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Magnetic models on Apollonian networks
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Thermodynamic and magnetic properties of Ising models defined on the triangular Apollonian network are
investigated. This and other similar networks are inspired by the problem of covering a Euclidian domain with
circles of maximal radii. Maps for the thermodynamic functions in two subsequent generations of the con-
struction of the network are obtained by formulating the problem in terms of transfer matrices. Numerical
iteration of this set of maps leads to very precise values for the thermodynamic properties of the model.
Different choices for the coupling constants between only nearest neighbors along the lattice are taken into
account. For both ferromagnetic and antiferromagnetic constants, long-range magnetic ordering is obtained.
With exception of a size-dependent effective critical behavior of the correlation length, no evidence of
asymptotic criticality was detected.
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I. INTRODUCTION world properties, a scale-free degree distribution, a very high

The investigation of magnetic models on scale-invarian€lustering coefficient, and a very short diameter, all this hav-
networks has attracted the attention of scientists since thi@g been confirmed independently by Dagteal. [15]. More-
1980s[1,2]. Besides the fact that, on such graphs, renormalover, the AN can be embedded in the Euclidian plane, which
ization procedures can lead to exact res{@f they have is not the case for other scale invariant lattices, e.g., hierar-
been explored as models for systems that are not translatioohical lattices or Cayley trees. One can, of course, define
ally invariant, neither in the positions of the spins nor in theother similar lattices based on modified packing ryl&g].
coupling constants mediating the interactions between themalthough the numerical values for exponents depend on the
In this respect, the analysis of disordered and aperiodic modopology of each realization, basic properties characterizing
els on scale-invariant graphs, which include hierarchical latcomplex networks remain the same.
tices[4-6], Cayley treed7], or Sierpinski gaskets and car-  |n our first work, we devoted our attention to several
pets[8,9], have provided valuable insight into the behavior physical models of the ANelectrical resistance, percolation,
of critical phenomena of nonhomogeneous systems on Eunagnetic ordering pointing out the most striking features.
clidean lattices. In this work, we review our investigations on the properties

A further family of scale-invariant graphs are Apollonian of several Ising models on the AN, and present a thorough
networks(ANs), the simplest of which is illustrated in Fig. 1. discussion regarding, on one hand, some of the details of the
This lattice can be defined based of the ancient problem ofgnsfer matrix(TM) methods and, on the other hand, the
filing space with spheres, first tackled by the Greek mathmgest important thermodynamic and magnetic properties.
ematician Apollonius of Perggl0]. In its two-dimensional The results we obtain qualitatively represent a class of
version, corresponding to the problem of the plane filled bymodels that has not yet been explored, being highly moti-
circles, the nodes of this network are defined by the positiongated by the recent development of complex networks.
of the centers of the circles, while edges are drawn between e think the results discussed herein are quite relevant for
any pair of nodes corresponding to pairs of touching circleghe understanding of the behavior of magnetic models on
[11]. The resulting network corresponds to the contact forcgattices where interactions among spins are not restricted to
network of the packing12]. ANs can also be used to de- thejr immediate geometrical neighborhood. For instance,
scribe generically other scale-free situations, such as spacghey can be quite useful for the description of actual polydis-
filling porous medig 13] or the connections between densely perse packing of magnetic particles that occurs in tectonic
located cities, for which one is interested in fluid flow, cartayits since, as mentioned before, the network matches that
traffic or electric supply. Therefore, it is useful to study not of the contact forces. On the other hand, such lattices can be
only the geometric properties of ANs, but also transport and,seful for modeling several other magnetic systems with dis-
ordering on them. order and long-range interaction on a microscopic level, al-

In a previous pap€l4], we analyzed several of the AN's though such models might require the inclusion of more re-
properties. In particular, we have shown that it has smalljistic features not considered in the present study. The

results for spin models can be extended to discuss properties
of models for social interactions, e.g., those related to opin-
*Also at Institute for Computerphysics, University of Stuttgart, ion formation or voter decision, where the concept of neigh-
Germany. Electronic address: hans@ical.uni-stuttgart.de borhood is definitely not well described by regular lattices.
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(a) length. Results are discussed in Sec. IV, while concluding
remarks are presented in Sec. V.

II. ISING MODELS

The AN is constructed recursively. In each generation, it
incorporates a new set of sites, which correspond to the cen-
ters of the new circles added to the packing filling the holes
left in the previous generation. In the present work we con-
sider the lattice which starts with three touching circles
drawn on the vertices of an equilateral triangle, and the pack-
ing problem is restricted to filling the space bounded by
these three initial circles, as shown in Figa)l If n denotes
the current generation of the network, the number of sites
N(n) is asymptotically three times that of the previous gen-
eration; i.e.,N(n+1)=3N(n)-5, or N(n)=(3""1+5)/2. The
number of edges linking nodes increases witticcording to
B(n+1)=B(n)+3[N(n+1)—N(n)]. As a consequenceB(n)
=(3+3"/2, B(n)/N(n)— 3 in the limit of largen, so that on
average, each site is linked to six other sites, which is the
coordination number of the triangular lattice.

Once the AN has been defined, it is possible to define
many different models on it. In this work we focus on a set
of interacting Ising sping;=+1 placed on each site of the
network. Interactions are restricted to pairs of spins placed
on nodes linked by edges, as described in Sec. I. Thus, some
spins placed far apart may interact, while pairs of spins
placed relatively close to each other might not. This can be
of interest to model special disordered systems that have in-

FIG. 1. Third generatiofn=3) of construction of the AN. In teractions of aII_ranges. L
(a), we show the optimal circles that define the network(h sites I_:or the packlrlg pr_oblem, _'t is important to calculate the
represented by squares, circles, and diamonds are introduced in tF%d"_JS of each circle(i,n), which depc_ends both on the gen-
first, second, and third steps of construction, respectively. Link$rationn as well as on the local environment; i.e., the gen-
represented by dotted, dashed, and solid lines correspond3p ~ €rations of the three circles that it touchesy(i k), k
m=3, 2, and 1 in Eq(1) or n=1, 2, and 3 in Eq(8), respectively. =1,2,3. It ispossible to include this dependence into the

) o magnetic model, by defining coupling constarits local

_Several choices for rqles defl_nlng t_he values of the CoUfields depending on the distance between nodes; i.e.,

pling constants are considered, including both ferromagneng[n,i .no(i,})]. We restrict ourselves, however, to a simpler

(F) and antiferromagnetidAF) interactions. As will be alaEituation, where the coupling constadtenly depend on the

ShOW”' we found_long—range magnetic.ordering fqr almost eneratiom at which the edge was introduced into the net-
choices of (_:c_Jupllngs without any noticeaple e\{ld_ence of work. In Fig. 1b) we illustrate the first three steps of the
phase transition to a paramagnetic phase at a finite tempergs . ction of the model
ture. For particylar choices of F and AF bonds, .the geometry To have a physically inieresting model, it may be reason-
?rf Erenr:/‘vaittvr\]li?\ rk Ilndudc<|as the pfreiengg r?f rcnobmfe?tlci)tn andi\fir:SébIe to choose values far that increase witm. Indeed,
rige(:o residuz:I zi?ro Oogr?doc:ano es inutheiocr)reslateigﬁgl]en ?ﬁNhenn increases, the average length of the edges introduced
The behavior of this p)(Jantit desgerves a detailed discuss?orllh that generation decreases and, as the spins get closer, we
4 y might expect that the interactions among them become stron-

filgn'tgr?l'nt%rt%gittéﬂiggr;frsc:g'mlgng's tgisgssrts-é?jn%e;grrﬁilg er. However, to avoid the divergence of the energy within
y y ' he lattice, it is necessary to renormalize the value ofall

Wa%/'rfgrsrggllgniit\ll;r?;zggl?not?l:?ll\?_tfcr)eiI!)atit::(gaiggiructure ca as n increases. To accomplish this, we defidgy, m
polog =1,... n as the value of the constant introduced in thifa

be explore_d in the analysis of physical models_by _the use %generation, when the lattice has been built up taitsgen-
mathematical methods based on the renormalization of cou=

; . . . e;ation, and require thal, ,, decreases witm—m. A suffi-

pling constants or physical properties at successive stages . '
; . iently general choice would be

construction of the model. Moreover, the very precise results
obtained for such models are complementary to results fol- (=1)MJ,
lowing from simulations for disordered models. nm= (N-m+1)® 1)

The rest of this paper is organized as follows: in Sec. Il
we discuss our models. In Sec. Il we obtain the maps for thavhereJy may have ferromagnetic>0) or antiferromagnetic
free energy and its derivatives, as well as for the correlatiori<0) character, the exponentcontrols how the interactions

056131-2



MAGNETIC MODELS ON APOLLONIAN NETWORKS PHYSICAL REVIEW Er1, 056131(2005

decay with the difference—m, and yields a possibility of =2,3,4,...,should be written in terms of a singlex2
choosing the interactions according to the generation atM’s M,, with the same distribution of matrix elements as
which they were introduced. M;. Moreover, the matrix elements &, should be written
One of the extreme situationa=0, corresponds to equal in terms of those of the matrices of the lower generation
interactions along all edges in the network. On the othen-1 only. This turns out to be feasible since the Apollonian
hand, in thee— o limit, the model contains only finite in- lattice, in a generatiom+1, can be decomposed into three
teractions for the subset of edges that were introduced in thaublattices, each one of them being a deformed lattice of
last generatiom, as illustrated in Fig. (b). The number of generatiom. Since the coupling constants do not depend on
these surviving bonds is given B(n)-B(n-1)=3""1, so  the actual distance between the sites, each of the three sub-
that the average coordination number is reduced to foulattices entails the same coupling constants and magnetic
Moreover, the lattice is then composed by four-sided poly-structure as the-lattice. Thus, a matriM,; can indeed be
gons, so that competition and frustration due to the presenoaritten in terms of three matrice!,. To achieve this we

of antiferromagnetic bonds can never occur in thiBmit. remark that, in any generation, the three sublattices share
To close this section, we write down the formal Hamil- their three outmost sites, which we labeligg k, and¢. This
tonian of this model: last one occupies the geometrical center of(tirel) lattice.

_ Mn+1 €can be then defined using
Ho==-2 Jjs8-hX s, )

@i.)) i (Mpsd)ik= E (Lo)ije(Lo)i ek(Likjes (5
where all pairs of nearest neighbors denoted(iy) are I
defined according to the construction rules of the networkand
and the constanty ; must be chosen from the set defined in .
Eq. (1) according to the value ah in which the edge was (LosDijk = 2 (Lo je(Lo)i (L je- (6)
introduced. We also include a constant magnetic field ¢
which allows for the evaluation of magnetic properties. The  As one can easily observe by direct evaluation of Egs.
notation in EQ(Z) does not include the selection of the and (6), all matricesMn and L, share the same matrix ele-
bonds that are taken into account. The evaluation of a partiment distribution a#1, andL,. Thus, it is possible to imme-

tion function can in fact be set up in very proper termsdiately write down recurrence relations for the elements of

through the transfer matrix formalism. L.+, in terms of those of, as
Cre1=Co+ 03
Ill. TRANSFER MATRIX AND RECURRENCE n+1 = bn ™ Yns
RELATIONS )

— 2 3
. . . . dn+]__ Cndn + dn1
The numerical evaluation of the partition function for

magnetic models on scale-invariant graphs with a finite numfrom which the elementsy,.;=Cps1+0dn; and bp,;=2d,41

ber of end nodes has been performed with the help of TMcan be obtained.

derived maps for a large number of lattices and models. The However, a direct evaluation of the matrix elements de-
problem in which we are interested in this work is also suit-fined by the Eqgs(5)—(7) shows that they do not exactly
able to be analyzed within this framework. For the sake ofdescribe the interactions between the sitesid k. For in-
simplicity, let us first consider the homogeneous cas®, stance, in the generatiorr 2, the number of magnetic bonds
and seth=0. If we consider the first generatian=1, we is equal to the number of edg&n=2)=6. On the other
observe that a 2 TM M, which takes into account all hand, we see that the Boltzmann weightdlpare expressed
interactions between the siteandk of Fig. 1, can be written by combinations of exBrlyexp(-Bsd), with r+s=9 in-

as stead ofr +s=6. This is due to the fact that each one of the
a b a(a+ b?) al? interactions between the siteand its neighbors, j, andk
M, = ( 1 1) - ( ) (3)  appears twice in Eq5). To describe the thermodynamics of
b, a; 2ab? a@+b? )’ the system with the help of Eq&5)—(7), it is necessary to

carry out a small correction, namely, to redefmm@ndb as
a=b t=exp8Jy/2). With this modification, the Boltzmann
¥veights in each element are expressed by exponentials of
B(r—s)J,, wherer+s=B(n)-3/2. Thus, for each spin con-
figuration, the ratio between the correct energy and that one
provided by Egs.(5) and (6) is roughly proportional to
[B(n)—3/2]/B(n), which —1 in the limit n— .
(Cl d, d; dl) ( a3 ab? ab? abz) These definitions are sufficient for only the uniform inter-
1= d d d ¢ “\ap? a? a? ad /) ) act|o.n modela:_o. Further modifications in Eq$5)—(7) are
required to obtain the correct maps for generalo cast this
Of course, we note that; =c,+d; andb;=2d,. into a single recurrence relation, we first note that it is not
Within the proposed framework, all interactions betweennecessary to use two labetsand m to insert the correct
the sitesi and k, for any higher-order generations  coupling constants inthl,. As these matrices are recursively

where a=b™*=exp8Jy). M; can be used to describe one
single cell or a linear chain of triangles that are connected b
their bases. It is also possible to define a2 TM L., that
describes the interactions among sitef andk, where the
column labels« are composed from the pdir, k) according

to the lexicographic order, i.ex=2(j —1) +k, according to
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defined, the largest and most abundaptcorresponds to the IV. RESULTS
constant introduced intd,, which is reproduced in ever

growing number by the successive use of equations(bke o
and (6). On the other hand, the smallest and least frequen‘ll’rgy f, .the.entropys, the specm(; heat, the spontaneous
magnetizationrm, and the correlation lengt, as a function

Jn1 represents the constant that is inserted into the sequenc -
of TMs exactly at thenth generation. Thus, we consider of the temperaturd, as shown in Figs. 2-5. They were ob-

tained by numerically iterating the set of maps shown in the

(1), Appendi>*<, starting withT dependent initial conditions, until
Jhm—In=——,- (8) a valuen'(T). This temperature dependent value is set auto-

(n-1) matically, by requiring that onéor a set of the intensive
quantities and/or the correlation length, have converged to a
requires one to explicitly set =0, andJ, ., — J,,. This strat- fixed valye., within a prel\S/ioust established relative to!er-
egy is necessary to avoid taking into account more than onc@"ce: This is usually-10", as we work with double preci-
the effect of bonds introduced wher 1, and it is somehow  SION variables. Convergence based only on the valdeaofi

equivalent to the redefinition af andb discussed above.  ItS derivatives is much faster than fér specially when the
We then modify Eqs(5) and (6) according to system is in the ordered phase. Otherwise stated, if we call

n;(T),x:f,s,c,m,g, the value ofn at which the functiornx
o N ' ty . _ has converged for that particular valueTgfthen we find that
(Mn+1)|,k—L2€ (Ln)|,]{Z(Ln)l,ek(Ln)k,J(f(CnL,€(Cn)€,](cn)€,k n;(T) always assumes the Iargest value.
9) In Figs. 2a-2(d), we show the entropy, the specific
heatc, spontaneous magnetizationh=0), and correlation
and length ¢, for three distinct values of:, when all coupling
constants have ferromagnetic character; i&>0 and
(Losik= 2 (LoijelLo)i kL e(Co)i e(Co)e i (Cod e (+1)"in Eq.(8). The qualitative behavior does not depend on
T ' ' ' ’ ' ' the values ofa (0, 1, and«); i.e., whether interactions are
(10) only short(a— <) or long range«=0). For all cases we see
that, for low values off, long-range correlation sets in, as is
where the % 2 TMs C,, are defined by evident from the spontaneous magnetization and the numeri-
cal divergence ot. The remarkable feature, however, points
Pn On exp(BJ,) exp—-BJ,) to the absence of any criticality wheh is increased. The
Cn= >= exp- Bl)  expB,) ) (1) insert in Fig. 2b) shows that, wherv=0, m goes to zero
n Pn Bn Bn smoothly, as exp-T), with no evidence of a sharp transition

With these definitions, it is possible to observe that the numto m=0 at a well-defined critical temperature. If we consider
ber of nonzero coupling constants in the lattic®is)-3 so ~ «>0, we still find a smooth, but stronger, decay; namely, as
that, in then— = limit, Eqs. (8)~(11) accurately describe the M~ €XA=T"). The curve for the specific heat is also smooth,
thermodynamic properties of the model. The recurrencéhowing a typical Schottky maximum, again without any

maps for the matrix elements derived fr(ﬁm and(lo) read evidence of a diVergence, that would be eXpeCted for a usual
phase transition.

Cre1 = cﬁp§+ dﬁqﬁ, The results for the correlation lengd) are also distinct
(12) from those found for other scale-invariant models, as the
-~ (212 3 2 diamond hierarchical latticel9]. There, £ is finite for large
dn+1 Cndnann + dnann! : .
valuesT and numerically diverges for all values dfbelow

From Eq.(7) or (1)) it is possible to derive recurrence a well-defined critical valueT, which in our case means
maps for the free enerdy=-T In(c,+d,)/N(n) and correla-  attaining a value larger than ¥0the largest allowed number
tion length &,=1/In[(c,+d,)/(c,—d,)] at two subsequent in our algorithm. Within this region, the actual value reached
generationsf 1 =fri1(fn, & T) and &.1=&:1(fn, &4 T) can by &T), has no precise meaning. Typically it is much higher
easily be derived18,19. This set of maps can be increasedthan those in the disordered phase, and is also characterized
by working out explicit recurrence relations for the deriva- by the presence of random fluctuations. As mentioned be-
tives of f,(T) with respect to both the temperature and thefore, n;(T) is larger thann;(T),xzf,s,c,m, but even if we
magnetic field, obtaining the entroyT), the specific heat stop the iterations am;(T), ¢ has already reached this very
c(T), the spontaneous magnetizatiofT)=m(T,h=0), and  high plateau. This shows that it is not actually necessary to
the magnetic susceptibility(T,h=0). For this last purpose, proceed further with the iteration of the maps, as we would
we have to considen# 0 and insert it into the matriced,,. obtain only a meaningless vaIu*e fér
This modification breaks the up-down symmetry of the prob- In the present case, if we usg(T) to stop the iteration of
lem, so that the matricdd,, andL, have a larger number of the maps, we observe thgtdiverges at low temperatures,
distinct matrix elements. This is a straightforward procedureexpressing long-range order. Whéns increased beyond a
that has been carried out for other modgl$,19. In the  given value ofT", it converges to a well-defined value, sug-
Appendix we present the full set of recurrence maps used igesting the break of long-range correlation. However, if the
this work. iteration procedure is pursued to a valuern‘f>n;(T) we

We study the thermodynamic functions, i.e., the free en-

Note that the changes carried into the denominator of &q.
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FIG. 2. Thermodynamic functions for the ferromagnetic model. Solid, dashed, and dotted lines indi€atl, and=, respectively.

observe that theT interval in which ¢ diverges becomes

behavior has been reported for spin models on another scale-

larger. This finding has driven us to proceed with the iterafree lattice[17].

tion of the maps in a different way. We fix a value
n>n;(T=1), and iterate the maps until reachimgfor all
values within a largdl interval, as shown in Fig.(B). It is
then possible to precisely evaluate a critical valyén), as
the value ofT where the behavior of changes. In Fig. 3 we
show howT,(n) depends om, for several distinct values of
a. Our findings for this unusual kind of critical behavior
suggest a power lafy(n) ~n"®, with 7 going continuously
from 7(a=0)=1 to H(a=»)=1/2. Werecall that a similar

100

0.5

3.0

o0

100

In Fig. 4 we show that antiferromagnetic interactions
(Jo<0) change the thermodynamic behavior of the model.
The most interesting situation is observed &or0. All tri-
angles in the lattice are frustrated and, as expected, a residual
entropys,=0.222 is measured. This best numerical value is
smaller than that for the triangular lattisg=0.3238...[20],
and much smaller than that obtained for the Ising model on
the Sierpiski gasked;=0.493...(SG) [21-23.

At the same time, we find finite well-defined values for
for all values ofT, which are robust with respect to the value
of n where the iterations are stopped. This is illustrated in
Fig. 4(d), which also shows that, a§—0, ¢ decays like
exp(—=1/T), typical for the one-dimensional chain. This is a
somewhat unexpected behavior, as the presence of frustra-
tion usually does not allow for long-range correlation of spin
orientation, even atf=0 (e.g., the AF Ising model on the SG
[23]). At the same time, this result must be related to the
nonvanishing behavior for the magnetization, shown in Fig.
4(c). It indicates that the number of spins pointing in each
direction is not the same. Once again, this behavior is differ-
ent from that obtained for other frustrated lattices, like the
planar triangular lattice or the SG. Finally, the behavior of
the specific heat looks like those found whin>0, for any
value of a.

In Fig. 4 we also draw curves for the thermodynamic
functions whena=1, and~. In Fig. 4(c) we see that the
magnetization curve always saturates ratT— 0,h—0)

FIG. 3. Size-dependent critical temperature for distinct values=1/3. This indicates that, in this limit, the number of spins

of a.

pointing in opposite directions is not the same, as is the case
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for the triangular lattice, but stay in proportion 2/3 to 1/3 V. CONCLUSIONS

independent ofx. For some range of values af, m goes We have studied a family of Ising models on an AN using
through a maximunie.g., at(T,m)=(1.2,0.351] when @ the transfer matrix technique. On one hand we considered
=1, so that a reentrant behavior at low temperatures is olferro-magnetic and antiferromagnetic couplings and, on the
served. other hand, we generalized the interaction as being depen-
Let us also discuss how the presence of interactions witdent on the generation, in the sign as well as in the strength
different signs affects the behavior of the system; i.e., whemjuantified by an additional parameter
we take(-1)" in Eq. (8). As expected, the result depends on  For purely ferromagnetic couplings, we always find order
whetherJ,>0 or <0. In the first case, competition and frus- in the thermodynamic limit independent of which is in
tration give rise to residual entropy whesr¥0, as illustrated agreement with what has been found on other scale-free lat-
in Fig. 5a). However, we note that the value gfis smaller  tices[17]. Interestingly, the effective critical temperature at
(~0.152 than in the case of equal AF interactions. Thiswhich the correlation length diverges goes to infinity with
happens because not all triangular units are built by an odthe system size with a power law in the number of genera-
number of AF bonds, as we can easily see by inspecting thgons with an exponent that depends @nFor antiferromag-
first generations with the help of Fig(d). For«=0, we note  netic couplings we find a disordered phase for any finite
as well the presence of a double Schottky peak in the specifiemperature, but a diverging correlation lengthTat0. This
heat[Fig. 5(b)]. For a# 0 there is no remarkable difference latter observation is unusual as it does not appear, for in-
between the curves faror ¢ with respect to those obtained stance, on the Sierpinski gaskeg].
for interactions with the same sign. The results also show Considering the AN as a model for the connections be-
that the low-temperature magnetization saturates at the valuaeen cities as described in R¢iL4] our result can be ap-
m=7/9 only whena=0; otherwisem=1. plied to the formation of opinions wherein spin up means
Finally, whenJy<0 and alternating sign are considered, one opinion and spin down the other one. The results for the
no frustrated bonds and, consequently, no residual entropy ferromagnetic case implies that independent of the strength
found. The curves for the specific heat are also smooth likef the couplings between the cities as long as it is not zero,
all other cases. The magnetization curves saturate again tme single opinion will finally prevail.
m=1/3 asT— O for all values ofa. However, reentrant be- If the Appolonian network describes the force lines in a
havior similar to that found for some of the AF cases has notlense polydisperse packing with each particle having a mag-
been observed, so that the typical shape is that shown in Figietic moment, as is the case in tectonic fa[24], our result
5(c). for the ferromagnetic Ising model would imply that if all
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FIG. 5. Thermodynamic functions for the model with alternating ferro- and antiferromagnetic coupling, starting,with Solid,
dashed, and dotted lines indicatee0, 1, and= respectively, andy>0. In (c), three curves for the magnetization why¥ -1 and same

values ofa saturate atn=1/3 arealso drawn.

particles have a moment of equal strength, one always finds 3N, f, T
a spontaneous magnetization. TN, ——{3Ina,+In{l+32,8,2+5,)
Our calculations can be generalized to random couplings nrl n+l
(spin glass which, in fact, is work in preparation. One can +3Z[1 +2B,(1 + B,)?]
also imagine studying other more complex magnetic models +23(1+28)(2+B)3-6In2, (13)

on the ANs, such the Potts model, the XY model, or the
Heisenberg model, and one can also study the magnetic

properties of Apollonian packings of different topologies or _ 2
higher dimensions, and even the case of the random Apollo="*1 ™ Eil1+&(N{L + 30fn(2 + Bo) + 32{1 +260(1+ Bo)’]
nian packing25]. +Z2(1+28)(2+B,)%
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APPENDIX

The maps for the free energy and correlation length dewhere z,=(c,~d,)/(c,*+dn), an=Ppn+dn Bn=(Pn=0n)/(Pn

rived from Egs.(12) read +qy), andN,=N(n).

056131-7



R. F. S. ANDRADE AND H. J. HERRMANN PHYSICAL REVIEW E1, 056131(2005

[1] Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Lett. [13] J. A. Dodds, J. Colloid Interface Sc¥.7, 317 (1980.

45, 855(1980. [14] J. S. Andrade Jr., H. J. Herrmann, R. F. S. Andrade, and L. R.
[2] Y. Gefen, A. Aharony, Y. Shapir, and B. B. Mandelbrot, J. Silva, Phys. Rev. Lett94, 018702(2005.
Phys. A 17, 435(1984). [15] J. P. K. Doye and C. P. Massen, Phys. Rev.7E 016128
[3] A. A. Migdal, Zh. Eksp. Teor. Fiz69, 1457(1975. (2005.
[4] A. N. Berker and S. Ostlund, J. Phys. 12, 4961(1979. [16] G. Oron and H. J. Herrmann, J. Phys.38, 1417(2000.
[5] M. Kaufman and R. B. Griffiths, Phys. Rev. B4, R496 [17] A. Aleksiejuka, J. A. Holyst, and D. Stauffer, Physica340,
(19812). 260(2002.
[6] C. Tsallis and A. Magalhdes, Phys. Reg68 305 (1996. [18] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett.
[7] C. S. O Yokoi, M. J. de Oliveira, and S. R. Salinas, Phys. Rev. 50, 1870(1983.
Lett. 54, 163(1985. [19] R. F. S. Andrade, Phys. Rev. 9, 150(1999.
[8] J. H. Luscombe and R. C. Desai, Phys. Rev.3B, 1614 [20] G. H. Wannier, Phys. Rewr9, 357 (1950.
(1985. [21] M. P. Grillon and F. G. B. Moreira, Phys. Lett. A42 22
[9] B. Bonnier, Y. Leroyer, and C. Meyers, Phys. Rev3B 5205 (1989.
(1988. [22] R. B. Stinchcombe, Phys. Rev. B1, 2510(1990.
[10] D. W. Boyd, Can. J. Phys25, 303 (1973. [23] R. F. S. Andrade, Phys. Rev. B3, 16095(1993.
[11] H. J. Herrmann, G. Mantica, and D. Bessis, Phys. Rev. Lett[24] S. Roux, A. Hansen, H. J. Herrmann, and J.-P. Vilotte, Geo-
65, 3223(1990. phys. Res. Lett20, 1499(1993.
[12] R. Mahmoodi Baram, H. J. Herrmann, and N. Rivier, Phys.[25] T. Zhou, G. Yan, P.-L. Zhou, Z.-Q. Fu, and B.-H. Wang, e-print
Rev. Lett. 92, 044301(2004. cond-mat/0409414.

056131-8



