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Abstract. A Bogoliubov transformation accounting simultaneously for spatial compactifica-
tion and thermal effects is introduced. The fields are described in a Γd

D = S11×· · ·×S1d ×RD−d

topology, and the Bogoliubov transformation is derived by a generalization of the thermofield
dynamics formalism, a real-time finite-temperature quantum field theory. We consider the
Casimir effect for Maxwell and Dirac fields and for a non-interacting massless QCD at finite
temperature. For the fermion sector in a cubic box, we analyze the temperature at which
the Casimir pressure changes its sign from attractive to repulsive. This critical temperature
is approximately 200 MeV when the edge of the cube is of the order of the confining lengths
(≈ 1 : fm) for quarks in baryons.

Keywords: Thermofield dynamics, Bogoliubov transformation, Compactification, Casimir
effect

1. Introduction
In the literature there are several studies considering the quantum field theory formulated in flat
spaces, with non-trivial topologies. This is the case of space-time considered as a simply or non-
simply connected D-dimensional manifold with topology of type Γd

D = S11 × · · · × S1d × RD−d.
The central characteristic of this kind of theory is that the topological structure of the space-
time imposes modifications on the boundary conditions on fields and their Green functions, but
it does not modify the local field equations. One known example of this kind of method is a
quantum field at finite temperature, T , described by the Matsubara formalism. In this case the

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012024 doi:10.1088/1742-6596/161/1/012024

c© 2009 IOP Publishing Ltd 1



thermal effect is a path-integral calculated on S1 ×RD−1, where S1 is a circumference of length
β = 1/T [1, 2]. As a consequence, the thermal field theory can be thought, in a generalized way,
as a mechanism to deal simultaneously with spatial constraints and thermal effects in a field
theory model. In this context, the λφ4 theory, including considerations on the mass generation
due to topological effects, was studied in Ref. [1, 3], while the temperature and topological
aspects were analyzed in Ref. [2]. More recently, these ideas have been developed in the context
of the Matsubara formalism [4, 5, 6, 7] as well as in thermofield dynamics (TFD); and applied to
the Casimir effect considering the electromagnetic and fermion fields within a box [8, 9, 10]), to
the λφ4 model as the Ginsburg-Landau theory for superconductors [4, 5], and to the Gross-Neveu
model [6, 7]. In the present paper, we apply this methodology to calculate the Casimir effect for
a massless fermion field in a 3-dimensional box (a cube), by using a generalized TFD-Bogoliubov
transfomation, accounting for space compactification and the temperature effect.

An interest in the Casimir effect for fermions is the analysis of deconfinement in particle
physics [11]–[24]. On the other hand, for this problem, the TFD-Bogoliubov transformation, as
a real time formalism, gives rise to a useful theoretical ingredient, since the Green function is
written naturally in two terms. One is the divergent free-space contribution; the other describes
the compactification effects. This fact, not so direct in the imaginary time, allows one to treat
the renormalization procedure in a convenient way [10].

TFD relies on two basic ingredients [25, 26, 27]. First, one defines a doubling of the original
Fock space of the system leading to the expanded space HT = H⊗ H̃. This doubling is carried
out by associating to each operator a acting on H two operators in HT , A and Ã, which are
connected by the tilde (dual) conjugation rules

(AiAj )̃ = ÃiÃj ,

(cAi + Aj )̃ = c∗Ãi + Ãj ,

(A†i )̃ = (Ãi)†,

(Ãi)e = −ξAi,

with ξ = −1 for bosons and ξ = +1 for fermions. The physical variables are described by
non-tilde operators. The other basic ingredient of TFD is a Bogoliubov transformation, B(α),
introducing a rotation in the tilde and non-tilde variables, in such a way that thermal effects
emerge from a condensate state. In the standard doublet notation [27], we write

(Ar(α)) =
(

A(α)
ξÃ†(α)

)
= B(α)

(
A

ξÃ†

)
, (1)

( Ar(α))† =
(
A†(α) , Ã(α)

)
, with the Bogoliubov transformation given by

B(α) =
(

u(α) −v(α)
ξv(α) u(α)

)
, (2)

where u2(α) + ξv2(α) = 1. The usual parametrization of the Bogoliubov transformation in
TFD is obtained by setting α = β = T−1 and by requiring that 〈0, 0̃|a†(α)a(α)|0, 0̃〉 (with a†
and a being the creation and the annihilation operators) gives either the Bose or the Fermi
distribution, i.e.

u(β) =
(
1 + ξe−βε

)− 1
2

, v(β) =
(
eβε + ξ

)− 1
2

. (3)

We consider the TFD approach for free fields aiming to extend the Bogoliubov transformation
to account also for spatial compactification effects. The main application of our general
discussion is the Casimir effect for cartesian confining geometries at finite temperature. For
the sake of simplicity of notation, usually one identifies: A ≡ a and Ã ≡ ã.
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2. Maxwell and massless Dirac fields in TFD
For a quantum field described by a Lagrangian density L, the TFD Lagrangian density is given
by LT = L − L̃, where L̃ is the tilde conjugate of L for the tilde fields. For the free-massless
boson (Klein-Gordon) field, the two-point Green function in the doubled space is given by

G
(ab)
0 (x− x′) = 〈0, 0̃|T

[
φ(x)aφ(x′)b

]
|0, 0̃〉

=
−1

(2π)4

∫
d4k G

(ab)
0 (k) e−ik·(x−x′), (4)

where
G

(ab)
0 (k) =

(
G0(k) 0

0 ξG∗
0(k)

)
=

(
1

k2+iε
0

0 −ξ
k2−iε

)

(here ξ = −1, for we have bosons). In the configuration space, we have explicitly

G
(1,1)
0 (x− x′) = G0(x− x′) =

−i

(2π)2
1

(x− x′)2 − iε
.

The extension of this result for the electromagnetic field is simple. The free-photon propagator
is written as

iD(ab)
µν (x− x′) = 〈0, 0̃|T [Aa

µ(x)Ab
ν(x

′)]|0, 0̃〉 = gµνG
(ab)
0 (x− x′).

For the free-massless Dirac field, the doubled Green function is given by

S
(ab)
0 (x− x′) =

(
S0(x− x′) 0

0 −S∗0(x′ − x)

)
,

where S0(x− x′) = −i〈0|T [ψ(x)ψ(x′)]|0〉 = −iγµ∂µG0(x− x′).
Now we use an α-dependent Bogoliubov transformation, performing a rotation among tilde

and non-tilde variables. The α-dependent Green functions for the Klein-Gordon, Dirac and
Maxwell fields are obtained through the Bogoliubov transformation given by Eq. (2) acting on
G

(ab)
0 (k). (Notice that a Bogoliubov transformation has to be defined for each mode, k, of the

field.) We have
G

(ab)
0 (k; α) = B

−1(ac)
k (α)G(cd)

0 (k)B(db)
k (α); (5)

explicitly, the components of G
(ab)
0 (k; α) are given by

G11
0 (k; α) = G0(k) + ξv2

k(α)[G∗
0(k)−G0(k)], (6)

G12
0 (k; α) = G21

0 (k; α) = ξvk(α)uk(α)[G∗
0(k)−G0(k)], (7)

G22
0 (k; α) = ξG∗

0(k) + v2
k(α)[G0(k)−G∗

0(k)]. (8)

When ξ = +1, we obtain the auxiliary doubled two-point function which must be used for
calculating the fermion propagator.

We are concerned with the α-dependent energy-momentum tensor, obtained from the usual
expressions by replacing the fields by the Bogoliubov transformed counterparts. Actually,
to treat thermal (and space confinement) effects, we will consider the renormalized vacuum
expectation value of the α-dependent energy-momentum tensor defined, by subtracting the
value corresponding to the free space at zero temperature, as

T µν(ab)(x; α) = 〈0, 0̃|Tµν(ab)(x; α)|0, 0̃〉 − 〈0, 0̃|Tµν(ab)(x)|0, 0̃〉. (9)
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The physical results are obtained from the (11)-component. The doubled operators describing
the energy-momentum tensor of free Maxwell and Dirac fields are given, respectively, by

T
µν(ab)
M (x;α) = −Fµλ(ab)(x; α)F ν(ab)

λ (x; α) +
1
4
gµνF

(ab)
λρ (x; α)F ρλ(ab)(x; α) , (10)

T
µν(ab)
D (x;α) =

i

2
(ψa(x; α)γµ∂νψb(x;α)− ∂νψ

a(x; α)γµψb(x; α)) , (11)

where F
(ab)
µν = ∂µAa

ν − ∂νA
b
µ is the electromagnetic field tensor.

For accounting thermal effects, one takes α = β = T−1. In this case v2
k(α) (given in Eq. (3)

for one mode, with k0 = ε) is written as

v2
k(β) =

∞∑

l=1

(−ξ)l+1e−βk0l , (12)

so that Eq. (6) becomes

G11
0 (k;β) = G0(k) +

∞∑

l=1

(−ξ)l+1e−βk0l[G∗
0(k)−G0(k)]. (13)

In the space coordinate, we have

Ḡ11
0 (x− x′; β) =

∞∑

l=1

(−ξ)l+1
[
G∗

0(x
′ − x− iβln̂0)

− G0(x− x′ − iβln̂0)
]
, (14)

where Ḡ11
0 (x−x′; β) = G11

0 (x−x′; β)−G0(x−x′) and n̂0 = (1, 0, 0, 0) is a time-like vector. This
expression is very useful for calculating T µν(11)(x; β).

For the electromagnetic field, we have

〈0, 0̃|Tµν(ab)
M (x; β)|0, 0̃〉 = −i

{
Γµν(x, x′)G(ab)(x− x′;β)

+2
(

n̂µ
0 n̂ν

0 −
1
4
gµν

)
δ(x− x′)δab

}∣∣∣∣
x→x′

,

where Γµν(x, x′) = 2(∂µ∂′ν − 1
4gµν∂ρ∂′ρ). This leads to

T µν(11)
M (β) = −i

{
Γµν(x, x′)Ḡ11

0 (x− x′; β)
}∣∣

x→x′

= − 2
π2

∞∑

l=1

gµν − 4n̂µ
0 n̂ν

0

(βl)4
=
−π2

45β4
(gµν − 4n̂µ

0 n̂ν
0) , (15)

where we have used the Riemann zeta-function ζ(4) =
∑∞

l=1 l−4 = π4/90. As expected,
E(T ) = T 00(11)

M (β) = 1
15π2T 4 gives the correct energy density of the photon gas at temperature

T , the blackbody radiation, formulae.
For the free-massless fermion field, we obtain

〈0, 0̃|Tµν(ab)
D (x;β)|0, 0̃〉 = γµ∂νS(ab)(x− x′)|x′→x

= −4i∂µ∂νG
(ab)
0 (x− x′)|x′→x ,
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leading to

T µν(11)
D (β) = −4i∂µ∂ν [Ḡ11

0 (x− x′; β)]x′→x

=
4
π2

∞∑

l=1

(−1)l

[
gµν − 4n̂µ

0 n̂ν
0

(βl)4

]
. (16)

¿From this tensor, using
∑∞

l=1(−1)ll−4 = −7π4/720, we recover the well known result for the
internal energy density of the Dirac field at temperature T , E(T ) = T 00(11)

D (β) = 7π2

60 T 4. In the
following section we introduce a more general Bogoliubov transformations taking into account
not only temperature, but also the space compactification of a field.

3. Generalized Bogoliubov transformations
The preceding results show that the equilibrium TFD is equivalent to the Matsubara imaginary-
time formalism, which has been used also to consider spatial compactification in field theoretical
models [4, 5, 6]. Similarly, as pointed out in Introduction, confined fields can be treated with
TFD by choosing appropriately the parameter α in the Bogoliubov transformation [8, 9, 10].
To see how this works, replace β and k0 in Eq. (12) by α = i2L and k3, corresponding to
confinement along the z-axis, writing

v2
k(L) =

∞∑

l=1

(−ξ)l+1e−i2Lk3l . (17)

Using this v2
k in Eq. (6) and performing the inverse Fourier transform, we get

Ḡ11
0 (x− x′; L) =

∞∑

l=1

(−ξ)l+1
[
G∗

0(x
′ − x− 2Lln̂3)

− G0(x− x′ − 2Lln̂3)
]

(18)

where Ḡ11
0 (x−x′; L) = G11

0 (x−x′;L)−G0(x−x′) and n̂3 = (0, 0, 0, 1). For this situation, similar
steps as those leading to Eqs. (15) and (16) give

T µν(11)
M (L) = − 2

π2

∞∑

l=1

gµν + 4n̂µ
3 n̂ν

3

(2Ll)4
= − π2

720L4
(gµν + 4n̂µ

3 n̂ν
3), (19)

T µν(11)
D (L) =

4
π2

∞∑

l=1

(−1)l

[
gµν + 4n̂µ

3 n̂ν
3

(2Ll)4

]
= − 7π2

2880
[gµν + 4n̂µ

3 n̂ν
3 ]. (20)

The Casimir effect for the electromagnetic field between parallel metallic plates can be obtained
from Eq. (19); the Casimir energy and pressure are

E(L) = T 00(11)
M (L) = − π2

720L4
, P (L) = T 33(11)

M (L) = − π2

240L4
.

Similarly, from Eq. (20), we find the Casimir energy and pressure for the Dirac field confined
between parallel plates, with anti-periodic boundary conditions, as:

E(L) = T 00(11)
D (L) = − 7π2

2880L4
; P (L) = T 33(11)

D (L) = − 7π2

960L4
.
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These results demonstrate explicitly the usefulness of the Bogoliubov transformation to treat
confined fields as a generalization of TFD. From the above considerations, a question emerges
naturally: what should be the appropriate generalization of the Bogoliubov transformation to
account for simultaneously space compactification and thermal effects?

Such a generalization must reproduce, for example, the known results for the Casimir effect
in the case of the parallel plates geometry at finite temperatures. Since energy is an additive
quantity, we expect to have L- and T -dependent contributions plus a mixed (LT -dependent)
contribution representing the interference of the two effects. In the next Section, we will show
that the proper extension of expressions (12) and (17), for this case, is

v2
k(β, L) =

∞∑

l0=1

(−ξ)l0+1e−βk0l0 +
∞∑

l3=1

(−ξ)l3+1e−i2Lk3l3

+2
∞∑

l0,l3=1

(−ξ)l0+l3+2e−βk0l0−i2Lk3l3 . (21)

To treat the general situation, compatible with cartesian geometries, we will consider the
(1+N)-dimensional Minkowski space. Then, taking α = (α0, α1, α2, ..., αN ), we write

v2
k(α) =

N+1∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

)
2s−1

×
∞∑

lσ1 ,...,lσs=1

(−ξ)s+
Ps

r=1 lσr exp{−
s∑

j=1

ασj lσjkσj}, (22)

where f(αj) = 0 for αj = 0, f(αj) = 1 otherwise and {σs} denotes the set of all combinations
with s elements, {σ1, σ2, ...σs}, of the first N + 1 natural numbers {0, 1, 2, ..., N}, that is all
subsets containing s elements, which we choose to write in an ordered form with σ1 < σ2 <
· · · < σs. Inserting this v2

k(α) into Eq. (6) and taking the inverse Fourier transform, we obtain

Ḡ11
0 (x− x′; α) =

N+1∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

(−ξ)s+
Ps

r=1 lσr

×2s−1


G∗

0(x
′ − x− i

s∑

j=1

ησjασj lσj n̂σj )

− G0(x− x′ − i

s∑

j=1

ησjασj lσj n̂σj )




∣∣∣∣∣∣
x′→x

, (23)

where ησj = +1, if σj = 0, and ησj = −1 for σj = 1, 2, ..., N . To get the physical situation at
finite temperature and spatial confinement, α0 has to be taken as a positive real number while
αn, for n = 1, 2, ..., N , must be pure imaginary of the form i2Ln; in these cases, one finds that
α∗2j = α2

j .
Considering such choices for parameters αj and using the explicit form of Ḡ11

0 (x−x′; α) in the
4-dimensional space-time (corresponding to N = 3), we obtain the renormalized α-dependent
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energy-momentum tensor in the general case, for both Maxwell and Dirac fields:

T µν(11)
M (α) = −i

{
Γµν(x, x′)Ḡ11

0 (x− x′;α)
}∣∣

x→x′

= − 2
π2

4∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

)
2s−1

×
∞∑

lσ1 ,...,lσs=1

[
gµν

[
∑s

j=1 ησj (ασj lσj )2]2

− 2
∑s

j,r=1(1 + ησjησr)(ασj lσj )(ασr lσr)n̂
µ
σj n̂

ν
σr

[
∑s

j=1 ησj (ασj lσj )2]3

]
; (24)

T µν(11)
D (α) = −4i∂µ∂ν [Ḡ11

0 (x− x′;α)]x′→x

= − 4
π2

4∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

(−1)s+
Ps

r=1 lσr

×2s−1

[
gµν

[
∑s

j=1 ησj (ασj lσj )2]2

− 2
∑s

j,r=1(1 + ησjησr)(ασj lσj )(ασr lσr)n̂
µ
σj n̂

ν
σr

[
∑s

j=1 ησj (ασj lσj )2]3

]
. (25)

Notice that the results obtained so far (Eqs. (15) and (19) for the Maxwell field and Eqs. (16)
and (20) for the Dirac field) are particular cases of the above expressions, corresponding to
α = (β, 0, 0, 0) and α = (0, 0, 0, i2L) respectively. Another important aspect is that T µν(11)(α)
is traceless in both cases, as it should be. Now, we will apply these general results to some
specific examples.

4. Casimir effect for parallel plates at finite temperature
As the first example of the development of the last Section, we now consider the electromagnetic
field satisfying the Dirichlet boundary condition on parallel planes (metallic plates), normal to
the z-direction, at finite temperature. In this case, v2

k(α) is given by Eq. (21) with ξ = −1
(corresponding to the choice α = (β, 0, 0, i2L)) and Eq. (24) reduces to

T µν(11)
M (β, L) = − 2

π2





∞∑

l0=1

gµν − 4n̂µ
0 n̂ν

0

(βl0)4
+

∞∑

l3=1

gµν + 4n̂µ
3 n̂ν

3

(2Ll3)4

+ 2
∞∑

l0,l3=1

(βl0)2[gµν − 4n̂µ
0 n̂ν

0 ] + (2Ll3)2[gµν + 4n̂µ
3 n̂ν

3 ]
[(βl0)2 + (2Ll3)2]3



 . (26)

It follows then that the Casimir energy (T 00(11)
M ) and pressure (T 33(11)

M ) are given by [8]

E(β, L) =
π2

15β4
− π2

720L4
+

4
π2

∞∑

l0,l3=1

3(βl0)2 − (2Ll3)2

[(βl0)2 + (2Ll3)2]3
, (27)

P (β, L) =
π2

45β4
− π2

240L4
+

4
π2

∞∑

l0,l3=1

(βl0)2 − 3(2Ll3)2

[(βl0)2 + (2Ll3)2]3
. (28)
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The first two terms of these expressions reproduce Eqs. (15) and (19), giving the blackbody
and the Casimir contributions for the energy and the pressure, separately. The last term
represents the interplay between the two effects. These results have been obtained before with
the use of mode-sum techniques and the image method [?, 18].

Notice that the positive black-body contributions for the energy E and pressure P dominate
in the high-temperature limit, while the energy and the pressure are negative for low T . From
Eq. (28), we determine the critical curve (βc = χ0L) for the transition from negative to positive
values of P , by searching for the value of the ratio χ = β/L for which the pressure vanishes;
this value, χ0, is the solution of the transcendental equation

π2

45
1
χ4
− π2

240
+

4
π2

∞∑

l,n=1

(χl)2 − 3(2n)2

[(χl)2 + (2n)2]3
= 0, (29)

given, numerically, by χ0 ' 1.316. In the next section we explore such an analysis where four
spatial dimensions are compactified.

5. Casimir effect for the fermion sector of a non-interacting massless QCD
In this section we analyze the Casimir effect for a simplified quantum chromodynamics (QCD)
model. The QCD Lagrangian is given by

L = ψ(x)[iDµγµ −m]ψ(x)− 1
4
FµνF

µν − 1
2α

(∂µAr
µ(x))2 + Ar

µ(x)trJµ (x) ,

where
F r

µν = ∂µAr
ν(x)− ∂νA

r
µ(x) + gcrslAs

µ(x)Al
ν(x),

Fµν =
∑
r

F r
µνt

r, is the field tensor describing the gluons; tr and crsl are, respectively, the

generators and the structure constants of SU(3); Dµ = ∂µ + igAµ = I∂µ + igAr
µ(x)tr is the

covariant derivative; ψ(x) stands for the quark field, including the flavor and color components.
The term 1

2α(∂µAr
µ(x))2 is the gauge fixing term.

We consider an approximation for L describing some features of a massless baryon-free quark-
gluon plasma, confined in space under the static bag model condition, corresponding to the
adiabatic expansion of the plasma. In this case one discards, as a zero-order approximation, the
interactions and the quark mass. Then the energy-momentum tensor for the quark field is given
by

Tµν
q (x) = {inc

∑

f

ψ(x)γµ∂′νψ(x′)}|x′→x,

= {incnfψ(x)γµ∂′νψ(x′)}|x′→x,

where nc and nf are the number of colors and flavors in the SU(3) non-abelian gauge theory.
With Tµν

q (x) explicitly written, we introduce T µν(ab)
q (x; α) which is given by

T µν(ab)
q (x; α) = 〈Tµλ(ab)

q (x;α)〉 − 〈Tµλ(ab)
q (x)〉,

where

〈Tµλ(ab)
q (x)〉 = −i4ncnf∂′ν∂µG

(ab)
0 (x− x′)|x′→x,

〈Tµλ(ab)
q (x;α)〉 = −i4ncnf∂′ν∂µG

(ab)
0 (x− x′;α)|x′→x,
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and so, for the quark field

T µν(11)
q (α) = −i4ncnf∂µ∂ν [Ḡ11

0 (x− x′; α)]x′→x

= −4ncnf

π2

4∑

s=1

∑

{σs}

(
s∏

n=1

f(ασn)

) ∞∑

lσ1 ,...,lσs=1

(−1)s+
Ps

r=1 lσr

×2s−1

[
gµν

[
∑s

j=1 ησj (ασj lσj )2]2

− 2
∑s

j,r=1(1 + ησjησr)(ασj lσj )(ασr lσr)n̂
µ
σj n̂

ν
σr

[
∑s

j=1 ησj (ασj lσj )2]3

]
. (30)

For gluon field, in the approximation considered here, we have basically the same tensor for the
electromagnetic field up to the color number, ng. For this reason, we focus our analysis on the
fermion sector only.

Taking the system in a Γ4
4 topology, the quark field is physically analyzed in a cubic box of

edge L at finite temperature, T (β = T−1), satisfying anti-periodic boundary conditions in the
four dimensions. In this case we have α = (β, iL, iL, iL) and

T 33(11)
q (β, L) = ncnf f(χ)

1
L4

where

f(χ) =
1
π2



Cf +

7π4

180
1
χ4

+ 16
∞∑

l,n=1

(−1)l+n

[χ2l2 + n2]2

+8
∞∑

l,n=1

(−1)l+n χ2l2 − 3n2

[χ2l2 + n2]3
− 16

∞∑

l,n,r=1

(−1)l+n+r

[χ2l2 + n2 + r2]2

−32
∞∑

l,n,r=1

(−1)l+n+r χ2l2 + n2 − 3r2

[χ2l2 + n2 + r2]3

+ 32
∞∑

l,n,r,q=1

(−1)l+n+r+q χ2l2 + n2 + r2 − 3q2

[χ2l2 + n2 + r2 + q2]3





with χ = β
L and

Cf = −8
∞∑

l,n=1

(−1)l+n

[l2 + n2]2
+

16
3

∞∑

l,n,r=1

(−1)l+n+r

[l2 + n2 + r2]2
− 7π4

180
≈ −5.67

The pressure changes from negative to positive as the temperature is increased. Indeed, for
T → 0, we have

T 33(11)
q (L) = ncnf

Cf

π2

1
L4

< 0.

For T → ∞, the pressure is dominated by the term ' T 4,which is positive. The value of χ
for which the pressure changes from negative to positive is

χc ≈ 1.00 ⇒ Tc(L) ' 1
L
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so that for L = 1fm −→ Tc(L) ' 200 MeV. This result is indicative that the Casimir effect
plays a role in the deconfinement process of the hadronic matter. Although this role has been
pointed out before [18], we find this by a different method. This fact reinforces the use of the
generalized Bogoliubov transformation, that describes the Casimir effect as a condensate.

6. Concluding remarks
In this paper we have used generalizations of the TFD Bogoliubov transformation, describing
fields in topology of the type Γd

D = S11 × ... × S1d × RD−d, to address the Casimir effect at
finite temperature for both boson and fermion fields. It is worth emphasize that the procedure
developed here is simpler and more direct than the standard techniques, such as the sum of
modes and the image method, in particular to introduce the renormaliation procedure. This is
a direct consequence of the structure of the Green function, which is written in two parts: one
describing the divergent term due to the free space-time and the other due to the compactification
effect. The result is that physical quantities are introduced as functions of the temperature and
the compactification lengths. Notice that this procedure can describe systems satisfying other
boundary conditions than those ones studied here. In this case, other types of Bogoliubov
transformation describing fields in Γd

D can be defined, in particular, as the counterpart of the
method studied in Ref. [1] for twisted boundary conditions.

As an application of this technique, we have analyzed the fermion sector of a massless baryon-
free quark-gluon plasma, confined in a topology Γd

D, corresponding to an adiabatic expansion
of the plasma. The main result is that by raising the temperature, there is a critical value for
which the pressure changes sign. The transition from negative to positive Casimir pressure is
at T ' 200Mev, for a length L ' 1 fm−1. This result is another way to show the importance of
the Casimir pressure for the deconfinement of the hadronic matter. A detailed analysis of these
aspects and the nature of the generalized Bogoliubov transformation, including a discussion
about scalar twisted fields, will be considered elsewhere.
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