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In a field theoretical framework, we study the N-component Ginzburg–Landau model
compactified in one of the spatial dimensions. Taking the large-N limit, including one-
loop corrections to the coupling constant, we calculate the transition temperature (Tc)
for a system bounded between two parallel planes as a function of the separation distance
(L) between then. We show that Tc(L) decreases as the separation is diminished in
a slightly nonlinear way. The minimal separation for the suppression of the second-
order transition is lower than the one obtained without considering coupling-constant

corrections.
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1. Introduction

In a recent study, a generalized compactification formalism was applied for the first

time to treat the Euclidean massive (λϕ4)D model compactified in a d-dimensional

(d ≤ D) subspace.1 Such a formalism allowed us to extend previous results in

the effective potential framework for finite temperature and spatial boundaries,

generalizing and unifying results from works on the behavior of field theories in the

presence of spatial planar boundaries2 and finite temperature.3
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In the present work our aim is to investigate, in a field theoretical framework,

effects associated to spatial confinement for a model that permits a nonperturbative

approach. We consider the N -component Euclidean λϕ4
D theory at leading order in

1/N , the system being submitted to the constraint of confinement between two par-

allel planes a distance L apart from one another. From a physical point of view, for

D = 3 and introducing temperature by means of the mass term in the Hamiltonian,

this corresponds to a film-like material described by the N -component Ginzburg–

Landau model. The large-N limit allows us to incorporate the L-corrections to the

coupling constant in a nonperturbative manner.

The study of effects of spatial boundaries on the behavior of physical systems

appears in several forms in the literature. For instance, there are systems that

present defects, as domain walls. At the level of effective field theories, in many

cases this can be modeled by considering a Dirac field whose mass changes sign as

it crosses the defect, which means that the domain wall can be interpreted as a

kind of a critical boundary.4,5

Another very relevant example concerns the Casimir effect. The ideas of com-

pactification and a generalization of the Bogoliubov transformation, the latter to

include finite temperature effects specifically, have been successfully applied to the

study of the Casimir effect for bosonic6 and fermionic fields.7 These mechanisms

make computations, for the simple case of two parallel plates separated by a distance

L, much simpler than the early attempts.8 This approach has also been extended

to a three-dimensional box maintained at temperature T .7

Questions concerning the existence and stability of phase transitions may also

be raised if we inquire about the behavior of field theories as a function of spatial

boundaries. The existence of phase transitions would be in this case also associated

with some spatial parameters describing the breaking of translational invariance,

in our case the distance L between planes confining the system. In particular the

question of how the critical temperature for a second-order phase transition depends

on the thickness of the film can be raised. In this situation, for Euclidean field

theories a generalized Matsubara formalism applies for the breaking of invariance

along spatial directions.

A central ingredient in our approach is the topological nature of the Matsubara

imaginary-time formalism. To calculate the partition function in a quantum field

theory, the Matsubara prescription is equivalent to a path-integral approach on

RD−1 × S1, where S1 is a circle of circumference β = 1/T . This result was demon-

strated at the one-loop level by Polchinski9 and has been assumed to be valid for

higher orders.10 As a consequence, the Matsubara formalism can be considered, in

a generalized way, as a mechanism to deal also with spatial constraints in a field

theory model. In such a case, for consistency, the fields fulfill periodic (antiperi-

odic) boundary conditions for bosons (fermions). This procedure has been applied

in different physical situations, for bosons1,2 and for fermions.11

In this paper we investigate how the physically relevant quantities, coupling

constant, mass, and in particular the critical temperature is affected by the
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compactification of one of the spatial dimensions. In Sec. 2, we calculate the effec-

tive potential for the compactified N -component Ginzburg–Landau model. Next,

the renormalization in the large-N limit is implemented in Sec. 3, where formulas for

the renormalized L-dependent coupling constant and mass are presented. Finally,

in Sec. 4, after a mass renormalization, the critical curve relating the transition

temperature and the film thickness is established and comparison is made with the

previous results for standard Ginzburg–Landau model without coupling-constant

corrections.12 Some concluding remarks and comments are made in the last section.

2. The Effective Potential for the Compactified Ginzburg Landau

Model

We consider the N -component vector model described by the Ginzburg–Landau

Hamiltonian density,

H =
1

2
(∇ϕ)2 +

1

2
m2

0ϕaϕa + u(ϕaϕa)2 , (1)

in Euclidean D-dimensional space, where u is the coupling constant, m2
0 = α(T−T0)

is the bare mass (T0 being the bulk transition temperature) and summation over

repeated indices a is assumed. In the following we will consider the model described

by the Hamiltonian (1) with N components and take the large N limit with Nu = λ

fixed. We consider the system confined between two parallel planes, normal to the x-

axis, a distance L apart from one another and use Cartesian coordinates r = (x, z),

where z is a (D − 1)-dimensional vector, with corresponding momenta k = (kx,q),

q being a (D − 1)-dimensional vector in momentum space. In this case, the model

is supposed to describe a film of thickness L.

Under these conditions the generating functional of the correlation functions is

written as,

Z =

∫

Dϕ exp

[

−
∫ L

0

dx

∫

dD−1zH(ϕ,∇ϕ)

]

, (2)

with the field ϕ(x, z) satisfying the condition of confinement along the x-axis, ϕ(x =

0, z) = ϕ(x = L, z) = 0. Then the field should have a mixed series-integral Fourier

expansion of the form,

ϕ(x, z) =
∞
∑

n=−∞

∫

dD−1q e−iωnx−iq·zϕ̃(ωn,q) , (3)

where ωn = 2πn/L. The above conditions of confinement allow us to proceed with

respect to the x-coordinate, in a manner analogous to the imaginary-time Mat-

subara formalism in field theory.9,10 The Feynman rules are modified following the

prescription,

∫

dkx

2π
→

1

L

+∞
∑

n=−∞

, kx →
2nπ

L
≡ ωn . (4)
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We emphasize that here we are considering a Euclidean field theory in D purely

spatial dimensions, we are not working in the framework of finite temperature field

theory. Temperature is introduced in the mass term of the Hamiltonian by means

of the usual Ginzburg–Landau construction. The Matsubara mechanism is used,

exploring its topological interpretation, to engender the spatial compactification.

In the following, to deal with dimensionless quantities in the regularization

procedures, we introduce parameters c2 = m2/4π2µ2, b = (Lµ)−2, g = u/8π2µ4−D

and φ2
0 = ϕ2

0/µD−2, where m is the renormalized mass in the absence of boundaries,

ϕ0 is the normalized vacuum expectation value of the field (the classical field)

and µ is a mass scale (naturally, the results do not depend on µ). In terms of

these parameters, we start from the expression for the one-loop contribution to the

effective potential in the absence of constraints,

U1(φ, L = ∞) = µD
∞
∑

s=1

(−1)s+1

2s
gsφ2s

0

∫

dDk′

(k′2 + c2)s
, (5)

where k′ = k/2πµ is dimensionless. Then performing the replacements (4), the

compactified (L-dependent) one-loop contribution to the effective potential can be

written as

U1(φ, L) = µD
√

b

∞
∑

s=1

(−1)s

2s
gsφ2s

0

+∞
∑

n=−∞

∫

dD−1q′

(bn2 + c2 + q′2)s
(6)

or, using a well-known dimensional regularization formula13

∫

ddp

(2π)d

1

(p2 + M)s
=

Γ
(

s − d
2

)

(4π)d/2Γ(s)

1

Ms−d/2
, (7)

in the form

U1(φ, L) = µD
√

b

∞
∑

s=1

f(D, s)gsφ2s
0 Zc2

1

(

s − D − 1

2
; b

)

, (8)

where f(D, s) is a function proportional to Γ(s − D−1
2 ) and Zc2

1 (s − D−1
2 ; b) is one

of the Epstein–Hurwitz zeta-functions14 defined by

Zc2

K (ν; b1, . . . , bK) =

+∞
∑

{nj}=−∞

(b1n
2
1 + · · · + bKn2

K + c2)−ν , (9)

which is valid for Re(ν) > K/2 (in our case Re(s) > D/2). The Epstein–Hurwitz

zeta-function can be extended to the whole complex s-plane and we obtain, after

some manipulations,2 the one-loop correction to the effective potential,

U1(D, L) =

∞
∑

s=1

usϕ2s
0 h(D, s)

×

[

2−( D
2
−s+2)Γ

(

s − D

2

)

mD−2s +
∞
∑

n=1

(

m

nL

)
D
2
−s

KD
2
−s(mnL)

]

,

(10)
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where

h(D, s) =
1

2D/2+2s−1πD/2

(−1)s+1

sΓ(s)
(11)

and KD
2
−s are Bessel functions of the third kind.

The above one-loop results, in the effective potential framework, have been

obtained by the concurrent use of dimensional and zeta-function analytic regular-

izations in evaluating formally the integral over the continuous momenta and the

summation over discrete frequencies. We get sums of polar (L-independent) terms

plus L-dependent analytic corrections. Renormalized quantities are obtained by

subtraction of the divergent (polar) terms appearing in the quantities obtained by

application of the modified Feynman rules and dimensional regularization formu-

las. These polar terms are proportional to Γ-functions having the dimension D in

the argument and correspond to the introduction of counterterms in the original

Lagrangian density. In order to have a coherent renormalization scheme in any di-

mension, these subtractions should be performed even in the case of those values of

the dimension D where no poles of Γ-functions are present. In these cases a finite

renormalization is performed.

3. Renormalization in the Large-N Limit

In the following, we consider the four-point function at zero external momenta,

which we take as the basic object for our definition of the renormalized coupling

constant. At leading order in 1/N , it is given by

Γ
(4)
D (p = 0, m, L) =

u

1 + NuΠ(D, m, L)
, (12)

where Π(D, m, L) = Π(p = 0, D, m, L) corresponds to the single bubble diagram,

Π(D, m, L) =
1

L

∞
∑

n=−∞

∫

dD−1q

(2π)D−1

1

[q2 + ω2
n + m2]2

. (13)

To proceed we use the renormalization conditions

∂2

∂ϕ2
0

U(D, L)

∣

∣

∣

∣

ϕ0=0

= m2 (14)

and

∂4

∂ϕ4
0

U(D, L)

∣

∣

∣

∣

ϕ0=0

= u , (15)

from which we deduce formally that the single bubble function Π(D, m, L) is ob-

tained from the coefficient of the fourth power of the field (s = 2) in Eq. (10),

affected by the minus sign. In general, such a coefficient is ultraviolet divergent

and a renormalization procedure is needed. Then, using Eq. (15), we can write
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Π(D, m, L) in the form

Π(D, m, L) = H(D, m) + G(D, m, L) , (16)

where the L-dependent term G(D, m, L) comes from the second term between

brackets in Eq. (10),

G(D, m, L) =
3

2(2π)D/2

∞
∑

n=1

[

m

nL

](D−4)/2

KD−4

2

(nLm) , (17)

and H(D, m) is a polar term coming from the first term between brackets in

Eq. (10),

H(D, m) ∝ Γ

(

2 − D

2

)

mD−4 . (18)

We see from Eq. (18) that for even dimensions D ≥ 4, H(D, m) is divergent,

due to the pole of the Γ-function. Accordingly this term must be subtracted to give

the renormalized single bubble function ΠR(D, m, L). We get simply,

ΠR(D, m, L) = G(D, m, L) . (19)

As mentioned above, in order to have a coherent procedure for a generic dimension

D, the subtraction of the term H(D, m) should be performed even in the case of

odd dimensions, where no poles of Γ-functions are present. From the properties of

Bessel functions, it can be seen from Eq. (17) that for any dimension D, G(D, m, L)

satisfies the conditions

lim
L→∞

G(D, m, L) = 0 , lim
L→0

G(D, m, L) → ∞ . (20)

We also conclude, from the properties of Bessel functions, that G(D, m, L) is posi-

tive for all values of D and L.

Let us define the L-dependent renormalized coupling constant uR(m, D, L), at

the leading order in 1/N , as

Γ
(4)
D,R(p = 0, m, L) ≡ uR(D, m, L) =

u

1 + NuΠR(D, m, L)
(21)

and the renormalized coupling constant in the absence of constraints as

uR(D, m) = lim
L→∞

Γ
(4)
D,R(p = 0, m, L) . (22)

From Eqs. (22), (21) and (20) we get simply uR(D, m) = u. In other words, we have

done a choice of renormalization scheme such that the constant u introduced in the

Hamiltonian corresponds to the renormalized coupling constant. From Eqs. (21)

and (19) we obtain the L-dependent renormalized coupling constant

NuR(D, m, L) ≡ λR(D, m, L) =
λ

1 + λG(D, m, L)
, (23)

where we have defined the fixed coupling constant λ = Nu (see comments after

Eq. (1)).
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It is to be noted that we have used a modified minimal subtraction scheme where

the mass and coupling constant counterterms are poles at the physical values of s.

The L-dependent correction to the coupling constant is proportional to the regular

part of the analytical extension of the inhomogeneous Epstein zeta-function in

the neighborhood of the pole at s = 2. The same argument applies to the mass

renormalization, the L-dependent physical mass at one-loop approximation being

given by

m2(D, L) = m2
0 +

λ

2(2π)
D
2

∞
∑

n=1

[

m0

nL

]

D−2

2

KD−2

2

(nLm0) ; (24)

for D = 3, using that K 1

2

(z) =
√

π
2z e−z, we get the closed formula

m2(D = 3, L) = m2
0 −

λ

πL
log(1 − e−m0L) . (25)

4. Mass Behavior and Critical Curve

We shall now obtain the critical curve and determine the dependence of the critical

temperature, Tc, with the thickness of a film. If we start in the ordered phase with

a negative squared mass, the model exhibits spontaneous symmetry breaking of the

O(N) symmetry to O(N −1), but for sufficiently small critical values of T−1 and L

the symmetry is restored. We can define the critical curve C(Tc, L) = 0 as the curve

in the T × L plane for which the inverse squared correlation length, ξ−2(T, L, φ0),

vanishes in the large-N gap equation

ξ−2(T, L, φ0) = m2
0 + 2λR(D, T, L)φ2

0

+
2λR(D, T, L)

L

∑

n

∫

dD−1q

(2π)D−1

1

q2 + ω2
n + ξ−2(T, L, φ0)

, (26)

where φ0 is the normalized vacuum expectation value of the field (different from zero

in the ordered phase). In the disordered phase, in particular in the neighborhood

of the critical curve, φ0 vanishes and the gap equation reduces to a L-dependent

Dyson–Schwinger equation which, after performing steps analogous to those leading

from Eq. (6) to Eq. (10), can be written in the form

m2(D, T, L) = m2
0 +

λR(D, T, L)

2(2π)D/2

∞
∑

n=1

[

m(D, T, L)

nL

]

D−2

2

KD−2

2

(nLm(D, T, L)) . (27)

In Eqs. (26) and (27) λR(D, L) is the renormalized L-dependent coupling constant,

which is itself a function of m(D, T, L) given by appropriate versions of Eqs. (23)

and (17), i.e.

λR(D, T, L) =
λ

1 + λG(D, T, L)
, (28)
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with

G(D, T, L) =
3

2(2π)D/2

∞
∑

n=1

[

m(D, T, L)

nL

]
D−4

2

KD−4

2

(nLm(D, T, L)) . (29)

Therefore m(D, T, L) is given by a complicated set of equations, Eqs. (27)–(29),

since λR(D, T, L) depends on m(D, T, L). Nevertheless, limiting ourselves to the

neighborhood of criticality, m2(D, T, L) ≈ 0, we may investigate the behavior of

the system by using in Eq. (27), Eqs. (28) and (29) the asymptotic formula for

small values of the argument of the Bessel function,

Kν(z) ≈ 1

2
Γ(ν)

(

z

2

)−ν

, z ∼ 0 ; Re(ν) > 0 , (30)

which leads to

m2(D, T, L) ≈ m2
0 +

λR(D, T, L)

(2π)D/2
Γ

(

D

2
− 1

)

L2−Dζ(D − 2) , (31)

where ζ(D−2) =
∑∞

n=1(1/nD−2) is the Riemann zeta-function, defined for D > 3.

Similarly, inserting Eq. (30) into Eqs. (28) and (29), λR(D, T, L) can be written for

m2(D, T, L) ≈ 0 as

λR(D, L) ≈ λ

1 + λC(D)L4−Dζ(D − 4)
, (32)

where C(D) = 3
4πD/2

Γ(D−4
2 ). Taking m(D, T, L) = 0 and m2

0 = α(T − T0) in

Eq. (31), we obtain, in the large-N limit, the critical curve in the T × L plane for

Euclidean space dimension D (D > 3),

α(Tc − T0) +
λR(D, L)

(2π)D/2
Γ

(

D

2
− 1

)

L2−Dζ(D − 2) = 0 . (33)

For D = 3 the Riemann zeta-function has a pole. We cannot obtain a critical

curve in dimension D ≤ 3 by a limiting procedure from Eq. (33). For D = 3, which

corresponds to the physically interesting situation of the system confined between

two parallel planes embedded in a three-dimensional Euclidean space, Eq. (33)

becomes meaningless. To obtain a critical curve in D < 3, we perform an analytic

continuation of the zeta-function ζ(z) to values of the argument z < 1, by means

of the reflection property15

ζ(z) =
1

Γ(z/2)
Γ

(

1 − z

2

)

πz− 1

2 ζ(1 − z) , (34)

which defines a meromorphic function having only one simple pole at z = 1. For

D = 3, to get a physically meaningful result, a subtraction procedure is needed and
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Fig. 1. Reduced transition temperature, tc = Tc/T0, for films as a function of the inverse of
the reduced thickness, l−1 = L0/L (with L0 = γλ/2

√
2παT0), fixing λL0 = 10. The dashed

line corresponds to tc(l) = 1 − l−1, obtained without considering L-corrections to the coupling
constant in the Ginzburg–Landau model.

can be done as follows: remembering the formula,

lim
z→1

[

ζ(z) − 1

z − 1

]

= γ , (35)

where γ ∼= 0.57 is the Euler–Mascheroni constant, we define from Eq. (31) the

renormalized mass m̄ as,

m̄2(T, L) = lim
D→3

−

[

m2(D, T, L)− λR(D = 3, L)

2π
√

2LD−2(3 − D)

]

= α(T − T0) +
λR(D = 3, L)γ

2π
√

2L
. (36)

Taking this renormalized mass equal to zero leads to the critical curve in dimension

D = 3 which, using Eqs. (32) and (34) to evaluate λR(D = 3, L), can be written as

Tc(L) = T0 −
2
√

2γλ

8παL + αλL2
. (37)

It is interesting to compare this result with the critical curve for a film deduced

from the Ginzburg–Landau model in which the L-correction to the coupling con-

stant is neglected, obtained from Eq. (36) by taking λR = λ. In this lowest level

of approximation, the critical temperature is simply a linear decreasing function of

1/L, which is plotted in Fig. 1, together with the critical curve (37), for comparison.

We find that the critical temperature (37) decreases from T0 (the bulk transition

temperature) as L diminishes reaching zero for a minimal thickness L(0), below

which the transition is suppressed. This minimal thickness is given by

L(0) =
4π

λ

[

√

1 +
λL0

2π
− 1

]

, (38)
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where L0 = γλ/(2
√

2παT0) is the minimal thickness for the existence of the ordered

phase in the bare approximation of neglecting L-corrections to the coupling con-

stant. This minimal thickness (not considering coupling constant corrections) coin-

cides with the result for the standard (two-component) Ginzburg–Landau model,12

except for a simple symmetry factor. We also find that the predicted minimal film

thickness, for the N -component model including the L-correction to the coupling

constant, is lower than the value L0 it would have without finite thickness correc-

tions to the coupling constant, but the general behavior of the curves tc = tc(l), in

both cases, is very similar.

Notice that the results obtained here might be applicable to any physical sys-

tem undergoing a second-order phase transition described by the Ginzburg–Landau

model. For example, the decrease of the transition temperature with the inverse

of the film thickness (as described above) has been experimentally observed for

superconductors.16,17 In fact, our results do not depend on particular physical sys-

tems, appearing only as a topological consequence of the compactification in one

spatial dimension of the Ginzburg–Landau model.

5. Concluding Remarks

In this work we have discussed the N -component Ginzburg–Landau model, in the

large-N limit, the system being confined between two parallel planes. This model

is assumed to describe a film undergoing a second-order phase transition. We find

that the transition temperature is a decreasing function of the inverse of the film

thickness and that there is a minimal thickness, below which the transition disap-

pears. This minimal thickness was determined in terms of the Ginzburg–Landau

parameters and the bulk transition temperature. We verified that the inclusion of

boundary corrections to the coupling constant leads to a lower least-thickness for

the film to sustain the existence of the ordered phase.

It is worthwhile to notice that such a decreasing behavior of the critical tem-

perature with the inverse of the film thickness has been observed experimentally.

We would like to emphasize that our results are completely independent of the

microscopic characteristics of the physical system considered. They emerge solely

as a topological effect of the compactification of one of the spatial dimensions in

the Ginzburg–Landau model and are obtained in a purely field theoretical frame-

work.
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