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A variational method called discrete variable representation is applied to study the energy spectra of
two interacting electrons in a quantum dot with a three-dimensional anisotropic harmonic
confinement potential. This method, applied originally to problems in molecular physics and
theoretical chemistry, is here used to solve the eigenvalue equation to relative motion between the
electrons. The two-electron quantum dot spectrum is determined then with a precision of at least six
digits. Moreover, the electron correlation energies for various potential confinement parameters are
investigated for singlet and triplet states. When possible, the present results are compared with the
available theoretical values. © 2005 American Institute of Physics. �DOI: 10.1063/1.2131068�
I. INTRODUCTION

The study of confined quantum systems has been the
subject of investigation of physicists and theoretical chemists
since the beginning of quantum theory. In 1928, Fock1 stud-
ied an electron confined by a harmonic oscillator potential in
a uniform magnetic field. This problem was investigated by
Darwin2 two years later, obtaining some more properties.
Michels et al.3 proposed in 1937 the model of a hydrogen
atom in a spherical cage to simulate the effect of pressure on
an atom. They were soon followed by Sommerfeld and
Welker4 who recognized the importance of the model of a
compressed atom for astrophysics. Meanwhile, Schrödinger5

studied the case of an atom confined by a cotangent poten-
tial. Since then, problems concerning confined quantum sys-
tems have been studied by many authors �see Refs. 6–8 for a
partial listing of references in this field�.

The interest in the study of the physical properties of
confined quantum systems has increased with the recent ad-
vances of experimental techniques used in mesoscopic-scale
semiconductor structures.9,10 They have allowed the con-
struction of new quantum systems as artificial atoms and
molecules11,12 or quantum dots13,14 where the number of con-
fined electrons can be controlled. Moreover, the study of the
confined systems is also important in catalysis when adsorp-
tion phenomena are investigated15 in the embedding of atoms
and molecules inside cavities such as zeolite molecular
sieves,16 fullerenes,17–20 or solvent environments21 and in
bubbles formed around foreign objects in the liquid helium
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or neutral plasma,22–24 for instance. Also, one can study con-
fined phonons,25 polaritons and plasmons,26 and confined
bosonic gases.27

One of the first nontrivial confined quantum systems that
shows the interplay of electron-electron interaction and spin
effects is the two-electron quantum dot; it is also an interest-
ing candidate to be a qubit in quantum computation.28,29 The
properties of the two-electron quantum dot are dependent on
many different issues such as the way to simulate the spatial
confinement and its geometric shape, the presence and the
position of impurities, the existence of external electrical
and/or magnetic field, and the inclusion of many-body ef-
fects.

Traditionally, the spatial confinement of a quantum sys-
tem can be simulated by the imposition of the boundary con-
ditions on the wave functions,30–34 by changing the actual
potential to a model one,35 and by the introduction of a con-
finement potential;36,37 some of these are employed to treat
quantum dot systems. On the other hand, several geometric
kinds are used as the confining potential in a quantum dot.
Maybe the most common quantum dot with two interacting
electrons is the two-dimensional isotropic harmonic
potential.38–41 However, many other models have been used,
such as the spherical box with finite42 and infinite43–46 walls,
the two-dimensional harmonic potential with anharmonic
correction,47 the one-dimensional,48 square49,50 and cubic51,52

boxes with infinite walls, the ellipsoidal quantum dot,53 the
Gaussian confining potential,54 the two-dimensional aniso-
tropic harmonic potential,55 and the three-dimensional
isotropic56–60 and anisotropic61,62 potentials.

Other indispensable ingredients to a precise determina-
tion of quantum effects in the two-electron quantum dots are
the accuracy of the description of electron-electron interac-

tion and the quality of the calculation. Various theoretical

© 2005 American Institute of Physics01-1
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approaches have been used for this purpose. We can
cite, among them, the Hartree approximation,63,64 the
Hartree-Fock procedure,33,42,46,63,65,66 the configuration
interaction �CI� method,32,44,46,49 the density-functional
theory,45,50,58,65,67 the exact diagonalization,51,68 the Green
function,69 the quantum Monte Carlo technique,70,71 the ana-
lytical approaches,56,72,73 the algebraic procedure,74 the per-
turbation theory,53 the WKB treatment,75 and the random-
phase approximation.76 Most of these studies are limited to
ground-state and few excited-state properties.61,77 Due to the
number of studies, the two-electron quantum dot is an attrac-
tive workbench for testing any new computational or theo-
retical procedure.

In the present paper, we are interested in determining the
energy spectrum of a two-electron quantum dot confined by
a three-dimensional anisotropic harmonic potential without
the application of an electromagnetic field. The spectrum,
considering both singlet and triplet states, is computed using
the discrete variable representation �DVR� method �see Refs.
78–80 and references therein�. The DVR method, set with
the Woods-Saxon potential, was recently used by us to study
some confined quantum systems including one-electron
quantum dot application.37 We believe that this approach has
the necessary flexibility and accuracy required by the low-
dimensionality systems.

This paper is organized as follows. In Sec. II the theory
of confined quantum dots is shown. Section III presents the
discrete variable representation method in the fashion that
we are using in calculations. The results are shown in Sec.
IV. In Sec. V we present our concluding remarks.

II. THEORY

The Schrödinger equation for N confined particles is
written as

H� = E� , �1�

where

H�r� = T�r� + Vdot�r� + Vint�r� , �2�

with r��r1 ,r2 ,… ,rN� the position of N particles, T is the
kinetic energy, Vdot is the confinement potential of the quan-
tum dot, and Vint is the interaction potential between the
particles.

The system of our interest is the two interacting elec-
trons of effective mass m* in a quantum dot with an aniso-
tropic harmonic confinement potential whose Hamiltonian is

H = �
j=1

2 	−
1

2m* �� j
2� + Vdot�r j�
 +

e2

��r1 − r2�
, �3�

where � j
2 is the Laplacian associated with the jth electron

and

Vdot�r j� = �m*

2

���

2 �xj
2 + yj

2� + �z
2zj

2� �4�

is the confinement potential of the quantum dot. The
effective a.u. is used unless otherwise stated, i.e.,

* �
�=m =e / �=1.
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The relative-motion �r=r1−r2� and center-of-mass �R
= �r1+r� /2� coordinates in Eq. �3� can be introduced in order
to split the Hamiltonian as follows:

H = HCM + HRM, �5�

where the center-of-mass �HCM� term is

HCM = − 1
4�R

2 + ��
2 �X2 + Y2� + �z

2Z2 �6�

and

HRM = − �r
2 +

1

4
��

2 �x2 + y2� +
1

4
�z

2z2 +
1

r
�7�

is the relative-motion �HRM� term, with r= �r�.
To solve Eq. �1� with the Hamiltonian expressed in Eq.

�5�, we can consider the spatial wave function of two-
electron quantum dot as

� = �CM�R��RM�r� , �8�

where �CM�R� and �RM�r� are solutions of the following
equations:

HCM�CM�R� = ECM�CM�R� , �9�

HRM�RM�r� = ERM�RM�r� . �10�

Thus the total energy �E� of this system is the sum of the
center-of-mass �ECM� and relative-motion �ERM� eigenener-
gies. From Eq. �9� the CM part can be solved analytically
and its solution ��CM�R�� is a planar oscillator with angular
frequency �� and a Z-direction harmonic oscillator with fre-
quency �z; in consequence, the CM eigenenergy can be writ-
ten as

ECM = �2N + �M� + 1��� + �NZ + 1
2��z, �11�

where N and M are the radial and the azimuthal quantum
numbers associated with the planar oscillator, respectively,
and NZ is the quantum number associated with the
Z-direction harmonic oscillator.

The relative-motion problem defined in Eq. �10� has no
analytical eigenfunction due to the Coulomb interaction. To
solve it we have employed a variational scheme based on
wave-function expansion in terms of a finite basis set. In
particular, the DVR method78 is used to expand �RM�r� in
the radial direction, while the spherical harmonics are em-
ployed to expand it in the angular directions. The details of
this procedure are described in the next section.

The total wave function ��tot� of the two-electron quan-
tum dot should be defined as the product of spatial ���R ,r��
and spin parts, and it must be antisymmetric under the inter-
change of two electrons. This means that for singlet states
the spatial wave function ��R ,r� must be symmetric, and
for triplet states it must be antisymmetric. As the center-of-
mass wave function ��CM�R�� is always symmetric �the
center-of-mass coordinate remains the same under the inter-
change of electrons�, the symmetry condition should be in
the relative motion described as ��RM�r��. It will be dis-

cussed later.
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III. NUMERICAL PROCEDURE

The strategy to solve the relative-motion Schrödinger
equation �10� is based on the variational principle where the
problem is transformed into finding the stationary solutions
of the functional J��RM� given by

J��RM� =� �RM
* �r��HRM − E��RM�r�dr . �12�

As previously discussed, to obtain numerically the eigenval-
ues and eigenfunctions associated with Eq. �10�, the relative
motion wave function is first expanded in the following way,

�RM
�m �r� = �

l
�

j

clj
�m� j�r�

r
Ylm�	� , �13�

where �clj
�m� are the expansion coefficients, � is the parity of

the �RM�r� in relation to the interchange of the two electrons,
and m is associated with the eigenvalue of the z component
of the angular momentum operator lz. Then, J��RM� is re-
quired to be stationary under the variation of such coeffi-
cients. Next, the relative-motion problem turns out to be the
solution of a generalized eigenvalue problem, which in ma-
trix notation is the following equation:

HRMc�m = ERM
�m Sc�m, �14�

where c�m is the coefficient vector. The Hamiltonian matrix
elements are given by

�HRM� j j�,ll� =� � j
*�r�	−

d2

dr2 +
l�l + 1�

r2 +
1

4
��

2 r2 +
1

r




� j��r�dr�ll� +
��2

4
Al�

lm� � j
*�r�r2� j��r�dr ,

�15�

with ��2=�z
2−��

2 and

Al�
lm =� Ylm

* �	�cos2 
Yl�m�	�d	 , �16�

while

�SRM� j j�,ll� =� � j
*�r�� j��r�dr�ll� �17�

are the overlap matrix elements.
The symmetry condition of the �RM�r� should be done

on the angular part of expansion �13� because r is symmetric
under the interchange of electrons. As the parity of spherical
harmonics is �−1�l, expansion �13� can be separated into two:
one with odd l’s and the other with even l’s. Thus, the total
wave function �tot will be a singlet or a triplet state when the
relative-motion wave function contains only odd l’s or even
l’s in expansion �13�, respectively. Moreover, as the z com-
ponent of the angular momentum is conserved, the magnetic
quantum number m is a good quantum number, and it is fixed
during the calculation for each state. The other two quantum
numbers, similar to the CM case, are one radial �n� associ-
ated with the planar motion and one �nz� associated with the

z-direction of the RM problem.

ownloaded 09 Sep 2013 to 200.130.19.138. This article is copyrighted as indicated in the abstract. 
In the present work, the basis functions �� j�r�� are deter-
mined, solving the following eigenvalue problem:

�−
d2

dr2 +
1

4
��

2 r2 +
1

r
��i�r� = �i�i�r� �18�

by using the equally spaced discrete variable representation
method.81–83 The DVR method is described with enough de-
tails in many other papers �e.g., see Refs. 78–80 and refer-
ences therein�. So, we will just introduce the method in what
follows.

The DVR procedure consists of �i� building basis func-
tions �f i�r�� with the property

f i�rj� =
�ij

��i

, i, j = 1,…,k , �19�

where �ri� and ��i� are the points and the weights of a Gauss-
ian quadrature, �ii� expanding the trial wave function with
the basis set �19�,

�i�r� = �
j=1

k

djif j�r� , �20�

and �iii� solving the associated eigenvalue-eigenvector prob-
lem obtained from the variational principle. In such a method
the matrix elements of the potential energy using the basis
set �19� are diagonals,

�V�ij � V�ri��ij = �1

4
��

2 ri
2 +

1

ri

�ij , �21�

while the kinetic-energy matrix elements �T�ij should be, in
general, determined analytically. Here the equally spaced
DVR method is employed.82 In this case, the �T�ij can be
then written as

Tij =
�− 1�i−j

�b − a�2



�2

2
	 1

sin2���i − j�/2N�
−

1

sin2���i + j�/2N�
, i � j

�22�

TABLE I. Intervals employed to solve Eq. �18� using the equally spaced
DVR method for each couple of parameters �� and �z. Distances are in
effective a.u.

�� �z �a,b� interval

0.1 0.1 �0.0,35.0�
0.25 0.25 �0.0,25.0�
0.5 0.5 �0.0,20.0�
1.0 1.0 �0.0,15.0�
4.0 4.0 �0.0,10.0�
0.5 0.1 �0.0,40.0�
0.5 0.25 �0.0,25.0�
0.5 1.0 �0.0,20.0�
0.5 4.0 �0.0,20.0�
and
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Tii =
1

�b − a�2

�2

2
	 �2N2 + 1�

3
−

1

sin2���i�/N�
 , �23�

where N=k+1 and �a ,b� are the intervals of integration.
A characteristic of the DVR method is that the value of

an eigenfunction in a quadrature point is simply the coeffi-
cient of expansion �20� associated with the DVR function of
this point divided by the root of the related weight,

�i�rj� =
dji

�� j

. �24�

It should be pointed out that the expressions in the DVR

TABLE II. Energy levels of the relative-motion prob
of �n , l�, where n and l are the radial and angular mo

�n , l� �=0.1 �=0.25

�0,0� 0.350 000 0.714 262
�0,1� 0.403 173 0.875 002
�0,2� 0.477 658 1.080 613
�1,0� 0.532 493 1.178 091
�0,3� 0.561 412 1.303 348
�1,1� 0.591 953 1.354 641
�0,4� 0.650 000 1.534 539
�1,2� 0.670 119 1.567 630
�2,0� 0.719 419 1.652 938
�0,5� 0.741 448 1.770 591
�1,3� 0.755 984 1.794 242
�2,1� 0.783 389 1.839 649
�0,6� 0.834 744 2.009 730
�1,4� 0.845 876 2.027 725
�2,2� 0.864 126 2.057 506
�3,0� 0.909 195 2.134 128
�0,7� 0.929 311 2.250 969
�1,5� 0.938 188 2.265 256
�2,3� 0.951 519 2.286 838
�3,1� 0.976 552 2.327 950
�0,8� 1.024 796 2.493 711
�1,6� 1.032 087 2.505 411
�2,4� 1.042 393 2.522 013
�3,2� 1.059 194 2.549 279
�4,0� 1.100 913 2.619 342
�0,9� 1.120 967 2.737 572
�1,7� 1.127 094 2.747 382
�2,5� 1.135 377 2.760 679
�3,3� 1.147 748 2.780 634
�4,1� 1.170 914 2.818 448
�0,10� 1.217 667 2.982 292
�1,8� 1.222 910 2.990 671
�2,6� 1.229 758 3.001 639
�3,4� 1.239 391 3.017 116
�4,2� 1.255 029 3.042 393
�5,0� 1.294 021 3.107 292
�0,11� 1.314 786 3.227 689
�1,9� 1.319 338 3.234 954
�2,7� 1.325 125 3.244 204
�3,5� 1.332 913 3.256 684
�4,3� 1.344 499 3.275 320
�5,1� 1.366 150 3.310 507
method depend only on the grid points; so, they are general

ownloaded 09 Sep 2013 to 200.130.19.138. This article is copyrighted as indicated in the abstract. 
expressions for all one-dimensional systems. However, this
procedure is easily extended to two-dimensional83 and three-
dimensional systems.78

IV. RESULTS

The energy spectra of the two-electron quantum dot con-
fined by a three-dimensional anisotropic potential is deter-
mined for different parameters ��� and �z� by using the
above procedure. The calculations are done expanding the
wave function �RM�r� by using 30 spherical harmonics with
a particular symmetry �odd or even l’s� and 100 ��i�r�� basis
functions. The solutions ��i�r�� of Eq. �18� are obtained em-

Eq. �14�� for the isotropic quantum dot as functions
tum quantum numbers. Results are in effective a. u.

ERM�n , l�
�=0.5 �=1.0 �=4.0

.250 000 2.230 120 7.523 214

.609 665 3.015 101 11.046 810

.043 614 3.918 156 14.843 576

.190 116 4.134 473 15.299 044

.503 841 4.860 638 18.725 341

.578 661 4.968 821 18.948 128

.976 664 5.821 609 22.645 809

.024 414 5.890 110 22.785 207

.150 532 6.073 961 23.165 948

.456 622 6.792 943 26.587 677

.490 563 6.841 442 26.685 905

.556 315 6.936 020 26.879 897

.941 071 7.770 754 30.542 820

.966 808 7.807 445 30.616 916

.009 599 7.868 640 30.740 968

.121 758 8.030 949 31.074 086

.428 556 8.752 928 34.506 859

.448 945 8.781 948 34.565 350

.479 831 8.825 998 34.654 352

.539 099 8.910 997 34.828 682

.918 206 9.738 204 38.477 199

.934 876 9.761 905 38.524 904

.958 577 9.795 648 38.592 937

.997 641 9.851 398 38.705 661

.099 530 9.998 159 39.005 200

.409 463 10.725 778 42.452 194

.423 423 10.745 609 42.492 072

.442 375 10.772 558 42.546 327

.470 879 10.813 154 42.628 210

.525 238 10.890 981 42.788 235

.901 951 11.715 108 46.430 743

.913 864 11.732 021 46.464 727

.929 476 11.754 201 46.509 333

.951 541 11.785 583 46.572 531

.987 681 11.837 085 46.676 476

.081 628 11.971 974 46.950 761

.395 406 12.705 818 50.412 078

.405 729 12.720 465 50.441 491

.418 883 12.739 141 50.479 021

.436 652 12.764 389 50.529 807

.463 234 12.802 210 50.605 997

.513 724 12.874 435 50.755 175
lem �
men

1
1
2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6

ploying 2500 DVR basis functions equally spaced in an ap-
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propriate interval for each pair of parameters �� and �z.
These intervals are shown in Table I. Thus, the energy spec-
tra presented here have a good precision of at least six sig-
nificant digits. In Sec. IV A the isotropic situation ���=�z�
is analyzed, while the anisotropic one �����z� is shown in
Sec. IV B.

A. Isotropic case

Initially the relative-motion eigenenergies �ERM� are cal-
culated by using the procedure described above for the fol-
lowing quantum dot parameters: ��=�z��=0.1, 0.25, 0.5,
1.0, and 4.0. Due to the isotropy of the confinement poten-
tial, results can be labeled using n and l, the radial and an-
gular momentum quantum numbers, respectively. This hap-
pens because the coupling term between different l’s in Eq.
�15� disappears due to ��=0 when ��=�z. Then, in such
case, n and l are the quantum numbers associated with the
relative-motion problem.

The first 42 relative-motion energy levels for each case
are presented in Table II, where we can see some band struc-
tures in the results for larger values of �. In each band, the n
and l quantum numbers are related as follows: 2n+ l= p , p
being an integer number. For example, the energy values of
the states �n , l�= �0,4�, �1,2�, and �2,0� are very close for �
=1.0 and 4.0, and they have p=4. As we will point out later,
this represents that the influence of the electron-electron in-
teraction is smaller for the strong confinement than for the
weak confinement.

On the other hand, to calculate the total energies �E� we
do need to calculate the center-of-mass eigenenergies �ECM�.
In the isotropic case, expression �11� is reduced to

ECM = �2N + L + 3
2�� , �25�

where N and L denote, respectively, the radial and angular
momentum quantum numbers related with the CM motion.
Then, the complete spectrum �E=ECM+ERM� of the two-
electron quantum dot confined by a three-dimensional isotro-
pic harmonic potential can be determined from the results in
Table II and Eq. �25�. It is important to point out that RM
and CM quantum states which are 2l+1 and 2L+1 degener-

TABLE III. Three-dimensional two-electron quantum dot energies for selec

� �N ,L ,n , l� HF-1/Na HF-numb KS-1/Nc

0.25 �0,0,0,0� 1.1163 1.1241 1.1644
1.0 �0,0,0,0� 3.7673 3.7717 3.8711

�0,0,0,1�
�0,0,0,2�
�0,0,0,3�
�0,0,0,4�

4.0 �0,0,0,0� 13.5693 13.5693 13.7902

aHartree-Fock solutions by using the shifted 1/N method �Ref. 60�.
bHartree-Fock solutions by using the accurate numerical technique �Ref. 60
cKohn-Sham solutions by using the shifted 1/N method �Ref. 60�.
dKohn-Sham solutions by using the accurate numerical technique �Ref. 60�.
eExact Schrödinger solutions by using the shifted 1/N method �Ref. 60�.
fExact Schrödinger solutions by using the accurate numerical technique �Re
gExact Schrödinger solutions by using the orbital integration method �Ref. 5
hPresent results by using the discrete variable representation method.
ate with respect to the values of m and M, respectively.
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The values of E for a small set of �N ,L ,n , l� states are
presented in Table III in order to compare with the ones
obtained previously in Refs. 59 and 60. These total energies
of the two-electron quantum dot are determined in Ref. 60
solving the Hartree-Fock �HF�, Kohn-Sham �KS�, and
Schrödinger �exact� equations by using the shifted,
1 /N �1/N� �Ref. 84� and Schwartz numeric85 �num� meth-
ods, while in Ref. 59 the ones are calculated by using the
orbital integration method �OIM�.86 A comparison between
the results shown in Table III indicates that the procedure
based on the DVR method gives results with a great preci-
sion, and that the use of methodologies that compute com-
pletely the correlation effects is very important.

es of the confinement parameter �. Energies are in effective a.u.

numd Exact-1 /Ne Exact-numf OIMg DVRh

742 1.0858 1.08926 1.089 262
791 3.7217 3.73012 3.9632 3.730 120

4.7167 4.515 101
5.5867 5.418 156
6.5075 6.360 638
7.4532 7.321 609

7928 13.5057 13.5232 13.523 214

�.

FIG. 1. Relative spectrum of isotropic two-electron quantum dot with re-
spect to the confinement parameter �EN,L,n,l /�� for five �’s �0.1, 0.25, 0.5,
t valu

KS-

1.1
3.8

13.

�.

f. 60
9�.
1.0, and 4.0� and for the noninteracting �WI� case.
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Moreover, the spectrum with the lowest 245 energies of
�N ,L ,n , l� states relative to the quantum dot parameter �i.e.,
E /�� are displayed in Fig. 1 for five different �’s and for
noninteracting electron problem �i.e., solutions of Eq. �3�
where HRM is written without the 1/r term�. In the last case,
relative-motion eigenenergies satisfy a similar expression of
ECM �Eq. �25��; i.e., ERM= �2n+ l+ 3

2
��. In this figure, the

band structure appears clearly for ��0.5, and when the val-
ues of the quantum dot parameter increase, the bands go
sharpening and the interacting two-electron spectrum moves
toward the noninteracting ones. However, for a weak con-
finement ��→0� it is observed that a spectrum diffuses
more. Since the energy gaps that occur between the �N+2L
+n+2l+3�-fold degenerate states of the noninteracting two-
electron quantum dot �QD� is due to the spectrum associated
with two harmonic oscillators, Fig. 1 indicates that for stron-
ger QD parameters �larger values of �� the motion of the
electrons is mainly governed by the confinement potential,
while for a weak confinement the electron-electron interac-
tion plays an important and essential role.

In order to investigate this characteristic of the two-
electron quantum dot, considered now are the relative-
motion singlet states, i.e., solutions of Eq. �14� with odd
values of the parameter l. For this purpose, in Fig. 2 are
displayed the relative differences between the energy levels
of the interacting and noninteracting systems ��E�n,l�

rel

= �E�n,l�
int −E�n,l�

non � /E�n,l�
int � as a function of the �n , l� state. We can

see in Fig. 2 that the error in the electron-electron interaction
is clearly larger for the weak confinements than for the
strong ones. For example, �E�0,0�

rel for �=0.1 is approxi-
mately three times its value for �=4.0, while for �E�0,8�

rel this
difference is about six times. Another interesting aspect that
can be pointed out is that the larger the angular quantum
number l’s, the smaller is the value of �E�n,l�

rel when it is
compared with the same band of energy levels. Moreover,
the effect of the electron-electron interaction is larger in the
low-lying states than in the highly excited ones. This issue
can be explained if we call attention to the values of �E�0,l�

rel

rel

FIG. 2. Relative difference between the relative-motion singlet energy lev-
els of the interacting and noninteracting isotropic two-electron quantum dot
systems as a function of the �n , l� state for five different confinement param-
eters ��=0.1, 0.25, 0.5, 1.0, and 4.0�
and �E�n,0� when l and n are increased for all calculated �’s.
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The discrete energy-level spacing55 �ELS� relative to
���Ei

ELS/�= �Ei+1−Ei� /�� as a function of relative energy
�Ei /�� for singlets is shown in Fig. 3 for interacting systems
with �=0.1, 0.25, 0.5, 0.1, and 4.0 for the noninteracting
two-electron one. This figure supplies some information
about the energy gaps that appear at the energy spectrum.
The first is that energy gaps that occur in the noninteracting
system are due to the spectrum of the harmonic oscillator.
The second is that the energy gap decreases, and the degen-
eracies are lifted when the electron-electron interaction is
included in the model. However, the intensities of these ef-
fects depend clearly on the quantum dot parameter �. They
are more obvious for the weak than for the strong confine-
ment. Therefore, a repeated stretching phase of the energy
gaps is observed for the interacting isotropic two-electron
quantum dot. Note that a similar discussion was done for
two-electron anisotropic two-dimensional quantum dots in
Ref. 55.

B. Anisotropic case

The relative-motion eigenenergies �ERM� associated with

FIG. 3. Discrete relative-motion singlet energy-level spacing �ELS� for the
isotropic two-electron quantum dot relative to � as a function of relative
energy for �a� �=0.1, �b� �=0.25, �c� �=0.5, �d� �=1.0, �e� �=4.0, and �f�
noninteracting system.
�n ,m ,nz� states are calculated for the following quantum dot
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parameters: �z=0.1, 0.25, 0.5, 1.0, and 4.0 with ��=0.5.
The first 42 relative-motion energy levels for each pair of �z

and �� are presented in Table IV. They are also shown in
Fig. 4 together with the noninteracting energy levels, which
are given by ERM

non = �2n+m+1���+ �nz+0.5��z.
Some interesting information can be observed in Table

IV and Fig. 4. The first one is the existence of a band struc-
ture in energy levels when the electron-electron interaction is
considered, while to the noninteracting ones there is a regu-
lar structure. However, different from the isotropic case, the
electronic states in these bands do not present a general rule.
The second consideration is that the error obtained to calcu-
late the noninteracting triplet ground state is smaller than the

TABLE IV. Energy levels of the relative-motion problem �Eq. �14�� for the a
by �n ,m ,nz�, where n and m are the radial and the azimuthal quantum nu
number associated with the z-direction harmonic oscillator. Results are in e

�z=0.1 �z=0.25 �

�0,0,0� 0.827 006 �0,0,0� 1.046 978 �0,0,0�
�0,0,1� 0.836 407 �0,0,1� 1.156 472 �0,1,0�
�0,0,2� 0.981 087 �0,0,2� 1.410 785 �0,0,1�
�0,0,3� 1.013 310 �0,1,0� 1.452 050 �0,2,0�
�0,0,4� 1.138 679 �0,0,3� 1.610 223 �0,1,1�
�0,0,5� 1.196 519 �0,1,1� 1.620 164 �0,0,2�
�0,1,0� 1.301 681 �0,0,4� 1.843 295 �1,0,0�
�0,0,6� 1.308 638 �0,1,2� 1.852 083 �0,3,0�
�0,1,1� 1.324 935 �0,2,0� 1.899 628 �0,2,1�
�0,0,7� 1.383 900 �1,0,0� 1.981 385 �0,1,0�
�0,1,2� 1.437 930 �0,0,5� 2.073 775 �0,0,3�
�0,0,8� 1.488 817 �0,1,3� 2.078 237 �1,1,0�
�0,1,3� 1.499 648 �0,2,1� 2.094 963 �1,0,1�
�0,0,9� 1.574 036 �1,0,1� 2.118 335 �0,4,0�
�0,1,4� 1.600 217 �0,0,6� 2.310 391 �0,3,1�
�0,0,10� 1.674 289 �0,1,4� 2.313 589 �0,2,2�
�0,1,5� 1.682 564 �0,2,2� 2.325 521 �0,1,3�
�0,0,11� 1.765 731 �0,3,0� 2.366 007 �0,0,4�
�0,2,0� 1.778 543 �1,0,2� 2.380 097 �1,2,0�
�0,1,6� 1.780 066 �1,1,0� 2.415 529 �1,1,1�
�1,0,0� 1.800 018 �0,0,7� 2.548 835 �1,0,2�
�0,2,1� 1.815 194 �0,1,5� 2.551 034 �2,0,0�
�1,0,1� 1.819 182 �0,2,3� 2.558 612 �0,5,0�
�0,0,12� 1.864 647 �0,3,1� 2.576 212 �0,4,1�
�0,1,7� 1.870 419 �1,0,3� 2.587 256 �0,3,2�
�0,2,2� 1.913 623 �1,1,1� 2.594 909 �0,2,3�
�1,0,2� 1.947 750 �0,0,8� 2.789 338 �0,1,4�
�0,0,13� 1.958 698 �0,1,6� 2.790 976 �0,0,5�
�0,1,8� 1.967 359 �0,2,4� 2.796 466 �1,3,0�
�0,2,3� 1.989 525 �0,3,2� 2.808 464 �1,2,1�
�1,0,3� 1.995 911 �1,0,4� 2.826 095 �1,1,2�

�0,0,14� 2.056 931 �1,1,2� 2.834 096 �1,0,3�
�0,1,9� 2.061 292 �0,4,0� 2.842 227 �2,1,0�
�0,2,4� 2.084 078 �1,2,0� 2.876 722 �2,0,1�
�1,0,4� 2.112 190 �2,0,0� 2.941 493 �0,6,0�
�0,0,15� 2.152 656 �0,0,9� 3.031 189 �0,5,1�
�0,1,10� 2.158 130 �0,1,7� 3.032 434 �0,4,2�
�0,2,5� 2.173 173 �0,2,5� 3.036 507 �0,3,3�
�1,0,5� 2.180 899 �0,3,3� 3.044 758 �0,2,4�
�0,0,16� 2.250 653 �1,0,5� 3.059 424 �0,1,5�
�0,1,11� 2.253 980 �0,4,1� 3.061 570 �0,0,6�
�0,3,0� 2.259 337 �1,1,3� 3.063 223 �1,4,0�
one obtained to calculate the noninteracting singlet ground
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state. This indicates that the electron-electron interaction is
more important for singlet states than for triplet ones. Similar
conclusions were observed when we compare the results
from Hartree-Fock and from the exact treatment for this sys-
tem in Ref. 63. Moreover, some degeneracies between states
with the same quantum number m but with different quantum
numbers l and nz can be seen for �z=1.0 in Table IV. For
example, the states �0, m, 1� and �1, m, 0� have the same
energy within the results’ precision.

In order to analyze the degeneracies that happen in the
energy spectrum, the total-energy levels associated with
�N ,M ,NZ ,n ,m ,nz� states with up to two excitations for dif-
ferent �z’s are shown in Table V. Some selected states from

opic quantum dot for five �z parameters and ��=0.5. The states are labeled
s associated with the planar oscillator, respectively, and nz is the quantum
ve a.u.

�z=1.0 �z=4.0

.250 000 �0,0,0� 1.553 151 �0,0,0� 3.114 320

.609 665 �0,1,0� 1.880 816 �0,1,0� 3.402 864

.609 665 �0,2,0� 2.305 474 �0,2,0� 3.816 901

.043 614 �1,0,0� 2.434 862 �1,0,0� 4.005 659

.043 614 �0,0,1� 2.434 888 �0,3,0� 4.268 765

.043 614 �0,3,0� 2.761 631 �1,1,0� 4.357 902

.190 116 �0,1,1� 2.833 564 �0,4,0� 4.737 222

.503 841 �1,1,0� 2.833 591 �1,2,0� 4.791 919

.503 841 �0,4,0� 3.232 266 �2,0,0� 4.937 499

.503 841 �1,2,0� 3.279 371 �0,5,0� 5.214 582

.503 841 �0,2,1� 3.279 371 �1,3,0� 5.252 508

.578 661 �2,0,0� 3.332 921 �2,1,0� 5.327 003

.578 661 �1,0,1� 3.332 951 �0,6,0� 5.697 342

.976 664 �0,0,2� 3.446 825 �1,4,0� 5.725 610

.976 664 �0,5,0� 3.710 894 �2,2,0� 5.773 209

.976 664 �0,3,1� 3.744 716 �3,0,0� 5.891 017

.976 664 �1,3,0� 3.744 716 �0,7,0� 6.183 659

.976 664 �1,1,1� 3.787 061 �1,5,0� 6.205 771

.024 414 �2,1,0� 3.787 073 �2,3,0� 6.239 627

.024 414 �0,1,2� 3.824 802 �3,1,0� 6.303 980

.024 414 �0,6,0� 4.194 465 �0,8,0� 6.672 462

.150 532 �1,4,0� 4.220 232 �1,6,0� 6.690 367

.456 622 �0,4,1� 4.220 232 �2,4,0� 6.716 048

.456 622 �2,2,0� 4.252 508 �3,2,0� 6.758 419

.456 622 �1,2,1� 4.252 508 �4,0,0� 6.857 057

.456 622 �0,2,2� 4.270 123 �0,0,1� 7.052 214

.456 622 �3,0,0� 4.275 896 �0,9,0� 7.163 082

.456 622 �2,0,1� 4.275 907 �1,7,0� 7.177 963

.490 563 �1,0,2� 4.376 978 �2,5,0� 7.198 310

.490 563 �0,0,3� 4.377 045 �3,3,0� 7.229 035

.490 563 �0,7,0� 4.681 335 �4,1,0� 7.285 899

.490 563 �1,5,0� 4.701 795 �0,1,1� 7.383 965

.556 315 �0,5,1� 4.701 795 �0,10,0� 7.655 077

.556 315 �1,3,1� 4.727 023 �1,8,0� 7.667 699

.941 071 �2,3,0� 4.727 023 �2,6,0� 7.684 336

.941 071 �0,3,2� 4.736 841 �3,4,0� 7.707 958

.941 071 �2,1,1� 4.751 629 �4,2,0� 7.746 288

.941 071 �3,1,0� 4.751 632 �0,2,1� 7.807 897

.941 071 �0,1,3� 4.796 416 �5,0,0� 7.830 906

.941 071 �1,1,2� 4.796 492 �1,0,1� 7.931 877

.941 071 �0,8,0� 5.170 536 �1,9,0� 8.159 022

.966 808 �1,6,0� 5.187 284 �2,7,0� 8.172 956
nisotr
mber
ffecti

z=0.5

1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

this table are displayed in Fig. 5 as functions of the �z pa-
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rameter. In such case the total energy is the addition of the
relative-motion energy, shown in Table IV, with the center-
of-mass energy given by Eq. �11�. We can see a splitting on
the degenerate total-energy levels for ��=�z=0.5 when �z

varies. Moreover, other crossings of states happen for differ-
ent �z’s, as can be seen, for example, in Fig. 5 for �z=1.0
and for �z�0.38. We can note that these crossings of energy
levels are of two types: one is due to a symmetry of the
confinement potential to particular � parameters �as with
�z=1.0�, while the other is due to an accidental degeneracy
which occurs between excited RM states and excited CM
ones �as with �z�0.38�. The last one is the result of the
electron-electron interaction and the vertical deformation. In
a similar way it was pointed out by Sun and Ma in Ref. 41
during their studies of two-electron two-dimensional quan-
tum dots confined by elliptical and bowl-like potentials. Be-
sides, it can be seen also that the energy of an excited RM
state, �0, 0, 0, n ,m ,nz�, is always smaller than that of the
similar excited CM state, �N ,M ,NZ, 0, 0, 0� with N=n , M
=m, and NZ=nz. This can indicate that the effect of the
electron-electron interaction is more accentuated, as the iso-
tropic case, in the low-lying states than in the highly excited
ones �remembering that the CM eigenenergy is equal to the
RM one when the electron-electron interaction is taken off�.

Figure 6 shows the ELS as a function of the relative-
motion energy for singlets in interacting and noninteracting
systems with different �z’s. For �z��� the noninteracting
ELS exhibits plateaus due to equidistant intracluster spacings

FIG. 4. Relative-motion energy levels of anisotropic two-electron quantum
dot for �z=0.1, 0.25, 0.5, 1.0, and 4.0 with ��=0.5. The first entry of each
�z is associated with the interacting problem, while the second entry is
related with the noninteracting one.
that are not observed in the isotropic case. Some of these
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plateaus remain when the electron-electron interaction as
considered, for example, with �z=1.0, but some of them
disappear with �z=4.0. It is interesting to note that the influ-
ence of the electron-electron interaction is greater for all cal-
culations with different QD parameters �z’s. However, here

FIG. 5. Selected total-energy levels as a function of the �z parameter for the
anisotropic two-electron quantum dot system with ��=0.5.

FIG. 6. Discrete relative-motion singlet energy-level spacing �ELS� as a
function of relative-motion energy for interacting �full line� and noninteract-
ing �dashed line� anisotropic two-electron quantum dots; �a� �=0.1, �b� �

=0.25, �c� �=0.5, �d� �=1.0, and �e� �=4.0.
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are also observed behaviors that are similar to the isotropic
situation. We can also note some energy gaps on the spec-
trum for noninteracting systems, and the reduction of the
energy gaps and the break of the degeneracy when the inter-
action is considered in the model. This confirms the analysis
in Ref. 55 for two-dimensional quantum dots that the
electron-electron interaction changes the behavior of the ELS
function significantly, and the preservation of this feature
occurs only for the situation when it is compared with the
noninteracting situation.

Finally, the spectrum of the two-electron anisotropic
three-dimensional quantum dot to �z=0.1, 0.25, 0.5, 1.0, and
4.0 with ��=0.5 is displayed in Fig. 7. The band structures
are observed for all �’s, but they appear more clearly for
�z�0.5. This indicates again that the motion of electrons is
mainly governed by the confinement potential for strong QD
parameters. In the anisotropic case, however, it cannot estab-
lish a general relation to the occurrence of degenerate states.

V. CONCLUSION

In this paper we have studied theoretically a two-
electron quantum dot using a three-dimensional anisotropic
harmonic confinement potential. In particular, we focus on
the effect of the electron-electron interaction and the aniso-
tropy on the ground and excited electronic states of the sys-

e anisotropic two-electron quantum dot as functions
m numbers associated with the CM problem and
roblem. Results are in effective a.u.

�z=0.5 �z=1.0 �z=4.0

�a� 2.000 000 �a� 2.553 151 �a� 5.614 320
�b� 2.359 665 �b� 2.880 816 �b� 5.902 864
�c� 2.359 665 �d� 3.053 151 �d� 6.114 320
�d� 2.500 000 �h� 3.305 474 �h� 6.316 901
�e� 2.500 000 �l� 3.380 816 �l� 6.402 864
�f� 2.793 614 �m� 3.434 862 �m� 6.505 659
�g� 2.793 614 �c� 3.434 888 �p� 6.614 320
�h� 2.793 614 �p� 3.553 151 �q� 6.614 320
�i� 2.859 665 �e� 3.553 151 �s� 6.857 902
�j� 2.859 665 �q� 3.553 151 �t� 6.902 864
�k� 2.859 665 �g� 3.833 564 �w� 7.005 659
�l� 2.859 665 �s� 3.833 591 �y� 7.114 320
�m� 2.940 116 �k� 3.880 816 �z� 7.437 499
�n� 3.000 000 �t� 3.880 816 �aa� 7.505 659
�o� 3.000 000 �w� 3.934 862 �ab� 7.614 320
�p� 3.000 000 �j� 3.934 888 �c� 9.552 214
�q� 3.000 000 �o� 4.053 151 �e� 9.614 320
�r� 3.328 661 �y� 4.053 151 �g� 9.883 965
�s� 3.328 661 �z� 4.332 921 �k� 9.902 864
�t� 3.359 665 �r� 4.332 951 �j�10.052 214
�u� 3.359 665 �aa� 4.434 862 �o�10.114 320
�v� 3.440 116 �v� 4.434 862 �r�10.431 877
�w� 3.440 116 �i� 4.434 888 �v�10.505 659
�x� 3.500 000 �u� 4.434 888 �u�10.552 214
�y� 3.500 000 �f� 4.446 825 �x�10.614 320
�z� 3.900 532 �n� 4.553 151 �f�13.527 801
�aa� 3.940 116 �x� 4.553 151 �i�13.552 214
�ab� 4.000 000 �ab� 4.553 151 �n�13.614 320
FIG. 7. Spectrum of anisotropic two-electron quantum dot for �z=0.1, 0.25,
TABLE V. Total-energy levels up to two excitations for th
of �N ,M ,Nz ,n ,m ,nz�, where �N ,M ,Nz� are the quantu
�n ,m ,nz� are the quantum ones associated with the RM p

� �z=0.1 �z=0.25

a �0,0,0,0,0,0� �a� 1.377 006 �a� 1.671 978
b �0,0,0,0,1,0� �c� 1.386 407 �c� 1.781 472
c �0,0,0,0,0,1� �e� 1.477 006 �e� 1.921 978
d �0,1,0,0,0,0� �i� 1.486 407 �i� 2.031 472
e �0,0,1,0,0,0� �f� 1.531 087 �f� 2.035 785
f �0,0,0,0,0,2� �n� 1.577 006 �b� 2.077 050
g �0,0,0,0,1,1� �b� 1.851 681 �n� 2.171 978
h �0,0,0,0,2,0� �d� 1.877 006 �d� 2.171 978
i �0,0,1,0,0,1� �g� 1.874 935 �g� 2.245 164
j �0,1,0,0,0,1� �j� 1.886 407 �j� 2.281 472
k �0,0,1,0,1,0� �k� 1.951 681 �k� 2.327 050
l �0,1,0,0,1,0� �o� 1.977 006 �o� 2.421 978
m �0,0,0,1,0,0� �h� 2.328 543 �h� 2.524 628
n �0,0,2,0,0,0� �m� 2.350 018 �l� 2.577 050
o �0,1,1,0,0,0� �l� 2.351 681 �m� 2.606 385
p �0,2,0,0,0,0� �r� 2.369 182 �p� 2.671 978
q �1,0,0,0,0,0� �p� 2.377 006 �q� 2.671 978
r �0,0,0,1,0,1� �q� 2.377 006 �r� 2.743 335
s �0,0,0,1,1,0� �u� 2.386 407 �u� 2.781 472
t �1,0,0,0,1,0� �v� 2.450 018 �v� 2.856 385
u �1,0,0,0,0,1� �x� 2.477 006 �x� 2.921 978
v �0,0,1,1,0,0� �s� 2.830 019 �s� 3.040 529
w �0,1,0,1,0,0� �w� 2.850 018 �t� 3.077 050
x �1,0,1,0,0,0� �t� 2.851 681 �w� 3.106 385
y �1,1,0,0,0,0� �y� 2.877 006 �y� 3.171 978
z �0,0,0,2,0,0� �z� 3.330 333 �z� 3.566 493
aa �1,0,0,1,0,0� �aa� 3.350 018 �aa� 3.606 385
ab �2,0,0,0,0,0� �ab� 3.377 006 �ab� 3.671 978
tem. For this purpose, we have considered the isotropic ��1
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=�z� and anisotropic ��1��z� situations for different values
of the QD parameters �� and �z. The spectra, considering
both singlet and triplet states, have been computed using a
variational approach based on the discrete variable represen-
tation method. The DVR method has been widely applied in
literature to study problems in molecular and chemical phys-
ics, and here it is used with spherical harmonics, for the first
time, to solve the eigenvalue-eigenvector equation of the
relative motion of the electrons in a three-dimensional quan-
tum dot. The procedure has shown very accurate calculations
with at least six significant digits on the eigenvalues of en-
ergy. It is important to point out that the DVR method con-
siders completely the electron-electron interaction.

The present results are displayed in Fig. 1–7 and Tables
I–V. The major conclusions are summarized as follows: �i�
The effects of the electron-electron interaction are more im-
portant for weak confinement potentials than for strong ones,
for singlet states than for triplet states, and for low-lying
states than for highly excited states. �ii� The degeneracies
that exist in the noninteracting situation are lifted when the
electron-electron interaction is included. �iii� The existence
of vertical deformations breaking degeneracies that exist in
the isotropic quantum dots. Other state crossings can appear
for particular �� and �z parameters due to a combination of
the electronic interaction and the vertical deformation. �iv�
The observation of equidistant intracluster spacings of en-
ergy levels in quantum dots with anisotropic potential. And
�v� the results obtained using the DVR method, when com-
pared with others previously published, perform with great
precision. So it demonstrates that such a method can be ap-
plied to the study of different confined quantum systems with
confidence.

Finally, we call attention to the relation between values
of the QD parameters ��� and �z� which defines the con-
finement intensity and the Coulombian interaction �see, for
example, Fig. 1 for the isotropic case and Fig. 4 for the
anisotropic situation�. In this context it is interesting to note
that a strong confinement is associated with a high-electronic
density, while a weak confinement is associated with a low-
electronic density. Moreover, we have verified that the
electron-electron interaction is not so important for strong
confinements; then in such a case the interaction can be
treated as a perturbation of the noninteracting QD system.
However, this is not true in the case of low-electronic den-
sity, and, in such a case, it is fundamental to employ or to
develop methodologies which compute completely the
electron-electron interaction like the one used in the present
paper.
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