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2D QSAR studies on thyroid hormone receptor ligands
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Abstract—2D QSAR studies were carried out for a series of 55 ligands for the Thyroid receptors, TRa and TRb. Significant cross-
validated correlation coefficients (q2 = 0.781 (TRa) and 0.693 (TRb)) were obtained. The models’ predictive abilities were proved
more valuable than the classical 2D-QSAR, and were further investigated by means of an external test set of 13 compounds.
The predicted values are in good agreement with experimental values, suggesting that the models could be useful in the design
of novel, more potent TR ligands. Contribution map analysis identified a number of positions that are promising for the develop-
ment of receptor isoform specific ligands.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Members of the nuclear receptor superfamily, thyroid
hormone receptors (TRs), are ligand-activated tran-
scriptional factors that are involved in cell differentia-
tion, growth, and homeostasis.1,2 Currently, thyroid
hormone mimetics are used for the treatment of hypo-
thyroidism, although additional therapeutic indication
in the reduction of hyperlipidemia and in weight loss
could be anticipated, if the adverse effects of thyroid
hormone, namely cardiac toxicity, could be reduced or
eliminated.3,4 As a major contribution to reach this goal,
the main isoforms of the thyroid receptor (TRa1 and
TRb1) have been extensively characterized5 and their
differential expression in human organs recognized as
a key factor for drug development.3 Indeed, recent re-
search suggests that specific ligands for TRa1 or TRb1
may elicit distinct pharmacological effects.3,4,6

TRa1 is located mainly in heart tissue and accounts for
cardiac responses to the levels of T3, such as tachycar-
dia. On the other hand, the majority of the effects of thy-
roid hormones on the liver, including its effects on
cholesterol metabolism, are mediated by TRb1.3
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Accordingly, there is growing evidence that selective
TRb1 agonists may be useful in the treatment of obesity
and hypercholesterolemia.3,4,6

This fact prompted Karo Bio in collaboration with Bry-
stol-Myers Squibb to undertake a structure-based ligand
design approach toward TRb1 selective activation.7–11

Although their strategy has provided sub-nanomolar
ligands of TRb1, as far as we are aware, no quantitative
structure–activity study on available compounds has
been conducted.

In the present study, we have collected IC50 values for a
large series of TRa and TRb ligands and, employing
both classical and hologram QSAR methods, used the
data to create QSAR models which show substantial
predictive power. Hologram QSAR (HQSAR) is a
2D-QSAR approach that avoids not only the calcula-
tion and selection of physicochemical descriptors, but
also the need for molecular alignment and conformer
generation required for more sophisticated 3D-QSAR
methods.12
2. Experimental

2.1. Data set

The data set of 68 compounds used for the QSAR stud-
ies was selected from the literature.7–11 The chemical
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structures and biological properties for the complete set
of compounds are listed in Table 1.

The IC50 values were determined under standardized
experimental conditions through a binding assay as
described by Ye.7 The fact that all biological data were ac-
quired by the same group (Karo Bio) renders these data
comparable in terms of reproducibility, a fundamental
requirement for successful QSAR analysis. Collected
IC50 values vary from 26 lM to 0.1 nM for the TRa
isoform and from 5.7 lM to 0.019 nM for TRb. These
data were converted into the corresponding pIC50

(�logIC50) and then used in the QSAR studies. The
pIC50 values are normally distributed across the range
of values. Accordingly, the IC50 values were considered
comparable and thus merged into our study. Taken to-
gether, these facts indicate that the data set is suitable
for QSAR models development (Fig. 1). However, most
compounds in the data set are selective toward TRb at
least to some extent, as can be seen in Figure 2.

Cluster analysis using Euclidean distances and the com-
plete linkage method, carried out in the PIROUETTE
software (Infometrix), reveals that these thyroid recep-
tor ligands can be grouped into four distinct clusters
for both thyroid isoforms. Members from each cluster
were then randomly assigned to the training set (com-
pounds 1–55, Table 1) and test set (compounds 56–68,
Table 1). This analysis was not able to provide further
insight into chemical or biological features that are
important for thyroid binding, however it guarantees
that both training and test sets represent the structural
diversity and cover the whole data set potency space.

The 3D structures of the thyromimetics were con-
structed using CONCORD and standard geometric
parameters of the molecular modeling software package
SYBYL 7.2. Each molecule’s single optimized
conformation was energy-minimized employing the
atom-centered partial charge MNDO-ESP calculations
implemented in MOPAC 6.0.

2.2. Descriptor calculation and selection

2D descriptors were calculated using DRAGON (Talete
srl) software and subjected to the following selection cri-
teria: Descriptors possessing constant values as well as
those with poor correlation to the biological property
(r2 < 0.10) were discarded. This strategy provided 575
descriptors that were employed in classical QSAR
modeling.

2.3. Classical QSAR studies

The BUILDQSAR software was employed to systemat-
ically search for models of up to four variables that gave
rise to multiple linear regression (MLR) models with
r2 > 0.65. All descriptors present in the MLR models
were pooled together, autoscaled, and used for PLS
analysis using the PIROUETTE software.

PLS models were selected according to the leave-one-out
cross-validated r2 (q2) value, using no more than four
principal components. Visual analysis of the PLS load-
ings guided the selection of the most important descrip-
tors during model development.

2.4. HQSAR modeling

Statistical HQSAR modeling was carried out as previ-
ously described.13,14 The concept behind this technique
is the use of molecular substructures expressed as a bin-
ary pattern, or fingerprint, as descriptors in the QSAR
models. Accordingly, each molecule in the data set is
broken down into several unique structural fragments,
which are arranged to form a molecular hologram.
HQSAR encodes all possible molecular fragments (i.e.,
linear, branched, and overlapping).15 Thus, this method-
ology transforms the chemical representation of a mole-
cule into its corresponding molecular hologram,
regardless of 3D information (e.g., 3D structure, puta-
tive binding conformations, and molecular alignment).
HQSAR models can be affected by a number of param-
eters concerning hologram generation: hologram length
(HL), fragment size, and fragment distinction.13–15 Sev-
eral combinations of fragment distinction were consid-
ered during the QSAR modeling runs. Holograms
were generated using 7 distinct fragment sizes over the
12 default series of hologram lengths (53, 59, 61, 71,
83, 97, 151, 199, 257, 307, 353, and 401 bins). All models
generated in our studies were investigated using the full
cross-validated r2 (q2) Partial Least Squares (PLS)
Leave-One-Out (LOO) method. The predictive ability
of the models was assessed by their q2 values and fur-
ther, in order to evaluate the predictive ability of the
best model attained, an external validation method
was employed.
3. Results and discussion

An important step in classical QSAR modeling is the
selection of appropriate descriptors that are correlated
to biological activity. In this work, we employed 2D
topological descriptors available in DRAGON 5.4.
These theoretical descriptors account for molecular size,
shape, and branching information of molecules through
graph theoretical invariants.16 Additional information
about charge, polarizability, etc. can be obtained using
appropriate weighting.17 Due to the large number of
descriptors available, they were selected based on their
correlation to biological activity and capability of pro-
ducing MLR models with up to four descriptors with
at least moderate correlation (r2 > 0.65). This strategy
had two goals: to build initial QSAR models that could
shed light on structural features important for TR bind-
ing, and to select a subset of the most correlated descrip-
tors that could be further explored in QSAR model
development. The best models show moderate correla-
tion for both TRa (r2 = 0.74) and TRb (r2 = 0.66). How-
ever, the models can be interchanged with only modest
impact on the statistics, suggesting that the subtle chem-
ical features that differentiate TRa from TRb ligands are
not well represented. This scenario could be the result of
an incomplete description of the binding event by the se-
lected descriptors. Therefore, in order to develop more



Table 1. Chemical structures of the TRa and TRb ligands used for 2D-QSAR studiesa
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Table 1 (continued)
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Figure 1. pIC50 values distribution for TRa and TRb inhibitors.
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Figure 2. pIC50 values for the TRa and TRb ligands in the data set.

Compounds above the line are selective toward TRb and the

compounds below the line are selective toward TRa.

Table 3. TRa HQSAR analyses for various fragment distinctions on

the key statistical parameters using the default fragment size (4–7)

Model Fragment distinction q2 r2 SEE HL N

1A A/B 0.53 0.85 0.53 307 4

2A A/B/C 0.69 0.86 0.50 353 4

3A A/B/C/H 0.63 0.83 0.55 307 4

4A A/B/C/H/Ch 0.62 0.83 0.56 307 4

5A A/B/C/H/Ch/DA 0.63 0.84 0.54 307 4

6A A/B/C/H/DA 0.64 0.82 0.57 151 4

7A A/B/H 0.63 0.86 0.50 353 4

8A A/B/H/Ch 0.59 0.81 0.59 401 4

9A A/B/C/Ch 0.68 0.85 0.53 151 4

10A A/C/DA 0.64 0.84 0.54 257 4

11A A/C/H/DA 0.62 0.84 0.53 401 4

12A A/B/C/Ch/DA 0.75 0.89 0.44 353 4

13A A/B/DA 0.67 0.87 0.49 307 4

14A A/B/C/DA 0.77 0.90 0.41 353 4

15A A/C/Ch/DA 0.63 0.84 0.53 257 4
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robust models, all descriptors from the MLR models
with r2 > 0.65 (4 for TRa and 1 for TRb) (Table 2) were
pooled together, autoscaled, and PLS analysis was
Table 2. Descriptors employed in classical QSAR model development, via P

BEHe3 Highest eigenvalue no.

BEHm8 Highest eigenvalue no.

BEHv3 Highest eigenvalue no.

BEHp3 Highest eigenvalue no.

BEHp2 Highest eigenvalue no.

nRCONHR Number of aliphatic sec

ATS7m Broto-Moreau autocorr

MATS2e Moran autocorrelation

GATS3v Geary autocorrelation �
GATS2e Geary autocorrelation �
GATS8p Geary autocorrelation �
EEig06x Eigenvalue 06 from edg

EEig07x Eigenvalue 07 from edg

EEig09d Eigenvalue 09 from edg
carried out with the PIROUETTE software. However,
no further model improvement was attained.

As an alternative approach, we resorted to the Holo-
gram QSAR (HQSAR) strategy. In our studies SYBYL
7.2 was used to investigate the influence of the three
parameters: fragment distinction, fragment size, and
hologram length (HL), on the statistical values of our
models. Each model has its own fragment distinction
formed by a combination of two or more of the follow-
ing parameters: atoms (A), bonds (B), connections (C),
hydrogen atoms (H), chirality (Ch), and donor and
acceptor (DA). Each of these parameters modifies the
way the fragments are distinguished, for instance the
chirality parameter allows cis double bonds to be distin-
guished from their trans counterparts, and R-enantio-
mers to be distinguished from S at all chiral centers.

As can be seen in Tables 3 and 4, the best statistical
results among all models were obtained for model 14A
for TRa (q2 = 0.77, and r2 = 0.90, with four compo-
nents) and 14B for TRb (q2 = 0.69, and r2 = 0.87, with
three components). Both models were derived using
atoms, bonds, connections, and donor and acceptor as
fragment distinction. The use of additional fragment
distinctions decreases the quality of the models as mea-
sured by the statistical parameters in Table. 3 and 4. For
LS analysis

3 of Burden matrix weighted by atomic Sanderson electronegativity

8 of Burden matrix weighted by atomic mass

3 of Burden matrix weighted by atomic van der Waals volume

3 of Burden matrix weighted by atomic polarizability

2 of Burden matrix weighted by atomic polarizability

ondary amides

elation of a topological structure �lag 7 weighted by atomic mass

�lag 2 weighted by atomic Sanderson electronegativity

lag 2 weighted by atomic van der Waals volume

lag 2 weighted by atomic Sanderson electronegativity

lag 8 weighted by atomic polarizability

e adjacency matrix weighted by edge degrees

e adjacency matrix weighted by edge degrees

e adjacency matrix weighted by dipole moments



Table 4. TRb HQSAR analyses for various fragment distinctions on

the key statistical parameters using the default fragment size (4–7)

Model Fragment distinction q2 r2 SEE HL N

1B A/B 0.42 0.76 0.67 151 3

2B A/B/C 0.58 0.80 0.61 151 4

3B A/B/C/H 0.54 0.77 0.66 401 4

4B A/B/C/H/Ch 0.53 0.81 0.61 307 4

5B A/B/C/H/Ch/DA 0.59 0.78 0.65 59 4

6B A/B/C/H/DA 0.60 0.79 0.63 307 3

7B A/B/H 0.49 0.75 0.69 401 4

8B A/B/H/Ch 0.50 0.76 0.67 401 4

9B A/B/C/Ch 0.57 0.80 0.61 151 4

10B A/C/D 0.52 0.73 0.71 71 3

11B A/C/H/DA 0.53 0.78 0.64 401 4

12B A/B/C/Ch/DA 0.68 0.85 0.52 353 3

13B A/B/DA 0.65 0.85 0.53 307 4

14B A/B/C/DA 0.69 0.87 0.50 353 3

15B A/C/Ch/DA 0.51 0.80 0.61 257 4
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instance, adding chirality to the atom distinction does
not improve the model (compare 12A with 14A and
12B with 14B). This outcome is not unexpected since
most compounds in our data set are not chiral. Further-
more, our results confirm previous studies which suggest
that ‘donor and acceptor’ fragment generation should
not be used simultaneously with hydrogen atoms15,18

due to the substantial increase in the number of frag-
ments generated when both of these options are consid-
ered in the model construction.

On the other hand, considering donor and acceptor
atoms in fragment distinction dramatically improved
Table 5. Influence of fragment sizes on the statistical parameters using th

acceptor)

Model Fragment size/TR isoform q2 r2

TRa TRb TRa

16 A/B 2–5 0.72 0.64 0.85

17 A/B 3–6 0.76 0.64 0.87

18 A/B 4–7 0.77 0.69 0.90

19 A/B 5–8 0.78 0.68 0.90

20 A/B 6–9 0.76 0.66 0.89

21 A/B 7–10 0.74 0.65 0.88

22 A/B 8–11 0.72 0.60 0.88

Table 6. Experimental and predicted values of pIC50 for the test set compou

Test set pIC50 Experimental

TR Isoform TRa TRb TR

3 9.85 9.96 9.8

6 8.01 8.68 8.4

11 6.89 8.54 6.5

12 7.74 8.49 7.3

17 6.34 7.68 6.3

19 7.52 9.11 6.9

22 5.93 7.12 6.3

33 6.47 8.02 6.9

38 6.37 7.45 6.6

51 4.58 5.72 5.1

55 5.16 6.10 4.9

70 6.60 7.29 5.7

72 6.21 6.62 6.7
the model (compare 2A and 14A or 2B and 14B). This
result is in good agreement with crystallographic data,
which show that hydrogen bonding plays an important
role for TR ligand binding.11,19

The influence of different fragment sizes over the
statistical parameters was further investigated for
HQSAR models 14A and 14B. Fragment size para-
meters control the minimum and maximum length of
fragments to be included in the hologram fingerprint.
The HQSAR results for different fragment sizes are
summarized in Table 5. The results show that variation
of the fragment size (5–8) provided an improvement in
the HQSAR model for TRa, whereas the default
fragment size (4–7) led to the best statistical results for
TRb (highlighted in Table 5).

The leave-one-out procedure used in our studies might
produce high q2 values which do not necessarily give a
suitable representation of the real predictive power of
the models for TR ligands.20 Thus, we employed a
leave-many-out procedure with either 15, 10 or 5
groups of compounds. The results are not significantly
different from those obtained using the LOO approach
for both TR isoforms. Finally, the predictive power of
the best HQSAR models was assessed by predicting
pIC50 values for 13 test set molecules (compounds
56–68, Table 1), which were not included in the
HQSAR model development. The results are listed
in Table 6 and the experimental versus predicted activ-
ities of both training set and test set are depicted in
Figures 3 and 4.
e best fragment distinction (atoms, bonds, connections, donor, and

SEE HL N

TRb TRa TRb TRa TRb TRa TRb

0.82 0.53 0.59 61 61 4 4

0.81 0.47 0.59 151 151 4 3

0.87 0.41 0.50 353 353 4 3

0.86 0.43 0.51 401 401 4 4

0.86 0.44 0.52 401 401 4 4

0.87 0.47 0.49 353 401 4 4

0.84 0.47 0.55 353 353 4 4

nds, according to models 18B and 19A

Predicted Residual

a TRb TRa TRb

8 10.80 �0.03 �0.84

5 8.88 �0.44 �0.20

0 7.79 0.39 0.75

6 8.78 0.38 �0.29

1 7.82 0.03 �0.14

7 8.41 0.55 0.70

7 7.62 �0.44 �0.50

4 8.49 �0.47 �0.47

6 7.52 �0.29 �0.07

4 5.77 �0.56 �0.05

8 5.51 0.18 0.59

9 7.09 0.81 0.20

1 7.53 �0.50 �0.91
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Figure 3. Calculated versus experimental pIC50 values for TRa
ligands. The diamonds refer to the training set and the open squares
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Figure 4. Calculated versus experimental pIC50 values for TRb
ligands. The diamonds refer to the training set and the open squares

to the test set.

Figure 5. Contribution maps for ligand 52 according to the TRa (a)

and TRb (b) HQSAR model. Atoms are colored according to their

contribution to TR binding.
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The good agreement between experimental and pre-
dicted values for the test set compounds indicates the
reliability of the constructed HQSAR models, especially
for TRa (r2 = 0.895, SEE = 0.433). The residual values
are low (less than 1 log unit), indicating that the
obtained HQSAR models are reliable and can be used
to predict the biological activity of novel compounds
within this structural class. In addition to predict the
activities of untested molecules, QSAR models shed
some light on structural and chemical features that are
directly related to biological activity.

HQSAR provides information about molecular
fragments with positive and/or negative influence on
the biological activity. The individual atomic contribu-
tions to the biological activity can be visualized through
the contribution maps colored according to such contri-
butions. Figure 5 displays the contribution map of com-
pound 52, which has been synthesized by Collazo and
coworkers aiming at exploring the binding site volume
unoccupied by previous ligands.11

According to the HQSAR model, positions 3 and 4 on
the quinoline ring have strong negative contributions
for TRa and little effect on TRb binding. This observa-
tion might be associated with steric hindrance of the
ligand within the TRa binding site. This hypothesis is
supported by the fact that the smaller indole derivative
49 has a hundred fold greater affinity than 52. This
result indicates that flexibility in this ligand moiety is
important for TRa binding, but has little effect on its
binding to TRb, and this information might be valuable
for the design of compounds selective toward the TRb
isoform.

A second interesting feature highlighted by the contribu-
tion maps is the different colors of the substituents at
positions 5 and 7. This result may be linked to induced
fit upon ligand binding. Once again, TR flexibility seems
to be responsible for this result, whereas polarizability
and higher electronegativity of bromine or iodine in
these positions make them optimal for affinity and sta-
bility,21 smaller chemical moieties in the positions 5
and 7 might be important for TR isoform selectivity.
However, as the data set does not explore the chemical
space around these positions, it would be worthwhile
to synthesize and test ligands with different substituents
on these positions to further investigate this result.
4. Conclusion

QSAR models with reliable predictive power for both
TRa and TRb have been successfully generated. All
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models presented here were derived using the same
training and test sets for all QSAR analyses. The good
correlation between experimental and predicted bioac-
tivities for 13 compounds in the test set further high-
lights the reliability of the constructed HQSAR
models. The model for TRb was slightly less robust,
which may be in part due to the greater potency range
of the ligands in the data set.

These models which provide information about the
importance of specific atomic positions should be com-
plementary to our ongoing research on thyroid hormone
receptors, that is aimed at using virtual screening and
structure based design to develop selective TRb ligands.
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