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This paper provides an explicit characterisation of
the (A,B)-invariance property of polyhedral sets
with respect to linear continuous-time systems. A
typical application of the concept of (A,B)-invari-
ance is to investigate the possibility of controlling
a system subject to pointwise in time trajectory
constraints. Necessary and sufficient conditions for
a polyhedron to be (A,B)-invariant are established
in the form of linear matrix relations. Some parti-
cular conditions of existence of linear state feedback
laws are also presented. The study of (A,B)-invari-
ance of polyhedra is then extended to the control
of constrained and additively disturbed systems.
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1. Introduction

In the framework of the geometric approach for
linear systems, the concept of (A,B)-invariance has
been applied to the analysis and solution of
important control problems such as disturbance and
input to output decoupling [1,26]. This concept has
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also been applied to polyhedral sets to characterise
the possibility of controlling linear discrete-time sys-
tems subject to state and control constraints
[3,8,12,16,18] and references therein). The main rea-
son for considering polyhedral sets is the fact that
constraints are generally pointwise in time and lin-
ear, particularly when they represent non-negativity
conditions and bounds on physical variables.
Another important application of (A,B)-invariance is
in the solution of the persistent disturbance attenu-
ation problem, known in the literature as the [
control problem for continuous-time systems and as
the €' control problem for discrete-time systems.
Indeed, it has been shown that the possibility of
delivering to the system a given €' performance is
directly related to the existence of an (A,B)-invariant
set [6,23] (see also [14,15] for a geometric
interpretation).

The problem of controlling continuous-time linear
systems subject to linear constraints has been inten-
sively studied in recent years, mainly in the frame-
work of the positive invariance approach (see, for
example, [2,7,20,24,25] and references therein). A
positively invariant domain in the state space is a
domain from which the state vector trajectory cannot
escape. In particular, this approach provides an
algebraic test for existence of a static state-feedback
control law able to guarantee the respect of the
constraints. Any point in a positively invariant
domain can be considered as an admissible initial
point with respect to the corresponding constrained
state-feedback control law. In many control engin-
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eering problems, such as motion planning in robot-
ics, plane and missile guidance, machine setting or
industrial plant operation, the control tasks can be
decomposed into two successive stages: an open-
loop non-linear (or a manual) stage, driving the
system to a target set, and a closed-loop state-
feedback stage achieving fine convergence or con-
tainment within the target set. Inclusion of the target
set in the set of constraints then guarantees the
respect of pointwise physical limitations and per-
formance specifications along the system trajectory.

In many cases, however, closed-loop positive
invariance of a given set, polyhedral or not, cannot
" be obtained under a static state-feedback. One is
then led to consider more general control functions
through the study of the (A,B)-invariance property.
In this context, for compact polyhedra, a vertex-by-
vertex characterisation of the (A,B)-invariance pro-
perty with respect to uncertain systems has been
proposed [4], through the study of a discrete-time
approximation of the continuous-time system. The
same discrete-time approximated model is used in
Blanchini and Miani [5] to propose a technique to
construct an approximation of the supremal (A,B)-
invariant set included in a given compact poly-
hedron.

The main objective of this paper is to directly
characterise the (A,B)-invariance property of general
convex polyhedra with respect to continuous-time
linear systems. Some preliminary results on cones
and polyhedra are recalled in Section 2. Then, an
explicit characterisation of (A,B)-invariance 1is
obtained in Section 3 through the application of
some basic results on polyhedral sets, duality in
linear programming and differential analysis. The
(A,B)-invariance conditions take the form of a set
of linear matrix relations. A particular form of these
conditions is obtained in the case of polyhedral sets
which are symmetrical with respect to the origin.

In general, the polyhedron defined by physical
constraints is not (A,B)-invariant. Constraint satisfac-
tion can, however, be achieved if the set of initial
states is restricted to an (A,B)-invariant set contained
in the set of constraints. A natural choice to this
(A,B)-invariant set is the supremal set. In Section 4,
it is shown how an approximation of the supremal
set can be computed.

A complementary problem is to construct a con-
trol law achieving closed-loop positive invariance
for a polyhedron which satisfies the (A,B)-invariance
conditions. This problem is solved in the general
case by a piecewise linear control law, which is an
extension to general polyhedra and continuous-time
systems of the control law proposed elsewhere [3,16]

for compact polyhedra. Then, a particular set of
conditions, slightly more restrictive than the set of
(A,B)-invariance relations, is established to charac-
terise the existence of a linear state feedback control.
Finally, the study is extended to two important
classes of systems: systems subject to linear control
constraints and additively disturbed systems.

Notations and Definitions. In mathematical
expressions, the symbol ‘:’ stands for ‘such that’.
The components of a matrix M are noted M; and
its rows M, By convention, inequalities between
vectors and inequalities between matrices are
componentwise. The absolute value |M| (resp. |v|)
of a matrix M (resp. of a vector v) is defined as
the matrix (resp. vector) of the absolute value of its
components. An essentially non-negative matrix M
is a matrix having all its off-diagonal terms non-
negative: My = 0 Vk # j. The cardinality of a set
I, card(J), is defined as the number of elements in I.

2. Cones and Polyhedra

Some fundamental concepts related to sets of linear
spaces are first recalled.

Let S be a set in a normed linear space X, a
norm being represented by the symbol |.|. The set
S is bounded if there exists a scalar s > O such
that || = s, Vx € S. S is closed if it contains all
of its closure points. S is compact if it is bounded
and closed.

All the sets studied in this paper are closed sets.

2.1. Polyhedral Sets

A convex polyhedron in R”, R[G, p], with G €
Ne=m and p € N¢, is defined by the system of
linear inequalities

R[G, p] = {x € A" Gx =< p}

A polyhedral cone in R”, R[G,0], is defined by the
system of linear inequalities

R[G, 0] = {x € N": Gx = 0}

A symmetrical polyhedron in H*, S(Q, ¢), is
defined, for ¢ = 0, by the system of linear
inequalities

SQ, ) = {x € R |0x] = &)
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2.2. Generators of Polyhedral Cones

A set of generators of the polyhedral cone R[G, 0]
is defined as follows.

Definition 2.1. The column-vectors of matrix M
form a set of generators of the polyhedral cone
R[G, 0] if and only if there exists a non-negative
vector € such that x = M§, Vx € R[G, 0.

Definition 2.2. A set of generators M of R[G, 0] is
called a minimal generating set if it has the smallest
number of vectors.

The affine hull (or lineality space) of R[G, 0] is
defined by [21]: A = R[G, 0] N — R[G, 0] =
{x € A" Gx = 0}. The dimension of the affine
hull is # = n-rank(G). In the general case, any
polyhedral cone R[G, 0] can be decomposed into
the form: R[G, 0] = P + A, where P is a proper
cone [21]. If A = {0}, the cone is pointed and a
set of generators is obtained by selecting one non-
zero vector of each extremal ray of the cone. This
set of vectors forms a minimal generating set of
RIG, 0] [9].

2.3. Decomposition of Polyhedra

The geometric structure of a polyhedron R[G, p] C
A" is often described in terms of faces and facets.
The following definitions are taken from Schrijver
[21].

Definition 2.3. A subset F of R[G, p] is a face if
there exists a row-vector ¢ € " such that F is the
set of vectors x attaining (max{cx: Gx < p}), pro-
vided that this maximum is finite.

Definition 2.4. A minimal face of R[G, p] is a face
not containing any other face.

Definition 2.5. A facet of R[G, p] is a maximal
face, that is, a face not contained in any other face
of R[G, p].

Any polyhedron R[G, p] C " admits a minimal
decomposition (see, for example, Schrijver [21]) as
the sum of the cone R[G, 0], which is called its
characteristic cone, and of a polytope, I, defined
by its vertices (xi, ..., X,):

Vx e R[G,pl,3y e R[G,0],zell:x=y + 2 0"
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Each vertex (x,, ..., x,) of the polytope II is on a
minimal face of the polyhedron R[G, p].

If the vectors M; (j = 1, ..., ¢) form a set of
generators of the polyhedral cone R[G, 0], then any
point x € R[G, p} can be defined by the set of

parameters («,, ..., @,) and (B, ..., B,) through the
linear expression
q P
x= 2 aM; + 2 B, @)

=1 =1
with

a=0Vji=1,..,4q;
0'=p,

P
s]Vi:l,...,p;ZBisl
=1

Note that the polytope II always belongs to the
polyhedron R[G, p], as it can be shown by selecting
y = 0 in decomposition (1). On the contrary, the
characteristic cone R[G, 0] belongs to the poly-
hedron R[G, p] if and only if the zero vector belongs
to R[G, pl], that is, if all elements of vector p are
non-negative. This condition will be assumed in
the sequel.

For p = 0, a partition of R[G, p] can be derived
from parametrisation (2). This partition is an exten-
sion to the general case of the partition proposed
by Gutman and Cwikel [16] and Blanchini [3] for
compact convex polyhedra. Each region X, of
R[G, p] is generated through relation (2) by a set

of generators and/or vertices (M;, x;), j' € J, I’
e I, such that
e card(J,) + card(J) = n.
e A point x € X, is given by
x= 2, My + D, Bux; 3)
jeld, i'el,
with
a,=0,0=06=1; Z By =1
i'el,

The transition between two adjacent regions is
characterised by a pivoting operation in which one
of the coefficients (a;, ;) becomes null and either
a generator M, j ¢ J, or a vertex x;, i ¢ I,
replaces, in representations (3), the generator or
vertex for which «; or B, has become null. The
intersection of two adjacent regions has an empty
interior, and the union of all regions X, is the
polyhedron R[G, p].

An example of decomposition of a polyhedron is
given in Fig. 1.
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Fig. 1. A polyhedron R[G, p] and its associated regions.

2.4. Farkas’ Lemma

The following form of Farkas’ lemma will be used
in this study (see, for example, Schrijver [21]).

Lemma 2.1. Let M be a matrix and v a vector.
Then, dx : Mx =< v if and only if yv = 0 Vy =
0:yM = 0.

The set of candidate row-vectors y = 0 such that
yM = 0 forms a pointed polyhedral cone. In this
study, this cone is called the non-negative left kernel
of matrix M.

Let W be a non-negative matrix whose rows form
a minimal generating set of the non-negative left
kernel of M. Then, a statement equivalent to Lemma
2.1 is (see also de Santis [9])

dx : Mx < v if and only if Wy = 0. “)

As shown in Keerthi and Gilbert [18], it is possible
to compute matrix W by the Fourier-Motzkin elim-
ination technique (see also Schrijver [21]).

In the case of equality constraints, the following
extended version of Farkas’ lemma can be stated.

Lemma 2.2. Let M and V be two matrices of
appropriate dimensions. Then, 3X : MX = V if and
only if yV =0 Vy : yM = 0.

3. (A,B)-Invariance of Polyhedra

Consider the linear continuous-time system:

x(6) = Ax(t) + Bu(p) )

with ¢ = 0, where x € $H” is the state vector and
u e N™ is the control vector. An (A,B)-invariant
set of system (5) is defined as follows.

Definition 3.1. A set S C " is said to be (A,B)-
invariant (or controlled invariant) with respect to
system (5) if for all initial state x(0) € S there
exists a control function u(¢), + = 0, such that x(¢)
e S5,V = 0.

The class C, of control functions is defined as fol-
lows.

Definition 3.2. The control function u(x,r) is said to
belong to the class C, if it is continuous and
Lipschitz with respect to the state vector.

Consider now the state x at time ¢ and the power ser-
ies:

x®

x(t + A =x(t) + x(DAr + ... +
Throughout the paper, the term infinitesimal motion
will be used to mean the linear part of the power
series of x(+ + Ap), that is, x(t) + x(H)Atr. This
reflects the fact that for small Ar the higher-order
terms of the power series are negligible.

The following proposition has been shown in a
slightly different framework in Seifert [22], Cor-
ollary 1, p. 295.

Proposition 3.1. A necessary and sufficient con-
dition for (A,B)-invariance of a convex set S with
respect to system (5), with a conirol function in the
class C,, is the existence of a control function in
the class C, defined on the boundary of S, for
which, at any point x, of this boundary, the infini-
tesimal motion starting at x, remains in S.

In the sequel, the study of (A,B)-invariance will be
focused on convex polyhedral sets of " containing
the O-vector

S=R[G, p] = {x: Gx = p)}

Let T be a matrix whose rows form a minimal
generating set of the non-negative left kemel of the
matrix product GB, denoted I' and defined by

I'={w e R&: w = 0, w'(GB) =0} 6)

Clearly, this cone is pointed, because I' C R$.
Therefore, as mentioned in Section 2.2, a minimal
generating set of ' can be obtained by selecting
one non-zero vector of each extremal ray of I
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Theorem 3.1. Let T be a matrix whose rows form
a minimal generating set of the polyhedral cone T’
(6). A polyhedral set R[G, p] C R" is (A,B)-
invariant with respect to system (5) if and only if
there exists a matrix Y such that

YG = TGA N

Yp=0 (8)

Y, =0ifT;=0 ®
Proof. k

Necessity. Assume (A,B)-invariance of R[G, p] with
respect to system (5). Consider a row T; of T. From
the definition of matrix 7, vector 7; is a generator
of the cone I'. It has non-negative components
and satisfies:

T.GB=0 (10)

The following linear programme, denoted (P;), can
be associated to this vector:

max z; = T,GAx
subjectto Gx=p; if T; #0 (1
Gx=p ifT;=0 (12)

The dual of problem (P;), denoted (D)), is defined
as follows:

min y; = Y;p
Y;
subject to: Y,G = T,GA (13)
Y, Z0ifT,=0 (14)

Then, one of the two following situations happens:

(a) The set of conditions (11), (12) is consistent.
It then defines a face of R[G, pl. (A,B)-invari-
ance of R[G, p] requires, at each point x of
this face, admissibility of the infinitesimal
motion, and thus the existence of a control
vector # such that

Gx=GAx + GBu=0Vj:T;#0 5)
Condition (10) implies

2 TyGB=0
Ji Tiﬂ*O

Since T; = 0, left-multiplication of each con-

dition (15) by T, yields, for all x satisfying
(1D, (12

z=TGAx= >, T,GAx=0

j:Tijv-‘:O
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Thus, the optimal solution of problem (P;),
denoted 7 satisfies z; < 0. Then, the optimal
criterion of the dual problem (D)), y;, satisfies

yi=u=Yip=0

(b) The set of conditions (11), (12) is not consist-
ent, the primal problem (P is thus infeasible,
but since R[G, p] is not empty, a relaxed
version of (P;) can be made feasible by replac-
ing some equality constraints Gx = p; by the
associated inequality constraints Gx = p. A
solution to the relaxed dual problem is then
feasible for the original dual problem. There-
fore, the optimal solution of the dual problem
(D)) is unbounded. Thus, there exists a row-
vector Y; satisfying (13), (14) and such that Y;p

= 0.

The same argument can be applied to all the rows
of matrix 7, showing the necessity of conditions

(M, (8), 9).

Sufficiency. Suppose the existence of a matrix Y
satisfying conditions (7), (8), (9). Consider a point
x on the boundary of R[G, p]. The rows of matrix
G and vector p can be partitioned into two subsets,
with indices 1, 2, and dimensions g;, g,, and re-
ordered as

G1:| {P1j|
G= s =

[Gz P P2
so that x satisfies:

{Glx = b

Gox < ps (16)

Let T, be a non-negative matrix whose rows form
a minimal generating set of the polyhedral cone
{w = 0 : wi(G,B) = 0}. Any row vector T,; can
be complemented to generate a vector #; € I' defined
by: t; = [T,; 0]. Then, by definition of matrix 7, 3&
= 0 such that 1, = £T. Accordingly, all the rows
of matrix ¢t = [T, 0] belong to I', and thus, 3 E =
0 such that

t=ET

Left-multiplication of relations (7), (8), by E yields,
with Z = BY:

ZG =tGA =T,G,A 17
Zp=0 (18)
Furthermore, conditions

{tij = zkfikaj
Z; Ekfikij
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and E = 0 show that ¢; = 0 if, for each k, either
&« = 0 or Ty; = 0. Using condition (9), this implies,
respectively, either- &, = 0 or ¥;; = 0, and thus

Z;=0if 1;=0 (19)

The three conditions (17), (18), (19) show, by
duality, that, for x satisfying (16):

1,GAx =0 20

By application of Lemma 1 in the form (4), con-
dition (20) is equivalent to the existence of a vector
u € R™ such that

Gx=GAx+ GBu=0 21)

Now, recall the decomposition of polyhedron
R[G, p] as the sum of the characteristic cone and a
polytope II (1). Relation (21) applies to all the
points on the boundary of R[G, p], in particular to
all the vertices (x;, ..., x,) of the polytope II. A
set of admissible controls (v, ..., v,) can be associa-
ted to this set of vertices. They satisfy: G Ax;, +
G.Bv; = 0V k: Gux; = p. Similarly, the character-
istic cone R[G,0] trivially satisfies relations (7), (8),
(9) (with p = 0, Y = 0). Therefore, a set of controls
(wy, ..., w,) can be associated to the set of gener-
ators M; of R[G, 0], so as to satisfy: GAM; +
GBw; =0V k:GM =0.

Each point of R[G, p] being represented by the
set of coordinates (a,, .., &, Bi, ---, B,) through
relation (2), the following control function can be
considered:

u(x) = >, aw; + >, B, (22)
j=1 i=1

with
14

a,ZOV‘],OSB,SIVI,EBISI

i=1

Using the set of coordinates derived from the par-
tition of R[G, p] proposed in Section 2.3 (with the
assumption p = 0), it can be readily shown that
the control function (22) is defined at any point of
R[G, p], is continuous and Lipschitz. It generates a
feasible motion from each point of the boundary of
R[G, p]. Thus, using Proposition 1, the polyhedron
R[G, p]l is (A,B)-invariant with respect to system
(5), with a control function in the class . |

Remarks.

e In the particular case when T reduces to the null
row-vector, the set of conditions (7)—(9) is triv-
ially satisfied with Y equal to the null row-vector.

The polyhedral set R[G, p] is then trivially
(A,B)-invariant.

e In the case of an autonomous system (B = 0), I’
(6) is the whole non-negative orthant g, T = I,
and relations (7)-(9) reduce to the classical posi-
tive invariant relations for autonomous systems
[2,7,25].

e The control law (22) can be seen as an extension
to general polyhedra and continuous-time systems
of the control law proposed elsewhere [3,16] for
compact polyhedra with respect to discrete-time
systems.

o From relations (7)—(9), it can be seen that (A,B)-
invariance of the characteristic cone is a necessary
condition for (A,B)-invariance of R[G, pl.

Theorem 3.1 can be specialised to the case of
symmetrical polyhedra S(Q, ¢). Consider a matrix
[T, T,] whose rows form a minimal generating set
of the polyhedral cone I' (6), with

Now, form the matrix T as a submatrix of T, — T,
obtained by deleting the rows 7T,—T,; for which
either Ty, — Ty, = 0 or Ty, — T, = —T;+T,; for some
Jj << i. The following result can be established.

Corollary 3.1. A symmetrical polyhedral set S(Q, ¢)
C R is (A,B)-invariant with respect to system (5) if
and only if there exists a matrix Y such that

YQ = TOA (23)
Y6 <0 (24)
where ¥ is given by
vyl if Ty=0
F,=1Y, ifT,>0
-y, if 7, <0

Proof: From Theorem 3.1, S(Q, ¢) is (A,B)-invariant
if and only if there exist non-negative matrices Y,
and Y, such that

Y, -Y)0Q = (T, -T5)QA (25)
Y, +Y)¢d =0 (26)
Yy Z0if T1;=0, Y Z 0if ;=0 @7

The rows i for which 7, ~ 75, = 0 do not need to
be considered because in this case relations (25),
(26) are trivially verified with Y;; = Y,;, = 0. The
same applies to the rows i for which T,,— T, =
—T,;+T,; for some j < i, because if for the row j
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there exist row vectors Y; and Y, such that (25),
(26) are verified, then the same relations are verified
for the row i with Y|, = ¥,; and ¥,, = Y},
Considering now the matrix T, the following hold
(otherwise the corresponding generators in [T; T,]
would not belong to the minimal generating set):

e T, =0 only if the corresponding elements in 7T,
and 7, are also null.

° Q’; > 0 (< 0) only if the corresponding elements
in T, and T, are respectively positive (null) and

null (positive).

In view of these facts, from relations (25), (26),
controlled invariance of S(Q, ¢) is equivalent to the
existence of non-negative matrices Y, and VY, ver-
ifying

(Y- Y0 = T0A (28)
Y+ Ve =0 29
Yy = 0if T;=00r T, <0 (30)
Yoy = 0if Ty=00r T;>0 Gl

Now, let Y = Y, — VY, and consider the matrices Y™
and Y~ defined by

max{Y;,0} if T;=0

g

Yi=1\Y, if 7,>0 (32)
0 if 7, <0
max{-Y;,0} if T;=0

Y; =10 if 7,>0
Y, if 7,<0

Necessity is proven by observing that these matrices
are such that Y* - Y = Y VY, -VY, and
Y +Y)p =Y = (Y, + Y,)¢ = 0. Sufficiency
follows from the fact that Y* and Y~ verify relations
(28)-(31). |

A

Very often, the desired property is not only (A,B)-
invariance, but also convergence to the origin with
a prescribed rate. Consider then the function

WP(x) = max {% x} (33)
k Pr

For compact polyhedra containing the origin in its
interior, p > 0, W(x) is the Minkowski functional
of R[G, p] [19]. It can be shown that in this case
W(x) is positive definite and continuous.

The total derivative of W(x) with respect to system
(5) is given by

{\If(x-f-At(Ax—FBu))—\I’(x)}

DH(x,u) = lim sup Ar

Ar—0"
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Definition 3.3. A compact polyhedral set R[G, p] C
" is said to be (A,B)-invariant with an exponential
convergence rate € € > 0, if for all initial state
x(0) € R[G, p] there exists a control function u(?),
t = 0, such that the trajectory of the state vector
verifies

D (xu) = —e¥(x)

Theorem 3.2. Let 7 be a matrix whose rows form
a minimal generating set of the polyhedral cone I
(6). A compact polyhedral set R[G, p] C H" is
(A,B)-invariant with respect to system (5), with an
exponential convergence rate, €, if and only if there
exists a matrix Y such that

YG=TGA (34)
Yp = —€Tp (35)
Y,Zz0ifT;=0 (36)

Proof. The proof follows the same lines of the proof
of Theorem 3.1 and is only outlined. Let I(x) denote
the set of indices k for which W(x) = (G/(p)x. By
definition of ¥(x),

G =pV(x) fork e I(x)
Gux < p¥(x) forl ¢ I(x)

Furthermore, by virtue of the continuity of ¥(x), it
can be shown that [25]

{Gk(Ax+Bu)}
Pr

Now, consider the matrix T, = [T,, 0], where the
rows of 7, form a set of generators of the poly-
hedral cone {w = 0: w'(G,B) = 0}. Then, from
(34)-(36) and the proof of Theorem 3.1, there exists
a matrix Y,, with ¥, = 0 if T,; = 0, such that
T,GAx = Y,Gx =< Y,pV(x) = —€T,pV(x). Therefore,
from Lemma 2.1, there exists a control vector u
such that GAx + GBu = —ep¥(x) and thus,
Dr(xu) = — V(). ]

D*(x,u) = max (37)

kel(x)

Note that in this case W(x) is a Lyapunov function
of system (5).

4. The Supremal (A,B)-Invariant Set

Suppose now that, as a design specification resulting
from physical limitations in the plant to be con-
trolled, the state of system (5) is constrained to
evolve inside a convex set S. In general, a given
set S is not (A,B)-invariant. A possible solution to
this problem is therefore to restrict the initial state to
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an (A,B)-invariant set contained in S. Furthermore, it
is desirable that such a set should be as large as
possible. It turns out that a supremal set exists,
which results from the following property, whose
proof is straightforward.

Lemma 4.1. The family of all (A,B)-invariant sets
contained in a closed convex set S is closed under
the operation ‘convex hull of the union’.

Since S is assumed closed, this lemma guarantees
the existence in the family of (A,B)-invariant sets
contained in S of a supremal member (a member
which contains all the other members):

PN
C*(S) = supremal (A,B)-invariant set contained in S

In the polyhedral case, S = R[G, p], and for discrete-
time systems, iterative formulas are available to
exactly compute C*(S) up to a given precision
[3,11,17]. And it turns out that in many cases such
a supremal set is polyhedral. This is not true for
continuous-time systems, and the exact computation
of C*(S) in this case becomes very difficult. As
shown elsewhere [4,5], arbitrarily close polyhedral
approximations of C*(S) can nevertheless be com-
puted, if one considers the Euler Approximating
System (EAS):

x(k+1) = (J+7A)x(k)+TButk), T > 0 (38)

Such approximations are based on the following
result [4,5].

Proposition 4.1. If R[G, p] is (A,B)-invariant with
respect to the EAS (38), then R[G, p] is (A,B)-
invariant with respect to system (5).

Arbitrarily close polyhedral approximations of C*(S)
can therefore be obtained by computing the supremal
(A,B)-invariant set contained in R[G, p], with respect
to the discrete-time system (38), with 7 sufficiently
small.

5. Computation of a Control Law

The satisfaction of the (A,B)-invariance relations
presented beforehand guarantees the existence of a
continuous and Lipschitz control function which
forces the trajectory of the state to belong to the
(A,B)-invariant polyhedron. That does not presup-
pose, however, a particular type of control law. A
closed-loop continuous and piecewise linear control
law has been proposed in Blanchini [4], but for

compact polyhedra only. The extension of such a
law to the non-compact case, presented in the proof
of Theorem 3.1, is now detailed.

Consider the partition of R[G, p] given by relation
(3), and the control function (22). Let X, be a square
matrix whose columns are the generators/vertices
defining the region X,, and let U, be a matrix whose
columns are the control vectors w/v; associated to
such generators/vertices. A continuous and piecewise
linear state feedback control law is then given by

u(t) = Fx(f) = U(X,)"'x(2), for x(t) € X. (39)

This control law is a possible implementation of the
law (22).

Note that compact polyhedra are completely rep-
resented by their vertices, because their characteristic
cone is the null vector. The regions into which
a compact polyhedron is divided are the compact
polyhedra defined by the convex hull of the origin
and n vertices (n being the dimension of the system).
In this case, the control law (39) is exactly that
proposed in Blanchini [4].

If the polyhedron R[G, p] has to be partitioned
into many regions, the implementation of the control
law (39) can become very difficult. It has been
observed that in most cases closed-loop positive
invariance can also be obtained using much simpler
state-feedback laws, which are simply linear. The
linear state-feedback case is characterised by (A,B)-
invariance conditions which are slightly stronger
than those of Theorem 3.1. This is shown in the
following theorem, whose proof can be found in
[13].

Theorem 5.1. Let the rows of matrix T form a set
of generators of the polyhedral cone I' (6) and the
rows of matrix

o

span the left kernel of the matrix product GB. If
there exists an essentially non-negative matrix H
such that

THG—TGA 40
N =N (40)

THp < 0 4n

then the polyhedral set R[G, p] C $H”" is (4,B)-
invariant with respect to system (5) and positively
invariant under a linear state feedback law:

u=Fx+ u, 42)

In practice, the existence of an admissible control
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law (42) can be directly tested, and the solution
constructed by linear programming, as in Vassilaki
and Bitsoris [25].

If the constant control term u,. is not null, the
trajectory of the closed-loop system does not con-
verge to the zero state. Assuming R[G, p] compact,
convergence to the origin can nevertheless be
obtained under the continuous and piecewise linear
control law: u = Fx + u/V(x), where ¥(x) is
the Minkowski functional of R{G, p] (33) [13]. A
discontinuous variable structure control with the
same structure in terms of number of sectors as this
law was proposed in Blanchini and Miani [5] for
single input systems.

6. Extensions
6.1. Systems Subject to Control Constraints

Suppose now that the control entries of system (5)
are subject to the following constraints:

ut)y e UC R V=0 (43)

This type of constraint is frequently found in practi-
cal applications, being generally associated to physi-
cal limitations on the actuators.

Definition 6.1. A set S C %" is said to be U-
(A,B)-invariant with respect to system (5), (43) if
for all initial state x(0) e S there exists a control
function u(r), with u(?) € U Vit = 0, such that x(f)
e SVr=0.

Consider now the polyhedral case: S = R[G, pl],
U=R[U, ] = {u € R" : Uu = ). Let the rows
of matrix [7, T,] form a minimal generating set of
the polyhedral cone I', defined by

el Bl =e

GB
[w} wi] [ U ] =0, } (44)

Theorem 6.1. Let [T, T,] be a matrix whose rows
form a minimal generating set of the polyhedral
cone I', (44). A polyhedral set R[G, p] C %" is
U-(A,B)-invariant with respect to system (5), (43),
with ‘U = R[U, ], if and only if there exists a
matrix Y such that

YG = T,GA 45)
Yp=T4 (46)

C.E.T. Dorea and J.-C. Hennet

Y, =z0ifT,. =0 47)

The proof of this theorem can be found in Dérea
[10]. It essentially follows the same lines as the
proof of Theorem 3.1.

6.2. Systems Subject to Bounded Additive
Disturbances

Consider the following linear continuous-time sys-
tem: :

(1) = Ax(t) + Bu(t) + Ed() (48)

where d e M7 is a disturbance vector, supposed
constrained to evolve inside a bounded domain D
C Rz

dt) e DVt=0 49)

One can notice that this kind of disturbance acts
continuously in time, and its energy is infinite. This
is why it is named by some authors persistent dis-
turbances.

Definition 6.2. A set S C R”" is said to be D-
(A,B)-invariant with respect to system (48), (49) if
for all initial state x(0) e S there exists a control
function u(f), t = 0, such that x(t) € S Vd(t) e
D, ¥Vt = 0.

This definition assumes that the disturbance vector
is not measured.

Consider now the polyhedral case: S = R[G, p],
D =R[D, w] = {d € R : Dd = w}. Define the
components 8; of vector & as follows:

8, = max G,Ed
deR[D,w]
Theorem 6.2. Let T be a matrix whose rows form
a minimal generating set of the polyhedral cone I’
(6). A polyhedral set R[G, p] C R" is D-(A.B)-
invariant with respect to system (5), with D =
R[D, w], if and only if there exists a matrix Y
such that

YG = TGA (50)
Yp = —T8 (51)
Y; = 0if T, =0 (52)

The proof of this theorem follows also the same
lines as the proof of Theorem 3.1 [10]. One only
has to notice that the role of vector & is to absorb
the effect of the disturbances.

A practical application of D-(A,B)-invariant
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polyhedra is in the solution of the persistent disturb-
ance attenuation problem, also known as the [
control problem. Indeed, suppose that the system is
excited by bounded disturbances, satisfying: |di(?)|
= 1 Vi, Vt = 0, and that the control goal is to
limit the maximal amplitude of the output vector
given by

y() = Cx(1)

It can be shown that a level of attenuation, say v,
is achievable only if there exists a D-(A,B)-invariant
set contained in the polyhedron {x : [Cf-xl = v, Vj}
(see, for example, [6,23]). Then, theoretically, the
optimal attenuation level y* is obtained as the small-
est scalar for which the supremal 7-(A,B)-invariant
set is not empty. In practice, a decreasing sequence
of achievable values of y can be computed to
approximate the minimal feasible value, y*. At each
iteration, a polyhedral approximation of the supremal
D-(A,B)-invariant set is computed and the current
value of vy is proved feasible as long as this set is
not empty.

7. Numerical Example
Consider the system (5) for which
{—0.14 —1.27} [0]
A = N B =
-1.35 0.98 1
Suppose that the state vector is subject to the con-
straint x(f) € R[G, p] V¢t = 0, with

02 02 1
11 i
= 035 P
25 0.5 1

and that convergence with an exponential rate € =
0.5 is desired.

R[G, p] is not (A,B)-invariant, but the constraint
x(f) € R[G, p] can be respected if the initial state
is restricted to an (A,B)-invariant set contained in
R[G, p]. Such a set can be obtained through the
computation of an approximation of C*(R[G, pl, €),
the supremal (A,B)-invariant set with exponential
convergence rate € in R[G, p].

Following the procedure described in Section 4,
the (A,B)-invariant set R[G*, p] is computed with
a precision of 107, where

A matrix 7" whose rows form a minimal generating
set of the non-negative left kernel of the matrix
product G"B is given by

51 0 0 0 0 |

50 0 2 0 0

50 0 0 0 00898

0128710 0 0
TF=/00 28712 0 0

0028710 0 0.0898

01 0 00088 0

00 0 20088 0

00 0 0 0.0898 0.0898

A point x € R[G", p’] can be represented in the
form (2) from the vertices

[3.8957} [o.ssséJ {—0.6055}
xl = s -x2 - s x3 = ’

1.1043 4.4444 1.1271
_[-07791]  [o06667] [ 3.7365
Y= 02200 T | -1.6667 | ¢ T | -0.1318

partitioning R[G*, p’] into six regions: X, defined
by x; and x,, X, defined by x, and x;, X; defined
by x; and x,, X, defined by x, and x5, X5 defined
by x5 and x5 X, defined by x4 and x,.

Admissible associated controls are given by

vy = 3.6249, v, = -21.3833, v; = —15.2909,
vy = —0.7250, vs = 4.5450, vs = 16.9817

A piecewise linear control law (39) can then be
used to achieve closed-loop positive invariance of
RIG", pf], with

F, =[2.3786, -5.1086], F, = [13.2210, —6.4639],
F3; =14.1449, -11.3400], F, = [1.5300 -2.1150],
F5 =1[4.5123, -0.9221], F¢ = [4.1450, —11.3400]

It turns out that positive invariance can be achieved
by a linear state feedback as well. Indeed, the
conditions of Theorem 5.1 are satisfied with

H=
Fio.0000 0 0 0 0 0.0293 |
0 -100000 © 0 01465 0
0 14213 —24116 0.158 0  0.0010
59777 0 o -7us2 ooos o |70
0 0 0 0 -05000 O
L o 0 0 0 0 -0.5000

GF = G S P -
7864109 11.1300 64.8682
86.4109 —11.1300 324.3406

An admissible control law is then u(f) = Fx(r), with
F = [4.1449 — 11.3400]. The polyhedra R[G, p] and
R[GF, p'] are represented in Fig. 2.
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Fig. 2. R[G, p] and R[G*, p"].
T ]

Fig. 3. R[G”, p"] divided into regions, with two trajectories start-
ing from x,, resulting from (1) the piecewise linear control law
and (2) the linear control law.

R[GF, pF] divided into regions is represented in
Fig. 3, together with two trajectories starting from
the vertex x,.

8. Conclusion

(A,B)-invariance of general convex polyhedral sets
with respect to continuous-time linear systems has
been characterised by linear matrix relations which
only depend on the system matrices and on the
considered polyhedral set. Unlike other characteris-
ations found in the literature, such relations can be
directly tested on the original system, with no need
to rely on discrete-time approximating system. Their
satisfaction guarantees the existence of a continuous
Lipschitz control law for which the polyhedron is
positively invariant. This characterisation has been

C.E.T. Dérea and J.-C. Hennet

also extended to treat issues of frequent practical
interest, namely constrained controls and additively
disturbed systems.
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