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Control With Friction Compensation on an

Omnidirectional Mobile Robot
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and Edson Roberto de Pieri

Abstract—This paper presents and discusses the implementation
results of a model-predictive control (MPC) scheme with friction
compensation applied to trajectory following of an omnidirectional
three-wheeled robot. A cascade structure is used with an inverse
kinematics block to generate the velocity references given to the
predictive controller. Part of the control effort is used to compen-
sate for the effects of static friction, allowing the use of efficient
algorithms for linear MPC with constraints. Experimental results
show that the proposed strategy is efficient in compensating for
frictional effects as well as for tracking predefined trajectories.

Index Terms—Friction, mobile robots, modeling, predictive
control.

I. INTRODUCTION

IN recent years, great interest has been shown in the ap-
plication of advanced control techniques to mobile robots.

There are many types of mobile robots, such as fish robots [1],
one-wheeled pendulum robots [2], humanoid robots [3], trident
snake robots [4], and omnidirectional robots [5]. Omnidirec-
tional robots stand out in these applications because they are
capable of moving in any direction without the need to reorient
themselves, which gives them better maneuverability compared
to nonholonomic robots with, for example, the Ackerman or
Differential configurations [6].

Model-predictive control (MPC) techniques are commonly
applied to trajectory following with mobile robots, as in [7],
where the problem was solved for terrestrial autonomous ve-
hicles and in [8], where closed-loop stability was analyzed for
nonholonomic robots, but without considering friction effects
and using nonconvex optimization, as in [9], where the tra-
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jectory tracking problem was solved for a four-wheeled om-
nidirectional robot model using nonlinear MPC, considering
a static friction model. In the same scenario, a methodology
using linear matrix inequalities (LMIs) was proposed in [10],
where the stability of the closed-loop system is guaranteed, but
at a relatively high computational cost of complex optimization
algorithms.

These techniques have been expanded to include obstacle
avoidance [11] and several motion mechanisms [12]. The con-
cept of prediction is ideal for applications with known future
references. The main advantages of predictive control, which is
more commonly used in industry, compared to classical control,
are that it works better with multivariable problems, it considers
constraints on the input and the state explicitly in its formulation,
and it has better robustness characteristics adapting well to dis-
turbances, nonlinearities, and modeling errors due to the moving
horizon scheme [13]. Traditional controllers, like proportional
integral derivative (PID), are not capable of compensating for
frictional effects and cannot work with constraints [13].

The application of MPC requires a precise model of the sys-
tem. Nonlinearities are always present in reliable models of
mobile robots mainly due to the effects of friction. Various
friction models have been proposed in the literature [14], [15].
Dynamic models are able to capture some friction phenomena
better than stationary models. On the other hand, it is generally
difficult to identify the parameters of such models [16]. In ad-
dition, the models are very complex and consequently require
complex control methods [17].

Many authors have addressed the problem of friction com-
pensation, using model-based as well as non-model-based tech-
niques [15]. The model-based techniques can use fixed friction
models, identified offline [18], or adaptive algorithms which es-
timate the friction parameters online [19]. Even though the later
allow adaptations to changes in the robot environment, their im-
plementation is much more involved because some conditions
on the excitation of the system have to be met in order to assure
the correct estimation of the parameters, and many sensors have
to be used to provide the necessary information [19]. Most of
non-model-based techniques are based on modifications of PID
controllers in order to cope with the nonlinear effects of friction.
In addition to not requiring a precise model, these techniques
have the advantage of compensating for other phenomena than
friction, such as disturbances. However, their implementation
can also be very involved and the integral action can cause limit
cycles if not properly designed.
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Fig. 1. Coordinate systems and geometric parameters.

In this paper, a static friction model for a three-wheeled om-
nidirectional robot is used, which takes into consideration the
frictional forces related to the velocities of the robot center
of mass. The parameters of the friction model are estimated
using the methods proposed in [20] for a four-wheeled omni-
directional robot. The proposed control strategy uses a cascade
structure with an inverse kinematics block which generates the
velocity references to be sent to the predictive controller. Then,
part of the control effort is used as compensation for static fric-
tion, in a sort of feedback linearization strategy, which allows
the use of efficient constrained linear MPC algorithms. The ex-
perimental results show that the proposed strategy is efficient
in compensating for the friction effects, as well as in tracking a
predefined trajectory.

This paper is organized in the following sequence. In
Section II, the robot nonlinear model is presented. In
Section III, the development of the MPC with friction com-
pensation is shown. In Section IV, the experimental results are
presented and discussed. Finally, the conclusions are presented
in Section V.

II. ROBOT MODEL

A. Robot Kinematics

Using the robot coordinate system geometry shown in Fig. 1,
the robot kinematic equations of motion can be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

dxr (t)
dt

dyr (t)
dt

dθ(t)
dt

⎤
⎥⎥⎥⎥⎥⎥⎦

= RT
o (θ(t))

⎡
⎢⎣

v(t)

vn (t)

w(t)

⎤
⎥⎦ (1)

where the orthogonal rotation matrix Ro(θ(t)) converts from
the earth coordinate system to the robot coordinate system and
vice versa

Ro(θ(t)) =

⎡
⎢⎣

cos(θ(t)) sin(θ(t)) 0

−sin(θ(t)) cos(θ(t)) 0

0 0 1

⎤
⎥⎦ . (2)

The robot pose is represented by the vector [xr (t) yr (t) θ(t)]T

that describes the location of the robot in the earth coordinate
system and the angular difference between the coordinate sys-
tems. The orthogonal components v(t) and vn (t) of the linear
velocity, and the angular velocity w(t) of the robot are repre-
sented by the vector [v(t) vn (t) w(t)]T .

The relationship between the robot wheels’ angular ve-
locities (wmi

(t), where i = 1, 2, 3) and the robot velocities
(v(t), vn (t), w(t)) is given by

⎡
⎢⎣

v(t)

vn (t)

w(t)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
r2
√

3
3

−r3
√

3
3

2r1

3
r2

3
r3

3
r1

3b

r2

3b

r3

3b

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

wm 1 (t)

wm 2 (t)

wm 3 (t)

⎤
⎥⎦ (3)

where b is the distance between the robot center of mass and the
wheels, and ri is the radius of wheel i.

B. Robot Dynamics

The omnidirectional mobile robot model was developed
based on the dynamics and the kinematics of the robot base
and on the dynamics of the DC motors. This model is used to
predict the future robot positions and orientations and takes into
account elements such as saturation and friction. In this paper,
a static friction model (coulomb and viscous friction) is used
to represent the composition of the forces acting on the robot
center of mass. The coulomb friction is proportional to the load;
therefore, the friction between the robot and the ground surface
is modeled as coulomb friction. The viscous friction force is
caused by the viscosity of lubricants and is assumed to have a
linear relationship with the velocity [21]. From the coordinates
defined in Fig. 1 and Newton’s second law, the equations relat-
ing translational and rotational forces acting in the robot can be
written as

Fv (t) − Bvv(t) − Cv sgn(v(t)) = M
dv(t)
dt

(4)

Fvn
(t) − Bvn

vn (t) − Cvn
sgn(vn (t)) = M

dvn (t)
dt

(5)

Γ(t) − Bw w(t) − Cw sgn(w(t)) = In
dw(t)

dt
(6)

sgn(α) =

⎧
⎨
⎩

1, α > 0

0, α = 0
−1, α < 0.

Here, Fv and Fvn
represent the force vectors in the robot

coordinate system, and Γ represents the momentum about the
robot center of mass (point P ). M is the mass of the robot,
and In is the inertial momentum. The viscous forces and
torque are represented by Bvv(t), Bvn

vn (t) and Bw w(t), and
the coulomb forces and torque by Cv sgn(v(t)), Cvn

sgn(vn (t)),
and Cw sgn(w(t)). The relationships between the robot traction
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TABLE I
MODEL PARAMETERS

forces and the wheels’ traction forces are given by

Fv (t) = cos(δ)(f2(t) − f3(t)) (7)

Fvn
(t) = −f1(t) + sen(δ)f2(t) + sen(δ)f3(t) (8)

Γ(t) = (f1(t) + f2(t) + f3(t))b. (9)

The traction force on each wheel i (with i = 1, 2, 3) is given
by

fi(t) =
Ti(t)
ri

(10)

where Ti is the wheel’s torque. The DC motor dynamics for
i = 1, 2, 3 can be described by the following equations:

ui(t) = Lai

diai
(t)

dt
+ Rai

iai
(t) + Kvi

wmi
(t) (11)

Ti(t) = liKti
iai

(t) (12)

where ui are the armature voltages, Lai
are the armature in-

ductances, Rai
are the resistances, li are the motor reductions,

wmi
are the rotors’ angular velocities, and iai

are the armature
currents. The motors parameters, geometric parameters, and the
estimated parameters are presented in Table I.

C. State-Space Representation

Writing the model equations in state-space form gives

ẋ(t) = Ax(t) + Bu(t) + Ksgn(x(t)) (13)

y(t) = Cx(t) (14)

where the vector u(t) = [u1(t) u2(t) u3(t)]T is the control
input and the vectors y(t) = x(t) = [v(t) vn (t) w(t)]T are the
output and the state variables of the system. Considering l =
l1...3 , r = r1...3 , Ra = Ra1 . . . 3 and Kt = Kt1 . . . 3 , the simplified
state-variable-form matrices defining this system are

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

− 3l2K2
t

2MRa r2 − Bv

M
0 0

0 − 3l2K2
t

2MRa r2 − Bvn

M
0

0 0 −3b2 l2K2
t

JRa r2 − Bw

In

⎤
⎥⎥⎥⎥⎥⎥⎦

v(
m

/s
)

time(s) voltages

v(
m

/s
)

(a) (b)

Fig. 2. Model and robot velocities. (a) Linear velocity v, with u1 = 0, u2 =
3V and u3 = −3V . (b) Dead-zone effect.

B =
lKt

Ra r

⎡
⎢⎢⎢⎢⎢⎣

0
cos(δ)

M
− cos(δ)

M

−1
M

sen(δ)
M

sen(δ)
M

b

In

b

In

b

In

⎤
⎥⎥⎥⎥⎥⎦

K =

⎡
⎢⎢⎢⎢⎢⎣

−Cv

M
0 0

0 −Cvn

M
0

0 0 −Cω

In

⎤
⎥⎥⎥⎥⎥⎦

, C = I.

Analyzing (13), one can observe that the nonlinearity lies in the
Ksgn(x(t)) term.

In static friction models, the friction depends only on the
current velocity value. Other friction phenomena can be cap-
tured only by dynamic models [21]. The performance of the
proposed strategy depends on the model performance. Fig. 2
shows experimental results and simulations to demonstrate the
efficacy of the proposed modeling, where the solid curve repre-
sents the model velocities and the dashed curve represents the
robot velocities. The parameters of the model must be estimated
in advance; in this study, the robot environment has a carpet on
the floor, similar to those used in RoboCup Soccer League com-
petitions [22]. In the case of changes in the environment, such
as using different types of carpets, a new parameter estimation
is needed. The estimation methods used to obtain the friction
coefficients and the inertial momentum can be found in [20].

III. PREDICTIVE CONTROLLER

The MPC scheme proposed in this paper is based on a cas-
cade structure, as shown in Fig. 3. This scheme is similar to the
scheme used in [23], where the internal loop controls the robot
dynamics, and the velocity references are given by the external
control loop. The block that implements the robot inverse kine-
matics generates the velocity references from knowledge of the
robot position. Consequently, the internal controller should be
designed to control the robot velocity, as shown in (13) and (14).

The use of MPC in the internal loop presents the following
advantages [13], [24].

1) Optimum control effort with respect to the predicted fu-
ture behavior of the system is obtained. This is an ideal
condition for predefined trajectory tracking.
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Fig. 3. Control scheme. (a) Controller structure. (b) Mobile robot.

2) Constraints on the state and control variables are explicitly
considered.

3) The optimum control effort is recalculated at each sample
period (moving horizon), making the control less sensitive
to disturbances and model mismatch.

MPC is more easily designed using discrete time models. The
discretization of (13) using the step invariant method gives the
following model:

x(k + 1) = Adx(k) + Bdu(k) + Kdsgn(x(k)). (15)

The discretization was carried out assuming that no change
in the signal of the components of x(t) occurs between two
consecutive samples.

Omnidirectional three-wheeled robots have three control en-
tries and only three state variables for velocity control. Con-
sequently, some of the degrees of freedom of the control can
be used to compensate for nonlinearities. Then, the following
control efforts can be implemented:

u(k) = uf (k) + uc(k)

where uf (k) is a linearizing feedback, such that

Bduf (k) = −Kdsgn(x(k)). (16)

The equation above has an unique solution for any x(k) because
Bd ∈ R3×3 and rank(Bd) = 3. From this choice of uf (k), the
system dynamics becomes linear with respect to uc(k):

x(k + 1) = Adx(k) + Bduc(k). (17)

The supply voltages of the motors are limited to 6 V. There-
fore, the control entry u(k) is subject to the following con-
straints:

|ul(k)| ≤ 6, for l = 1, 2, 3.

Because of the linearizing term, the control efforts should obey
the nonlinear constraints in (16), along the control horizon Hu .

This difficulty can be overcome by imposing the control con-
straint only at time k because x(k) is the known vector of mea-
sured velocities at instant k.

The optimization problem associated with MPC at each sam-
ple period k can now be formulated as (18). Hp is the prediction
horizon; Hu is the control horizon; Q and R are symmetric
weighting matrices (positive definite) with appropriate dimen-
sions; x̄(k) is a vector of the reference velocities given by the
inverse kinematics block, ū(k) is the corresponding input, and
x(k) is the vector of measured velocities at time k. The op-
timization problem in (18) is a quadratic programming (QP)
problem, for which efficient numerical methods are available.

A. Interior Point Method

Linear MPC involves the resolution of a QP problem at each
sample interval. In this paper, the interior point method (IPM)
is considered. Beginning with the Karmarker [25], IPMs have
been developed in order to ensure polynomial-time performance
for different applications. This method offers an alternative to
active-set methods in MPC [26] [27].

Due to the fact that the objective function is quadratic and
the constraints are linear on the variables x(k + i), uf (k) and
uc(k + j), through standard manipulation in the linear MPC
framework [13], the optimization problem (18), as shown at
the bottom of the page, can be rewritten in the form of a QP
problem:

minua
uT

a H ua − GT ua

subject to

{
AE ua = bE

AI ua ≤ bI

(19)

where the decision variable of the problem is defined as ua =
[uc(k), . . . uc(k + Hu − 1)uf (k)]T and the matrices H ∈

minuf (k),uc (k+j )

Hp∑
i=1

((x(k + i) − x̄(k + i))T Q(x(k + i) − x̄(k + i))) +
Hu∑
j=0

((u(k + j) − ū(k + j))T R(u(k + j) − ū(k + j)))

s.t.: x(k + i + 1) = Adx(k + i) + Bduc(k + i)

u(k) = uf (k) + uc(k)

u(k + j) = uc(k + j) for j > 0,

Bduf (k) = −Kdsgn(x(k))

|u(k)| ≤ 6 (18)
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R3(Hu +1)×3(Hu +1) and G ∈ R3(Hu +1)×3 are given by

H = ΘT QcΘ + Rc (20)

G = 2[εT QcΘT + uT
a Rc ] (21)

with,

Qc =

⎡
⎢⎢⎢⎢⎣

Q 0 0 . . . 0
0 Q 0 · · · 0
... . . .

0 0 0 . . . Q

⎤
⎥⎥⎥⎥⎦

Rc =

⎡
⎢⎢⎢⎢⎣

R 0 0 . . . R

0 R 0 · · · 0
... . . .

R 0 0 . . . R

⎤
⎥⎥⎥⎥⎦

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bd 0 0 0
AdBd Bd 0 0

... . . .

AHu

d Bd AH u−1
d Bd . . . AdBd

A
Hu + 1
d Bd AH u

d Bd . . . A2
dBd

... . . .

A
Hp −1
d Bd A

Hp −2
d Bd . . .

. . . 0 0

. . . 0 0

. . . 0 0
Bd 0 . . . 0 0

AdBd Bd . . . 0 0
. . . 0 0

AdB Bd 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Rc ∈ R(3(H u+1)×3(H u+1)) , Qc ∈ R(3H p×3H p) , R ∈
R3×3 , Q ∈ R3×3 , and 0 are null matrices with suitable dimen-
sions, and ε is the error between the reference trajectory and the
past outputs given by ε(k) = x̄(k) − C[AdA

2
d . . . A

Hp

d ]T x(k).
The matrices AE , bE and AI , bI represent the equality and

inequality constraints of the problem (18), respectively, and are
given by

AE = [0 0 0 . . . Bd ] ; bE = [−Kd sgn(x(k))] (22)

AI =
[

I 0 0 . . . I

−I 0 0 . . . − I

]
; bI =

[
6I

6I

]
(23)

where I ∈ R3×3 and 0 ∈ R3×3 .
The IPM is essentially a barrier method. In the problem (19),

the barrier is of the form [28]

minua
uT

a Hua − GT ua − μ

m∑
i=1

ln si

subject to

{
AE ua = bE

AI ua + s = bI

(24)

where μ > 0 is the barrier parameter and the slack variable
s ∈ Rm×1 is assumed to be positive (here m = 6). By letting μ
converge to zero, the sequence of approximate solutions to (24)
will normally converge to a minimizer of the original nonlinear
program (19).

To characterize the solution of the barrier problem (24), the
Lagrangian is considered

L(ua , s, λE , λI ) = uT
a H ua − GT ua − μ

m∑
i=1

ln si

+λT
E (AE ua − bE ) + λT

I (AI ua + s − bI ) (25)

where λE and λI are the multipliers associated with the equality
and inequality constraints, respectively.

The primal-dual algorithm adopted is based on the Karush–
Kuhn–Tucker conditions for the barrier problem given by

(2H ua − G) + AE λE + AI λI = 0

SλI − μe = 0

AE ua − bE = 0

AI ua + s − bI = 0 (26)

where e = [1, . . . , 1]T , S = diag(s1 , . . . , sm ), with super-
scripts indicating components of a vector.

The solution of the nonlinear system (26) is then obtained by
applying Newton’s method [28]

⎛
⎜⎜⎜⎜⎝

2H 0 AE AI

0
∑

k 0 S

AT
E 0 0 0

AT
I I 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

pua

ps

pλE

pλI

⎞
⎟⎟⎟⎟⎠

=

−

⎛
⎜⎜⎜⎜⎝

2Hua − G + AE λE + AI λI

SλI − μe

AE ua − bE

AI ua + s − bI

⎞
⎟⎟⎟⎟⎠

(27)

where
∑

k = S−1
k ΛI . Here, ΛI = diag(λ1

I , . . . , λm
I ) contains

the Lagrange multiplier estimates corresponding to the inequal-
ity constraints.

The system (27) is equivalent to a Newton iteration on the
Karush–Kuhn–Tucker conditions of the barrier problem (19).
By Newton’s method, the values of the variables ua , s, λE , and
λI are updated through an iterative process, using the vector p
as follows:

u+
a = ua + αmax

s pua

s+ = s + αmax
s ps

λ+
E = λE + αmax

λE
pλE

λ+
I = λI + αmax

λI
pλI

. (28)

The step length α in each direction is determined in order not
to violate the nonnegativity constraints on the variables λE , λI ,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ASME TRANSACTIONS ON MECHATRONICS

time(s)

(a) (b)

(c) (d)

Fig. 4. Velocity control—internal control loop. (a) Robot velocities. (b) Motors voltages. (c) Robot velocities. (d) Motors voltages.

and s:

αmax
s = {max α ∈ (0, 1] : s + αps ≥ (1 − τ)s}

αmax
λE

= {max α ∈ (0, 1] : λE + αpλE
≥ (1 − τ)λE }

αmax
λI

= {max α ∈ (0, 1] : λI + αpλI
≥ (1 − τ)λI }. (29)

In this paper, the value of τ = 0.995 is adopted [28].

IV. EXPERIMENTAL RESULTS

The mobile robot in Fig. 3(b) is composed of two main mod-
ules: a microprocessor system responsible for the implementa-
tion of the system’s instrumentation and the time base generation
module (sample time of 50 ms) that creates a real time clock.
The high-level controllers and the supervisory system are imple-
mented on a personal computer. These modules communicate
through a Zigbee platform composed by two Maxstream’s Xbee
modules [29]. The robot odometry data and the control signals
(motors voltages) are transmitted serially through 32-byte pack-
ets at a rate of 57 600 b/s. The DC motors are of A-max 22 type
(nominal voltage: 6 V, power rating: 5 W) developed by Maxon
Motors, and they are controlled by H-bridge circuits made by
Acroname Robotics (part no. S17-3A-LV-BRIDGE). The su-
pervisory system and the control algorithms were implemented
via Lazarus IDE software for Linux/Ubuntu operation systems
on a Pentium Core i7 (2.8 GHz clock speed). The interior point
algorithm was implemented in Object Pascal. The MPC con-

troller parameters for all tests in this paper were the following:
the cost function weight matrices are defined as Q = 100I and
R = 0.01I . The prediction and control horizons are selected as
Hp = 3 and Hu = 3 (three time periods = 150 ms). The input
signal constraints are |ui | ≤ 6, i = 1, 2, 3.

A. Velocity Control

In order to verify the effectiveness of the internal control loop,
a set of reference velocities was tested on the robot, as can be
seen in Fig. 4. The temporal evolution of the robot velocities,
tracking errors, and the control efforts are shown in Fig. 4(a)
and (b) for linear reference velocities: x̄ = [0.3 0.3 0] and
x̄ = [0.6 0.6 0]. Fig. 4(c) and (d) shows the plots for linear and
angular reference velocities: x̄ = [0.5 0 1] and x̄ = [0.7 0 2].
The MPC controller tracked the reference and the constraints on
the control variables (the voltages u1 , u2 and u3) are respected.

B. Friction Compensation

In this section, experimental results of the friction compensa-
tion method (here called MPC-COMP) described in the previous
section are presented. For comparison, we also tested a recent
approach of MPC based on LMIs, as described in [10]. This
MPC controller based on LMIs, here called MPC-LMI, uses fi-
nite horizon together with a sufficient condition for closed-loop
stability. Constraints on the input signals are also considered
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Fig. 5. Dead-zone compensation. (a) Velocity curve, component v. (b) Computational time cost. (c) Motors voltages—Control signals.

in the control law design. The stability condition is obtained
by guaranteeing that an upper bound for the finite horizon cost
function is monotonically nonincreasing. The MPC-LMI tun-
ing parameters used in the test are as follows: the cost function
weighting matrices were defined as Q = 100I and R = 0.01I .
The prediction and control horizons were selected as Hp = 3
and Hu = 3. The input signals constraints were |ui | ≤ 6, i =
1, 2, 3.

The plots in Fig. 5(a) show the behavior of the robot velocity
v and can be used to compare the behaviors of the controllers.
The curve in dots represents a time-varying reference velocity
v̄. For the cases in which the robot has nonnull velocities v and
vn , the effect of static friction is larger when compared with the
velocities w. This is easily explained by the geometry of the
robot, which, in order to generate velocities in the v direction,
activates only two of the three motors. In addition, the wheels
have an angle of 30◦ related to velocity vector v (see Fig. 1). In
the case of w, the three motors are active simultaneously in the
same direction and with the same input voltage. One can observe
that for the MPC-COMP case, the dead zone is considerably
smaller than for the MPC-LMI case because of the static friction
compensation effect. The difference in performance between
the two controllers is due to the difference in control action.
Comparing the dead zone effect, in the MPC-COMP case, one
can note that the static friction compensation was corrected for a
large part of the dead zone, and the voltages vary abruptly when
they are close to zero, as shown in Fig. 5(c). The computation
time in milliseconds required for solving the control law is
shown in 5(b). In both cases, the control algorithms can be used
in MPC controllers. However, the MPC-COMP has a lower
computational time cost.

TABLE II
TRAJECTORY POINTS

C. Outer-Loop Control

In this section, results of the cascade structure controller
are presented. The trajectory of reference is defined as a
set of points in the world frame (OXY ): Traj(k + j) =
[x̄r (k + j) ȳr (k + j) θ̄(k + j)]T , j = 0, 1, . . . ,Hp − 1. Then,
given the current position and heading of the robot, it is nec-
essary to calculate the desired velocities for the next Hp pe-
riods of time. The vector of velocity references x̄(k + j|k) =
[v̄(k + j|k) v̄n (k + j|k) w̄(k + j|k)]T , j = 0, 1, . . . ,Hp − 1,
where j is an step prediction of the robot velocity made at instant
k, is given by

⎡
⎢⎣

v̄(k + j|k)

v̄n (k + j|k)

w̄(k + j|k)

⎤
⎥⎦ = Ro(θ(k))

⎡
⎢⎣

evx

evy

ew

⎤
⎥⎦ (30)

with
⎡
⎢⎣

evx

evy

ew

⎤
⎥⎦ =

⎡
⎢⎣

vnav cos(ϕ)

vnav sin(ϕ)

θ̄(k + j|k) − θ(k)

⎤
⎥⎦ (31)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 6. Square tracking performance. (a) Robot trajectory. (b) Pose response. (c) Robot velocities. (d) Motors voltages.

and

ϕ = atan2 (ȳr (k + j|k) − yr (k), x̄r (k + j|k) − xr (k)) (32)

where vnav is the velocity of the robot center of mass, which is
a design parameter. The reference trajectory points, the param-
eter vnav , and the time to reach the goal (time to goal) of the
experiment are listed in Table II.

The trajectory has special features, as sudden change of di-
rection and orientation of the robot and movements of rotation
and translation at the same time, in order to test the controller in
hard condition. The initial robot pose was [0(m) 0(m) 0(rad)]T

and its velocity equals zero. The linear velocity of naviga-
tion was vnav = 0.2(m/s) to reach the goals G1 and G3 and
vnav = 0.5(m/s) to reach the goals G2 and G4.

The robot trajectory, pose response, robot velocities, tracking
errors, and motors voltages are illustrated in Fig. 6. It can be
observed from the robot position in space [see Fig. 6(a)] that
the tracking performance was almost ideal, even during the
transition between goals. The peak tracking error is under 5-cm
bound. The orientation angle tracking error is less than 10◦. It
can be observed that with vnav = 0.2(m/s), the trajectory was
tracked with a total navigation time of 6.45 s (to reach G1) and
6.25 s (to reach G3), and with vnav = 0.5(m/s), it was tracked
with a time of 2.3 s (to reach G2 and G4). The motors voltages
do not exceed the predefined limits, as can be seen in Fig. 6(d).
The values of voltage reach a maximum absolute value of 5 V,
which is below the saturation limit. It can also be noted that

the control effort requires higher voltages at the change of goal
points.

V. CONCLUSION

In this paper, a predictive control algorithm with friction com-
pensation was proposed to solve the trajectory tracking problem
for a three-wheeled omnidirectional mobile robot. In a cascade
control structure, an inverse kinematics block was used to com-
pute the velocity references at each step from information about
the robot position and a desired trajectory. The adoption of a
simplified friction model allowed the use of part of the control
effort to linearize the system which, in turn, allowed the use of
an efficient algorithm for linear MPC with constraints.

The reasons to choose the predictive control technique were
justified in practice: the constraints were respected, frictional
effects were satisfactorily compensated, and a multiple-input
multiple-output nonlinear system was quite easily controlled.
From the friction compensation test, it was shown that, even
though the proposed control scheme did not eliminate the dead
zone, it considerably reduced its size. The experimental results
have shown the good performance of the proposed control strat-
egy, its flexibility for mobile robot applications, and its vast
calibration capacity. For example, the penalty coefficients, pre-
diction and control horizons, the outer-loop controller, and nav-
igation velocity can be adjusted depending on the application
and/or type of trajectory.

Compared to other works on a similar problem, we believe
that our approach presents the following advantages.
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1) It uses a friction model that can be efficiently estimated and
that allows for the use of a simple compensation technique.

2) From the compensation of the friction effect, a linear MPC
formulation can be used for the velocity control, which
leads to a simple and efficient implementation via convex
optimization, suitable for real-time embedded systems.

In this paper, we focused on experimental results of the pro-
posed technique. The analysis of closed-loop stability is a very
important issue though. The most accepted technique used to
prove stability in MPC with constraints relies on the use of a
positive invariant set as a terminal constraint [30]. There are a
number of methods for determination of such a set in the linear
case. In the nonlinear case, however, there is no systematic way
of doing that, to our knowledge. The use of a cascade structure
with nonlinear elements makes this task even more difficult.
Stability analysis and other theoretical issues should then be
object of future work.
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