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Ising spin glass by the transfer matrix approach
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The short-range Ising spin glass on the diamond hierarchical lattice is investigated via a transfer-matrix-
based method. An exact set of discrete maps leads to all thermodynamical functions for any finite lattice, from
which the thermodynamic limit can be obtained. The method, which encompasses the random choice of the
coupling constants between neighboring sites, has been applied to both Gaussian and bimodal probability
distributions. Results for the thermodynamic potentials of the model defined on lattices with fractal dimension
df52, 2.58 . . . and 3,below and above the estimated lower critical dimension (dl;2.5), are discussed and
fully analyzed. Typical Schottky-like profiles are observed in the temperature behavior of the specific heat for
both distributions in all lattices. Finite residual entropy is found to persist for the bimodal distribution case.
When df.dl and for large number of iterations the correlation lengthj increases exponentially in a wide
temperature interval. The divergence ofj at a finite temperatureTc associated with the spin-glass phase
transition is investigated within an approximate scheme. The numerical values forTc and n are brought in
comparison with those previously obtained by other methods.
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I. INTRODUCTION

In the past thirty years, despite the huge amount of w
that has been put into the investigation of the prototypi
models of disordered systems, namely the spin-glass~SG!
and the random-field Ising models, basic questions conc
ing their condensed phase and critical behavior are still
from being settled.1–4

Concerning SG the general properties of the conden
phase are described by two conflicting scenarios regar
the multiplicity of pure states atT50: the one coming from
the so-calleddroplet framework, which is appropriated t
describe models with short-range interactions~‘‘realistic’’
models!, and the replica symmetry breaking~RSB! one,
which arises from the mean-field solution of the infinit
range coupling model. In the latter, the free-energy landsc
in the configurational space is composed of a high numbe
pure states arranged onto an ultrametric structure of val
separated by high-energy barriers,5 while in the former the
landscape should be trivial, that is, composed of just t
single pure states related by global spin inversion symme6

Whether such a RSB picture prevails in real~short-range
models! systems is a very controversial question that rema
unanswered.7 To attack this problem many model
methodologies have been considered so far. For instance
search of the ground-state multiplicity of the short-ran
Ising spin-glass model~SRISGM! has been an object of in
terest of many authors, who developed sophisticated num
cal methodologies for direct counting of ground states, s
as mappings into combinatory optimization problems,8 bio-
logical motivated algorithms,9 and Monte Carlo multicanoni
cal techniques.10

However, regarding exact solvable models for t
SRISGM there are only a few ones, mostly beyond but s
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within mean-field approximation such as the one defined
the Cayley tree lattice.11 On the other hand, several approx
mated methods and numerical procedures have been w
used to explore the nature of the spin-glass condensed p
such as power-series expansions,12 Monte Carlo methods,13

and real-space renormalization group.14 The latter can be
viewed either as an approximation for the model defined
Bravais lattices or as an exact solvable procedure for
model defined on hierarchical lattices. Actually these lattic
were conceived to furnish the model such that the real-sp
Migdal-Kadanoff renormalization group~MKRG! transfor-
mation15,16 becomes realizable, that is exactly solvable.17,18

For instance, the pure Ising model on diamond hierarch
lattices has been proved to be exactly solved within
MKRG scheme.18,19 For random systems, such as sp
glasses, this scheme gives results comparable to other
proaches~Monte Carlo simulations, for example! for three-
dimensional lattices.20 It seems that the randomness of co
plings and/or fields washes out the effects caused by the
of translational invariance and by the concomitantly hi
inhomogeneous site coordination-number distribution of
hierarchical lattices. Some important results have been
tained for the SRISGM defined on hierarchical lattic
~HL!21–24 as well as for deterministic aperiodic models.25

In this work, we investigate the properties of the SRISG
on diamond hierarchical lattices~hereafter DHL’s! with a
quite distinct method than the previous ones, namely
transfer-matrix ~TM! method. The proposed procedu
amounts to directly evaluate the thermodynamic propert
free energy, and its derivatives, together with the correlat
length j, for particular realizations of the model. Here w
consider the SRISGM defined in terms of two probabil
distribution functions for the coupling constants, th
d-bimodal and the Gaussian ones. Mean values, for b
©2003 The American Physical Society23-1
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ANDRADE, NOGUEIRA, AND COUTINHO PHYSICAL REVIEW B68, 104523 ~2003!
probability distributions, are obtained by collecting data fo
large number of distinct realizations within the same pro
dure. We explore three lattices with the same geometry
with different fractal dimensionsdf52, 2.58 and 3, which
lie around the presumed value,dl52.5, of the lower critical
dimension for the occurrence of the SG conden
phase.26–28 Like MKRG, the TM method also profits from
the exact scale invariance of the lattice. It has been use
analyze periodic and aperiodic Ising models on the sa
lattices, leading to a very precise evaluation of all relev
thermodynamic functions as function of the temperature,
cluding the critical exponents and log-periodic oscillations
the neighborhood of the critical point.29

The rest of the work is so organized: in the followin
section we describe the procedure and derive the recurr
maps for the free energy, entropy, specific heat, and corr
tion length for the lattice withdf52. In Sec. III, we discuss
the behavior for the free energy and its derivatives. Spe
emphasis is laid on the convergence of the results in
thermodynamic limit and on residual entropy for the SG w
bimodal distribution. In Sec. IV, we discuss the behavior
the correlation length and questions related to its conv
gence in the thermodynamic limit, which require the intr
duction of an approximate scheme. Finally, we finish w
Sec. V with some concluding remarks and perspectives.

II. TRANSFER MATRIX FOR SG ON DHL’S

General properties of random transfer matrices have b
quite extensively investigated and used in the analysis
disordered systems.30 In the present study, we extend a TM
based formalism developed to analyze periodic and aperi
spin systems on DHL’s to encompass fully disordered s
systems, which are formally described by the followi
Hamiltonian

H52(
( i j )

Ji j s is j , ~1!

where s i561 are Ising variables, the coupling constan
$Ji j % are quenched random variables following a we
defined probability distribution functionP(Ji j ), and the sum
applies to nearest-neighbor pairs of spins on a DHL.

The lattice is recursively generated, starting from a sin
bond linking the two root sites, which correspond to the DH
G50 generation. The lattice is build by replacing each bo
of the previous generation by a set ofp parallel branches
each one consisting of a chain ofb bonds withb21 inner
sites as shown in Fig. 1 for the casep5b52. After many
steps, this procedure generates a higher-order self-sim
two roots graph, whose fractal dimension isdf
5(ln bp)/(ln b). In the present work, we limit ourselves t
the caseb52 DHL’s.

The basic idea of this approach is to write down the s
tems partition functions for any DHL generationG in terms
of a 232 TM UG that contains the effect of all configuration
mediated by the coupling constantsJi j between the two roo
sites (r 1 and r 2) in that generationG. Due to self-similar
symmetry of the lattice, it is straightforward to derive e
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pressions relating the eigenvaluesh ande of two subsequent
generations, i.e., hG115hG11(hG ,eG) and eG11
5eG11(hG ,eG). Such maps are conveniently written
terms of the free energyf G and correlation lengthjG defined
by

f G52NG
21T ln hG , ~2!

jG5
MG

ln~hG /eG!
, ~3!

wherehG indicates the largest eigenvalues ofUG , andNG
and MG are, respectively, for the number of spins and t
lattice size, that is, the length of the shortest path connec
the two root sites for a givenG-DHL. Note that Eq.~2!,
which goes along the usual definition of the free energy
spin for a system with periodic boundary conditions in t
thermodynamical limit, is the correct form for aG-DHL, up
to a term of the order ofT ln 2/NG→0 asNG grows. There-
fore the numerical iteration of these maps leads to the th
modynamic properties of the model for anyG and as far as
NG;23G assumes sufficiently large values to the nume
cally exact values in the thermodynamic limit.

Let J0 be the coupling constant chosen at random from
probability distributionP(Ji j ) for the interaction between th
spins at the root sitesr 1 and r 2. It can be accounted for by
the 232 TM

UG50,k505Fa0,0 b0,0

b0,0 a0,0
G , ~4!

where a0,05exp(J0 /T)5b0,0
21 . The first subscript used to

characterizeU refers to the generation, and the second one
the chosen valueJ0 produced byP(Ji j ).

For G51, the interaction betweenr 1 andr 2 is described
by a 232 matrix U1,0, with only two distinct matrix ele-
ments, arranged in the same way asU0,0. U1,0 can be ex-
pressed as

U1,05Q0,0Q0,p
t . ~5!

FIG. 1. The first three steps of the inflation process of an Is
SG on the DHL’s withp5q52. Each bondJi is independently
chosen from the probability distribution. Each new generation m
be constructed by connecting to the former one three replicas
nished with random coupling constants.
3-2
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ISING SPIN GLASS BY THE TRANSFER MATRIX APPROACH PHYSICAL REVIEW B68, 104523 ~2003!
The 232p TM Q0,0 describes the interactions between t
spin atr 1 and those at thep new inner sites, whileQ0,p

t , the
transpose ofQ0,p , describes the interaction between thep
new spins and the one atr 2. For uniform systems,U1,0
5U1 andQ0,05Q0,p5Q0 depend on just one coupling con
stantJ0. TheQ0 matrix elements can be written in terms
those ofU0,05U0:

~Q0! i ,l5~U0! i , j 1
~U0! i , j 2

. . . ~U0! i , j p
, l 51, . . . ,2p,

j s51,2,;s51, . . . ,p, ~6!

where the lexicographic order is used to map the 2p elements
of the set$ j s%→ l . With the help of Eqs.~5! and ~6! an
explicit expression forU1 can be easily derived.

In a disordered system,Q0,0 and Q0,p are functions ofp
independent values of coupling constantsJi j . Let us relabel
these constants, randomly produced by the distribu
P(Ji j ), asJl . Let also the interactions described byQ0,0 be
those withl 50,1, . . . ,p21, while those withl 5p, . . . ,2p
21 refer to the interactions described byQ0,p . The interac-
tion J0, present in theG50-DHL, is incorporated into the
G51-DHL, requiring the random choice of only 2p21 val-
ues for the new coupling constants. To each one of them
associate a transfer matrixU0,l defined in the same way a
Eq. ~4!, which are used for the evaluation ofQ0,0, Q0,p , and
U1,0. For instance, in the casep52, the elements ofU1,0 are
given by

a1,05a0,0a0,1a0,2a0,31a0,0b0,1a0,2b0,31b0,0a0,1b0,2a0,3

1b0,0b0,1b0,2b0,3,

b1,05a0,0a0,1b0,2b0,31a0,0b0,1b0,2a0,31b0,0a0,1a0,2b0,3

1b0,0b0,1a0,2a0,3. ~7!

With the help of Eq.~7!, we rewrite Eqs.~2! and ~3! as

f 1,05
N0

N1
~ f 0,01 f 0,11 f 0,21 f 0,3!

1
T

N1
$ ln 22 ln@11z0,0z0,1z0,2z0,3#%, ~8!

j1,05
M1

M0

j0,0j0,2

j0,01j0,2
H 11

j0,0j0,2

j0,01j0,2

1

M0
ln@11z0,0z0,1z0,2z0,3#

2 ln@11z0,0
21z0,1z0,2

21z0,3#J 21

, ~9!

where

z0,l5
e0,l

h0,l
, N052, N154, M051, M152.

~10!

The exact geometrical scale invariance of the lattice le
to the same recurrence maps for any genera
(G11)-DHL in terms of the corresponding quantities for t
G-DHL’s. So, the general recurrence maps are obtained
10452
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replacing the subindices 0 and 1 byG and G11, respec-
tively, in the above maps~8!, with NG52(214G)/3 and
MG52G.

The thermodynamic properties of the model can be
tained by a numerical procedure based on Eq.~8!. It consists
of performing individual realizations of the disorder, by th
recursive use of Eq.~8!, where Jl are randomly obtained
from the distributionP(Ji j ).

In the process of evaluatingf G11,0 andjG11,0 for increas-
ing values ofG, we observe that a (G11)-DHL is built up
of 2p independentG-DHL’s. As we keep the resultsf G,0 and
jG,0 obtained for the firstG-DHL, we have to evaluate only
2p21 independentG-DHL’s. However, this requires the in
dependent evaluation of 2p (G21)-DHL’s for each of them,
and so on. Thus, the central processing unit~CPU! time re-
quired to evaluate the properties of a lattice for a given va
G increases exponentially with a factor 2p. This is not sur-
prising as the number of individually randomly chos
bonds, which must be individually accounted for, increa
exponentially withG as (2p)G.

This situation is quite different from that obtained for un
form ~deterministic aperiodic! models, where the
(G11)-DHL is built up of 2p copies of the sameG-DHL
~limited set of distinctG-DHL’s!. Thus, the CPU time in-
creases only linearly withG, and results with a numerica
precision of up to 16 significant digits~what can be under-
stood as a numerical thermodynamic limit! can be easily
achieved.29 Although the present results are as precise
those obtained for disordered systems by other methods,
can hardly be obtained with the same precision as for u
form systems due to CPU time restrictions.

Expressions similar to Eq.~8!, valid for p53 and 4
and used to obtain results discussed in the following s
tions, are written in the Appendix A. The above maps c
be used as starting points for a larger set of maps
the derivatives off G with respect to the temperatureT,
] f G11 /]T and ]2f G11 /]T2. They can be obtained in a
straightforward way, leading to the entropy and specific h
of the system. The corresponding maps for Eq.~8! are writ-
ten in the Appendix B.

FIG. 2. Average entropy~50 samples! versus temperature forPG

~circles! andPb ~squares! whendf52 lattice (p52), indicating the
presence of residual entropy for thed bimodal probability distribu-
tion. Data dispersion is very small as shown in the inset.
3-3
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III. FREE ENERGY AND ITS DERIVATIVES

The iteration of Eqs.~8!, ~9! and ~A1!–~A4!, subject to
initial conditions expressed by Boltzmann weights, leads
temperature dependent numerical values for the free en
and correlation length for individual realizations of SG
DHL’s with p52, 3 and 4, forG50, . . . ,Gmax. The proce-
dure can be extended, by the inclusion of maps~B1!–~B4!
and their counterpart forp53 and 4, to evaluate the entrop
and specific heat. In this section, we present the results
the free energy and its derivatives, which were obtained
the models defined in terms of the Gaussian,

PG~Ji j !5Aa/pexp~2aJi j
2 !, ~11!

and bimodal,

Pb~Ji j !5@d~Ji j 21!1d~Ji j 11!#/2, ~12!

probability distributions for the couplings$Ji j %, where a
51/2J2, J51 being the standard deviation. We consider
Gmax510, 9, 8, respectively, forp52, 3, 4. This corre-
sponds to;10621.63107 randomly chosen bonds for eac
realization. The results are based on samples of up to
distinct realizations~never less than 50! for each value of
temperature, and were performed mainly on a 16-node 8
MHz PentiumIII-cluster.

The results are summarized in Figs. 2–4. In Fig. 2,
show the sample averaged entropy as a function of the t
perature, for bothPG andPb , andp52. In the inset of Fig.
2, we also show the temperature dependent dispersion to

FIG. 3. Plots of the average specific heat fordf 5 2.585 . . .
lattice (p53) versus temperature for the Gaussian (PG) and the
d-bimodal (Pb) distributions~solid lines!. Results for fifteen single
realizations of the distribution are marked with circles (PG) and
squares (Pb), respectively. Individual points can hardly be disti
guished within the used scale.
10452
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mean value of the entropy. For the same distributions,
draw the curves for temperature dependence of the spe
heat and the free energy in Figs. 3 and 4 for lattices w
(p53) and (p54), respectively. Similar curves for othe
values ofp, not shown, look like them.

All plots drawn in Figs. 2–4 are limited to values ofT
.0.15– 0.25. For both distributions, the Boltzmann weig
become very large for smaller values ofT, leading to numeri-
cal overflows. The very low values for the dispersion in F
2 reflect the high precise values for all obtained quantities
fact, within the used vertical scales, the points correspond
to each individual realization can hardly be distinguish
from those shown in the averaged curves in Figs. 3 and

At low temperatures, the entropy has rather different
havior for PG and Pb . For the first distribution, it goes lin-
early to zero asT→0, while a finite residual entropy build
up for the bimodal distribution. This is an expected behav
since the sites belonging to the last generation of a DHL h
an even number of bonds and therefore, with the bimo
distribution the net field on these sites can be exactly ze
which corresponds to a twofold ground-state degeneracy
such sites. The same behavior is not expected for the c
tinuous valuedPG .14,22,31

For the three different values ofp, the residual entropy
can be extrapolated from the finite temperature data lead
to values shown in Table I, which are compared with tho
obtained from a counting procedure for the average num
of ground states22 for the same models. Tests on the conv

FIG. 4. Plots of the free energy fordf53 lattice (p54) versus
temperature for the Gaussian (PG) and thed-bimodal (Pb) distri-
butions~solid lines!. Results for 15 single realizations of the distr
bution are marked with circles (PG) and squares (Pb), respectively.
Individual points can hardly be distinguished within the used sc
The finite slope in the plot forPb is indicative of residual entropy
TABLE I. Values for the residual entropy for the SRISGM withd-bimodal probability distributions of
coupling constants.

df52.0 (p52) df52.585 . . . (p53) df53.0 (p54)

Present work 0.187060.0006 0.197760.0003 0.21960.001
Ref. 22 0.1822760.00004 0.16229960.00002 0.2084260.00003
3-4
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gence of the present results, performed by increasing
value ofGmax for all values ofp, confirm the precision up to
three significant digits.

All curves for the specific heat display, as the one sho
in Fig. 3, a typical Schottky round profile with a smoo
maximum. No qualitative distinction is observed from t
one atp52 to those at larger values ofp where phase tran
sitions are expected to occur. For the free energy, we no
qualitative changes in the low-temperature region, betw
the curves produced by the different distributions. Those
Pb have a constant nonzero slope, the value of which eq
to s0.

IV. CORRELATION LENGTH AND PHASE TRANSITION

Results obtained for the correlation lengthj upon iteration
of Eqs.~8!, ~9! and ~A1!–~A4! deserve a more detailed dis
cussion due to a much slower convergence of the results
respect to the value ofG, in comparison with those for the
free energy and its derivatives. As already mentioned, in
investigations carried out for both homogeneous and de
ministic aperiodic systems, the maps have been iterated
numerical convergence of all 16-digits variables. This do
not represent a big problem, as the CPU time increases
early with G. A value for Gmax is not explicitly required, as
the iteration proceeds until the convergence condition is m
However, it is possible to note that, depending onT, 40–80
iterations are required for that convergence. It is also p
sible to observe thatf always converges at smaller values
G than j. Thus, a slower convergence forj in the present
case is also expected. This situation is illustrated in Fig. 5
this figure, we draw the sample averaged and ten individ
realizations forj as function of 1/T for both distributions in
thep52 case, withGmax510. It shows that the dispersion o
the data increases dramatically asT decreases, especially fo

FIG. 5. Plots of the average correlation length~log scale! for
both probability distributions versus the inverse of the tempera
for the df52 lattice (p52). Error bars indicate that dispersion
very small forPb , while its values become significant in the low
temperature region forPG . For T→0, observe clear indication
that j ~a! remains finite forPb ~b! diverges weaker than exp(1/T)
for PG .
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PG . Despite the high dispersion, the curve forPG strongly
suggests a divergence in theT→0 limit, although it seems to
be weaker than exp(1/T). For Pb , the presence of frustration
causes a much slower increase for both the average ofj and
its dispersion. In fact the curve suggests that it remains fi
at T50.

The analysis of the results become more difficult f
DHL’s with df.dlc , i.e., p53 and 4. According to renor-
malization group investigations, a phase transition from
paramagnetic~P! to the SG phase should be observed.14 Our
results indicate that data scattering and sample average
to increase exponentially at a much higher value ofT, reach-
ing values as high as 1020 for T.0.25. The above indicated
results for the finiteGmax become meaningless.

A simplistic way to address this problem is to increase
value of Gmax. However, let us note that typical CPU tim
for performing;400 realizations for;30 temperature val-
ues forp53 and 4 in our present equipment is of the ord
of 1 day. The magnitude of the data scattering and previ
experience in running similar programs for the homogene
models, indicate that meaningful results should not be
pected unless the used value forGmax is significantly in-
creased toGmax8 , so thatGmax8 /Gmax>2. This implies that the
CPU time should be increased by a factor (2p)Gmax, a limi-
tation that can hardly be met by most of the present d
computing systems. To side step this difficulty, we develop
an approximate procedure that is able to produce reason
results, for values ofG.Gmax, with very small increase in
CPU time. It amounts to first store (f ,j) data, for a number
Nsampof individually evaluated samples at generationGmax,
in a data basisB(Gmax,Nsamp). Then, use this data and map
~A1!–~A4! to generate another data basisB(Gmax
11,Nsamp), with the same numberNsamp of samples. Gen-
erating new data basesB(G11,Nsamp) from B(G,Nsamp)
can be repeated over and over, for anyG.Gmax, with a very
low cost, as the required CPU time increases linearly w
G2Gmax.0. So we return to a iteration scheme that is qu
similar to that one used for the homogeneous system. C
vergence criteria, similar to the one used in the last case,
fixed number of iterations can be used to stop the itera
process.

The actual approximation introduced in this scheme ref
to the emergence of correlations. EachGmax sample in
B(Gmax,Nsamp) bares no correlation with any of the othe
samples, nor within its constituents, as each of its bond
randomly and individually chosen. However, for anyG
.Gmax, the sameNsamp units will be present in the lattice
in a always larger number, asG increases. Despite the fac
that they are randomly distributed, correlation builds up,
that the obtained results constitute approximations to the
tual exact scheme, whereGmax could be increased withou
limit.

Results obtained within this approximated scheme fop
54 ~Gaussian case! are shown in Fig. 6. They were obtaine
with Nsamp5400 samples, and convergence criterion is
choose a fixed valueGB560. There we draw the quantit
log10(jL), defined as

log10~jL!5^ log10j&, ~13!

re
3-5
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as function ofT. We indicate also, for eachT value, the
individual behavior of the first 50 samples. First, let us d
cuss the behavior of the individual samples. Much like h
mogeneous systems, wherej numerically diverges at the
very precise temperature critical valueTc , we observe that
as T decreases below some value (Thigh), some individual
samples start to diverge, i.e.,j jump from values
<103– 1040. The number of samples that so behave increa
asT decreases, so that for sufficient low values ofT the large
majority of samples diverges. This divergent behavior foj
must be related to the occurrence of a kind of long-ran
order in the system, hence, of a presumableP-SG phase tran-
sition. The fact that, for some individual samples,j diverges,
while for other is it remains finite, is related to the particu
set of bonds which was chosen for that sample. It is reas
able to suppose that each particular samplek has its own
critical temperatureTc,k . As the number of divergences in
creases whenT decreases, a valueT̄c will be reached when

FIG. 6. Log-scale plot of the averaged value~over 400 realiza-
tions! of the correlation lengthjL ~solid curve! versus temperature
for PG for df53 lattice (p54). Crosses indicate values for 5
individual realizations for each value ofT. Large data dispersion is
observed only close to the critical temperature, where half of
samples diverge to infinity (;1040) belowTc , while others remain
finite for T.Tc .
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the number of divergences reaches the half of the numbe
samples. We will consider this value as indicative of t
observed phase transition.

Note also that, due to the huge difference in the order
magnitude forj when it diverges, a jump in̂j& is indicative
of Thigh , but not of T̄c . This value can be better evaluate
with the help ofjL . If we assume that the numerical valu
for a divergentjD;10R, and a typical value for a finitejF
;10r , then log10(jL);(RND1rNF), whereND andNF in-
dicate the number of samples for whichj diverges and re-
mains finite, respectively. AsND1NF5Nsamp, it follows
that log10(jL);@ND(R2r )1rNsamp#. Thus, when ND
5Nsamp/2, log10(jL) becomes equidistant to bothjD and
log10jF , which is the first criterion for evaluatingT̄c . The
second criterion, which leads to almost the same values,
look for the inflexion point for the curve log10(jL)T.

Results forT̄c are shown in Table II in comparison t
those found in the literature, the latter is obtained by ren
malization group schemes.

The presence of correlations induced by the repetition
the sameGmax units, for anyG.Gmax, must be the reason
for a wide temperature interval aboveT̄c where some
samples have divergentj. An increase inGmax causes a re-
duction of the intervalThigh2T̄c . If Gmax could be increased
without limit, all samples would be free from correlation
and the value forTc be well defined.

Estimates for the value ofn for the four different situa-
tions, obtained from the data forjL , are also indicated in
Table II and illustrated in Fig. 7 forPb andp54. Note that
our estimates forn, when p53, are larger than those pre
dicted by RG methods. Forp54, however, the obtained
value is closer to the one obtained by RG technique, fix
the probability distribution at each renormalization step14

which is a procedure more close to the present approach
the other hand, the difference is greater when compared
the result obtained by the MKRG scheme where the pr
ability distribution is free to evolve.33 The same behavio
should occur for thep53 case. It should be noted that in th
latter RG analysis,33 the value forn is not obtained from the
direct evaluation ofj, but from a finite-size scaling analysi

e

TABLE II. Values for the critical temperatureT̄c ~proportional to the standard deviation of the corresponding distribution! and the
correlation length exponentn for the Gaussian andd-bimodal probability distributions,

Critical temperatureTC Correlation length exponentn
df Nmax Gaussian Bimodal Gaussian Bimodal

Present work 2.585 . . . 8 0.29260.001 0.4760.007 6.6260.15 7.060.2
9 0.29760.003 0.4960.001 6.5760.4 7.060.5

3 7 0.88260.002 1.13660.004 2.460.5
8 0.87760.007 1.14260.005 2.7860.02 2.4960.06

Ref. 14 3 0.8860.02 1.0560.02 2.78
Ref. 11 3 0.8860.02 1.0560.02 2.809
Ref. 32 3 0.8860.05 1.16560.01
Ref. 33 2.585 . . . 0.29 0.48 2.360.3 2.160.1

3 0.88 1.15 1.860.2 1.760.1
Ref. 21 3 0.88160.001 1.13260.001 1.860.1 1.860.1
3-6
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of the behavior of the Edwards-Anderson parameter with
spect to the system size, here expressed by the length o
minimal path between the root sites. It should also be no
that the high value ofn, which corresponds to a small valu
of the thermal exponent, reflects that the system should
close to the marginal behavior (df close todl).

V. CONCLUSIONS

In this work, we proposed an exact scheme for analyz
short-range interaction spin-glasses on hierarchical latt
based on the transfer-matrix formalism, which proved to
quite successful in analyzing both homogeneous and de
ministic aperiodic systems. As the scheme explicitly cons
ers the individual contributions of each of the (2p)G bonds
in the generationG, the CPU time required for the iteratio
of the maps which to the thermodynamical properties of
model increases also exponentially withG. This makes im-
possible the iteration of the maps up to the very large valu
which have been used in these quoted systems.

Nevertheless, working with the Gaussian and bimodal d
tributions, we have been able to obtain results for free ene
and its derivatives with high degree of accuracy and l
dispersion of the data. We have also obtained quantita
agreement for the values of the residual entropies, for
bimodal distribution, with some upper bounds recently o
tained by a direct counting of the degeneracy of grou
states.

The convergence ofj presents more difficulties. Alread
in the uniform systems, its convergence requires larger n
ber of generations. However, this poses a crucial problem
fully disordered systems, as the estimated value ofG for the
convergence ofj requires CPU time beyond the capacity
our computing system. We developed an approximate pro
dure that allows for computing values ofj for any value ofG
with low computing cost. However this approximation intr
duces correlations into the lattice, as the independentGmax
units appear several times in the higher generation lattic

We presented estimations for critical temperature, wit
the proposed scheme, based on the divergence of the
proximate values ofj. We have found that the approxima

FIG. 7. Evaluation of the critical exponentn from the data for
jL , for the Pb probability distribution, whenp54.
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estimate values forTc are in accordance with those in th
literature. We have presented also estimations for critical
ponentn, based on the approximate values forj.

The nature of the observed transition can be better c
acterized with a further extension of the proposed schem
amounts to evaluating the magnetic properties of the mo
after the inclusion of a residual external field. This proced
has already been implemented in the case of homogen
system, and is currently being developed for the disorde
case.
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APPENDIX A: RECURRENCE MAPS FOR THE FREE
ENERGY AND CORRELATION LENGTH EXPONENT

FOR THE CASES pÄ3 AND 4

Let us first introduce a short hand notation with the de
nition zG,2l5zG,2lzG,2l 11.

The recurrence equations forp53 are

f G11,05
NG

NG11
(
l 50

5

f G,l1
T

NG11

3$ ln@4#2 ln@11zG,0zG,21zG,0zG,41zG,2zG,4#%

~A1!

and

1

jG11,0
5

MG

MG11
(
l 50

5
1

jG,l
1

1

MG11

3 lnF 11zG,0zG,21zG,0zG,41zG,2zG,4

11~zG,0zG,2!
211~zG,0zG,4!

11~zG,2zG,4!
21G .

~A2!

For p54, the corresponding equations are

f G11,05
NG

NG11
(
l 50

7

f G,l1
T

NG11
ln@8#2

T

NG11
ln@11zG,0zG,2

1zG,0zG,41zG,0zG,61zG,2zG,411zG,2zG,61zG,4zG,6

1zG,0zG,2zG,4zG,6# ~A3!

and
3-7
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1

jG11,0
5

MG

MG11
(
l 50

7
1

jG,l
1

1

MG11
ln@11zG,0zG,21zG,0zG,41zG,0zG,61zG,2zG,41zG,2zG,61zG,4zG,61zG,0zG,2zG,4zG,6#

2
1

MG11
ln@11~zG,0zG,2!

11~zG,0zG,4!
211~zG,0zG,6!

211~zG,2zG,4!
1

1~zG,2zG,6!
211~zG,4zG,6!

211~zG,0zG,2zG,4zG,6!
21#. ~A4!

APPENDIX B: RECURRENCE MAPS FOR THE FIRST DERIVATIVES OF THE FREE ENERGY f AND z

The recurrence maps for the first derivatives of the free energyf andz are

d fG11,0

dT
5

NG

NG11
(
l 50

3
d fG,l

dT
1

1

NG11
$ ln22 ln@11zG,0zG,1zG,2zG,3#%2

T

NG11

1

11zG,0zG,1zG,2zG,3

d

dT
$zG,0zG,1zG,2zG,3%

~B1!

and

dzG11,0

dT
5

~12zG,1
2 zG,3

2 !
d

dT
~zG,0zG,2!1~12zG,0

2 zG,2
2 !

d

dT
~zG,1zG,3!

~11zG,0zG,1zG,2zG,3!
2

. ~B2!

For the second derivatives, the corresponding maps are

d fG11,0
2

dT2
5

NG

NG11
(
l 50

3
d2f G,l

dT2
2

2

NG11

1

11zG,0zG,1zG,2zG,3

d

dT
$zG,0zG,1zG,2zG,3%

2
T

NG11

1

11zG,0zG,1zG,2zG,3

d2

dT2
$zG,0zG,1zG,2zG,3%1

1

NG11

1

~11zG,0zG,1zG,2zG,3!
2 F d

dT
$zG,0zG,1zG,2zG,3%G2

~B3!

and

d2zG11,0

dT2
5

~12zG,1
2 zG,3

2 !
d2

dT2
~zG,0zG,2!1~12zG,0

2 zG,2
2 !

d2

dT2
~zG,1zG,3!

~11zG,0zG,1zG,2zG,3!
2

22

zG,1zG,3~12zG,1
2 zG,3

2 !F d

dT
~zG,0zG,2!G2

1zG,0zG,2~12zG,0
2 zG,2

2 !F d

dT
~zG,1zG,3!G2

~11zG,0zG,1zG,2zG,3!
3

24

~zG,0zG,21zG,1zG,3!F d

dT
~zG,0zG,2!GF d

dT
~zG,1zG,3!G

~11zG,0zG,1zG,2zG,3!
3

. ~B4!
nd
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515 ~1998!; A.C.N. Magalhães, S.R. Salinas, and C. Tsallis,
Phys. A31, L567 ~1998!; T.A.S. Haddad, S.T.R. Pinho, and S.R
Salinas, Phys. Rev. E61, 3330 ~2000!; E. Nogueira, Jr., R.F.S
Andrade, and S. Coutinho, Eur. Phys. J. B23, 373 ~2001!.

26S. Franz, G. Parisi, and M.A. Virasoro, J. Phys.~France! 4, 1657
~1994!.

27R. Rajiv, P. Sing, and M.E. Fischer, J. Appl. Phys.63, 3994
~1988!.

28O.D. da Silva-Neto, DSc. thesis, Universidade Federal de P
nambuco~1999!.

29R.F.S. Andrade, Phys. Rev. E59, 150 ~1999!.
30A. Crisanti, G. Paladin, and A. Vulpiani,Products of Random

Matrices in Statistical Physics, Spinger Series in Solid Stat
Sciences Vol. 104~Springer-Verlag, Berlin, 1993!.

31I. Morgenstern and K. Binder, Phys. Rev. B22, 288 ~1980!.
32L.W. Bernardi, S. Prakash, and I.A. Campbell, Phys. Rev. L

77, 2798~1996!.
33E. Nogueira, Jr., S. Coutinho, F.D. Nobre, and E.M.F. Cura

Physica A257, 365 ~1998!.
3-9


