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Abstract-This paper presents a long-channel MOSFET model wherein the drain current, total charges 
and small-signal parameters for quasi-static operation are very simple functions of the inversion charge 
densities at the channel boundaries. The inversion charge densities, in turn, are formulated as explicit 
continuous functions of the terminal voltages, with continuous first order derivatives, resulting in an 
explicit MOSFET model valid in the whole inversion region. Physical properties, such as the symmetry 
of the transistor with respect to source and drain are carefully observed in order to achieve a proper 
prediction of the device behavior. The proposed model contains only the classical parameters of the 
MOSFET theory. 

NOTATION 

auxiliary parameter (ml) 
auxiliary parameter (m4/(Cs)) 
bulkdrain capacitance (F) 
bulk--source capacitance (F) 
gate-bulk capacitance (F) 
gate-source capacitance (F) 
gatedrain capacitance (F) 
oxide capacitance (F) 
depletion capacitance per unit area (F/m’) 
semiconductor capacitance per unit area (F/m’) 
gate capacitance per unit area (F/m’) 
inversion capacitance per unit area (F/m’) 
oxide capacitance per unit area (F/m’) 
drain transconductance (S) 
gate transconductance (S) 
source transconductance (S) 
drain current (A) 
effective channel length (m) 
slope factor (dimensionless) 
acceptor concentration (m-j) 
total depletion charge (C) 
total gate charge (C) 
total inversion charge (C) 
effective interface charge (C) 
depletion charge density (C/ml) 
semiconductor charge density (C/m2) 
shifted inversion charge density at source (C/m’) 
inversion charge density (C/m*) 
inversion charge density at drain (C/m2) 
inversion charge density at source (C/m2) 
shifted inversion charge density (C/mz) 
shifted inversion charge density at drain (C/m’) 
oxide thickness (m) 
bulk voltage (V) 

TPermanent address,: Departamento de Engenharia Elttrica 
da Escola Politbcnica, Universidade Federal da Bahia, 
CEP 40210-630, Salvador, BA, Brazil. 

channel voltage = difference between the electron 
quasi-Fermi potential and the bulk Fermi potential 

(V) 
drain voltage (V) 
drain-to-bulk voltage (V) 
drain-to-source voltage (V) 
flat-band voltage (V) 
gate voltage (Vj 
gate-to-bulk voltage (V) 
gate-to-source voltage (V) 
“pinch-off” voltage (V) 
source voltage (V) 
source-to-bulk voltage (V) 
threshold voltage at equilibrium (V) 
effective channel width (m) 
body effect factor (v05) 
Fermi potential of bulk (V) 
surface potential (V) 
surface potential at drain (V) 
surface potential at source (V) 
thermal voltage (V) 
carrier mobility (m’/(V s)) 

1. INTRODUCTION 

MOSFET models included in circuit simulators 
are based on either the regional approach[l-31, or 
surface potential formulations[5-91 or semiempirical 
equations[lO-141. Models based on the regional 
approach[l-31 use different sets of equations to 
describe the device behavior in different regions of 
device operation. In this traditional modeling 
approach, the weak and strong inversion regions are 
generally bridged by using a non-physical curve 
fitting. However, this procedure often causes large 
errors or discontinuities in the small-signal par- 
ameters such as conductances and capacitances. This 
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results in a mode1 that is inaccurate for analog 
applications[4], where the MOSFET operates fre- 
quently in the moderate inversion region. Moreover, 
the discontinuity in a.c. parameters can lead to 
numerical oscillations. Models based on surface 
potential formulations are inherently continuous; 
however, they demand the solution of an implicit 
equation for the surface potential, often resulting in 
significant computing time penalty. Finally, semiem- 
pirical MOSFET models generally take the risk of 
becoming neither scalable nor suited for statistical 
analysis owing to the introduction of empirical 
parameters. 

This paper presents an explicit model of the long- 
channel MOS transistor valid in all regions of oper- 
ation. The drain current, the total charges and the 
small-signal parameters are expressed as very simple 
functions of the inversion charge densities at the 
source and drain ends. An approximation of the 
semiconductor capacitance[ 151 allows determining 
explicit expressions for the inversion charge density in 
terms of the terminal voltages. As a consequence, the 
MOSFET static and dynamic characteristics have an 
explicit formulation in terms of the terminal voltages. 

2. APPROXIMATION OF THE CHARGE DENSITIES 

The expressions and discussions that follow are 
related to the long channel nMOS transistor, illus- 
trated in Fig. I. Uniform substrate doping and 
field-independent mobility have been assumed in our 
analysis. According to the equation of potential 
balance in the MOS structure, in the inversion region 
of operation[ I, p. 791: 

where 4s is the surface potential and & + Vce is the 
electron quasi-Fermi potential. 

Substituting 4s = 2& + VcB into eqn (1) and solv- 
ing for Vca, we derive an expression for the pinch-off 
voltage V,,, defined as the value of VcB for which the 
three-terminal MOS structure is in the upper limit of 
weak inversion: 

,‘,=(JI:,,,+-$--zm,-m,. (2) 

A slightly simplified version of eqn (2). presented 

in [I, p. 911, as VceM. and in Refs [I 1,161, is derived 

Fig. 1. Structure of an n-channel MOS transistor. 

IQ,‘1 

C’OA, 

Fig. 2. Normalized inversion charge density vs normalized 
surface potential, computed from: (-) the linearized 
expression-qn (4a); ( ) and (----) the theoretical 

implicit expression [l]--eqn (3a). 

under the assumption that the inversion layer charge 
is negligible in the upper limit of weak inversion. If 
the thermal voltage terms are disregarded in eqn (2), 
the simplified expression of Refs [ I,1 1,161 is obtained. 

The main approximation in this work has been to 
consider the inversion (Q;) and depletion (Qb) 
charge densities as incrementally linear functions of 
& for a constant gate-to-bulk voltage. According 
to the charge-sheet approximation, Q; and Qb are 
expressed as[ I, p. I IO]: 

(3b) 

Expanding eqns (3) in power series about 2& + VP 
and disregarding the second and higher order terms 
we obtain, for constant Vos: 

Q; r CixnM- (24, + VP)1 + Q;P (da) 

Q;g -G(n - 1)kkW,+ Vp)l+QQ;lp 

n--l 
= -,l(Q;-Q;~l+Qiw (4b) 

where the slope factor n[l1,16] is the partial deriva- 
tive of Q;/C& with respect to & for constant Vos, 
calculated at pinch-off: 

and Q;e and QhP are the values of Q; and Qb, 
respectively, at pinch-off (the first one according to 
the conventional weak inversion approximation): 

Q;p = -(n - IK’;,h, (44 

Qh = -G,YJ~. (de) 

It should be pointed out that, unlike the conven- 
tional linearization about the source voltage, the 
linearization of Q; about the pinch-off channel 
voltage[ 11,16,17] preserves the symmetry of the 
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model with respect to drain and source. Figure 2 
shows the dependence of Q; on &. At constant VGe , 
the linearization of Q; with respect to &, according 
to eqn (4a), fits very well with the charge-sheet model, 
as can be noticed in Fig. 2. The fundamental approxi- 
mations in eqns (4) have been applied throughout this 
work in order to obtain general expressions for the 
drain current and the total charges in terms of the 
inversion charge densities at the channel boundaries. 

3. DRAIN CURRENT 

In this section we formulate the drain current Zn 
as a very simple function of the inversion charge 
densities at the channel ends. According to [l, p. 1091, 
Zn can be computed from: 

(5) 

where the first term accounts for drift and the second 
for diffusion. From the approximated relationship 
between Q; and &, eqn (4a), it follows that, for 
constant V,, : 

dQ; = nC;, d&. (6) 

The drain current can be evaluated by integrating 
eqn (5) along the channel length. The use of eqn (6) 
allows us to change the variable ds to Q; in ex- 
pression (5), yielding: 

1 = Qin p w D 
nCL. L s (Q; - nC& 4,)dQ; (7) 

I& 

where Q;, and Q;n are the inversion charge densities 
at source and drain, respectively. By means of the 
change of variable: 

eqn (7) becomes: 

I =_L!! D 
nC& L 

Q;, dQ;t 

PW (Q:-Qk’) 
C&L 2n 

(8b) 

where Q; and Qk are the values of Q;, evaluated at 
the source and drain ends, respectively. 

A slight similarity can be observed between 
eqn (8b) and the formula of the drain current ob- 
tained in [7] from a linearization of Q; (4s) about the 
source voltage. Nevertheless, expression (8b) keeps 
the symmetry of the model with respect to source and 
drain. 

4. TOTAL CHARGES B 
PW 
C.L 

Here the total inversion (Q,), source (Q,), drain 
(Q,) and depletion (Q,) charges are evaluated as 

D’( Vc,, Vo,) is the derivative of Q; with respect to V, at 
constant VG. 

simple functions of the inversion charge densities at 
the source and drain ends. From our basic approxi- 
mation in eqn (6) and from eqn (8a), eqn (5) can be 
rewritten as: 

dxr -&(Q;-nC,.4t)dQi 

= -& Q;,dQ;,. 
ox D 

Using eqns (8a) and (9) to change the variable of 
integration from x to Q;, in the definition of Q, [I, p. 
2521, it follows that: 

Q,=W LQ;dx=-rW2 s 0 IDnCk 

Using eqn (8b) we easily derive the expression of Q, 
reported in Table 2. 

The integration of eqn (9) from the source to an 
arbitrary point of the channel leads to: 

PW (Q;;‘- Q;:) 
x=- 

nC& 21, (11) 

Using eqns (9), (8a) and (11) into the integral 
defining Q, [ 1, p. 2591 allows changing the variable of 
integration, resulting in 

QD= W s ,:; Q; dx = -2n:;:-12 
ox D 

After integration, eqn (12) gives the expression of 
QD reported in Table 2. Taking into account the 
symmetry of the MOSFET, it follows that: 

Qs=QI-QD. 

Finally, using eqns (4b), (8a) and (9) to perform a 

Table I. Auxiliary functions and parameters 

Quantity Expression 

Q; Q;(vs,, ~d-nCb.$t 

QK Q;(v,,. VGB) -Cx9, 

0; D’(vs,. vc,,) 

4 NY,,. v,,) 
A ;wL 
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Table 2. Drain current, total charges and small signal parameters 

Quantity 

PI 

Q, 

Expression 

wL ZQ:+Q;Qb+Q:+,,C, # 
3 Q;+Q; OX ’ 1 wL 6Q;‘+ 12QkQ;2+8Q:Q;+4Qk 

IXQ;+ QK)* ++, 1 

cm 
G, 

CSb 

C,, 

css 

QS 

QD 

glllc 

&nD -fj~k~; 

CSd 
Q: 

7 DK 
(Q;+Qk) 1 

CM (n - IK,, 
Cbe CEb 
G -i4J+(Qk’+3Q;Qkl+Q:Qk)DL 

F R 

C,b (n - I)C, 

change of variable in the the integral defining 
Q,[l, p. 2521, we obtain 

Q,= W LQbdx =& 
s 0 01 D 

(Q;: + Q;,Cx4,)dQ;, 

jzQ;,dQ;,, (13) 

where the first integral is proportional to the inver- 
sion charge and the second one is proportional to the 
drain current. Thus, eqn (13) leads directly to: 

Q,= G(Q;.wL-Q,)+Q;,~L. (14) 

The set of expressions previously derived for the 
drain current and total charges is the basis for a 
MOSFET electrical model expressed in terms of the 
inversion charge densities at the source and drain 
boundaries. 

5. EXPLICIT FORMULATION OF THE INVERSION 
CHARGE DENSITY 

In this section we present an explicit and accurate 
expression for the inversion charge density. We have 
first derived an integral expression for Q; based only 

on our basic approximation, eqns (4). Afterwards, we 
have applied the approximation of the semiconductor 
capacitance developed in Appendix C to the integral 
expression for Q;. 

By expressing Q;($,) as in eqn (3a), we remark 
that: 

The first derivative in the right-hand side of 
eqn (15) can be calculated from the linear approxi- 
mation of Q;(&), eqn (4a); the second one can be 
evaluated by exactly differentiating eqn (1) with 
respect to Vca: 

y e”S - 24% - r’CB)/b< 

84s 

avcB vGB = 

2,/4 + 4 e(6s - .VF - VCLl~l~l 
I + y [ 1 + e’“S - WF ksm] (16) 

2 cps + 4, e(Bs - WF - vt-5 W&* 

Using the definitions of the inversion (C:) and 
semiconductor (CA) capacitances per unit area, pre- 
sented in [ 1, p. 801, valid for the inversion region, 
eqn (16) is compactly rewritten in the form: 

(17) 
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Substituting eqn (17) into eqn (15) and applying 
our basic approximation of eqn (6), we obtain: 

aQ; c: 
av,, vcB=n I + c:./c;~’ (184 

Hence, the inversion charge density can be deter- 
mined from: 

Q;=Q;,+ 
C( 

n 1+ c:/cg 
dvca. (1Sb) 

In strong inversion (including moderate inversion) 
we use the following relationship derived in 
Appendix C: 

for VcB< VP. (19) 

This approximation for C( is such that the physical 
property C: = C’i is verified in the transition from 
weak to strong inversion[ 1, p. 801. Substituting 
eqn (19) into eqn (18b), we find that: 

Q;= -C& n(Vp- VcB)-2d11n ( 5$) l+ 

+ tn - lb?4 
1 

for VcB < VP. (20a) 

For weak inversion, we have adopted here the 
conventional expression of the inversion charge den- 
sity[l,ll,l6]: 

Q; = _ c;x(n _ I)@, e(+ VCE&‘I 

for VcB 2 VP. (20b) 

Equations (20) provide a continuous transition 
from weak to strong inversion as well as from 
conduction to saturation for Q; and its first order 
partial derivatives with respect to V,, and V,,. The 
approximation obtained for the inversion charge 
density in strong inversion differs from the conven- 
tional linear approximation[l 1,161, mainly by the 

‘CB 

Fig. 3. Normalized inversion charge density vs normalized 
channel voltage computed from: (-) our modeleqns 
(20); ( . ) the theoretical implicit expression[lj--eqns (3a) 
and (1); (----) the linear expression with respect to Vc,: 

lQ;l=nWp- ~c,)]ll,l6]. 
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Fig. 4. (a) Normalized drain current in saturation vs normal- 
ized gate voltage and (b) square root of normalized drain 
current in saturation vs normalized gate voltage, computed 
from: (-) our modekeqns (8) and (20); ( 0 0 0 0 ) 

the charge-sheet model[ 1,5]. 

logarithmic term. As illustrated in Fig. 3, this term 
improves the precision of the inversion charge den- 
sity, especially in the so-called moderate inversion 
region. 

Finally, in order to provide more physical insight 

0.6 

0.5 

c/c,, o.4 
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0.2 

0.1 - 

O- 
-20 0 20 40 60 80 100 120 

“GB - “TO 

Fig. 5. Normalized intrinsic small-signal capacitances vs 
normalized gate-to-source voltage, for q, = 0 and uoB = 20, 
computed from: (-) our model-Table 2 and eqns (20); 

( . . . ) the charge sheet model[ 1,6]. 
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Fig. 6. Normalized small-signal transconductances vs nor- 
malized drain current, for usa = 0 and unr, = 20, computed 
from: (-) our model-Table 2 and eqns (20); ( ) our 
model-eqns (A9) and (20); ( 0 0 0 0 ) the charge sheet 

model[ I ,6]. 

in our model let us extend our approximation to the 
surface potential. Equation (4a) can be rewritten as: 

The substitution of the strong (including moderate) 
inversion approximation of Q; from eqn (20a) into 
eqn (21) leads to: 

for Vc, < VP, (22a) 

which is continuous with the conventional weak 
inversion approximation: 

&=2&+ VP for VcB> VP. (22b) 

Note that our model includes a logarithmic term 
that gives a slight variation of & with VoB in strong 
inversion, improving the conventional approximation 
(2& + Vce) in this region of operation. 

6. SIMULATION RESULTS 

Figure 4 shows the drain current of a long-channel 
NMOS transistor in saturation computed from our 
model and from the Brews’ charge-sheet model[l,5]. 
In Fig. 6 the small-signal transconductances com- 
puted from our model are compared to those calcu- 

lated from the Brews’ model. Agreement with 
charge-sheet theory is excellent. Figure 5 illustrates 
the capacitances C,, C,, , C,, , C, and C,, , calculated 
from our expressions and according to [6]. The results 
for the gate capacitances are very good. The errors in 
the bulk capacitances exhibit maximum values 
deep in strong inversion owing to the linear approxi- 
mation of the depletion charge density, eqn (4b). The 
maximum errors verified in the bulk capacitances are 
less than 0.1X,,, and do not affect meaningfully 
the behavior of most circuits since, according to 
[ 1, p. 3 181, these capacitances are generally in parallel 
with larger capacitances or even short-circuited (C,,). 

7. CONCLUSIONS 

We have accomplished a general explicit MOSFET 
model (Tables 1 and 2) that uses the inversion charge 
density as the key variable. A smooth variation of 
the device characteristics, including small signal par- 
ameters, is guaranteed through the entire inversion 
region. Only the customary MOSFET parameters 
have been employed in our model. 

Short and narrow channel effects can be modeled 
as in Ref. [17], where the pinch-off voltage VP is a 
function of both the channel length and width. Also 
field-dependent mobility can be included in the usual 
way[l, p. 1411. 
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APPENDIX A 

Small Signal Parameters 

The MOSFET intrinsic capacitances for quasi-static 
operation are defined[l, p. 3551 by the general expressions: 

c 2% 
kf w o 

k #j 

C=dp, 
*I av, o 

(Ala) 

@lb) 

where QK and Q, are any of the charges Qs, Qn, Qa or Qo 
and VJ is any of the gate (V,), source (V,), drain (V,) or 
bulk (Ifs) voltages. The notation “0” indicates that the 
derivatives are evaluated at the bias point. According to 
[I, p. 3581, a complete quasi-static model of capacitances is 
performed by calculating only nine independent capaci- 
tances. 

The total gate charge is given by: 

QG=-Qe-Q,-Qo. 642) 
where Q0 is the effective interface charge, assumed to be 
independent of the terminal voltages. Substituting eqn (14) 
into eqn (A2). we obtain: 

PC= -Q+Qo 

where 

n-l 
Qp=QLpWL +nQ;~WL. 

From the expressions of Q, and Qs in Table 2 and from 
eqns (Al), (A3a) and (8a). we find the expressions for C,,, 
C,,, C, and C,, shown in Table 2. 

From eqns (Ala), (14) and (A3a). it follows that: 

c,, = (n - I&,. 

Differentiating eqn (2) with respect to 
comparing to eqn (4~). we find that[l6] 

(A44 

(A4b) 
Vc and V, and 

(A5) 

From eqn (A3b). (4d). (4e) and (A5) we obtain: 

n-l 
“X 

n 

+t(&)(l-s)] Wa) 

where C,, = WLC,,. 
In eqn (A6a). since 4, < 2& + V,, the second term 

between brackets is negligible compared to unity. Hence, we 
can rewrite eqn (A6a) as: 

8QP ZQP _ =__ I I- n-1 

a b c.II a vB IJG 

Wb) 
n 

Equation (A6b) could be readily obtained if we had 
neglected the variation of n with VG or V, in expressions 
(A3b) and (4d). In the remaining demonstrations of this 
Appendix. where necessary, the derivatives of n with respect 
to V, or Vs are neglected. Such an approximation is also 
assumed elsewhere[ 1, p. 3 161 and [I 1,171. 

Taking into account the relationships between aQ; /a Vc 
and aQ; /a Vc stated by eqn (B2b) and between aQ; /S V, and 
aQ; /a V, stated by eqn (B3b), in Appendix B, we have from 
the expressions of Q,, C,, and C,, in Table 2 and from 
eqn (8a): 

aQ1 
av, )lT.I’“.l’” 

= -cc,,+ c,,, (A7a) 

aQ, 
avB rp.rn.lcj 

= -VI - l,CC,, + c,,,. (A%) 

Hence, from eqns (Ala), (14). (A3a), (A6b) and (A7). we 
obtain the expressions of Cgb and C,, in Table 2. 

Finally, from the expressions of Qs, C, and C, in Table 2 
and from eqns (Ala), (8a) and (B2b), the expression of C,, 
in Table 2 follows. Applying the relationships of eqns (B2b) 
and (B3b) we also determine the expression of C,, in Table 2. 

The MOSFET source, drain and gate transconduc- 
tances[l 1,161 are calculated using eqns (8) and are shown in 
Table 2. g,,,, has been derived by applying the relationship 
between aQ;/aV, and aQ;/aV, described by eqn (B2b). 

Instead of differentiating the expression proposed for In, 
eqn (8b). we can adopt the alternative expression[ I, p. 1201: 

I,=p; 
s 

I’D0 
(-Q;)dvc,. (‘48) 

r's0 
Hence, the transconductances become: 

&o = -,l;Q;o (A9b) 

s VDU aQ; 

r’s8 
_dv,a=g-, (A9c) 
d voll 

It is noticeable that while the set of expressions for the 
transconductances in Table 2 is affected by the approxi- 
mations employed to compute the drain current. eqns (A9a) 
and (A9b) are extremely accurate. Hence, as observed from 
Fig. 6(a), the latter set of expressions improves the accuracy 
of the model in the moderate inversion region. 

APPENDIX B 

Derivatives of‘ the Imersion Charge Dens&~ 

Through the application of the linear approximation of 
pi(&) presented in Section 2. we have derived important 
relationships between the partial derivatives of Q; with 
respect to V,,, the gate-to-bulk voltage Voa and the bulk 
potential V,. 

According to [I, p. 691: 

aQ; _ C; 

SVGB ,C” I + c-:/c;, (BI) 

The comparison between eqns (15), (I 7) and (B 1) leads to 
the general relationship: 

aQ; / 

which can be simplified through the use of the basic 
approximation of eqn (6): 

aQ; 1 L?Q; 

avo ,i.,..- naV, ,.G,p8‘ 
(B2b) 

The derivative of Q; with respect to Vs can be written as: 

(B3a) 
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Since avoa/ak’a = aF’,a/av, = - I, applying the property 
stated by eqn (B2b). we find that: 

In this region of operation, the surface potential & 
approaches the value 2& + VcB. Substituting this approxi- 
mation into the linear expression of Q;, eqn (4a). and 
applying it to eqn (C3), we approximate the inversion 
capacitance in strong inversion, including the so-called 
moderate inversion region, to: 

aQ; I (n - 1) aQ; - 
av, v<.c(;5 -__- ” avc Ii,.l’” 

=(H-I)g . . (B3b) 
G I<.!” 

APPENDIX C 

Approximation oJ the Semiconductor Capacitance 

The semiconductor capacitance per unit area is usually 
split into two components, the inversion and depletion 
capacitances[ I, p. SO]. 

Expressing the semiconductor charge density in inversion 
as(l]: 

it follows immediately from the expression of the depletion 
capacitance in [I, p. 801, that: 

(C2a) 

Adopting for Q6 the charge-sheet approximation of 
eqn (3b). the expression of C’: in [I. p. 801, can be rewritten 
in the compact form: 

,,=Q;z-Qt 
’ ZET’ Wb) 

Since Q; = Q; - Q6[1,4], eqn (C2b) is equivalent to: 

(C3) 

In strong inversion, we assume that the inversion com- 
ponent of C: is much greater than the depletion component. 
so that: 

C;ZC,. (C4) 

for V,, < V,. (CS) 

The first term in the right-hand side of eqn (C5) prevails 
deep in strong inversion (for high values of V,,), where 
Qb * Q;; hence, in this term (I + Qb/Q;) can be approxi- 
mated to 1. The second term of eqn (CS) prevails near 
threshold, where Q; z Q;, such that in this second term 
(1 + Q;/Q;) can be better approximated to 2. Taking into 
account these two approximations and eqn (C4) we obtain 
eqn (l9), which is a slight modification of the semiconductor 
capacitance model used in [I51 to determine the harmonic 
distortion in MO’S gate capacitors in strong inversion. The 
term (n - l)C& guarantees continuity between eqn (19) and 
the classical approximation of the semiconductor capaci- 
tance in weak inversion: 

c;~c;~--- ) ___ c:,, = (n - l)C6, 
2&K=? 

for V,, a v,. (05) 

APPENDIX D 

Dt$nitions and Technological Parameters 

N, = 5 x 10’5cm-3 1,,=878A I’,,= -1.18V 


