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Abstract—This paper presen

and small-signal parameters for qua;
densities at the channel boundaries. The

continuous functions of the terminal volt

ta
CORLIILOUS TUnCUons Of nd orminha. vORages,

nversion charge

oag  with continnang firgt order darivativag ragnlting in
witii conunu

are very SImple functlons of the inversion charge
densities, in turn, are formulated as exphclt

OUS 1Irst Oracr airivauves, resuutiiig in an

explicit MOSFET model valid in the whole inversion region. Physical properties, such as the symmetry
of the transistor with respect to source and drain are carefully observed in order to achieve a proper
prediction of the device behavior. The proposed model contains only the classical parameters of the

MOSFET theory.

A auxiliary parameter (m?)

B auxiliary parameter (m*/(Cs))

C,q bulk—drain capacitance (F)

C,s  bulk-source capacitance (F)

C,, gate-bulk capacitance (F)

gate—source capacitance (F)

C, gate—drain capacitance (F)

C,, oxide capacitance (F)

v  depletion capacitance per unit area (F/m?)
C.  semiconductor capacitance per unit area (F/m?)
C,  gate capacitance per unit area (F/m?)

C{ inversion capacitance per unit area (F/m?)
C}, oxide capacitance per unit area (F/m’)
gnp drain transconductance (S)

gmc gate transconductance (S)

gnms source transconductance (S)

Iy drain current (A)

L effective channel length (m)

n slope factor (dimensionless)

N, acceptor concentration (m~")

Op total depietion charge (C)

Qg total gate charge (C)

@, total inversion charge (C)

O, effective interface charge (C)

s depletion charge density (C/m?)

¢ semiconductor charge density (C/m?)

Qr shifted inversion charge demsity at source (C/m?)
{  inversion charge density (C/m?)

{p inversion charge density at drain (C/mz)

4 dancity at ennirna (0 fenn 2
Qs inversion charge density at source {(C/m?)

1 shifted inversion charge density (C/m?)
x shifted inversion charge density at drain (C/m?)
oxide thickness {m\

Vs  bulk voltage (V)
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Vep chanmel voltage = differ

quasi-Fermi potential a

V)
Vp  drain voltage (V)

Vps drain-to-bulk voltage W)
Vps drain-to-source voltage (V)
Ves fat-band voltage (V)

Vs  gate voltage (V)

Vee gate-to-bulk voltage (V)

Vss gate-to-source voltage (V)

Ve pmch off” voltage (V)

Vs source voltage (V)

Vsg  source-to-bulk voltage (V)

Vi, threshold voltage at equilibrium (V)
W effective channel width (m)

y body effect factor (V°?)

¢  Fermi potential of bulk (V)
¢s  surface potential (V)

¢s  surface potential at drain (V)
¢g  surface potential at source (V)
o, thermal voltage (V)

u carrier mobility (m?/(V s))

1. INTRODUCTION

MOSFET models included in circuit simulators
are based on either the regional approach[1-3], or
surface potential formulations[5-9] or semiempirical
equations{10-14]. Models based on the regional
approach{i-3] use different sets of equaiions to
describe the device behavior in different regions of
device operation. In this traditional modeling
approach, the weak and strong inversion regions are
generally bridged by using a non-physical curve
fitting.
errors or discontinuities in the small-signal par-
ameters such as conductances and capacitances. This
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results in a model that is inaccurate for analog
applications[4], where the MOSFET operates fre-
quently in the moderate inversion region. Moreover,
the discontinuity in a.c. parameters can lead to
numerical oscillations. Models based on surface
potential formulations are inherently continuous;
however, they demand the solution of an implicit
equation for the surface potential, often resulting in
significant computing time penalty. Finally, semiem-
pirical MOSFET models generally take the risk of
becoming neither scalable nor suited for statistical
analysis owing to the introduction of empirical
parameters.

This paper presents an explicit model of the long-
channel MOS transistor valid in all regions of oper-
ation. The drain current, the total charges and the
small-signal parameters are expressed as very simple
functions of the inversion charge densities at the
source and drain ends. An approximation of the
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»ayauuaup\;[l.}] A1oOws u\.u,luuulus

csamicanductar
explicit expressions for the inversion charge density in
terms of the terminal voltages. As a consequence, the
MOSFET static and dynamic characteristics have an

explicit formulation in terms of the terminal voltages.

2. APPROXIMATION OF THE CHARGE DENSITIES

The expressions and discussions that follow are
related to the long channel #nMOS transistor, illus-

Fig. } . UlllfUl i oubau alb dupuls aud
field-independent mobility have been assumed in our
analysis. According to the equation of potential
balance in the MOS structure, in the inversion region

of operation[l, p. 79}
VGB — VH; = ¢S + ';Y\/qss + d)l e(@sfzwf Vel (])

where ¢ is the surface potential and ¢ + Vg is the
electron quasi-Fermi potential.

Substituting ¢ = 2¢, + V4 into eqn (1) and solv-
ing for Vg, we derive an expression for the pinch-off
voltage V,, defined as the value of V; for which the
three-terminal MOS structure is in the upper limit of
weak inversion:

trotad in
traica in

Ve= (\/V(;n = Vg + g + ¢ — %)2 —2¢— . (2)

A slightly simplified version of eqn (2), presented
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Fig. 1. Structure of an n-channel MOS transistor.
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Fig. 2. Normalized inversion charge density vs normalized

surface potential, computed from: (——) the linearized

expressnon—eqn (4a) (- ) and (———-) the theoretical
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under the assumption that the inversion layer charge
is negligible in the upper limit of weak inversion. If
the thermal voltage terms are disregarded in eqn (2),
the simplified expression of Refs {1,11,16] is obtained.

The main approximation in this work has been to

’
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inversion (Os)
charge densities as incrementally linear functions of
¢s for a constant gate-to-bulk voltage. According
to the charge-sheet approximation, Qf and Qp are

expressed as[1, p. 110]:

0= —ColWVep—Ves— ds—7/¢s)  (3a)
Qh=—Cuot/ds. (3b)

Expanding eqns (3) in power series about 2¢. + V3
and disregarding the second and higher order terms
we obtain, for constant Vgy:

Q= Conlds— 2o+ Vo)l + Qp (4a)
O —Cou(r —Dos— Q2 + V)l + Qe
1 — Q)+ Qe (4b)

where the slope factor n[11,16] is the partial deriva-
tive of Q[/C}, with respect to ¢ for constant Vg,

calculated at pinch-off:
0
L(’ ox U(pS | PQB_Id’S 2\/2¢F + VP

and Q[ and Qgp are the values of Qf and Qj,
respectively, at pinch-off (the first one according to
the conventional weak inversion approximation):

Q= —(n—-1)C9,,
O =—CLrv/ 20+ V5.

LY

/

2F+ Vp

(4d)
(4e)

It should be pointed out that, unlike the conven-
tional linearization about the source voltage, the
linearization of Q[ about the pinch-off channel
voltage[11,16,17] preserves the symmetry of the
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model with respect to drain and source. Figure 2
shows the dependence of Q[ on ¢s. At constant Vgy,
the linearization of Q| with respect to ¢, according
to eqn (4a), fits very well with the charge-sheet model,
as can be noticed in Fig. 2. The fundamental approxi-
mations in eqns (4) have been applied throughout this
work in order to obtain general expressions for the
drain current and the total charges in terms of the
inversion charge densities at the channel boundaries.

3. DRAIN CURRENT

In this section we formulate the drain current I
as a very simple function of the inversion charge
densities at the channel ends. According to [1, p. 109],
I, can be computed from:

d
ID=uW( i+, Q) )

where the first term accounts for drift and the second
for diffusion. From the approximated relationship
between Q] and ¢s, eqn (4a), it follows that, for
constant Vgg:

dQ; = nC;, des. (6)

The drain current can be evaluated by integrating
eqn (5) along the channel length. The use of eqn (6)
allows us to change the variable ¢5 to Q| in ex-
pression (5), yielding:

W (2o
A —j Qi —nCo$dQ; ()
Ois

PTnC, L

where Q15 and Qjp are the inversion charge densities
at source and drain, respectively. By means of the
change of variable:

01=0Q{—nCLo,, (8a)
eqn (7) becomes:
LW I &,
I = - R Q ldQ /\
D nCo L Jo 1 1
W 2 __ N2
_ [ (QF R) (8b)

C,.L  2n

where Q¢ and Qg are the values of Q;, evaluated at
the source and drain ends, respectively.

A slight similarity can be observed between
eqn (8b) and the formula of the drain current ob-
tained in [7] from a linearization of Q{(¢s) about the
source voltage. Nevertheless, expression (8b) keeps
the symmetry of the model with respect to source and
drain.

4. TOTAL CHARGES

Here the total inversion (Q,), source (Qs), drain
(Qp) and depletion (Qy) charges are evaluated as

1947

simple functions of the inversion charge densities at
the source and drain ends. From our basic approxi-
mation in eqn (6) and from eqn (8a), eqn (5) can be
rewritten as:

dxx ——— (0 —

nC;xID nCox¢()dQl

= C;x I — Q1 dQi. ®

Using eqns (8a) and (9) to change the variable of
integration from x to Q1 in the definition of Q[1, p.
252), it follows that:

pw?
I;nCy,

Q1=WfLQ;dx=—
0

143
X[ Ou dQn+nC;x¢‘J Q{(in.]- (10)
oF

2F

Using eqn (8b) we easily derive the expression of Q;
reported in Table 2.

The integration of eqn (9) from the source to an
arbitrary point of the channel leads to:

_aW (©QF-08)

1
nC,, 2l an

Using eqns (9), (8a) and (11) into the integral
defining Qp, [1, p. 259] allows changing the variable of
integration, resulting in

“2w3

L
X
—w| Toidx=-L
%o L LQid = —snean

o
XJ (07 — 0@ +nCl Q1) Q1. (12)
o

After integration, eqn (12) gives the expression of
Qp reported in Table 2. Taking into account the
symmetry of the MOSFET, it follows that:
Os= 0, — Ob.

Finally, using eqns (4b), (8a) and (9) to perform a

Table 1. Auxiliary functions and parameters

Quantity Expression
O¢ Q{(Vsp, V) — nCody
Or Q1(Vos. Vas) —nC 9,
D¢ D'(Vsp. Vaa)
Dy D'(Vpg, Vas)
2
4 wr
B nW
C,L

D'(Vcp. Vgg) is the derivative of Q) with respect to V. at
constant V.
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Table 2. Drain current, total charges and small signal parameters
Quantity Expression
207+ Q:0,+ QF
WL| - =———="=~ ==+ nC,
Q. [oreeel o
[60F +120007 + 8070 +408  n ., ]
WL L +—C’X¢J
& I 1507 + Or) 27"
2 _nn
. 5@ =0R)
© In
B, ..
8ms T QD;
A 5 ]
Ce ol ; i
¥ n [ Qe+ 00 )"
Cy, (n — DC,,
n—1
Co (€= = Ca)
c -2 007 + 90407 + 807040
55 15 (Q;:+ Q;{)] F R R¥F F
C,.+C,
. (€ +Ca)
n
n—-1° y? n—1
- WLC,
QB ox[ ¢| 2(n l) n Ql
o YI—‘QS
g &ms — &mD
mG n
B, ..
&mp T Qr Dy
2
< Afy,__oF 1.9;(
w nl @i+ 0r7]
Ciy (n ~ 1)Cyy
o 4w ®
C, — A3 @R+ 3007 + 07 0R)D;
sd 15 (QF+ Qk)s R FXR F R R
Cq (n—1)Cy

change of variable in the the integral defining
Qgll, p. 252], we obtain
rL

QB=WJ

5

aW?
Qpdx =
nC, Iy

J Q7 + QnCi) dQ,

oF

0

I':n -1
X
n
n—1 Qip
—<QBP+—“QEP> thQﬂ] (13)
n Qis
where the first integral is proportional to the inver-
sion charge and the second one is proportional to the

drain current. Thus, eqn (13} leads directly to:

n—

1
Op= QWL -0)+ QWL (14

n

The set of expressions previously derived for the
drain current and total charges is the basis for a
MOSFET electrical model expressed in terms of the
inversion charge densities at the source and drain
boundaries.

5. EXPLICIT FORMULATION OF THE INVERSION
CHARGE DENSITY

In this section we present an explicit and accurate
expression for the inversion charge density. We have
first derived an integral expression for Q7 based only

on our basic approximation, eqns {4). Afterwards, we
have applied the approximation of the semiconductor
capacitance developed in Appendix C to the integral
expression for Q.

By expressing Q[(¢s) as in eqn (3a), we remark
1.

that.
ilal.

20|

aVCB | Voe

o) s
6¢5 | VG 0 VCB I Var

The first derivative in the right-hand side of
eqn (15) can be calculated from the linear approxi-
mation of Q{(¢s), eqn (4a); the second one can be
evaluated by exactly differentiating eqn (1) with

respect to Vg:

(15)

0os

AV
VY CB|Vgr

2./ s + ¢, s~ 20— Veridy

Wl1 1 ales — 208 — VerY ol
i 4 e el i

2 /¢S + 9, elds — 207 — Vealid

Using the definitions of the inversion (C{) and

semiconductor (C;) capacitances per unit area, pre-

M 201 valid for tha invarsinm caginn
L1, P. ovj, VaunG 10f uld imveorsion rCgioil,

eqn (16) is compactly rewritten in the form:

(16)

gantad in
owilliivu 111

o6s|  ClC
= 1 ox . 17
WVen|ve 15 CLIC, (an
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Substituting eqn (17) into eqn (15) and applying
our basic approximation of eqn (6), we obtain:
0| _,_
Ven|vey 1+CLCH
Hence, the inversion charge density can be deter-
mined from:

(18a)

Von

44 C!
Y [
: Q]P Vp 1 + Cc/Cox
In strong inversion (including moderate inversion)
we use the following relationship derived in
Appendix C:

dVeg. (18b)

Vo —
(Ve VCB)+(n_l)C;x

C.=Ci=Cln
2¢,

for Veg < V5.

(19)

This approximation for C{ is such that the physical
property C/ = C, is verified in the transition from
weak to strong inversion[l,p. 80]. Substituting
eqn (19) into eqn (18b), we find that:

Ve =V,
—C;x[n(vp— Ves) — 20, ln(l +—"———CE>

0= 2%,

+(n— l)¢,] for Vg < Vp. (20a)

For weak inversion, we have adopted here the
conventional expression of the inversion charge den-
sity[1,11,16]:

Qi = = Cluln = g oo Vv

for Vg = Vp. (20b)

Equations (20) provide a continuous transition
from weak to strong inversion as well as from
conduction to saturation for Q] and its first order
partial derivatives with respect to ¥5g and ¥p. The
approximation obtained for the inversion charge
density in strong inversion differs from the conven-
tional linear approximation[11,16], mainly by the

45
40
35
30}
Q1 25
C'0)(4’! 20+

30 35 40

Fig. 3. Normalized inversion charge density vs normalized

channel voltage computed from: (——) our model—eqns

(20); (- - - - ) the theoretical implicit expression[1]—eqns (3a)

and (1); (-—--) the linear expression with respect to Vy:
@il =n(¥Vp — Vcp)[11,16].
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Fig. 4. (a) Normalized drain current in saturation vs normal-
ized gate voltage and (b) square root of normalized drain
current in saturation vs normalized gate voltage, computed
from: (——) our model—eqns (8) and (20); (O O O O)

the charge-sheet model[l,5].

logarithmic term. As illustrated in Fig. 3, this term
improves the precision of the inversion charge den-
sity, especially in the so-called moderate inversion
region.

Finally, in order to provide more physical insight

C/C

=20 0 20 40 60 80 100 120
YGB ~ Yo

Fig. 5. Normalized intrinsic small-signal capacitances vs

normalized gate-to-source voltage, for ugy = 0 and upy = 20,

computed from: (——) our model—Table 2 and eqns (20);
(- ) the charge sheet model{l,6].
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Fig. 6. Normalized small-signal transconductances vs nor-

malized drain current, for ug =0 and upg = 20, computed

from: (——) our model—Table 2 and eqns (20); (- - - ) our

model—eqgns (A9) and (20); ( O O O Q) the charge sheet
model[1,6).

in our model let us extend our approximation to the

surface potential. Equation (4a) can be rewritten as:

Q=0

s =2¢5 + Vet ———.

nCOX

The substitution of the strong (including moderate)

inversion approximation of Q[ from eqn (20a) into
eqn (21) leads to:

@n

2¢ Vo=V,
s =205 + VCB+7lln<1+—P—5(—E—9>

for Veg < Vyp, (22a)

which is continuous with the conventional weak
inversion approximation:

s =20 + Ve

Note that our model includes a logarithmic term
that gives a slight variation of ¢g with ¥, in strong
inversion, improving the conventional approximation
(2¢g + V¢g) in this region of operation.

for Veg 2 V. (22b)

6. SIMULATION RESULTS

Figure 4 shows the drain current of a long-channel
NMOS transistor in saturation computed from our
model and from the Brews’ charge-sheet model[l,5].
In Fig. 6 the small-signal transconductances com-
puted from our model are compared to those calcu-
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lated from the Brews’ model. Agreement with
charge-sheet theory is excellent. Figure 5 illustrates
the capacitances Cy,, Cy,, Cyy, Ciq and Cy,, calculated
from our expressions and according to [6]. The results
for the gate capacitances are very good. The errors in
the bulk capacitances exhibit maximum values
deep in strong inversion owing to the linear approxi-
mation of the depletion charge density, eqn (4b). The
maximum errors verified in the bulk capacitances are
less than 0.15C,, and do not affect meaningfuily
the behavior of most circuits since, according to
[1, p. 318], these capacitances are generally in parallel
with larger capacitances or even short-circuited (C,,).

7. CONCLUSIONS

We have accomplished a general explicit MOSFET
model (Tables 1 and 2) that uses the inversion charge
density as the key variable. A smooth variation of
the device characteristics, including small signal par-
ameters, is guaranteed through the entire inversion
region. Only the customary MOSFET parameters
have been employed in our model.

Short and narrow channel effects can be modeled
as in Ref. [17], where the pinch-off voltage V; is a
function of both the channel length and width. Also
field-dependent mobility can be included in the usual
wayll, p. 141].
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APPENDIX A

Small Signal Parameters
The MOSFET intrinsic capacitances for quasi-static

operation are defined[l, p. 355] by the general expressions:

Co= 2| k#j (Ala)

au
00,
v,
where Q, and Q, are any of the charges Qg, Op, Qg or Qg
and V, is any of the gate (V), source (Vs), drain (V) or
bulk (V) voltages. The notation “0” indicates that the
derivatives are evaluated at the bias point. According to
[1, p. 358], a complete quasi-static model of capacitances is
nerf‘nrmpd by galculat_mo nnlv nine independent ranam-
tances.
The total gate charge is given by:

Oo=—0p— 0 — 0.
where Q, is the effective interface charge, assumed to be

independent of the terminal voltages. Substituting eqn (14)
into eqn (A2), we obtain:

Ocs=-0

(Alb)

0
34

(A2)

Q.

-=-—0 (A3a)

where
. o oon—1_
Op=0Up WL + W OpWL. (A3b)
From the expressions of @; and Qg in Table 2 and from
eqns (A1), (A3a) and (8a), we find the expressions for C,
Cy»> Cy and C,; shown in Table 2.
From eqns (Ala), (14) and (A3a), it follows that:
Cpo=(n — 1)Cy (Ada)
Coa = (1 — )Cyy. (Adb)

Differentiating eqn (2) with respect to V; and Vg and
comparing to eqn (4c), we find that[16]

vyl B Ve 1 (AS)
5V0|rs Vy VG_n'
From eqn (A3b), (4d), (4e) and (AS) we obtain:
00| _ 00
V| Wy lig
n-—i
= ——C,
n

Fl 1/ & \/l 1\1] A6
X[1—A -5 a
R Cr=any Car |
where C,, = WLC,_.

In eqn (A6a), since ¢, €2¢+ Vp, the second term

between brackets is negligible compared to unity. Hence, we
can rewrite eqn (A6a) as:

o0 0Qe

Vs Vg

uquail\")i‘l {A6b) could be lcauuy obtained if we had
neglected the variation of n with Vi or Vy in expressions
(A3b) and (4d). In the remaining demonstrations of this

Anr\pnfhv where necessary, the derivatives of » with respect

to VG or Vy are neglected. Such an approximation is also
assumed elsewherefl, p. 316] and [11,17].

n—1
=— Coy-
Vo n

(A6b)

4

1951

Taking into account the relationships between 6Q|/6V,
and 0Q,/dV stated by eqn (B2b) and between Q[ /2 Vy and
0Q [0V - stated by eqn (B3b), in Appendix B, we have from
the expressions of @y, C,, and C,y in Table 2 and from
eqn (8a):

4
%9 = —(Cu+Cy) (ATa)
V| veroas
an. |
U
a0 = —(n — D(Cy + Cy)- (A7b)
6VB Fsiip.ba y .

Hence, from eqns (Ala), (14), (A3a), (A6b) and (A7), we
obtain the expressions of Cy, and C,, in Table 2.

Finally, from the expressions of Qg, C, and C in Table 2
and from eqns (Ala), (8a) and (B2b), the expression of C,
in Table 2 follows. Applying the relationships of eqns (B2b)
and (B3b) we also determine the expression of C in Table 2.

The MOSFET source, drain and gate transconduc-
tances{i1,16] are caiculated using eqns (8) and are shown in
Table 2. g, has been derived by applying the relationship
between 8Ql /6VG and 6Q I/(?VC described by eqn (BZb)

Instead of differentiating the expression proposed for [,
eqn (8b), we can adopt the alternative expression[l, p. 120]:

w (‘l’os
| A— (YA {ARY
D I‘LJ ¥ /MYCB AL A4
Vsa
Hence, the transconductances become:
W
Sms= —H— Qs (A9a)
L
w
&mp = —uZQID (A9b)
W {‘VDH (‘}Q: Q‘ ng
EnG = —u— dVCB —_— (A9c)
w Var n

It is noticeable that whlle the set of expressions for the
transconductances in Tabie 2 is affected by the approxi-
mations employed to compute the drain current, eqns (A9a)
and (A9b) are extremely accurate. Hence, as observed from
Fig. 6(a), the latter set of expressions improves the accuracy
of the model in the moderate inversion region.

APPENDIX B

Derivatives of the Inversion Charge Density

Through the application of the linear approximation of
Q1(¢s) presented in Section 2, we have derived important
relationships between the partial derivatives of Q] with
respect to Vg, the gate-to-bulk voltage Vg and the bulk
potential V.

According to (I, p. 69]:

20"
QI — _77’1747>. (Bl)
Ven | vew 1+ CLC,
The comparison between eqns (15), (17) and (B1) leads to
the general relationship:

Cr

BQ; |
Qi) _ ¢, Venlve (B2a)
Vi |vc rogi|

a(i’s | e

which can be simplified through the use of the basic
approximation of eqn (6):

Qi 160}
Volvenn ™ nive (B2b)
Gl Clvg.va
The derivative of Q] with respect to V5 can be written as:
0| _oei| te| | 00| oVl
Valveve WVarliew Vs |ie @Venlvaw Vo |ig
(B3a)
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Since 0V /0Vy = IV /0Vy = — L, applying the property
stated by eqn (B2b), we find that:

o0 o=nagi
Velvews n Ve pry
20,
=(n-1)—= - (B3b)
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APPENDIX C

Approximation of the Semiconductor Capacitance

The semiconductor capacitance per unit area is usually
split into two components, the inversion and depletion
capacitances{!, p. 80].

Expressing the semiconductor charge density in inversion

asfl]:

Qc=— Céx‘/\/dJs F @ etPs 20 Fowi
it follows immediately from the expression of the depletion
capacitance in {i, p. 80j, that:

w2002
C; - I ox .
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Adopting for Qg the charge-sheet approximation of

eqn (3b), the expression of C; in {1. p. 80}, can be rewritten
in the compact form:

(€n

(C2a)

,_0E-03
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Since Q] = Q¢ — Qpl1,4], eqn (C2b) is equivalent to:

i/, 0
Cl=—{1 R
‘2%<+QJ

In strong inversion, we assume that the inversion com-
ponent of C_is much greater than the depletion component.
so that:

(C2b)

(C3)

Ci=C,.

(C4)
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In this region of operation, the surface potential ¢g
approaches the value 2¢¢ + V5. Substituting this approxi-
mation into the linear expression of Q{, eqn (4a), and
applying it to eqn (C3), we approximate the inversion
capacitance in strong inversion, including the so-called
moderate inversion region, to:

o Co AN YR
(& —%:n(V,, VCB)<1 +QE-) 24’1(1 +Qlc>

for Vg < Vp.

(C5)

The first term in the right-hand side of eqn (C5) prevails
deep in strong inversion (for high values of Vg), where
Q3 <€ Q¢; hence, in this term (I + Q3/@¢) can be approxi-
mated to 1. The second term of eqn (CS) prevails near
threshold, where Qg = Q. such that in this second term
(1 + Q5/Q¢) can be better approximated to 2. Taking into
account these two approximations and eqn (C4) we obtain
eqn (19), which is a slight modification of the semiconductor
capacitance model used in [15] to determine the harmonic
distortion in MOS gate capacitors in strong inversion. The
term (n — 1)C;, guarantees continuity between eqn (19) and
the classical approximation of the semiconductor capaci-
tance in weak inversion:

y

226 4 Vs

o~
ClxCi=

Co=n = DT,

for Vey > V5. (C6)

APPENDIX D

Definitions and Technological Parameters

vt o Ve Ve Vi
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LS R L L
BT T e T g
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Na=5x10%em~? ¢ =878A V= ~1.18V.



