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Abstract
The classical deconvolution imaging condition consists of dividing the upgoing wave field by
the downgoing wave field and summing over all frequencies and sources. The least-squares
imaging condition consists of summing the cross-correlation of the upgoing and downgoing
wave fields over all frequencies and sources, and dividing the result by the total energy of the
downgoing wave field. This procedure is more stable than using the classical imaging
condition, but it still requires stabilization in zones where the energy of the downgoing wave
field is small. To stabilize the least-squares imaging condition, the energy of the downgoing
wave field is replaced by its average value computed in a horizontal plane in poorly
illuminated regions. Applications to the Marmousi and Sigsbee2A data sets show that the
stabilized least-squares imaging condition produces better images than the least-squares and
cross-correlation imaging conditions.

Keywords: One-way wave equation migration, imaging condition, seismic migration, acoustic
wave, least-square imaging condition, deconvolution imaging condition

Introduction

The classic Claerbout’s (1971) imaging condition is a
deconvolution imaging condition where the ratio of the
upgoing and downgoing wave fields is used to get a direct
estimate of the reflection coefficient. Different stabilization
techniques have been proposed to avoid the division by zero or
near to zero values of the downgoing wave field (Valenciano
and Biondi (2003), Guitton et al (2006), Vivas and Pestana
(2007)).

The reflection coefficient can be estimated by a local
least-squares procedure. The resulting imaging condition has
previously been given by Shin et al (2001) and Plessix and
Mulder (2004). In the appendix, it is shown that division and
least-squares both produce unbiased estimates of reflectivity,
but that the least-squares estimate always has less variance. In
fact, a least-squares estimate is a minimum-variance estimate
under fairly general conditions (Tarantola 1987).

A least-squares imaging condition, which uses all the
shots simultaneously, computes the migration imaging weight
as the summation of energy of the downgoing wave field
by frequency and shot, also called the total illumination
function (Plessix and Mulder 2004). Theoretically, the
least-squares imaging condition avoids instabilities, but
the finite and nonuniform source and receiver coverage
produces instabilities in zones of strong defocused energy
(Kiyashchenko et al 2007).

It is possible to stabilize the least-squares imaging by
adding a positive condition constant to the illumination
function in order to avoid division by zero or a very
small number. This corresponds to a damped least-squares
procedure (Lines and Treitel 1984). Schleicher et al (2008)
implemented this approach by computing a data-driven
damping constant. However, they advocate to compute a
stable image by dividing with a spatially smoothed value of
the illumination function. Here we follow the approach of
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Least-squares imaging condition

Vivas and Pestana (2007) and implemented a more local and
less severe stabilized procedure. For each source, frequency
and depth level, the average, over horizontal coordinates, of
the downgoing energy is computed. Wherever the downgoing
energy is below this value times a given constant, it is replaced
by the average value times the constant. The stabilized value
of the illumination function is obtained by a final sum over
frequency and sources, for each spatial position.

We show the advantage of this new criterion for seismic
imaging applied to the Marmousi and Sigsbee2A synthetic
data sets. We compare the imaging results obtained by
cross-correlation and least-squares without stabilization with
the least-squares imaging condition using the stabilization
criterion.

Deconvolution imaging conditions

Claerbout (1971) introduced seismic migration using upgoing
and downgoing wave fields. The wave field from the source
is downward propagated, and the recorded primary reflected
wave field is downward retropropagated. At a specific depth
point, a reflector exists where the first arrival of the downgoing
wave is time-coincident with the upgoing wave. A signal-and-
noise model describing this is, in the frequency domain,

U(xs; x, ω) = R(x)D(xs; x, ω) + N(xs; x, ω). (1)

Here U(xs; x, ω) is the upgoing wave field at x,
retropropagated from the receiver wave field from the source at
xs. D(xs; x, ω) is the wave field at x, forward propagated from
the source at xs. R(x) is the reflectivity at x and N(xs; x, ω) is
the noise term.

The deconvolution imaging condition for shot-profile
migration uses the quotient of the downward continued wave
field from each of the sources divided by the upgoing wave field
retropropagated from the receivers to obtain an estimate of
reflectivity. For several shot records

R(x)D = 1

N

1

M

∑
xs

∑
ω

U(xs; x, ω)

D(xs; x, ω)

= 1

N

1

M

∑
xs

∑
ω

U(xs; x, ω)D∗(xs; x, ω)

|D(xs; x, ω)|2 , (2)

where N is the number of shots and M is the number of discrete
frequencies in the sum, and * denotes the complex conjugate.

Equation (2) is unstable for small values of the energy
of the downgoing wave field. To avoid division by zero, the
imaging condition can be modified to

R(x)DS = 1

N

1

M

N∑
xs

M∑
ω

U(xs; x, ω)D∗(xs; x, ω)

|D(xs; x, ω)|2 + V
, (3)

where V is a constant or a slowly varying function of frequency
and space (Claerbout 1971). A possible choice for function
V is the average of the energy of the downgoing wave field
multiplied by a damping parameter λ (Valenciano and Biondi
2003):

V (x) = λ

N · M

∑
xs

∑
ω

|D(xs; x, ω)|2. (4)

However, at the points where the energy of the downgoing
wave field is small for all frequencies a very noisy image is
obtained, independent of the value of λ.

Smoothing of the downgoing wave field in the transversal
coordinate (Guitton et al 2006) is another stabilization criterion
which has been used. In this way, the zeros in the energy of
the downgoing wave field are filled with the energy of the
neighbouring points. The imaging condition, equation (2), is
applied in the following form:

RDG(x) = 1

N · M

∑
xs

∑
ω

U(xs; x, ω)D∗(xs; x, ω)

〈|D(xs; x, ω)|2〉 , (5)

where 〈·〉 represents a spatial smoothing filter. For a long-
length smoothing filter, the spectral density amplitude of
the downgoing wave field is strongly affected and as a
consequence, the reflector amplitudes are also affected.

In order to avoid division by a small number, an image is
often formed by cross-correlating the two wave fields

RC(x) =
∑

xs

∑
ω

U(xs; x, ω)D∗(xs; x, ω). (6)

This will, however, not give the correct amplitudes.

Least-squares imaging conditions

The signal model in equation (1) represents the integrand in the
single-scattering Born integral (Chapman 2004). Lailly (1983)
showed that the gradient of the single-scattering integral
with respect to the medium parameter perturbation can be
computed by reverse-time migration. In our formulation,
this corresponds to the cross-correlation function in
equation (6). In least-squares estimation of the medium
parameter perturbations, the main problem is the computation
and inversion of a very large Hessian matrix. Shin et al (2001)
proposed to use an approximate Hessian consisting only of its
diagonal terms. The resulting parameter estimate is given in
their equation (7) which in our formulation becomes

RLS(x) =
∑

xs

∑
ω U(xs; x, ω)D∗(xs; x, ω)∑
xs

∑
ω |D(xs; x, ω)|2 = RC(x)

I (x)
, (7)

where RC(x) is the cross-correlation (6) between the wave
fields, and

I (x) =
∑

xs

∑
ω

|D(xs; x, ω)|2 (8)

is the illumination or total energy from the sources at the
image point. In the appendix, we show that this is also a
local least-squares estimate of the reflectivity function given in
equation (1).

Although the least-squares imaging condition (7) is
more stable than the deconvolution imaging condition in
equation (2) , some stabilizing is needed in poorly illuminated
zones. This may be done using a damped least-squares
procedure (Lines and Treitel 1984) which gives

RLSD(x) = RC(x)

I (x) + V (x)
, (9)

where again V is a constant or a slowly varying function of
space (Schleicher et al 2008).
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However, they advocate to use the imaging condition

RAS(x) = RC(x)

〈I (x)〉 , (10)

where 〈〉 denotes a spatial smoothing operation (not specified
in their paper).

Here we use a data-adaptive approach by first computing,
for each source and frequency, the average of the downgoing
energy at a depth z:

|D(xs; z, ω)|2AV = 1

Nx

1

Ny

∑
x

∑
y

|D(xs; x, y, z, ω)|2. (11)

Here Nx and Ny are the numbers of image points in the x-
and y-direction, respectively.

Then we replace the downgoing energy flux in
equation (7) by a stabilized value

|D(xs; x, ω)|2ST ={
|D(xs; x, ω)|2 , if |D(xs; x, ω)|2 > ε|D(xs; z, ω)|2AV,

ε|D(xs; z, ω)|2AV, if |D(xs; x, ω)|2 � ε|D(xs; z, ω)|2AV.

(12)

This gives a stabilized value for the illumination function

I (x)ST =
∑

xs

∑
ω

|D(xs; x, ω)|2ST. (13)

The result is an adaptive stabilized least-squares imaging
condition:

RLSA(x) = RC(x)

IST(x)
. (14)

Migration algorithm

To test the imaging conditions described in this paper, we used
the phase–shift plus interpolation (PSPI) migration method
(Gazdag and Sguazzero 1984). This migration method is
based on the one-way wave equation solution and has been
used as a powerful tool for imaging complex structures with
less computation cost than reverse time migration. The
PSPI migration technique is applied in the mixed domain
and we used ten reference velocities, which were selected
on the basis of the maximum entropy criterion proposed by
Bagaini and Pieroni (1995). All the results presented here
for different imaging conditions were generated with the same
PSPI method.

Numerical test

In practice, the application of different imaging conditions
produces different migrated images. We have compared
seismic images produced with three different imaging
conditions. The cross-correlation imaging condition
in equation (6), the least-squares imaging condition in
equation (7) and the stabilized least-squares imaging condition
using equation (14) with ε = 1.0 in equation (12).
Figures 1, 2 and 3 show the three images obtained for the
Marmousi synthetic data set. Figures 1 and 2 correspond to

Figure 1. Migrated image of the Marmousi data set using the
correlation imaging condition.

Figure 2. Migrated image of the Marmousi data set using the
least-squares imaging condition.

the migrated images obtained through the correlation and least-
squares imaging conditions, respectively. In figure 2, using the
least-squares imaging condition a significant amount of high
amplitude noise is seen. This is most serious in the shallow
part of the image. Using the stabilized least-squares imaging
condition, figure 3 shows a better depth image, and most of
the instabilities due to poor illumination are avoided.

Figures 4, 5 and 6 show the three images obtained for
the Sigsbee2A synthetic data set distributed by SMAART JV.
Figures 4 and 5 show the migrated images obtained through the
correlation and least-squares imaging conditions, respectively.
In figure 5, the amplitudes in the deepest reflectors below the
salt body are better recovered than in the imaging condition
using correlation (figure 4). However, instabilities show up
in the regions of defocused energy and on the surface. These
latter ones are associated with the poor source directivity of the
one-way wave equations. Figure 6 shows the migrated image
obtained using the stabilized least-squares imaging condition.
The amplitudes of the deepest reflectors are improved in the
poorly illuminated zones, and the noise presented in figure 5
is attenuated.

Conclusions

We have presented with success a criterion to avoid instability
problems in the deconvolution-type imaging condition applied
to the least-squares imaging condition. The result is a new
data-adaptive stabilized least-square imaging condition where
the energy of the downgoing wave field is replaced by its
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Figure 3. Migrated image of the Marmousi data set using the
stabilized least-squares imaging condition.

Figure 4. Migrated image of the Sigsbee2A data set using the
correlation imaging condition.

Figure 5. Migrated image of the Sigsbee2A data set using the
least-squares imaging condition.

transverse average value in regions of poor illumination. It
was compared to the cross-correlation imaging condition and
the standard least-squares imaging condition for the Marmousi
and Sigsbee2A synthetic data sets. The results show that the
images produced with the new imaging condition have less
noise and improved amplitudes as compared with the other
imaging conditions.
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Appendix. Signal estimation: least-squares versus
division

We consider the very simple signal-plus-noise method of
discrete data

dk = akR + nk, k = 1, . . . , K, (A.1)

where the unknown parameter is R. The amplitude coefficients
ak are known, and the noise terms nk are assumed to be
independent with zero mean and variance σ 2. The least-
squares estimate is

R̂LS =
∑

k dkak∑
k a2

k

, (A.2)

where the summation (also in the following) is from k = 1 to
k = K .

An alternative estimate, which is commonly used in
migration, is obtained by division:

R̂D = 1

K

∑
k

dk

ak

. (A.3)

With the assumption about the noise, it is easily seen that both
estimates are unbiased, so that

E{R̂LS} = E{R̂D} = R, (A.4)

where E{} denotes the expectation operator. The variances of
the two estimates in equations (A.2) and (A.3) are

σ 2
LS = E{(R̂LS − R)2} = σ 2∑

k a2
k

(A.5)

and

σ 2
D = E{(R̂D − R)2} = σ 2

K2

∑
k

1

a2
k

. (A.6)

We want to show that σ 2
LS � σ 2

D . This implies that

1∑
k a2

k

� 1

K2

∑
j

1

a2
j

(A.7)
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or ∑
k

a2
k

∑
j

1

a2
j

� K2. (A.8)

In the expression on the left-hand side, there are K2 terms,
both sums are from index 1 to K. For k = j there are K terms
equal to 1, and for k �= j there are two terms

a2
k

a2
j

+
a2

j

a2
k

� 2 (A.9)

since (
a2

k − a2
j

)2 � 0. (A.10)

Thus there are K(K−1)/2 terms greater than or equal to 2 and
K terms equal to 1, so that the K2 terms must be greater than or
equal to K2. It is seen that equality only occurs if ak = 1 for
k = 1, . . . , K , and in that case the two estimates are identical
and equal to the arithmetic mean of the data. It is well known
that, under fairly general conditions, the least-squares estimate
is also a minimum-variance estimate (Tarantola 1987).

A large signal (large value of ak) is given a large weight in
the least-squares estimate in equation (A.2), while it is given
a small weight in the division estimate in equation (A.3). The
opposite is the case for a small signal (small value of ak). This
will give a large contribution to the variance of the division
estimate, because much noise is being added to this estimate
from terms with small amplitudes. Therefore, the least-squares
estimate is more stable than the estimate by division.

Note that in the Fourier domain, the data and the
amplitudes are complex, and the least-squares estimate is

R̂LS =
∑

k dka
∗
k∑

k |ak|2 , (A.11)

where ∗ denotes the complex conjugate.
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