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In  software  product  lines  (SPL),  scoping  is  a  phase  responsible  for  capturing,  specifying  and  modeling  fea-
tures,  and  also  their  constraints,  interactions  and  variations.  The  feature  specification  task,  performed  in
this  phase,  is  usually  based  on  natural  language,  which  may  lead  to  lack  of  clarity,  non-conformities
and  defects.  Consequently,  scoping  analysts  may  introduce  ambiguity,  inconsistency,  omissions  and
non-conformities.  In  this  sense,  this  paper  aims  at gathering  evidence  about  the  effects  of  applying  an
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inspection  approach  to feature  specification  for  SPL.  Data  from  a  SPL  reengineering  project  were  ana-
lyzed  in  this  work  and  the  analysis  indicated  that  the  correction  activity  demanded  more  effort.  Also,
Pareto’s  principle  showed  that  incompleteness  and  ambiguity  reported  higher  non-conformity  occur-
rences.  Finally,  the  Poisson  regression  analysis  showed  that  sub-domain  risk information  can  be a  good

n  of  s
oftware product lines
mpirical study

indicator  for  prioritizatio

. Introduction

Software product line engineering, with its inherent reuse of
oftware artifacts, in combination with the usual iterative develop-
ent, brings a set of improvements for the development activities,

uch as cost reduction, time-to-market improvement, and so on
Clements and Northrop, 2001). However, even with these benefits,

 set of challenges for quality assurance, a very important activity
or SPL, arise (Denger and Kolb, 2006).

Thus, in order to ensure that the artifacts produced are in
onformance with the required quality levels, techniques such as
esting and software inspection can be applied. While testing is
he dynamic quality assurance technique most commonly applied
n executable artifacts (Tian, 2001), software inspection is a static
uality assurance technique which can be performed on each soft-
are artifact created in the software development life-cycle (e.g.
equirements, design, test cases, code, and so on) (Tian, 2001).
ccording to Wiegers (2002),  software inspections are among the
ost efficient software quality assurance techniques, especially in
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earlier life-cycle phases, since the sooner the non-conformities are
detected it is less costly their correction (Tian, 2001). Software
inspections can lead to the detection and correction of anywhere
between 50% and 90% of defects (Wiegers, 2002; Gilb and Graham,
1993). Moreover, inspection brings also important education and
social benefits. Young software developers can more rapidly learn
standards for specification and code while working as inspectors,
while expert developers under pressure are more tempted to ignore
standards (Pezze and Young, 2007).

In addition, another important aspect to be considered in the SPL
development is the variability management. Variability manage-
ment techniques can be assessed by quality assurance techniques,
such as inspection, to increase the reliability of the artifacts pro-
duced to be reused. Although some authors (Wiegers, 2002; Gilb
and Graham, 1993; Boehm, 1987) advocate the importance of soft-
ware inspections in every life-cycle phase, few studies describe
inspection activities in the SPL context, as discussed in Denger and
Kolb (2006),  and highlighted by Babar et al. (2010).  It can indicate a
lack of substantial literature detailing quality assurance techniques
which deals with variability in software engineering.

Based on this scenario, this study aims to understand how
inspection should be handled in SPL scenario, to gather evidence

of inspection on scoping artifacts, as well as, identify possible gaps
that have not been addressed by current research. This study was
conducted on the basis of an empirical study, aimed at investigat-
ing inspection-related issues during the application of a systematic
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In a partnership with the RiSE Labs, the organization started
the SPL adoption project. RiSE Labs has developed a new approach
I.S. Souza et al. / The Journal of Syst

oftware inspection approach in a SPL project. It also discusses
ssues such as the effort to perform inspections in the project, the

ost common non-conformities and the lessons learned.
The remainder of this paper is organized as follows: Section 2

resents the related work. Sections 3 and 4 detail the context and
he design of the empirical study carried out on this work. Section

 presents the research questions. Section 6 presents the proposed
nspection approach. Sections 7 and 8 present the results, the anal-
sis and the main findings. Section 9 reports the lessons learned.
ection 10 presents the drawbacks and validity threats of the study
nd finally, Section 11 describes the conclusions and future direc-
ions.

. Related work

Despite its importance, inspection of feature specifications and
PL artifacts have not been substantially addressed by researchers
Babar et al., 2010). As consequence, there are not many related
tudies in the literature.

Next, we describe three studies related to understand and eval-
ate the role of inspection in feature specifications.

Maßen et al. (2004) discussed some types of deficiencies that a
eature model might contain. The authors claim that many defi-
iencies result from the overlapping semantic between domain
elationships and dependencies. They classified the deficiencies in
edundancies, anomalies and inconsistency. They also suggested
olutions for solving some cases of deficiencies, grouped into some
ubcategories of these three types.

In Felty and Namojoshi (2003),  the authors present an approach
o automatically detect conflicts on feature specifications. Their
ork presented a method for detecting feature conflicts as features

re specified as a collection of temporal logic formulas or automata.
nteractions are discovered by finding pairs of specification formu-
as that are contradictory with respect to axioms about the system
ehavior.

Another study uses metamorphic testing for the automated gen-
ration of test data for the analyses of feature models (Segura et al.,
011). The authors define metamorphic relations between feature
odels and their set of products and a test data generator relying on

hem. The authors implemented also a prototype tool to automate
t. The tool receives as input the feature model and its associated set
f products, applies random transformations on the feature model
nd returns a set of neighbor models together with their associated
et of products. The solution also performs automatic inspection to
xtract the expected outputs from a number of analyses over the
enerated models.

As previously stated (Babar et al., 2010), there is a lack of
pproaches and evidence about inspection activities on feature
pecifications, specially, in the industrial setting. Hence, this work
an be seen as an initial effort toward understanding how a SPL
roject can benefit from applying inspection practices during fea-
ure specification activities.

. The SPLSmart project and the empirical study context

Based on the lack of substantial literature discussing on qual-
ty assurance and techniques from variability point of view (Babar
t al., 2010), particularly in the SPL context, this paper presents an
mpirical study performed in order to understand and character-
ze how inspection should be handled in the SPL scoping phase and

heir artifacts. The empirical study was performed within an indus-
rial software project, which is composed of four products. This
ection presents the SPLSmart project overview and the empirical
tudy context.
Fig. 1. Company products and their relationships.

3.1. Company background

The studied company has been working on the medical and
health information systems domains since 1994. The company has
more than 50 customers and a total of 51 staff members, distributed
in different areas.

The company offers strategic and operational solutions for
hospitals, clinics, labs and private doctor offices. The company’s
product portfolio includes a set of 42 modules, which are responsi-
ble for specific functions in different sub-domains (e.g. financial,
inventory control and so on). Depending on the product that is
being assembled, different sub-domains can be joined. The four
products are the following:

• SmartDoctor: a web-based product composed of 11 sub-domains.
Its goal is to manage the tasks and routines of a doctor’s office.

• SmartClin: a desktop-based product composed of 28 sub-
domains. It performs clinical management support activities, e.g.
medical exams, diagnostics and so on.

• SmartLab: a desktop-based product composed of 28 sub-domains.
It integrates a set of features to manage clinical pathology labs.

• SmartHealth: a desktop-based product composed of 35 sub-
domains. It manages the whole area of a hospital, from financial
to patient issues.

Fig. 1 shows the relationship among the different products, as
well as their intersections.

Market trends, technical constraints and competitiveness moti-
vated the company to migrate their products from single-system
development to a SPL approach. Before starting the SPL adoption,
the company developed its products independently, most of them
from scratch, applying some form of ad-hoc reuse. In this context,
the RiSE Labs1 has devoted efforts toward introducing SPL practices
in such company.

Firstly the SPL scoping process (Balbino et al., 2011) was applied,
followed by the requirements engineering process (Neiva et al.,
2010). From the SPL project scoping phase, a product map contain-
ing 4 products and more than 800 features were built.

3.2. Technology transfer
for product lines engineering called RiPLE which is composed of

1 http://labs.rise.com.br.

http://labs.rise.com.br
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Fig. 2. RiPLE process.

isciplines for scoping (Balbino et al., 2011), requirements (Neiva
t al., 2010), design (Filho et al., 2008; Cavalcanti et al., 2011a), risk
anagement (Lobato et al., 2010), testing (Anselmo et al., 2010;
achado et al., 2011), evolution (Anastasopoulos et al., 2009), and

o on. The cooperation was  attractive for both partners: the com-
any had no research department that could tailor a SPL approach
o the company specific goals, and RiSE Labs could have a validation
artner for its new approaches. This way, RiSE Labs conducted the
echnology transfer of SPL engineering techniques in the company.
t involved the integration of the RiSE Labs team with the company
taff in order to establish a set of activities toward the institution-
lization of the product line.

Some RiPLE process disciplines were applied to the SPL devel-
pment at the company. Fig. 2 shows the RiPLE process, where the
oxes represent the disciplines covered by the entire process. The
ollowing RiPLE disciplines were applied in this study:

RiPLE-SC: This discipline is an agile and systematic process for
scoping, responsible for identifying the SPL potential (Balbino
et al., 2011).
RiPLE-RE: It is composed of the requirement engineering activi-
ties related to the refinement of the SPL scoping, the definition of
requirements and use cases with variability issues. They are com-
posed of common tasks, such as the elicitation, specification and
verification, which are performed in an iterative and systematic
way (Neiva et al., 2010).
RiPLE-DE: It focuses on defining a Domain Specific Software
Architecture (DSSA), which represents the architectural elements
from the software product line. Such architectural definition must
enable variability among products in a certain domain and must
take advantage of commonalities among those products in order
to promote software reuse (de Oliveira Cavalcanti et al., 2011).
RiDE: It defines a systematic process to perform domain engi-
neering, which includes the steps of domain analysis, domain
design, and domain implementation (de Almeida, 2007).
RiPLE-TE: It provides a structured process for testing in SPL
projects, in which different testing phases are reported, such
as: unit testing, integration, system and acceptance testing
(Machado et al., 2011; da Mota Silveira Neto, 2010).
RiPLE-RM: It is responsible for risk identification, documenta-
tion, analysis, and monitoring of risks elicited during the process
execution (Lobato et al., 2010).
RiPLE-EM: It is a systematic way to guide and manage the evolu-

tion of every asset and product in a product line context, handling
change management, build management and release manage-
ment activities (Burgos, 2008).
nd Software 86 (2013) 1172– 1190

The project started with a training on SPL and SPL scoping, with
the presentation of the RiPLE-SC discipline. Other workshops were
also performed during the project, addressing different SPL aspects
and RiPLE disciplines.

The domain and market expert built a list of products previ-
ously developed by the company. It was  the input for RiPLE-SC
(Balbino et al., 2011). Based on domains with better market poten-
tial, products and features were identified for the product line.
As output, a product map  composed of the products and their
respective features was generated. Next, the RiPLE-RE (Neiva et al.,
2010) was  instantiated, refining the product map  and defining the
requirements and use cases for the domain. As the main result,
these activities generated a set of assets, which consider the SPL
variability to support other RiPLE disciplines and enable product
instantiation.

The RiPLE-RM (Lobato et al., 2010) was executed in parallel with
the other RiPLE disciplines. During RiPLE-RM, the risks and their
characteristics such as description, type, status, mitigation strat-
egy and contingency plan were identified. As risk management is
a continuous activity, it was necessary to keep track of the history
of identified risks. Thus, the risk likelihood and impact were docu-
mented according to its occurrence, which can happen in different
moments throughout the project development.

4. Understanding inspection on SPL features specification
in an industrial setting

This study investigated the non-conformities found and the
effort spent during the application of a systematic software inspec-
tion approach, in a reengineering project toward the introduction
of SPL practices in a Brazilian company. More specifically, the study
consisted of understanding the role of inspection practices in the
feature specification artifacts in a SPL project. It also aimed at
understanding the issues that arise with the effort required to per-
form inspections in the project. For example, it tried to identify the
most common non-conformity types, the most problematic items
of the specification templates and so on.

4.1. Definition of the empirical study

In the definition phase, the foundation of the study is deter-
mined. Its goals and research questions are defined. Thus, the
following structure was defined:

Goal: The objective of this study was to understand and char-
acterize the software inspection activity on feature specification
artifacts, aiming to gather evidence on the required effort and non-
conformities that may  appear.

RiSE Labs members reviewed the first version of the protocol for
the study. In order to ensure alignment, coherence and coverage
of the study goal, and avoid bias, the research questions were also
reviewed by the RiSE members and SPL experts. The main improve-
ments were related to the structure and bias prevention on the
research questions. It is important to highlight that these experts
did not participate in the research.

4.2. Data collection procedure

Data collected in an empirical study can be quantitative or
qualitative. Quantitative data involves numbers and classes, while
qualitative data involves words, descriptions, pictures, diagrams,
and so on (Runeson and Höst, 2009). In this sense, in this empir-
ical study, we used a combination of qualitative and quantitative
(Seaman, 1999).
For the empirical study, we  applied archival and observation

methods to collect data and information, what makes possible the



ems and Software 86 (2013) 1172– 1190 1175

t
i
s
t
c
t
c
t
i
s

4

n
o
m
s
c
t

4

r
p
c
t
e
m
w
i
a
t
s
r

i
s
o
t

4

q
o
s
(
2
e
c
2

e
a
f

4

t
t
e

•

Table 1
Feature specification template.

ID:
Name:
Description:
Priority:
Binding time:
Feature type:
Parent feature:
I.S. Souza et al. / The Journal of Syst

riangulation of methods and greater convergence of research top-
cs (Runeson and Höst, 2009). All collected data were treated as
trictly confidential, in order to assure anonymity to all study par-
icipants, related to misuse of the information, and ensure the
omplete freedom during data collection procedures. This way,
hey were free to register any information or opinion without
onstraints. Furthermore, the subjects were free to talk about
he benefits, drawbacks and difficulties regarding to the software
nspection approach performed on the SPL artifacts within the
tudy.

.2.1. Archival data
Archival data refers to any document available in the orga-

ization, such as documents from different development phases,
rganizational charts, financial records, and previously collected
easurements in the company (Runeson and Höst, 2009). For this

tudy, we used archival data to collect information regarding non-
onformities captured on software inspection activity, as well as
he effort data recorded along with the inspection activity.

.2.2. Observation
The data collection from observation technique enables the

esearchers to develop activities within the company and become
art of the company staff. During some interactions, the data was
ollected in a systematic and unobtrusive way, allowing the cap-
ure of firsthand information about behavior and interactions (Shull
t al., 2007). On the study, we used observations in all inspection
eetings, combined with audio recording (Wallace et al., 2002),
here meeting attendants interact with each other, generating

nformation about the studied object. Based on the classification of
pproaches to observations defined by Runeson and Höst (2009),
he observation was performed with (i) high awareness of the
ubjects being observed; (ii) low degree of interaction by the
esearcher.

The observations were recorded in notes and/or audio, captur-
ng the main information and activities directed by aspects of the
tudy. The notes were registered in real time. Six participants were
bserved at the company site during the inspection activity and a
otal of more than 26 h of audio were recorded in this step.

.3. Analysis procedure

In this phase, the strategy involves the quantitative and
ualitative analysis of the collected data. For quantitative data,
ur analyses includes descriptive statistics, economics analy-
es (Pareto’s principle) (Gallegati, 2008), quality control analyses
Montgomery and Runger, 2006), correlation analyses (Gautheir,
001), and the development of predictive models (Khoshgoftaar
t al., 2001). The objective of using qualitative analysis is to derive
onclusions from the data, keeping a clear chain of evidence (Yin,
008).

Moreover, the relevant data from documents, assets and
xtracted statements, as well as the observations, were grouped
nd stored in the study database, in order to maximize the benefits
rom sources of evidence in the study (Yin, 2008).

.4. Validity procedure

In order to reduce the threats to validity, countermeasures were
aken in the study design and during the whole study. All the coun-
ermeasures followed the quality criteria in terms of construct,
xternal and internal validity as discussed in (Yin, 2008).
Construct validity: two strategies were used:

Prolonged involvement: In this strategy, the researchers had a
long involvement with the object of study allowing to acquire
Child feature:
Required feature:
Exclusionary feature:
Sub-domain:

tacit knowledge which enabled us to avoid misunderstandings
and misinterpretations (Karlström and Runeson, 2006).

• Peer debriefing: It recommends that the analysis and conclusions
are shared and reviewed by other researchers (Karlström and
Runeson, 2006). It was  achieved by conducting the analysis with
two  researchers, performing discussion in groups in which analy-
sis and conclusions were discussed and supervised by a statistical
researcher.

Internal validity: For example, in this study, the participants
could be afraid to express their real impressions, since they feel
restricted by the audio records. It is a threat to internal validity
and was mitigated by ensuring the anonymity on the meetings and
completing the inspection instruments.

External validity: Although the study was  conducted in a single
organization, our intention was to enable analytical generalization,
so that the results can be extended to cases with similar character-
istics and hence for which the findings are relevant, i.e. they can
define processes or a theory.

Reliability: This requirement was  achieved by using two tac-
tics: a detailed empirical study protocol; and a structured study
database with all relevant and raw data such as meeting tapes,
transcripts, documents, outline of statistical models and so on.

5. Research questions

The following research questions were defined in this study:

5.1. RQ1. What is the distribution of non-conformities in the
project?

This question intended to characterize the distribution of non-
conformities by sub-domain, classifying the occurrences according
to different types of non-conformities and distribution of the
non-conformities per items of feature template. Table 1 shows
the template for feature specification. The feature specification
document is composed of eleven fields: (i) ID; (ii) Name; (iii)
Description; (iv) Priority; (v) Binding time; (vi) Feature type
(Optional, Mandatory and Alternative); (vii) Parent feature; (viii)
Child feature; (ix) Required feature; (x) Exclusionary feature; and
(xi Sub-domain.

The data sample used in this analysis is composed of data from
sub-domains, features and identified non-conformities. The sub-
questions are detailed next.

5.1.1. RQ1.1. How are the non-conformities spread in terms of
sub-domains?

This question aims at analyzing the quality of the feature spec-
ifications, considering the ratio of non-conformities amount found
per number of features, for every Sub-domain. From this ratio, we

evaluated the quality and non-conformity behavior of the stud-
ied sample Sub-domains. Moreover, this representation provides
the baseline input for establishing the quality control program on
future iterations.
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Table 2
Examples of feature non-conformities.

(a) Feature non-conformity example 1
ID: Name: Agenda
Description: Manage all agendas of the system.
Priority: Medium
Binding time: Compile time
Feature type: Optional
Parent feature: none
Child feature: none
Required feature: none
Exclusionary feature: Scheduling
Sub-domain: none

(b) Feature non-conformity example 2
ID: F002 Name: Scheduling
Description: Manage the agenda booking of the

system using google calendar
application.

Priority: High
Binding time: Compile time
Feature type: Mandatory
Parent feature: Agenda
Child feature: none
Required feature: Agenda
Exclusionary feature: none
Sub-domain: none

(c) Feature non-conformity example 3
ID: F003 Name: OS
Description: Manage the OS of the system.
Priority: Medium
Binding time: Run time
Feature type: Optional
Parent feature: none
Child feature: none
Required feature: Agenda
176 I.S. Souza et al. / The Journal of Syst

.1.2. RQ1.2. What is the distribution of non-conformity
ccurrences on types of non-conformities?

This subquestion characterizes the distribution of non-
onformity occurrences on the types of non-conformities. Thus, it
s possible to analyze if some non-conformity types present more
ccurrences than others. Such information may  provide inputs to a
efect causal analysis (Card, 1998) and project managers can better
pply their efforts in order to propose strategies to mitigate it.

The non-conformities are classified within nine types, as defined
y van Lamsweerde (2009),  which proposes a classification for non-
onformities based on requirement specification. As the literature
oes not present a similar classification related to feature specifi-
ation, we believe that this more general definition could be used
n this context. They are next described:

Incompleteness or Omission: Absence or omission of information
necessary to specify the domain and sub-domain features – e.g.
the feature document template contains incomplete or partially
complete items and entries.
Ambiguity: Presence of a specification item that allows more than
one interpretation or understanding – e.g. ambiguous term or
statement.
Incorrectness or Inadequacy: Presence of a specification item that
is incorrectly or inappropriately described – e.g. feature specifi-
cations that not justify its presence in products of the SPL.
Inconsistency or contradiction: A situation in which some speci-
fied feature contain constraints, priority or composition rules that
are in conflict with other features and/or work products, such as
requirements or use case documents.
Non-traceability or opacity: Presence of features that do not spec-
ify or wrongly specify its identifier or interaction with other
features – e.g. one feature that do not have a unique identifier
or one child feature that does not specify its respective parent
feature.
Incomprehensibility or unintelligibility: A situation in which a spec-
ification item is stated in such a way that it is incomprehensible
to the target stakeholders.
Non-Organization or poor structuring: When the specified features
do not facilitate the reading, understanding and do not clearly
states their relationship – e.g. one feature does not specify the
name of the respective sub-domain or the feature specification
document does not organized by sub-domain.
Unnecessary information or over specification: When the specifica-
tion provides more details than it is required – e.g. when it brings
information regarding the later phases of the development cycle
of the product line (and anticipating decisions).
Business rule: Situation where the definition of the domain busi-
ness rules is incorrectly specified.

Table 2 shows three feature specification examples in order to
llustrate some of the feature non-conformities. Firstly Feature non-
onformity example 1 shows a specification without identification
ID). It is an example of incompleteness non-conformity, since the
eature identifier was omitted. It also shows non-traceability, since
t is difficult to establish traceability without a unique identifier.
he absence of the Sub-domain name in the feature specifica-
ion is another example of non-traceability. According to the SPL
roject studied, it is mandatory to specify the name of the sub-
omain for all features in order to keep track of the features and
heir respective sub-domains. Thus, the absence of the sub-domain
ame falls into the incompleteness, non-traceability, as well as non-

rganization non-conformity categories. Consider now the scenario

n which feature Agenda is classified as optional, and with an exclu-
ionary relationship with feature Scheduling.  Consider also that
eature Scheduling is Mandatory and requires feature Agenda. This
Exclusionary feature: none
Sub-domain: none

scenario shows inconsistency non-conformity, since a mandatory
feature cannot require an optional feature, neither a feature can
require a second feature (Scheduling requires Agenda) where the
second feature specifies an exclusionary relationship with the first
feature (Kang et al., 1990; Maßen et al., 2004).

In the Description field of feature Scheduling the information “In
the stretch of Description of feature Scheduling” comprehends the
unnecessary information non-conformity, since information about
feature implementation and coding is not required to feature spec-
ification.

In fields Name and Description of feature OS the ambiguity non-
conformity is present, since the OS term can be interpreted in many
different ways, such as Operational System, Order of Service (cor-
rect term) and so on.

5.1.3. RQ1.3. How are the non-conformities distributed in
relation to the items of the feature specification template?

The idea behind this question is to investigate which items of
the feature specification template have the largest number of non-
conformities. It can help in the identification of which items in the
template require more attention in future specifications. It can also
help in the investigation of possible reasons for the occurrence of
the non-conformities.

5.2. RQ2. Is there any correlation between the feature
information and the non-conformities?
This question aims at investigating whether there is significant
correlation between some feature information and the occurrence
of non-conformities. Some predefined perspectives were consid-
ered:
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Numbers of features and non-conformities: This perspective
investigates the effect (impact) caused by the addition of a new
feature on the total amount of non-conformities.
Feature types and non-conformities: It investigates if there
is correlation between feature types and the amount of non-
conformities.
Feature hierarchy and non-conformities: It investigates if
there is correlation between hierarchical features and non-
conformities.
Feature interaction and non-conformities: This perspective
investigates the possible correlation between feature interaction
and non-conformities.

Based on these perspectives, this question is composed of four
ubquestions, as described next.

.2.1. RQ2.1. Are new non-conformities inserted into the project
hen new features are added?

This subquestion is focused on analyzing whether there is
orrelation between the number of features and the amount of
on-conformities (studied variables). Besides, it verifies if the addi-
ion of new features into a project can lead to the inclusion of
ew non-conformities. The Spearman rank correlation coefficient
easure (Gautheir, 2001) and the Poisson regression technique

Khoshgoftaar et al., 2001) will support the analyses performed in
rder to investigate this question.

.2.2. RQ2.2. Is there any correlation between feature types and
he amount of non-conformities?

This sub-question analyzes the results from the feature types vs.
on-conformities perspective. It describes in details the distribution
f non-conformities according to the different feature types, and
nvestigates if there is a significant correlation between them.

.2.3. RQ2.3. Is there any correlation between feature hierarchy
rofiles and non-conformities?

During the feature specification activity, the features can be
rganized according to a hierarchy, as described in (Kang et al.,
990), which establishes parental-relationships among features. In
his sample, some features play the role of both parent and child
imultaneously. In this study they were classified as parent-child
eatures, for they follow both profiles.

The main motivation for this question is to investigate if there is
ny correlation between the features that follow some hierarchical
rofile and the occurrence of non-conformities. This corresponds
o the feature hierarchy and non-conformities perspective.

.2.4. RQ2.4. Is there any correlation between feature
nteractions and non-conformities?

In the feature specification activity, the features were specified,
hen necessary, with some interactions. These scenarios include

wo situations: (1) one feature requires the existence of another
eature (because they are interdependent), and (2) one feature is

utually exclusive with another (they cannot coexist) (Kang et al.,
990; Cavalcanti et al., 2011b).

This research question investigates if there is significant corre-
ation between features having interactions and the occurrence of
on-conformities (feature interaction and non-conformities perspec-
ive).

.3. RQ3. Is there any correlation between feature sub-domain

nformation and non-conformities?

This question aims at investigating if there is correlation
etween the data regarding the sub-domain of a feature and the
nd Software 86 (2013) 1172– 1190 1177

occurrence of non-conformities. This research question is com-
posed of two  subquestions, as follows.

5.3.1. RQ3.1 Are the sub-domains with a high number of features
responsible for a high number of non-conformities?

It aims at investigating if any correlation can be established
in terms of the number of features and the number of non-
conformities by sub-domains, i.e. the more features a sub-domain
contains, the more non-conformities will be identified.

5.3.2. RQ3.2 Is there any correlation between the sub-domain
information available during the scoping phase and the
occurrence of non-conformities?

In the scoping phase of the SPLSmart project, a workshop was
held with the domain experts from the organization. In this work-
shop, the sub-domains were qualified by these experts, in terms
of some attributes, such as: experience, risk, volatility, maturity,
existing code, market potential, potential reuse, and coupling and
cohesion (Balbino et al., 2011). The Spearman rank correlation test
(Gautheir, 2001) was applied in order to investigate if there is
significant correlation between qualifications of sub-domains and
the non-conformities. Based on the results of the correlation test,
attributes experience,  risk and volatility were selected to investi-
gate the estimated values of non-conformities to these attributes
of sub-domains.

Experience: Indicates the level of experience that the workshop
participants have regarding the sub-domain. The level of experience
can be:

• High: participants have a complete understanding and some
stakeholders participated in projects related to the sub-domain.

• Partial: the sub-domain is known, but the understanding is par-
tial.

• Low: the participants do not know the sub-domain.

Risk: Risks are identified and analyzed to determine their neg-
ative impact on the sub-domain. In the analysis, the risks are
prioritized according to the staff perception about their severity.
The risk impact can be:

• High: potential problems will occur and will be difficult to man-
age.

• Relevant: any problems can occur, however, they can be man-
aged.

• Low: no apparent problems.

Volatility: Determines whether the sub-domain can change
over time. The Volatility can be:

• High: constant changes happen in the sub-domain.
• Average: possible changes can be expected, but there is no major

impact.
• Low: few changes can occur.

5.4. RQ4. How much effort is spent during the inspection of
feature specifications? How is it distributed in terms of inspection
tasks?

All participants were asked to report the individual time spent
in every inspection task, as listed in the previous section. This data

represents the effort in man-hours required to perform the tasks.

This analysis can provide a quantitative reference about the
dimension and execution complexity of every inspection task, serv-
ing as a good indicator of which task need to be improved in the
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Table 3
Inspection activity executions.

Artifact Iteration Period Data

Features specification

1st August 61 features
88 h

2nd November 31 features
51 h

Table 4
Features non-conformities per sub-domain.

Sub-domains Num.
features

Num.
non-conformities

Non-conformity
densities

Patient 4 4 1.00
Reception 22 33 1.50
Doctor’s office 23 31 1.35
Billing 8 20 2.50
Scheduling 4 8 2.00
Supply management 11 13 1.18
Inventory 3 3 1.00
178 I.S. Souza et al. / The Journal of Syst

rocess. It can also provide some insights about baseline values to
erve as estimative for required effort in next iterations.

. The inspection approach

This work’s main focus is not to present an inspection process
or SPL phases and artifacts, however a brief overview is provided
n this section.

The approach is based on Fagan’s inspection process (Fagan,
976) and inspection practices (Yourdon, 1989; Gilb and Graham,
993; Wheeler et al., 1996; Wiegers, 2002; Parnas, 2004; Thelin
t al., 2004; Kollanus and Koskinen, 2009). Six software engineers
se this approach: three reviewers, one moderator, and two read-
rs/document authors. Each one was responsible for, at least, one
ole, as detailed next:

Moderator: leads and manages the tasks related to inspection
activities.
Reader: reads the artifact during the inspection meeting.
Reviewer: verifies the artifacts under inspection and identifies the
defects or non-conformities.
Author: responsible for creating the artifact under inspection.

In this study, the author of the artifact under inspection worked
lso as reader in the inspection meeting. In order to systematically
nspect the feature specifications, a set of tasks were defined to
uide the inspection activity, such as:

Planning: in this task, the roles are selected and assigned to
form the inspection team. Support materials and documents are
prepared, selected and sent to the inspection team. Moreover,
inspection activities are scheduled and booked.
Preparation: the moderator checks the artifact under inspection
and sends it to the reviewers. The reviewers individually inspect
the artifacts in order to capture non-conformities.
Meeting: the non-conformities captured in the preparation
activity are discussed in order to identify and discard false non-
conformities. The output of this task is the consolidated list of
non-conformities.
Correction: the authors of the artifact under inspection receive the
list of non-conformities and perform the correction activity.
Validation: the moderator validates the artifacts in order to ver-
ify if the author properly fixed the non-conformities after the
inspection meeting.

In order to support the proposed inspection approach, we
efined the following inspection instruments:

Quality Attributes List: Set of quality attributes required for feature
specifications, such as completeness, correctness and consis-
tency.
Non-Conformities List: Set of non-conformities based on the
quality attributes, such as incorrectness, incompleteness and
inconsistency.
Checklist: Guidance instrument to support the inspections, help-
ing the reviewers to identify non-conformities.
Inspection Plan: This is responsible for orchestrating the inspec-
tions, defining the objective, the stakeholder’s roles, instruments,
artifacts to be inspected, and so on.
Non-Conformity Records: Spreadsheet for recording all the non-

conformities found during the inspections activities.
Inspection Report: The document in which the non-conformities
found are reported, and recommendations can be made to
improve the quality of the artifact under inspection.
Purchase management 8 7 0.88
Laboratory 9 18 2.00

Fig. 3 summarizes the main elements of the inspection approach
applied in this study. More in detail, as soon as the artifact is
built, the author sends the feature specification to the moderator,
together with other complementary work products, when neces-
sary. The moderator checks the artifacts to be inspected and sends
them to the reviewers. All reviewers individually review the arti-
fact guided by the checklist, classify the non-conformities found
according to the non-conformities list and record them in the non-
conformities records spreadsheet. The spreadsheet is forwarded to
the moderator by reviewers with the recorded information, non-
conformities, the time spent during the individual review and some
notes. After gathering all review information, a meeting is sched-
uled in order to solve some disagreements or suggest ways to fix
the non-conformities. In this meeting, the reader reads the docu-
ments (features specifications and complementary artifacts), the
reviewers ask the authors about doubts and all meeting partic-
ipants can discuss the existing problems in the artifacts under
inspection. After the moderator gathers all information about the
non-conformities, he sends to the author the inspection report.  Then,
the author fixes the non-conformities and sends the new version of
the work product to the moderator.  Finally, the moderator checks
the performed changes, to be confident that they were properly
corrected.

7. Results of the empirical study

In this section, we  report the findings of the empirical study.
Table 3 shows some quantitative data. Some exploratory analy-
ses (Wainer, 2007) were performed to gain more insight and also
come up with ideas and hypotheses for new research. Based on the
gathered data, the analysis was  performed to answer the research
questions and try to understand possible directions for further
research.

The study analyzed a representative sample of the specified fea-
tures for the SPLSmart project in the scoping phase. In this sample,
92 specified features were inspected. The inspection of these fea-
ture specifications took around 139 man-hours, and the number of
features per sub-domain can be seen in Table 4.

The analyzed dataset comprises data from the first two itera-
tions with 9 sub-domains of the SPLSmart project. The first iteration

is composed of the sub-domains:

• Patient: It handles the routines regarding patient registration
data.
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(Montgomery and Runger, 2006).
It is important to highlight that although the sub-domain Billing

did not present the highest number of features nor the highest num-
ber of non-conformities in the study under investigation, it had the
Fig. 3. Systematic inspectio

Reception: It involves the tasks to carry out the routines of the
medical unit’s front office, such as check-in of patients, patient
attendance order, and clinical procedures scheduling (appoint-
ment, history and physical examination, and surgery).
Doctor’s office: It handles patients’ medical histories, including
updating and maintaining medical records.
Billing: It deals with the processing and generation of accounts
receivable and accounts payable.
Scheduling: It is responsible for scheduling patient’s doctor
appointments, like examinations, surgeries, etc.

The second iteration is composed by:

Supply management: It manages medical supply data and
records.
Inventory: It is responsible for managing medical supplies
inventory, controlling the inputs, and outputs, and balance for
requesting new materials.
Purchase management: It is responsible for managing the process
and routines for purchasing medical supplies.
Laboratory: It is responsible for managing the operational rout-
ines of medical laboratory units, such as laboratory services,
patient laboratory admission and attendance order, laboratory
tests results, etc.

For this study, we consider a Feature as being “a prominent or
istinctive user-visible aspect, quality, or characteristic of a soft-
are system or systems” (Kang et al., 1990). The features define

oth common aspects of the domain, as well as differences among
elated products in the domain. It is also used to define the domain
n terms of mandatory, optional or alternative characteristics of the
elated products.

Following, the research questions of the study are discussed.

.1. RQ1. What is the distribution of non-conformities in the
roject?

This question was divided into three subquestions. Their
nswers are presented next.

.1.1. RQ1.1. How are the non-conformities spread in terms of
ub-domains?

The analysis considers the relationship among the num-
er of features (NFeatures) and the number of non-conformity
ccurrences found (NNonConformities), establishing the value of
on-conformity density or Density (Eq. (1))  per sub-domain. This

alue was analyzed using the Control Chart (Montgomery and
unger, 2006).

Density = NNonConformities

NFeatures
(1)
roach on feature document.

The control chart is a statistical process control very useful when
applied to software engineering quality control. It is an instrument
that provides information about process capability and diagnos-
tic (Montgomery and Runger, 2006; Zhang and Kim, 2010). We
used the control chart to plot the non-conformities density per
sub-domain to observe the behavior between the non-conformity
density variations in the confidence interval provided by the con-
trol chart limits (UCL and LCL). The confidence interval is the
interval between the UCL and LCL limits. Thus if Ci denotes the
non-conformity density obtained in the ith observation, the con-
trol chart plots the data points at the height C1, C2, . . .,  Cn. The
control chart also has a Center Line (CL) at height �C  (the aver-
age of Ci) and the following 3� control lines, where UCL (Eq. (2))
is the Upper Control Limit and LCL (Eq. (3))  is the Lower Control
Limit. It is important to highlight that, if LCL is a negative value, it
is set to 0 (Montgomery and Runger, 2006; Zhang and Kim, 2010)
as happened with the distribution shown in Fig. 4.

UCL = �C + 3
√

�C (2)

LCL = �C − 3
√

�C (3)

Observing the control chart of Fig. 4 (data from Table 4), it is
possible to see the distribution of the non-conformity densities
per sub-domains. The control chart has the following approximate
values for attributes: CL = 1.49, UCL = 5.15 and LCL = −2.17 (set to
0). From the nine points (sub-domain non-conformity densities)
plotted, four points were plotted above the center line and five
points plotted below it. It is possible to observe a random behav-
ior pattern on the control chart. Thus, the control chart shows that
the non-conformity densities for the sample sub-domains are in
control for the confidence interval computed for this distribution
Fig. 4. Control chart – feature non-conformity densities per sub-domain.
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rences were Incompleteness and Ambiguity. On the other hand, for
the description item, Incompleteness and Ambiguity were also the
types with most occurrences. Finally, for the Required feature item,

Table 5
Feature non-conformity distribution: template items by sub-domains.

Sub-domains

A B C D E F G H I

Name 1 8 6 5 2 0 0 0 2
Description 3 20 8 6 3 9 3 3 10
Priority 0 0 0 1 0 0 0 0 0
Binding time 0 1 1 0 0 1 0 0 0
Required feature 0 1 16 8 3 0 0 4 6
Excluded feature 0 0 0 0 0 0 0 0 0
Parent feature 0 2 0 0 0 0 0 0 0
Child feature 0 1 0 0 0 3 0 0 0
ig. 5. Pareto’s chart for the distribution of feature non-conformity types – 1st
teration.

ighest feature non-conformities density (Table 4). On the other
and, whereas the company classified sub-domain Billing with high
xperience and low volatility, it also classified Billing as having high
isk (Table 13).  In this direction, the analysis of the RQ3.2 shows that
or those sub-domains classified with high risk, a higher number of
eature non-conformities was estimated, using Poisson nonlinear
egression prediction models. All these results are the first step
oward establishing a baseline of non-conformity densities in the
pecification of features in the SPL project.

.1.2. RQ1.2. What is the distribution of non-conformity
ccurrences on types of non-conformities?

We classified the reported amount of non-conformity occur-
ences and applied Pareto’s principle, which can statistically
dentify the main causes of occurrences (Gallegati, 2008). Pareto’s
rinciple (Gallegati, 2008), also known as 80–20 rule, states that
oughly 80% of the effects come from 20% of the causes. The Pareto
raphs (Figs. 5 and 6) show the individual values in descending
rder (bars). The line represents the cumulative total.

By analyzing the Pareto graphs (Figs. 5 and 6), incompleteness,
mbiguity and incorrectness represent the most identified non-
onformity types for the two iterations of the analyzed features.

Comparing the results from the two iterations, we can observe
hat the non-conformity types Unnecessary information and Non-
raceability do not have occurrences in the second iteration.
he percentage of Ambiguity, Incorrectness and Inconsistency non-
onformity occurrences decreased in the second iteration. On the
ther hand, the percentage of Incompleteness non-conformities
ncreased (54 to 68%), and therefore it deserves more attention in
ext iterations.

Analyzing the percentage reduction related to the numbers of
on-conformities for the types of non-conformity – Ambiguity,

ncorrectness and Inconsistency – we believe that the reason for this
eduction was the learning effect (Pezze and Young, 2007) on the
uthors of the feature specifications, between the first and second
terations. In the end of each sub-domain inspection activity, the

uthors received the inspection report document, which contained
he non-conformities detected on the artifact under inspection and
ecommendations for their improvement.
Fig. 6. Pareto’s chart for the distribution of feature non-conformity types – 2nd
iteration.

On the other hand, the percentage of Incompleteness non-
conformities increased for feature specification between the first
and second iterations. This can be related to the learning effect
of the reviewers, because they can learn more about the project
domain in each inspection activity round. Nevertheless, both issues
need more studies.

7.1.3. RQ1.3. How are the non-conformities distributed in
relation to the items of the feature specification template?

An exploratory analysis was performed in order to identify
which feature template items have the highest occurrence of
non-conformities and the possible reasons. Table 5 shows the non-
conformity occurrences distribution for the template items per
sub-domain. It is possible to observe that name, description and
required feature template items are highlighted, because they regis-
tered, respectively, 24, 65 and 38 non-conformity occurrences, for
all studied sub-domains.

Thus, the first analysis task was  to identify which types of non-
conformities were responsible for such distribution. In this way, an
exploratory analysis was performed and it was possible to under-
stand the reasons for such values in the template items (Table 6).

For the name item, the non-conformity types with more occur-
Sub-domains: A – Patient, B – Reception, C – Doctor’s office, D – Billing, E –
Scheduling, F – Supply management, G – Inventory, H – Purchase management, I
–  Laboratory.
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Table 6
Feature non-conformity distribution: template items by non-conformity types.

First and second iteration

Name Description Priority Binding time Required feature Excluded feature Parent feature Child feature

Incompleteness 12 32 0 0 32 0 2 2
Ambiguity 9 22 0 0 0 0 0 0
Incorrectness 3 3 1 3 1 0 0 1
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Unnecessary information 0 8 0 0 

Inconsistency 0 0 0 0 

Non-traceability 0 0 0 0 

ncompleteness was the non-conformity type with most occur-
ences.

As it can be seen, Incompleteness was the type with most occur-
ences in items name, description and required feature.  This first
nding reinforces the finding stated in the results of question
Q1.2 (where the question highlighted the incompleteness non-
onformity type). Hence, this effect can serve as an input for the
evelopment of a quality-improving plan in the feature specifica-
ions for the next iterations and projects.

Observing the distribution of the features that recorded non-
onformities (defective features) in the template items (Fig. 7), it is
ossible to see that the Description template item had the largest
umber of defective features. Hence, 56% of the features reported
on-conformity occurrences in the Description item. This reinforces
he finding that Description was the most problematic item of tem-
late, as stated beforehand in this work.

.2. RQ2. Is there any correlation between the feature
nformation and the non-conformities?

On this question investigation, the significant correlations were
ested using the Spearman rank correlation coefficient with sig-
ificance level of 5% (p-value). Spearman correlation coefficient or
pearman � is a nonparametric measure for evaluating the degree
f correlation between two variables (Gautheir, 2001; Zhang et al.,
010). In this question, the variables represent the items investi-
ated in each of the four investigated perspectives. For example, for

erspective Numbers of features and non-conformities, one variable

s the number of features (X) and the other is the number of feature
on-conformities (Y). The result of Spearman correlation test is rep-
esented by the Greek letter � (rho). � can have a value between -1

Fig. 7. Distribution of defective features in the template items.
0 0 0 0
3 0 0 1
2 0 0 0

and 1. A positive � value means that there is a positive correlation,
i.e. the number of non-conformities (Y) tends to increase when the
number of features (X) increases. A � = 1 means that there is a per-
fect positive correlation. A negative � value means that there is a
negative correlation, i.e. the number of non-conformities (Y) tends
to decrease when the number of features (X) increases. A � = −1
means that there is a perfect negative correlation. On the other
hand, a � value = 0 or close to 0 means that there is no tendency for
Y to either increase or decrease when X increases. So, there is no
significant correlation between the analyzed variables.

The Poisson regression analysis (Khoshgoftaar et al., 2001) is a
form of analysis used to model count data and contingency tables. It
has a response variable that has a Poisson distribution, and assumes
that the logarithm of its expected value can be modeled by a linear
combination of unknown parameters. In this question, the response
variable (Ŷ) is the intercept estimated value calculated from the dis-
tribution of feature non-conformities and the unknown parameters
are estimated values calculated from distributions of the num-
ber of features, features with hierarchical role and features that
have interaction with other features. The linear combination is
composed of intercept value ( ˆ̌ 0) combined individually with the
exponential function (e) of the unknown parameter ( ˆ̌ 1) and esti-
mated amount of features, independent variable (X), as can be seen
in Eq. (4).  For the multiple Poisson regression analysis, the linear
combination is composed of the intercept value and the exponen-
tial function of the unknown parameters under analysis, as can be
seen in Eq. (5).

Ŷ  = ˆ̌ 0 · e
ˆ̌

1 · X (4)

Ŷ = ˆ̌ 0 · e
ˆ(ˇ1 · X1) · e

ˆ(ˇ2 · X2) · · · · e
ˆ(ˇn ·  Xn) (5)

Tables 7–9 show, respectively, the coefficient and variables val-
ues of Spearman rank tests; the parameter values of the simple
Poisson regression analysis; and the candidate and selected param-

eters values of the Poisson regression multiple model. These data
were used for performing the analysis that supports the answers
to the four subquestions, as discussed next.

Table 7
Spearman rank correlation parameters: unit of analysis – inspection on features
specifications.

Correlation � S-statistic p-Value

Total features and num.
non-conformities

0.8439 18.7333 0.0042

Total required features and
num. non-conformities

0.8254 20.9573 0.0062

Total requesting features and
num. non-conformities

0.7419 30.9670 0.0221

Total parent features and num.
non-conformities

0.3889 73.3293 0.3009

Total child features and num.
non-conformities

0.3593 76.8824 0.3423
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Table  8
Simple Poisson regression parameters: unit of analysis – inspection on features specifications.

Parameters Estimate Std. error z-Value p-Value

Intercept 1.72 0.18 9.31 <2e−16 ∗∗∗
Num.  features 0.08 0.01 7.27 3.59e−13 ∗∗∗
AIC:  62.351

Intercept 2.20 0.14 16.09 <2e−16 ∗∗∗
Num.  required features 0.13 0.02 5.69 1.27e−08 ∗∗∗
AIC:  86.837

Intercept 1.23 0.30 4.13 3.65e−05 ∗∗∗
Num. requesting features 0.28 0.05 5.70 1.20e−08 ∗∗∗
AIC:  77.535

Intercept 2.29 0.13 17.17 <2e−16 ∗∗∗
Num.  parent features 0.50 0.10 5.03 4.84e−07 ∗∗∗
AIC:  89.22

Intercept 2.52 0.10 24.46 <2e−16 ∗∗∗
Num.  child features 0.06 0.01 4.52 6.08e−06 ∗∗∗
AIC:  96.803

Intercept 2.02 0.18 11.04 <2e−16 ∗∗∗
High  risk sub-domains 1.26 0.23 5.53 3.3e−08 ∗∗∗
Relevant risk sub-domains 1.16 0.23 5.00 5.8e−07 ∗∗∗
AIC:  59.557
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kaike information criterion (AIC) is a measure of the relative goodness of fit of a st

.2.1. RQ2.1. Are new non-conformities inserted into the project
hen new features are added?

The results for the number of features and the number of non-
onformities indicated that there is a significant positive correlation,
ince the Spearman correlation coefficient resulted in � ≈ 0.84
Table 7). The Poisson regression investigation about the number
f features and number of non-conformities (Table 8) presents the
ollowing estimated values: ˆ̌ 0 = 1.72, ˆ̌ 1 ≈ 0.08. Based on Eq. (4)
nd calculating these values for a new feature (Eq. (6)), the result
alue of Ŷ = 1.86 is found. This Ŷ value represents, based on the
nalyzed sample and in the Poisson regression model assembled,
hat the addition of a new feature results in the addition of 1.86

ew non-conformities occurrences.

Ŷ = 1.72 · e0.08 · 1 (6)

able 9
ultiple Poisson regression models: unit of analysis – inspection on features

pecifications.

Parameters Estimate Std. error z-Value p-Value

(a) Multiple Poisson regression – candidate model
Intercept 1.5724 0.2512 6.259 3.88e−10 ∗∗∗
Num. features 0.0744 0.0351 2.118 0.0342 ∗
Num. required features 0.0082 0.0586 0.139 0.8893
Num. parent features −0.2535 0.2092 −1.212 0.2256
High risk sub-domains 0.7405 0.3059 2.421 0.0155 ∗
Relevant risk sub-domains 0.6116 0.3435 1.781 0.0750 .

AIC:  53.637

(b) Multiple Poisson regression – selected model
Intercept 1.7085 0.2085 8.194 2.53e−16 ∗∗∗
Num. features 0.0455 0.0144 3.150 0.0016 ∗∗
High risk sub-domains 0.8364 0.2717 3.078 0.0021 ∗∗
Relevant risk sub-domains 0.6919 0.2833 2.442 0.0146 ∗
AIC:  51.166

ignif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’  0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1.
al model. Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’  0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1.

7.2.2. RQ2.2. Is there any correlation between feature types and
the amount of non-conformities?

The studied feature sample is composed of 6 optional features
and 86 mandatory features. Analyzing the relationship between
the feature types and the non-conformities (Table 10),  we  identi-
fied that for only one optional feature there was no non-conformity
occurrences. On the other hand, the remaining optional features
recorded 10 non-conformities. The non-conformity density (Eq.
(1)) for optional features ≈ 1.66, and the non-conformities iden-
tified for optional features were classified as following: 5 ambiguity
and 5 incompleteness occurrences. Among the optional features that
registered non-conformities, 4 features registered incompleteness
and ambiguity in the Description template item, 3 features had
incompleteness in the Required feature item and 1 feature recorded
ambiguity in the Name item.

Based on the descriptive analysis above, it was possible to iden-
tify that template items Description and Required features are the
items with the highest number of non-conformities for optional
features. In addition, the main non-conformity types captured for
optional features are Ambiguity and Incompleteness.

Regarding mandatory features, 19 features did not present
non-conformities and 67 mandatory features recorded 127 non-
conformities occurrences. This represents a 1.48 non-conformity
density for mandatory features. As in the case of optional features,
we  analyzed the non-conformities related to mandatory features. It
was  distributed as following (Table 10): 75 incompleteness occur-
rences, 26 ambiguity occurrences, 12 incorrectness occurrences, 8
unnecessary information occurrences, 4 inconsistency occurrences
and 2 non-traceability occurrences. Table 11 shows the distribution
of feature non-conformity in the template of mandatory features.
The table highlights incompleteness occurrences in most items of
feature template.
For the mandatory features with non-conformity occurrences,
48 features recorded incorrectness, incompleteness, ambiguity
and unnecessary information for the Description template item;
34 features had incorrectness, incompleteness, inconsistency and
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Table 10
Features non-conformities distribution: features types per type of non-conformity.

Non-conformity types

Incompleteness Ambiguity Incorrectness Inconsistency Non-traceability Unnecessary information

Optional features 5 5 0 0 0 0
Mandatory features 75 26 12 4 2 8

Table 11
Non-conformities distribution per feature template item for mandatory features.

First and second iteration

Name Description Priority Binding time Required feature Excluded feature Parent feature Child feature

Incompleteness 12 30 0 0 29 0 2 2
Ambiguity 8 18 0 0 0 0 0 0
Incorrectness 3 3 1 3 1 0 0 1

n
i
f
f
i
f

r
f
f
w
t
t
t
a
i
c
i
r
t
t
f
c
fi
m

m
h
(
s
n

7
p

fi
t
f

r
2
o
a
o
w
p

largest number of defective features (13 features), whereas descrip-
tion had more non-conformities (14 occurrences). These findings
partially reinforce the results of question RQ1.3. Regarding to the
distribution of non-conformity types (Fig. 8), 26 out of the 36
Unnecessary information 0 8 0 0 

Inconsistency 0 0 0 0 

Non-traceability 0 0 0 0 

on-traceability for the Required feature item; 20 features recorded
ncorrectness, incompleteness and ambiguity for the Name item; 3
eatures recorded incorrectness, incompleteness and inconsistency
or the Child feature item; 3 features had incorrectness for the Bind-
ng time item; 2 features recorded incompleteness for the Parent
eature item and 1 feature had incorrectness for the Priority item.

Table 12 presents the distribution of non-conformity occur-
ences in the project iterations. Analyzing the non-conformity data
rom the mandatory features, we observed that 96% of mandatory
eatures that recorded non-conformities in the Name template item
ere specified and inspected during the first iteration. Considering

he amount of mandatory features specified in the first itera-
ion (59 features), this number is significant, because it means
hat for 32% of the mandatory features specified in the first iter-
tion, non-conformities were identified for the name template
tem. Considering only the mandatory features that registered non-
onformity occurrences in the first iteration (45 features), this ratio
s higher than 42%, indicating that the Name item was  the main
esponsible for most of the non-conformities generated for manda-
ory features in the first iteration. On the other hand, we noticed
hat only 1 mandatory feature recorded non-conformity occurrence
or Name item in the second iteration. This can represent a signifi-
ant improvement in the feature specification activity between the
rst and second iterations. It can be also related to the establish-
ent of standards for feature naming after the first iterations.
Comparing the non-conformity densities from optional and

andatory features, we can observe that optional (1.66) features
ad a higher non-conformity density than mandatory features
1.48). Thus, the notion of variability in the context of the SPL
coping phase, represented by optional features, generated more
on-conformities per number of features, on the analyzed sample.

.2.3. RQ2.3. Is there any correlation between feature hierarchy
rofiles and non-conformities?

In the sample, 26 from the 92 specified features could be classi-
ed as having a hierarchical feature role (Kang et al., 1990). From
his subset, 5 features were classified as Parent feature, 19 as Child
eature and 2 as Parent-Child feature.

All the 5 Parent features had non-conformities, with 10 occur-
ences each. The non-conformity density for parent features was
.0 and they were classified and distributed as: 6 incompleteness
ccurrences, 2 ambiguity occurrences, 1 inconsistency occurrence,

nd 1 non-traceability occurrence. By observing the distribution
f non-conformities in the feature specification template items, it
as identified: 1 feature had incompleteness for the Name tem-
late item, 4 features had incompleteness and ambiguity for the
0 0 0 0
3 0 0 1
2 0 0 0

Description item, 2 features had inconsistency and non-traceability
for the Required feature item, and 1 feature had incompleteness for
the Child features item.

Regarding the 19 Child features specified, 5 features did not
record any non-conformity, and 14 features recorded 25 non-
conformity occurrences. Their non-conformity density was  1.79.
The non-conformities were classified as follows: 19 incompleteness
occurrences, 3 ambiguity occurrences, 2 unnecessary informa-
tion occurrences, and 1 incorrectness occurrence. By observing
the distribution of non-conformities in child features specifica-
tion template items: 10 features recorded incompleteness for the
Required feature item, 7 features recorded incompleteness, ambigu-
ity and unnecessary information for the Description item, 5 features
had incompleteness, ambiguity and incorrectness for the Name
item, and 2 features recorded incompleteness for the Parent feature
item.

For the 2 parent-child features specified, 1 feature did not
record any non-conformity and 1 feature had 1 incompleteness
non-conformity in the Required feature template item.

Analyzing all the 26 features with any hierarchical profile (par-
ent, child or parent-child feature), 20 features did not record any
non-conformity. The required feature template item showed the
Fig. 8. Distribution of hierarchical feature non-conformities in the type of non-
conformities (%).
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Table  12
Mandatory Feature non-conformities distribution: items of template per type of non-conformity.

Incompleteness Ambiguity Incorrectness Inconsistency Non-traceability Unnecessary information

First iteration
Name 11 8 3 0 0 0
Description 15 13 3 0 0 8
Priority 0 0 1 0 0 0
Binding time 0 0 2 0 0 0
Required feature 23 0 1 3 2 0
Excluded feature 0 0 0 0 0 0
Parent feature 2 0 0 0 0 0
Child feature 1 0 0 0 0 0
Second iteration
Name 1 0 0 0 0 0
Description 15 5 0 0 0 0
Priority 0 0 0 0 0 0
Binding time 0 0 1 0 0 0
Required feature 6 0 1 0 0 0
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Excluded feature 0 0 0 

Parent feature 2 0 0 

Child feature 1 0 1

ecorded non-conformity occurrences were classified as incom-
leteness. This finding partially reinforces the results of question
Q1.2.

In addition, in the analysis related to feature hierarchy profiles
nd non-conformities we observed that for parent and child fea-
ures there is no significant correlation, as the obtained Spearman
oefficient values were, respectively, � = 0.39 and � = 0.36 (Table 7).
evertheless, the Poisson regression analysis presented the esti-
ated values: ˆ̌ 0 ≈ 2.29 (parent feature) and 2.52 (child feature),

ˆ 1 ≈ 0.50 (parent feature) and 0.06 (child feature). Based on Eq. (4)
nd calculating these values for one new parent and child feature
Eqs. (7) and (8)),  we obtained the result values of Ŷ  ≈3.76 (parent
eature) and 2.67 (child feature). This Ŷ value represents, based on
he analyzed sample for Poisson regression model assembled, that
he addition of a new feature with hierarchical role would cause
he addition of 3.76 non-conformities for parent features and 2.67
on-conformities for child features.

Ŷ = 2.29 · e0.50 · 1 (7)

Ŷ = 2.52 · e0.06 · 1 (8)

.2.4. RQ2.4. Is there any correlation between feature
nteractions and non-conformities?

In the dataset, 59 features had some kind of interaction with
ther features (Kang et al., 1990). No feature was assigned as exclu-
ionary feature, 30 features required other features, 17 features just
re required by others and 12 features simultaneously require and
re required by other features.

Considering all features mapped with this interaction, the data
as collected. It reported 97 non-conformity occurrences dis-

ributed as follows: 52 incompleteness occurrences, 24 ambiguity
ccurrences, 10 incorrectness occurrences, 5 unnecessary informa-
ion occurrences, 4 inconsistency occurrences, and non-traceability
ccurrences. Incompleteness was the non-conformity type that
resented the highest volume of non-conformity occurrences for
eatures that had some interaction.

By analyzing the distribution of non-conformities in template
tems, we observed that: 19 features recorded incompleteness,
ncorrectness and ambiguity in the name template item; 49 features
eported incompleteness, incorrectness, ambiguity and unnec-
ssary information for the description item; 1 feature reported
ncorrectness for the priority item; 1 feature had incorrectness for

he binding time item; 26 features reported incompleteness, incor-
ectness, inconsistency and non-traceability for the required feature
tem, and 2 features had incompleteness, incorrectness and incon-
istency for child feature item. The other feature template items
0 0 0
0 0 0
1 0 0

did not have any non-conformity. The description template item
had the highest number of features with non-conformities and
this template item had also the highest number of non-conformity
occurrences for features that had some interaction.

The correlation analysis for feature interaction profiles and non-
conformity perspective indicates that there is a significant positive
correlation, as the Spearman coefficient � = 0.74 for features that
require another feature and number of non-conformities and � = 0.83
for required features and number of non-conformities (Table 7). The
Poisson regression analysis presents the estimated values: ˆ̌ 0 ≈
1.23 and ˆ̌ 1 ≈ 0.28 for features that require another feature,  and
ˆ̌ 0 ≈ 2.20 and ˆ̌ 1 ≈ 0.13 for required features. Based on Eq. (4)
and calculating these values for one new feature that has some
interaction (Eqs. (9) and (10)), we  obtained the result values of Ŷ
≈ 1.62 (features that require another feature) and 2.50 (required
features). This means that based on the analyzed sample for the
Poisson regression model assembled, the addition of a new fea-
ture that interacts with another would cause the addition of 1.62
non-conformities for features that require another feature and 2.50
non-conformities for required features.

Ŷ = 1.23 · e0.28 · 1 (9)

Ŷ = 2.20 · e0.13 · 1 (10)

In order to better understand RQ2, a complementary analysis
was  performed for investigating the issues of this question. We
analyzed the possibility of assembling a multiple Poisson regres-
sion model for the investigated feature dataset, composed from the
intercept parameter (number of non-conformities) and the candi-
date parameters that show significant correlation on the analysis
performed in the subquestion of this question. It is possible to see in
Table 9a that the combination of all the candidate parameters did
not return a reliable multiple Poisson regression model, because
two  parameters presented significance level (p-value) outside the
5% range (num. required features and num. parent features). From
this first result, these two  parameters were removed and another
multiple Poisson regression model was assembled, composed of
the parameters (Table 9b): the response variable (Intercept) and
the input variables (num. features, high risk sub-domains and rele-

vant risk sub-domains). The multiple Poisson regression model for
the features dataset is a prediction model that can provide the esti-
mated amount of non-conformities from the input variables that
make up the model.
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Table 13
Scope phase sub-domains analysis summary.

Sub-domains Experience Risk Volatility

Patient High Low Low
Reception High High High
Doctor’s office High Relevant Low
Billing High High Low
Scheduling High Low Low
Supply management High Low Low
Inventory High Low Low
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Purchase management High Low Low
Laboratory High Relevant Low

.3. RQ3. Is there any correlation between feature sub-domain
nformation and non-conformities?

In order to answer this question, we split it in the following
ubquestions.

.3.1. RQ3.1 Are the sub-domains with a high number of features
esponsible for a high number of non-conformities?

Observing the distribution of the number of features specified
n the sub-domains and the amount of non-conformities (Table 4),

e identified that the sub-domains that have the highest number
f features are those with most non-conformities. In the first iter-
tion, the sub-domains with highest numbers of specified features
octor’s office – 23 features and Reception – 22 features reported
1 and 33 non-conformity respectively. In the second iteration,
ub-domains Supply management – 11 features and Laboratory
9 features, respectively, reported the highest numbers of non-

onformity occurrences (13 and 18).
Analyzing together all the sub-domains of the sample, we

bserved that the sub-domains with the highest number of speci-
ed features, Doctor’s office and Reception,  recorded the highest
umbers of non-conformity occurrences.

.3.2. RQ3.2 Is there any correlation between the sub-domain
nformation available during the scoping phase and the
ccurrence of non-conformities?

From the selected attribute values (Table 13), we  applied the
oisson regression analysis (Khoshgoftaar et al., 2001) with the goal
f verifying whether there is any correlation between the selected
ttributes and the non-conformity occurrences.

Based on the distribution of attribute values presented in
able 13,  it is possible to identify that the distribution of attributes
xperience and Volatility do not have variation neither any random
ehavior pattern. It implies that the values from those attributes
re not suitable for applying the Poisson regression. In this case,
e analyzed just attribute Risk.

By applying the Poisson regression to the distribution from
he sub-domain risk attribute, significant values were obtained, as
hown in Table 8, ˆ̌ 0 ≈ 2.01, and ˆ̌ 1 ≈ 1.16 for relevant risks and
.26 for high risks. Based on Eq. (4) and calculating these values for
ne new relevant or high-risk sub-domain (Eqs. (11) and (12)), we
btained the result values of Ŷ ≈ 6.45 (relevant risk) and 7.12 (high
isks). Thus, when one new sub-domain is qualified as relevant risk,
t is possible to predict the addition of 6.45 non-conformity occur-
ences in the feature specification activity. If the new sub-domain
s qualified as high risk, it is possible to predict the addition of 7.12
on-conformity occurrences in the feature specification activity.

Ŷ = 2.01 · e1.16 · 1 (11)
Ŷ = 2.01 · e1.26 · 1 (12)

The results indicate that the risk attribute can be a good indicator
or prioritizing sub-domains in the inspection activity. They can
Fig. 9. Inspection effort – feature specification.

determine which sub-domains are most critical and require more
attention in order to identify non-conformities.

7.4. RQ4. How much effort is spent during the inspection of
feature specifications? How is it distributed in terms of inspection
tasks?

The data provided by the inspection activity participants, as
shown in Table 14,  details the time spent (minutes) in every inspec-
tion task (planning, preparation, meeting, correction, validation)
in the first and second iterations. These values represent the total
amount of time spent, considering the sum of individual times reg-
istered by each inspector.

As it can be seen, the planning task time schedule was fixed in
120 min. This represents the amount of time devoted to preparing
the inspection round for every sub-domain.

Based on these values, a formula to calculate the effort (Eff) in
terms of time spent (TSpent) and the features inspected (Features)
is presented in Eq. (13). According to this formula, the lower the
value, the lesser is the effort required to inspect features.

Eff = TSpent

Features
(13)

The amount of sub-domains in each iteration does not represent
a large distribution that justifies an additional analysis for drawing
conclusions about the comparison of results. Hence, we  decided to
include the whole data set available to characterize the inspection
activity, toward establishing baseline values for the required effort.

Fig. 9 shows the values of the effort formula applied to the
dataset represented by the amount of 92 features inspected during
139 h and 28 min. It results in a global average value of ≈1 h and
31 min  to inspect every feature. However, this global value does
not consider the details in terms of proportion. Hence, we applied
the descriptive statistics in order to obtain a detailed view on the
results of the effort calculations considering all the sub-domains.
The descriptive statistics shows that the dataset range from 43.96
(min. value) to 268.33 (max. value). If we  do not consider the out-
lier values, the max value is 106.5, median value of 95.11, mean
value of 115.34 with a standard deviation of 73.04, as shown in the
boxplots in Fig. 10.

On the effort distribution (Fig. 9), sub-domains Scheduling and
Inventory are the most relevant of the analyzed sample. Never-
theless, as we did not have any baseline for this data, a more deep
analysis could not be performed with this result.

Regarding the effort distribution across the tasks, the follow-
ing charts present the ratio for effort required to perform every

inspection task in all sub-domains. For example, in Fig. 11,  the plan-
ning task in sub-domain Patient required 40.5% of the total effort,
while preparation consumed 12.2% of the total effort, meeting took
25.3%, correction took 13.5% and validation consumed 8.4% of the
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Table  14
Effort for performing inspection on feature specifications.

Tasks Sub-domains

1st iteration 2nd iteration

A B C D E F G H I

Planning 120 120 120 120 120 120 120 120 120
Preparation 36 200 130 201 96 157 163 112 156
Meeting 75 408 228 78 96 201 210 120 180
Correction 40 1520 480 377 472 460 272 70 360
Validation 25 95 53 40 27 40 40 30 40
Number of features 4 22 23 8 4 11 3 8 9
Number of non-conformities 4 33 31 

Sub-domains: A – Patient, B – Reception, C – Doctor’s office, D – Billing, E – Scheduling, F 
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(d) The Description and Name template items reported most non-
Fig. 10. Boxplot effort of inspection on features by iteration.

otal effort. Figs. 11 and 12 show the detailed distribution consid-
ring all the tasks. On the other hand, Figs. 13 and 14 show the
ffort ratio, removing the planning task from the analysis, since we
ntended to analyze the behavior of the effort distribution consid-
ring floating values rather than the 120 min  fixed planning task
alue, which could impact the global results.

According to the values presented in the four charts, there is a

rend that the Correction task requires most effort. This could be
dentified in 7 out of 9 sub-domains. Nevertheless, the charts can-
ot give us confidence about which task requires more effort to be

(

Fig. 11. Effort distribution across featur
20 8 13 3 7 18

– Supply management, G – Inventory, H – Purchase management, I – Laboratory.

performed. More studies are necessary for building a baseline and
investigating these issues.

8. Main findings of the study

This study aimed to understand and characterize the software
inspection activity on feature specification artifacts in an industrial
SPL project. The objective was  to gather evidence on the needed
effort and the occurrence of non-conformities. The main findings
of this study can be summarized as:

a) The inspection activity reported Incompleteness as the main
non-conformity type on feature specifications; and Ambiguity
was  highlighted as the second most common type of non-
conformity. These findings can be attributed to the fact that
the scope analysts did not have experience in building these
artifacts in a SPL project.

b) The Business Rule non-conformity type did not report any
occurrence in this study. This can be explained by the high
level of experience in the sub-domains, by the domain experts
(Table 13).

c) During the inspection work, the Correction inspection task
was  the most laborious. The Correction task required more
effort in proportion to the sub-domains that have more non-
conformities.
conformities for feature specifications.
e) Optional features presented a higher non-conformity density

when compared to mandatory features. The specified optional

e inspection tasks – 1st iteration.
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Fig. 12. Effort distribution across feature inspection tasks – 2nd iteration.
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Fig. 13. Effort distribution across feature in

features represent the variability concept in the SPL context,
thus we already expected to have more number of non-
conformities.

f) Sub-domain attribute Risk allows building a predictive model
(Poisson regression) for estimating non-conformities on feature
specifications.

. Lessons learned

At the end of this empirical study, a workshop was held with
ll participants of the study in order to make a discussion forum
bout the inspection activity and to consolidate the lessons learned.
ext, we describe the most important lessons learned that were
ollected:

Planning of inspection activities by sub-domain. In order to

ot waste effort in carrying out the inspection activity, and hence
o promote the balancing of inspection tasks and, in particular,
he task of inspection meeting, it was defined that the inspection

eeting would be performed for one sub-domain at a time.
ion tasks, without planning – 1st iteration.

Duration of inspection meetings.  In order to avoid boring
inspection meetings and cause the participants to waste time, the
inspection meetings should have a maximum duration of 2 h.

Using the product map  and feature model as support mate-
rials to the inspection of features specification.  During the
inspection activity, we observed the need for using product maps
and a graphical model for representing the interactions among fea-
tures. In accordance with this observation, the participants of the
inspection concluded that it was  necessary to have a graphical fea-
ture model for better assessment of variability and dependencies
among features. The use of a product map  as a support was  also
mentioned as important.

Need to define a state machine for the specified features,
to better manage and control the generated artifacts between
inspection activities and the feature specification.  The feature
specification activity was supported by a tool that registered the

features specified in the SPLSmart project. As the inspection activ-
ity dealt with sub-domains of the first and second iterations, some
features appeared in more than one document generated by the
tool. For the efficient management and control of the features
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Fig. 14. Effort distribution across feature in

egistered on the tool and reviewed on the inspection activity, we
efined a state machine. The state machine has, initially, four states
hat a feature can assume: specified, in inspection,  inspected,  and
pproved.

0. Drawbacks and threats to validity

0.1. Drawbacks

During the study some drawbacks were identified:

There were three issues that made the activities more difficult:
(i) the lack of knowledge in the medical domain by the RiSE Labs
members; (ii) the low involvement of the company staff during
the adoption of the RiPLE process; and (iii) the low involvement
of the company staff during the adoption of the software inspec-
tion approach. The RiSE Labs team was responsible for executing
the SPL scoping through discussions with domain experts, since
RiSE members are not experts in the domain. Thus, some time
was spent in order to attend training and understand the medical
domain.
Due to the domain size and complexity, the management and
tracking of variation points caused several problems, such as the
management of asset corrections and evolution. In order to mit-
igate it, RiSE Labs developed a tool (Cavalcanti et al., 2011b)  for
managing the traceability among different SPL assets, such as:
features, requirements, use cases and so on.
Due to the reuse practice and commonality concept from SPL, one
feature specified for one sub-domain can be reused by any other
sub-domains in the product line. Thus, in order to better handle
these artifacts on the cycle of specification, inspection and correc-

tion, and avoid reworking in the inspection activity, we  created a
state machine for the specified artifacts. This state machine was
implemented and integrated in the tool developed by RiSE Labs
(Cavalcanti et al., 2011b).
on tasks, without planning – 2nd iteration.

10.2. Threats to validity

There are some threats to the validity of the study, which we
briefly describe next, along with the mitigation strategy for each
one:

• Observation: The study was performed by observing the mem-
bers of the inspection team and the artifact authors during the
inspection meeting. However, the most important stakeholders
might not have been invited to the inspection team. In order to
mitigate this threat, some meetings were previously conducted
in order to certify that the key stakeholders were invited to the
inspection team.

• Research Questions: The set of questions might not have prop-
erly covered all the aspects of inspection in SPL. As it was
considered a feasible threat, some discussions among the authors
of this work and the members of RiSE Labs were conducted in
order to calibrate the questions.

• Classification of feature non-conformities: The literature does
not present any non-conformity taxonomy for feature specifica-
tion artifacts. Thus, we  adopted a taxonomy from a classification
of requirement non-conformities (van Lamsweerde, 2009).

• Negative results: Some correlation analysis presented negative
results. However, these should not be discarded immediately, and
future analysis for these cases must be provided to increase the
validity of the conclusion.

• Reliability: This aspect is concerned with to what extent the
data and the analysis are dependent on the specific researchers.
Hypothetically, if another researcher later on conducted the same
study, the result should be the same (Runeson and Höst, 2009).
The reliability was achieved by using two  tactics: a detailed
empirical study protocol; and a structured study database with
all relevant data such as meeting tapes, meeting spreadsheet files,

transcripts, documents, and so on.

• Meeting Timing Effect: During the inspection meetings, due to
the amount of features being discussed, it is possible that tim-
ing effects could lead the moderator to lose some information. In
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order to avoid this threat, all meetings were audio-recorded, to
be analyzed in details by the moderator later.
Confidence: The potential bias introduced by the relationship
between the researchers and the participants is important. In
order to mitigate this threat, all data collection was treated
strictly confidential, in order to protect company employees, who
were part of the study, related to misuse of the information, and
to ensure the complete freedom during the data collection pro-
cedures.
Generalization: The findings and discussions were performed
into the company context, which is characterized as a small com-
pany in terms of its software development team. Thus, although
the findings and discussions could be generalized to larger com-
panies, this cannot be guaranteed, since the challenges and
problems can be completely different.

1. Conclusions

Software reuse is a key aspect for organizations interested
n achieving improvements in productivity, quality and cost
eduction. Software product lines, as a software reuse approach,
ave proven its benefits in different industrial environments and
omains (Ahmed et al., 2007; Bastos et al., 2011).

Nevertheless, in order to achieve these benefits, quality issues
hould be considered, once each reused asset can be used in differ-
nt products. The SPL literature has presented considerable efforts
n SPL testing (Anselmo et al., 2010; Machado et al., 2011), with
he development of approaches, tools and some empirical studies.
owever, the inspection area is not too rich in contributions (Babar
t al., 2010), specially, with empirical studies based on industrial
ata. This paper allowed the initial characterization of the effort
equired to perform the inspection activity on the specification of
eatures and indicated some trends, as well as quantified and char-
cterized the occurrences of non-conformities in the context of a
PL project.

Based on the data, we identified that the Correction activity
as the most laborious inspection activity, consuming more effort

n 7 out of the 9 studied sub-domains. Regarding the occurrences
f non-conformities, Incompleteness and Ambiguity presented
he highest number of occurrences. For the template items of
he specified features, Description had the largest number of
on-conformity occurrences and the largest number of defective

eatures. We  identified also that the sub-domain risk information
an be a good indicator for prioritization of sub-domains in the SPL
nspection activity. In addition, the other identified findings can be
sed as baseline for further research.

This work can be seen as an initial step toward a precise guide
or the inspection activity in SPL, and interesting directions remain
o improve what was started here. As future work, we  plan to repli-
ate this study with another company in the financial domain and
ntend to investigate inspections in the SPL requirements engineer-
ng phase.
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