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Abstract

This article describes some geometric aspects of a class of affine connections in homogeneous
spaces, that emerged in an earlier paper by the authors, related to the geometry of statistical models.
We describe the geodesics as well some properties of the curvature of these connections.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The a-connections where introduced in the statistical literature in 19809[{s2k as
a differential geometric tool for studying parametric models. The idea was to refine the
classical concept of Fisherinformation, which is a Riemannian metric attached to a statistical
model. Both these geometric objects are defined by means of integrals over some measure
space, making them very hard to analyze by the standard differential geometric methods.
In [3] the authors consider a set-up, based on Lie group theory, in which it is possible to
take advantage of the symmetries and describe the possible affine connections in homoge-
nous spaces arising asconnections of the so-called transformational statistical models.
In particular, we were laid to consider invariant affine connections on symmetric spaces.
It was proved in[3] that only those symmetric spaces whose restricted root system are of
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type A; admit such connections which are different from the canonical Riemannian one. In
particular, the non-compact symmetric spac€/6[R)/SO(n) has a one-parameter family
of invariant connections, which at the origin= SQ(n) is given by

AB+ BA tr(AB
%AB=a< —; — ( )1,,>.
n

Here A, B € s, the subspace of the symmetric matrices with zero trace, which we identify
to the tangent space of &L, R)/SO(n) ato andl, is the identityn x n matrix. In[3] some
properties of these connections were already discussed. However, many questions related to
their geometry remained unsolved. The purpose of this article is to develop these properties
further.

Whena = 1 we denote the connection simply 8, B. This is the only case to be
considered, since for genekal# 0, the computations are similar. For this connection we
describe its geodesics Bection 2 Afterwards, inSection 3 we prove that the curvature
tensorR(A, B, C) and all its covariant derivatives belong to the subspace spannédbg
B. We apply this fact to prove the following properties¥of (i) the Ricci tensor is zero;

(ii) V is not compatible with any Riemannian metric.

Before starting, it is convenient to fix some notations, remind a few of the geometry
of the symmetric space $k, R)/SQO(n), more details on the subject can be seef#in
Write M = G/K = SL(n, R)/SQO(n), the symmetric space of the positive definite matrices
andsl(n, R) = so(n) @ s, for the Cartan decomposition of the Lie algebrag§iven by
splitting the tangent space at the originiat

The groupG acts transitively inM by g(hK) = (gh)K, and for eaclgy € G, the map
g : M — M defined forg(&) = g& is a diffeomorphism that satisfies:

() (A(®) = (Ad(g)(A))~ (g8), @)

where

~ d
A = a(eXD(tA)(é))lz=o,

and Ady) : sl(n,R) — sl(n,R), g € G is the adjoint map. Still in relation to the Lie
algebra ofG, we know that the roots a&fi(n, R) relative ath, Cartan subalgebra formed for
the diagonal matrices of trace zero are given by

(X — M) (H) = (H, Eii — Ex) = tr(H(Eii — Ew).

foreachi £ k,i,k =1, ..., n, whereEj is the basia: x n matrix whosek entry is 1 and
all the others are zero.

2. Geodesics

Using a geometric characterization of theonnections, made 8] we shall obtain here
a description of the geodesics for tlaeconnections in the symmetric spake= G/K of
positive definite matrices.
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The a-connections for a models considered here have ageometric interpretation which
were described if3]. Let S be the vector space of all symmetrick n matrices. We have
thats = {A € S: tr A = 0} is a subspace of codimension oneSptomplemented by the
line spanned by the identity 1. The trace forrgAB) an inner product os. With respect to
this inner product the line of scalar matrices is orthogonal /e denote byS* the cone
of the positive semi-definite matricesh

There is a natural action of @l, R) on S given by the law

(g, A) — g-5s=0Ad",

whereg* means transposition of matrix. The induced infinitesimal actiosi@f, R) on S
is given by the derivative

d «
— (%) =Xs+sX
dr

t=0

EachX e sl(n, R) induces the linear vector field
X(s) = Xs+ sX

If a-1,a # 0is a scalar matrix it§ then its orbitO(a) under Sin, R) is the subset of
matrices with determinant® which are positive definite iz > 0 or negative definite if
a < 0. Sinceg(a - 1)g* = a - 1if and only if g is an orthogonal matrix, it follows that
O(a), a # 0, identifies with the homogeneous spac@ 3R)/SO(n, R). These orbits have
codimension one i, and the tangent spa@g; O(a) is the subspace of matrices with trace
zero. Note that the line of scalar matrices complem&pt®(a) in S. Similarly, one checks
easily that

S =T,0(a) @[], ¥

where ] stands for the line spanned by O(a). From this decomposition we obtain the
following connectionv on O(a):

(VxD)(s) = pry((@Y)s(X(5))). ®3)

Here pr, : S — T;O(a) is the projection coming from the decomposition®), andX, Y

are vector fields ifO(a) with Y viewed as a mapping : O(a) — S so that(dY), stands

for its differential ats. The definition ofV is analogous to the Levi—Civita connection

of the Riemannian metric induced in an immersed submanifold of an Euclidean space.
However here the projection is not orthogonal with respect(#@By, since the line{™1]

is orthogonal tdI;O(a) so that pg is orthogonal if and only i = a - 1. Each orbitO(a),

a # 0 is diffeomorphic to Sk, R)/SQO(n, R). Hence we have a family of connectiowé

in Sl(n, R)/SQO(n, R). It was checked ifi3] that V¢ is aa-connection for each.

In discussing geodesics we simplify matters and take 1. The other cases follow
analogously. Thus we consider the or8it1) and putv = V<. Due to invariance it is
sufficient to find the geodesics going through the origin. £et s(r), dets = 1, be a
geodesic oV. ThenV;s = 0 and therefore by the above descriptiorMothe projection of
5 is annihilates. This means that= esfor some constart. We compute this constant by
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taking the second derivative of the equality det 1. Using a well known formula for the
derivative of the determinant we get

tr(s~1s) dets = O,

hence tts—15) dets = 0. Taking another derivative and using )’ = —s1ss~1, we get
(—tr(s Y557 15) + tr(s15)) dets + tr(s—L5)% dets = 0.

But tr(s—15) = 0 and dets) = 1. Hence
tr(s— L) = tr(s Lis~L§).

Now, § = es so that tts~1§) = etr(1) = ne Therefore, the equation satisfied by the
geodesics through the identity is

LotrsT s )
§=——"5

n

(4)

Since this equation looks hard to integrate explicitly we shall give a geometric description
of the trace of the geodesics, and then write down a reparametrization of them.

Proposition 2.1. The traces of the geodesicdfin S; are the subsets
S1NYy,

whereV C Sis a twadimensional subspace which has non-empty intersectionSyith

Proof. We check firstthab, NV is a curve, that is, a one-dimensional submanifold in case
the intersection is not empty. In fact, denoted®yhe restriction tov of det. ThenP is a
polynomial function orV. Takes € S1 N V. By the well known formula for the differential

of det

dPs(s) = d(deb(s) = tr(ss™t) det(s) = n # 0.

This shows that every e S; NV is a regular point oP. Now, S1 N V is a connected com-

ponent of a level set aP. Hence the intersection is indeed a one-dimensional submanifold.
Next we verify thatS; NV can be entirely parametrized by a cus¢® such that its second

derivatives is a multiple ofs, and hence satisfi€y. (4) For this letV de be the connection

S1NV defined analogously t@ by projecting onto the tangent space along the line spanned

by s € S1 N V. Note that this is possible becausk ) # 0, so that the line spanned by

is transversal to the tangent spaceSein V ats. Now, lets : (o, w) e R - S1 NV be a

geodesic of. Theni(r) is a multiple ofs(z) for all ¢, by definition of V. Hence s satisfies

(4), so that it is also a geodesic ®f The trace of this geodesids the wholeS; N V. In

fact, suppose that lim,,s(f) = s € S1 N V. Then by the usual argument we can extend

s with a geodesic going through,,, concluding the proof. O

Now, we shall obtain parametrizations of the geodesic cu8yes/. We restrict attention
to those subspacéscontaining the identity 1, having in mind that the other subspaces are
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obtained by translation. In fact, if the two-dimensional subspaoeeetsS;, then for some
g € Sl(n, R), gV contains 1, and we can use the equality

¢g(S1NV) =S NgV.

Thus letV be such that & V and dimV = 2. As before let be the subspace of matrices
with zero trace. Then there exists € s such thatV is spanned by{1, A}. If we take
conjugation by an element of $Q R) we can assume that is diagonal, that is

A =diag{xs, ..., x4},

with x1 + - -+ + x, = 0. In this cas&; N V becomes the subset of diagonal matrices
diag{txy + s, ..., X, + s},

satisfying
txg+s8)--- X, +5) =1, tx;,+s>0. (5)

To get a parametrization of this curve note that the matrices
. 1 1 1
diag] = +txq, ..., =+t ¢, =+t >0,
n n n

belong to the interior of the simplex

A={(y1,...,y) 1 +-+yw=1 y >0}
On the other hand, the mdps, ..., y,) €intA

. 1
()’17 "-syn) S IntA = —()’lvu-,Yn),

YL Yn
is a bijection betweert and the set of diagonal symmetric matrices with get. Thus a
parametrization of our curve is given by
1
t >
A+ ) (T4 %)

Its domain is the largest interval such that 1x; > 0 for all i. At this point we re-order if
necessary the basis so that the matrix diag(xy, ..., x,) satisfiescy > - .- > x,,. In this
casex; > 0 andx, < 0 and the domain of definition of the above parametrization becomes

1 1
x1° x, /)

Now we use the parametrizati@fl) to write down some further equations related to the
geodesic of the given curve. Another parametrizatiai®pi obtained by writing = ¢ (u).

The reparametrization is a geodesic if and only if the second derivative is a multiple of the
curve. Thus we write(u) as

(L+1tXq, ..., 14+ tx,). (6)

1
s = E(1+¢X1,.-.,1+¢xn),
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whereR = /(1 + ¢x1) - - - (1 + ¢x,,). In order to perform the computations we write

li = Iogsi,
wheres;, i = 1, ..., n are the coordinates of We have
/ ” /N 2
S k¥ k¥
/
=4, l'=L_ <—’> : ()
Si Si Si

Now the conditions = csfor s to be a geodesic means théys; is independent of the
indexi. By the expression§) this happens if and only i’ + (1;)2 does not depends on
i=1,...,n. Astraightforward computation yields:

o [; =log(1+ ¢x;) — %(Iog(l + ¢x1) + -+ - + log(1 + ¢xy)),

, , X; 1 X1 Xn
*G= <1+¢xi‘2(1+¢x1+“'+m>>'
.l{/=¢//< Xi _}( Y ))
! 1+¢x; n\1+¢x; 1+ éx,
"2 xi2 1 x% xﬁ
e <_<1+¢x,~>2+2<<1+¢x1>2+”'+<1+¢xn)2)>’

)2 = @) X _2_x ( T L )
* W= T en?  alaen \Txem T T 1xom,

+1 X1 n n Xy 2
n2 \ 1+ ¢x1 1+ ¢x, '

Looking at these expressions we see that the terfh-sf(//)2 which depends explicitly on
i is given by

Xi , 2% m Xn
1~|—¢xi<¢_ n <1+¢x1+”'+1+¢xn>>'

Therefore the reparametrizatignturns the curve into a geodesic if and only if it satisfies
the second order differential equation

2
¢//:2(¢) < X1 NI Xn ) @)

n 1+ ¢x1 1+ ¢xy

Taking logarithms this equation is written as

2 /!
(log¢))' = <; log(1+ ¢x1)--- (1 + ¢xn)> .

Hence(8) is equivalent to

¢ = ((L+¢x1)--- (14 dpx)?" +c, (9)
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where the constamtaccounts for the initial condition in the second derivativ€gh If we
choosep so thatp(0) = 0 and¢’(0) = 1 we arrive at the equation for the geodesics.

Proposition 2.2. The geodesics of the connection= V1/4 starting at the identity matrix
1in the direction of the matrix

A =diag{x1,...,x;}, x14+---+x, =0,

is given by

y(u) = A+ ¢)x1, ..., 1+ @u)xy),

1
@' (u)
whereg is the solution of the first order differential equation

¢ = (L4 ¢x1) - (L+ ¢x)?",
with ¢(0) = 0.
It is convenient to make the following remark about the domain of definition of the
first orderequation (9) first if somex; = 0 then theith term does not appear, hence
we assume that; # O for everyi. In this case the equation is not Lipschitzgnwhen

¢ = —1/x;. Therefore, if we take1 > --- > x,, the domain of definition of the equation
is (—1/x1, —1/x,), which is precisely the domain of the original parametrization.

3. The curvature tensor

Given a differentiable manifold/ with an affine connectiolR’, atensor of the typé, s)
is a map

T:x(M) x - x x(M) - x(M) x ---x x(M),

rx §X

that is linear in each componegtM) considered as module arf (M). The covariant
derivative ofT’, VT is the tensor of typér + 1, s) defined by

(VD(A1, ..., A)) =(VaT)(Aq, ..., A)) = Va(T(Ag, ..., A}))
=) T(A1....Vadi, ..., Ap),
i=1
for A1, ..., A., € x(M). Thesecond covariant derivative df, V2T = V(VT) is then a
tensor of the typér + 2, s) given by

(V*T)(A1..... A, B) = (VB(VD))(AL. ..., Ap),

A1, ..., A, B € x(M).Ingeneral, the:th covariant derivativeV" T is inductively defined
by V(vV"—17).
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Now, using the usual formula for the curvature
R(A, B,C) = V4VBC —VpVsC —Via gC, A,B,Ces,

a direct computation yields faR(A, B, C) the following expression

%(tr(AC)B —tr(BOA +tr([A, B]O)I,)) — C[A, B].

[A,B]C

Note that if we restriciR to the totally geodesic submanifold of the diagonal matrices of
M, then

R(A, B,C) = %(tr(AC)B —tr(BO)A). (10)

Our next objective itis enough to compute the covariant derivativ@srothis submanifold,
thatis, we wantto computé” R(A, B, C),for A, B, C € . For this we introduce the tensor
of the type(r, 0), 7, : s x - - - x § - C*°(M), defined by

T.(A1, ..., Ay) =tr(Ag--- A)).
An easy computation shows that

VT (A1, ..., Ary1)

1 .
= —1Tria(Ar, o Ad) + - 3 (T @ T 1) (Ais Argt, Av, o, Ai, A,
i=1
Also, if we putS(As, ..., Ay, Arp1) = Tr(A1, ..., Ar)Ar41, then we get
(VT)(A1, ..., Ar, Apr2)Arr1 = (VS (A1, ..., Art1, Arg2).
Using these notations we arrive at the following formulas:

e R(A, B,C) = (1/n)(T2(A, C)B — To(B, C)A).
e (VR)(A, B,C, D) = —(2/n)(T3(A, C, D)B — T3(B, C, D)A).
e —(n/6)(V2R)(A, B, C, D, E) is given by

{<T4 - iU> (A,C, D, E)} B+ {<T4 — iU) (B,C, D, E)} A,
3n 3n

whereU(A, C, D, E) is the tensor
T2(A, EYT2(C, D) + T2(D, E)T2(A, C) + T2(C, E)T2(A, D).
We can proceed successively and compute the covariant derivatives of any order. We

shall refrain ourselves to develop a general formula for these derivatives. But it is clear
from these formulas that the following statement holds.

Proposition 3.1. If A and B are zero trace diagonal matrices then the covariant derivatives
V" R belong to the subspace spanned by A antbBall m € N, whereVOR = R.
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In the sequel we shall obtain some applications of the formulas obtained so far.
First let us consider thRicci tensor For a general connection this is tf& 0)-tensor
defined by

Ric(A, B) =tr(C+— R(A,B,()), A,B,C e x(M).

In our case ifA, B, C € s then the magC — R(A, B, C) is an element ofl(s), having
trace zero. Hence, Rie 0.

As a second application we ask weather there exists a Riemannian getrgpatible
with the affine connectiol¥. Recall that this holds if

AQ(B, C) = g(VaB, C) +g(B,V4(), A, B,C e x(M).

It is known that for a connection compatible with a given metric, the Lie algebra of the
holonomy group in a point of the manifold is a subalgebraagf:) (se€[5]). On the other
hand, such Lie algebra is spanned by

(V"R)(A, B,C1,...,Cp), A, B, Cq,...,Cphex(M), m=0,1,2,...

We shall use these facts to prove tRais not compatible with any metric.
For this choose&, B, C, D, E € h satisfying t(BC) = tr(BE) = 0, DB = A. Then by
Proposition 3.1we have

(VR)(A,B,C,D),E) =((VR)(A, B, E, D), C).

Equivalently,(VR)(A, B, C) is a non-zero self-adjoint operator bf Hence, it has real
eigenvalues, showing that this operator cannot belorg(o. This is enough to prove that
V is not compatible with a Riemannian metric.

We note that by(10)

(R(A, B,C), D) = (C, R(A, B, D)),

thatis,R(A, B) € so(n), so that we in fact need the covariant derivative of the curvature.
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