n = 10’6cm-3. For small values of 
T* the resulting curve can be approximated by 

A(B, n) = exp[- T*IT,(n)l, 

where T,(n) is a characteristic temperature, 
dependent on n, in this case given by 
T,(1016 cmm3) N 3.6 K. Thus, for values of T* of the 
order and larger than this T, the system is in the 
almost completely metallic state. Furthermore, it 
should be noticed that if the effective masses m, and 
mh are equal, C-’ in eqns (21) is null, Z, is also null, 
and the dielectric function simply reduces to the value 

Go As 

n = 10’6 cm’ 
I,- 4w/cm2 

I I I I I I I 
4 6 12 16 20 

QUASI TEMPERATURE (K I 

Fig. 3. The fraction of carriers in the polarizable noncon- 
ducting nonequilibrium phase as obtained from eqn (23). 

that corresponds to the one of a metallic carrier gas 
with concentration 2~2, and no condensation occurs. 
Thus, the symmetric condition m, = m,, cancels the 
effect of coupling of electron and holes mediated by 
recombination effects, i.e. coming from the terms 
containing coefficients B. 

3. CONCLUDING REMARKS 

As shown, the photoinjected carriers in a plasma in 
a semiconductor form a nonequilibrium (dissipative) 
open system governed by nonlinear dynamic laws for 
a certain set of basic variables, deemed appropriate 
for a description of the evolution of the macroscopic 
state of such a system. Thus, it may be capable of 
displaying complex behavior in the sense discussed in 
[l, 2,4]. We have concentrated our attention on the 
study of the stationary and uniform carrier density 
that should be formed on the metallic side of the 
Mott transition in semiconductors illuminated by 
continuous laser light, producing electron-hole pairs 
in photon absorption processes, i.e. a double fluid of 
itinerant carriers. 

We have characterized the nonequilibrium thermo- 
dynamic state of the carrier system by the energy, 
concentration, and the nondiagonal elements of 
the one quasi-particle density matrix. The latter 
permits the calculation of the space dependence, in a 
nonuniform situation, of the dynamical variables of 
the system, for example the local charge density. The 
equations of evolution for these basic variables were 
obtained using the nonlinear quantum transport 
theory that can be derived from the nonequilibrium 
statistical operator method [6] in Zubarev’s approach 
[9] and the linear theory of relaxation [lo]. We have 
omitted the equation for the energy (see [S]) taking 
the carrier quasi-temperature as a parameter, and 
expecting that after a certain transient it would 
attain a value near that of the reservoir [5]. The 
equation that determines the stationary value of the 
photoconcentration is eqn (l), and eqns (7) that of 
the one quasiparticle density matrix displaying a 
particular nonlinearity of a polynomial type, i.e. 
bilinear terms in the Fourier amplitudes of the charge 
density resulting from polarization effects associated 
with the Coulomb interaction, and dissipative effects 
associated with the interaction of the carriers with the 
laser and recombination radiation fields. 

Resorting to linear normal mode analysis [ll] we 
have shown that the stationary uniform state is stable 
against the formation of any possible patterned 
spatial stationary structure. But in the process, 
through the examination of the static but wave-vector 
dependent dielectric function that appears in the 
characteristic equation in our normal mode analysis, 

PCS 53,~1 
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we are able to show that in the extremely degener- 

ate regime the uniform steady state itinerant Mott 
metallic phase of carriers suffers a nonequilibrium 
phase transition to a nonmetallic state. It resembles 
the formation of a polarizable nonmetallic state, 
with electrons and holes bounded in an extended 
structure on a macroscopic scale. Noticing that 
we have used plane waves for the electrons and 
hole states, it is conjectured that in this extremely 
degenerate regime the condensation in the non- 
metallic nonequilibrium phase corresponds to the 
formation of two interpenetrated infinite-wave- 
length lattices clamped together. This suggests 
that, in the other extreme of a tight binding 
approximation for the hole system, the con- 
densed dissipative structure would resemble a gas of 
Frenkel excitons. 

As discussed in the last section, the behavior of 
the dielectric function on leaving the extremely 
degenerate regime points to the presence of two 
coexisting nonequilibrium phases: with increasing 
temperature electrons and holes are freed from the 
nonmetallic condensate and the state is partially 
metallic. Such a fraction of electrons and holes are 
individually itinerant in the background of the 
condensed dielectric state. For the case of GaAs, and 
IZ = 10’6cm-3 (for f, - 4 W cm-*) we show in Fig. 3 
our estimate of the fraction of carriers in the dielectric 
condensate. Numerical fitting seems to point to a 
kind of binding energy of roughly 4 K. It should be 
noted that this is a different phenomenon than the 
Keldysh transition (electron-hole droplet fo~ation) 
in Si and Ge [16]. 

Summarizing: at a given carrier quasi-tempera- 
ture with increasing laser power, and therefore 
increasing concentration of photoinjected carriers, as 
known, Schottky excitons (and exciton complexes) 
are formed at low to intermediate concentrations. 
With increasing laser intensity a critical point is 
approached (when roughly the orbital radius of 
Schottky excitons overlap each other) corresponding, 
it is assumed, to the ionization of the excitons and the 
appearance of a metallic state of the carriers. Our 
results change this picture, showing that in the 
extremely degenerate regime the carriers are not freed 
at the Mott critical point but tend to form a non- 
metallic state of Frenkel excitons. The binding energy 
of these Frenkel excitons seems to be small and, on 
leaving the extremely degenerate regime, are rapidly 
broken liberating electrons and holes as free carriers. 
Near the extremely degenerate regime the coexistence 
of both nonequilibrium phases is expected, the 
dielectric condensate and the fraction of itinerant 
carriers. A short preliminary report of these results 
has already been published [f7]. 

As a final word, the fu~damen~l role of the 

dissipative terms [those with coefficients Bin eqns (7)] 

in the formation of the condensate must be stressed. 

Paraphrasing Prigogine et al., dissipation, contrary to 

what is unusually thought, is not a source of decay, 

but, it must be emphasized, may have quite a 

constructive role. 
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