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The short-range Ising spin glass on the diamond hierarchical lattice is investigated via a transfer-matrix-
based method. An exact set of discrete maps leads to all thermodynamical functions for any finite lattice, from
which the thermodynamic limit can be obtained. The method, which encompasses the random choice of the
coupling constants between neighboring sites, has been applied to both Gaussian and bimodal probability
distributions. Results for the thermodynamic potentials of the model defined on lattices with fractal dimension
d;=2, 2.58... and 3below and above the estimated lower critical dimensidn-(2.5), are discussed and
fully analyzed. Typical Schottky-like profiles are observed in the temperature behavior of the specific heat for
both distributions in all lattices. Finite residual entropy is found to persist for the bimodal distribution case.
When d;>d, and for large number of iterations the correlation lengtimcreases exponentially in a wide
temperature interval. The divergence &fat a finite temperatur@. associated with the spin-glass phase
transition is investigated within an approximate scheme. The numerical valudg fomd v are brought in
comparison with those previously obtained by other methods.
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[. INTRODUCTION within mean-field approximation such as the one defined on
the Cayley tree lattic&: On the other hand, several approxi-

In the past thirty years, despite the huge amount of workmated methods and numerical procedures have been widely
that has been put into the investigation of the prototypicaused to explore the nature of the spin-glass condensed phase
models of disordered systems, namely the spin-g{&<3 such as power-series expansidfsjonte Carlo method$®
and the random-field Ising models, basic questions concerrand real-space renormalization grddpThe latter can be
ing their condensed phase and critical behavior are still faviewed either as an approximation for the model defined on
from being settled™* Bravais lattices or as an exact solvable procedure for the

Concerning SG the general properties of the condenseghodel defined on hierarchical lattices. Actually these lattices
phase are described by two conflicting scenarios regardingiere conceived to furnish the model such that the real-space
the multiplicity of pure states &t=0: the one coming from Migdal-Kadanoff renormalization groufMKRG) transfor-
the so-calleddroplet framework, which is appropriated to mationt>1® becomes realizable, that is exactly solvablé®
describe models with short-range interactiofiesalistic” For instance, the pure Ising model on diamond hierarchical
models, and the replica symmetry breakingRSB) one, lattices has been proved to be exactly solved within the
which arises from the mean-field solution of the infinite- MKRG schemé®® For random systems, such as spin
range coupling model. In the latter, the free-energy landscapglasses, this scheme gives results comparable to other ap-
in the configurational space is composed of a high number giroachegMonte Carlo simulations, for exampléor three-
pure states arranged onto an ultrametric structure of valleysimensional lattice&’ It seems that the randomness of cou-
separated by high-energy barriérajhile in the former the plings and/or fields washes out the effects caused by the lack
landscape should be ftrivial, that is, composed of just twaof translational invariance and by the concomitantly high
single pure states related by global spin inversion symnietryinhomogeneous site coordination-number distribution of the
Whether such a RSB picture prevails in reahort-range hierarchical lattices. Some important results have been ob-
modelg systems is a very controversial question that remainsained for the SRISGM defined on hierarchical lattices
unanswered. To attack this problem many models/ (HL)?*"?*as well as for deterministic aperiodic mod&ls.
methodologies have been considered so far. For instance, the In this work, we investigate the properties of the SRISGM
search of the ground-state multiplicity of the short-rangeon diamond hierarchical latticeghereafter DHL'$ with a
Ising spin-glass moddISRISGM has been an object of in- quite distinct method than the previous ones, namely the
terest of many authors, who developed sophisticated numeriransfer-matrix (TM) method. The proposed procedure
cal methodologies for direct counting of ground states, suclamounts to directly evaluate the thermodynamic properties,
as mappings into combinatory optimization probléhisp-  free energy, and its derivatives, together with the correlation
logical motivated algorithm$and Monte Carlo multicanoni- length ¢, for particular realizations of the model. Here we
cal technique? consider the SRISGM defined in terms of two probability

However, regarding exact solvable models for thedistribution functions for the coupling constants, the
SRISGM there are only a few ones, mostly beyond but stills-bimodal and the Gaussian ones. Mean values, for both
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probability distributions, are obtained by collecting data for a
large number of distinct realizations within the same proce-
dure. We explore three lattices with the same geometry bu
with different fractal dimensions{=2, 2.58 and 3, which

lie around the presumed valud,= 2.5, of the lower critical
dimension for the occurrence of the SG condensed
phase€®28 Like MKRG, the TM method also profits from Jy|
the exact scale invariance of the lattice. It has been used t
analyze periodic and aperiodic Ising models on the same
lattices, leading to a very precise evaluation of all relevant
thermodynamic functions as function of the temperature, in-
cluding the critical exponents and log-periodic oscillations in
the neighborhood of the critical poifit.

The rest of the work is so organized: in the following  FIG. 1. The first three steps of the inflation process of an Ising
section we describe the procedure and derive the recurrenggs on the DHL's withp=g=2. Each bondJ; is independently
maps for the free energy, entropy, specific heat, and correlahosen from the probability distribution. Each new generation may
tion length for the lattice witld;=2. In Sec. Ill, we discuss be constructed by connecting to the former one three replicas fur-
the behavior for the free energy and its derivatives. Speciatished with random coupling constants.
emphasis is laid on the convergence of the results in the
thermodynamic limit and on residual entropy for the SG withpressions relating the eigenvalugsnd e of two subsequent
bimodal distribution. In Sec. IV, we discuss the behavior ofgenerations, i.e., 7gi1=7c+1(7c.€c) and eg 1
the correlation length and questions related to its conver=eg,1(7g,€g). Such maps are conveniently written in
gence in the thermodynamic limit, which require the intro-terms of the free enerdl; and correlation lengtli; defined
duction of an approximate scheme. Finally, we finish withby
Sec. V with some concluding remarks and perspectives.

fe=—Ng'TIn7g, ©)
Il. TRANSFER MATRIX FOR SG ON DHL'S M
G
General properties of random transfer matrices have been §e=m, ©)

guite extensively investigated and used in the analysis of
disordered system.In the present study, we extend a TM- where 7 indicates the largest eigenvalueslf, andNg
based formalism developed to analyze periodic and aperiodiand M are, respectively, for the number of spins and the
spin systems on DHL's to encompass fully disordered spirattice size, that is, the length of the shortest path connecting
systems, which are formally described by the followingthe two root sites for a giveis-DHL. Note that Eq.(2),
Hamiltonian which goes along the usual definition of the free energy per
spin for a system with periodic boundary conditions in the
H _2 Yoo D thermodynamical limit, is the correct form forGDHL, up
TG ijoi0j, to a term of the order of In2/Ng—0 asNg grows. There-
fore the numerical iteration of these maps leads to the ther-
where o;=*+1 are Ising variables, the coupling constantsmodynamic properties of the model for a®/and as far as
{J;j} are quenched random variables following a well-Ng~2%¢ assumes sufficiently large values to the numeri-
defined probability distribution functioR(J;;), and the sum  cally exact values in the thermodynamic limit.
applies to nearest-neighbor pairs of spins on a DHL. Let Jo be the coupling constant chosen at random from a
The lattice is recursively generated, starting from a singleprobability distributionP(J;;) for the interaction between the
bond linking the two root sites, which correspond to the DHLSPIns at the root sites; andr,. It can be accounted for by
G=0 generation. The lattice is build by replacing each bondhe 2x2 T™M
of the previous generation by a set pfparallel branches,
each one consisting of a chain bfbonds withb—1 inner U _
sites as shown in Fig. 1 for the cape=b=2. After many G=0k=0""
steps, this procedure generates a higher-order self-similar
two roots graph, whose fractal dimension is;  Where ago=expdo/T)=byg. The first subscript used to
=(Inbp)/(Inb). In the present work, we limit ourselves to characteriz&J refers to the generation, and the second one to

the caséh=2 DHL’s. the chosen valud, produced byP(J;;).

The basic idea of this approach is to write down the sys- For G=1, the interaction between andr is described
tems partition functions for any DHL generati@in terms by a 2x2 matrix U, o, with only two distinct matrix ele-
of a 2x2 TM Ug that contains the effect of all configurations ments, arranged in the same way g,. U, can be ex-
mediated by the coupling constadts between the two root pressed as
sites ¢, andr,) in that generatiorG. Due to self-similar .
symmetry of the lattice, it is straightforward to derive ex- U1,0=Qo0,0Q0, - ®)
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4

boo @oo

104523-2



ISING SPIN GLASS BY THE TRANSFER MATRIX APPROACH PHYSICAL REVIEW B8, 104523 (2003

The 2x 2P TM Qo describes the interactions between the
spin atr, and those at thp new inner sites, Whi|@5’p, the
transpose 0fQ,,, describes the interaction between the
new spins and the one ab. For uniform systemsy,,
=U; andQq = Qo= Qo depend on just one coupling con-
stantJy. The Qo matrix elements can be written in terms of
those ofUq g=Ug:

(Qo)i,i=(Uo)i j,(Uo)ij, - - (Uo)ij, 1=1,....2,

Entropy

js=1,2¥s=1,...p, (6)

where the lexicographic order is used to map tRe@ments 'Oo.o 05 1.0 15 2.0
of the set{js}—I. With the help of Egs.(5) and (6) an
explicit expression fotJ,; can be easily derived.

~In a disordered systen@Qo0 and Qo are functions ofp FIG. 2. Average entrop{s0 samplepversus temperature fétg
independent values of coupling constadifs Let us r_ela_bel ~ (circles andPy, (squareswhend;=2 lattice (p=2), indicating the
these constants, randomly produced by the distributiofyesence of residual entropy for tédimodal probability distribu-
P(J;j), asJ;. Let also the interactions described @y, be  tion. Data dispersion is very small as shown in the inset.
those withl=0,1, ... p—1, while those with=p, ..., ] o

—1 refer to the interactions described @y, The interac-  'éplacing the subindices 0 and 1 ByandG+1, respec-
tion Jo, present in thed=0-DHL, is incorporated into the tvVely, n the above mapg8), with Ng=2(2+4%)/3 and
G=1-DHL, requiring the random choice of onlyp2- 1 val- Mg=

ues for the new coupling constants. To each one of them we _Thdebthermodynamllc propdertle?) of t(;we n(]é)d?tl can _bte ob-
associate a transfer matriX,, defined in the same way as ained by a numerical procedure based on(Bj.It consists

: : of performing individual realizations of the disorder, by the
Eq. (4), which are used for the evaluation @b,0, Qo,, and recursive use of Eq(8), whereJ, are randomly obtained

U, . Forinstance, in the cage=2, the elements dfj, g are o -
given by from the distributionP(J;;). . _

In the process of evaluating . ; g andég. 1 o for increas-
ing values ofG, we observe that a@+1)-DHL is built up
of 2p independenG-DHL's. As we keep the resultis; o and

Temperature

a1,0=o,0A0,180,280,31 80,000,180, 0,31 Po,630,100.220 3

+bg o100 Do 3, £6,0 Obtained for the firsG-DHL, we have to evaluate only
2p—1 independenG-DHL's. However, this requires the in-
b1.0= a9 080,100,200 37 @0 000,100,220 31 Do A0 180, 200 3 dependent evaluation ofp2(G — 1)-DHL's for each of them,
and so on. Thus, the central processing UGiPU) time re-
+bo,do,180,220,3- () quired to evaluate the properties of a lattice for a given value

G increases exponentially with a factop2This is not sur-
prising as the number of individually randomly chosen
No bonds, which must be individually accounted for, increases
fl,ozN_(fo,o"' fo1tfootTo2) exponentially withG as (2p)°.
1 This situation is quite different from that obtained for uni-
T form (deterministic aperiodjc models, where the
+N—{In 2—In[1+ 20 120120 520 a1}, (8  (G+1)-DHL is built up of 2p copies of the sam&-DHL
1 (limited set of distinctG-DHL’s). Thus, the CPU time in-
foof 1 creases only linearly witls, and results with a numerical
0992 |n[1+2oZo120204]  PreEcision of up to 16 significant digitsvhat can be under-
€00t €02 Mo S stood as a numerical thermodynamic limian be easily
-1 achieved®® Although the present results are as precise as
- In[1+zg’ézoylza2120,3]] , (9)  those obtained for disordered systems by other methods, they
can hardly be obtained with the same precision as for uni-
where form systems due to CPU time restrictions.
Expressions similar to Eq(8), valid for p=3 and 4
€0) and used to obtain results discussed in the following sec-
Zo,lzn_m’ No=2, Ny=4, Mo=1, M;=2. tions, are written in the Appendix A. The above maps can
’ (10) be used as starting points for a larger set of maps of
the derivatives off g with respect to the temperaturg
The exact geometrical scale invariance of the lattice leadsfg_ /9T and #*fg.,/dT2. They can be obtained in a
to the same recurrence maps for any generatiostraightforward way, leading to the entropy and specific heat
(G+1)-DHL in terms of the corresponding quantities for the of the system. The corresponding maps for &j.are writ-
G-DHLs. So, the general recurrence maps are obtained bsen in the Appendix B.

With the help of Eq(7), we rewrite Eqs(2) and(3) as

My &o0b02
§1,0—M—
0 0,0t 602
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FIG. 4. Plots of the free energy foi; =3 lattice (p=4) versus
temperature for the GaussiaR{) and thes-bimodal (Py,) distri-
butions(solid lineg. Results for 15 single realizations of the distri-
bution are marked with circled(;) and squaresK,,), respectively.
Individual points can hardly be distinguished within the used scale.
The finite slope in the plot foPy, is indicative of residual entropy.

FIG. 3. Plots of the average specific heat thr=2.585. ..
lattice (p=3) versus temperature for the Gaussi@) and the
&-bimodal (Py,) distributions(solid lines. Results for fifteen single
realizations of the distribution are marked with circld3g] and
squares P,), respectively. Individual points can hardly be distin-
guished within the used scale.

ll. FREE ENERGY AND ITS DERIVATIVES mean value of the entropy. For the same distributions, we

The iteration of Eqs(8), (9) and (A1)—(A4), subject to draw the curves for tempelratu.re dependence of the spe(;ific
initial conditions expressed by Boltzmann weights, leads td'€at @nd the free energy in Figs. 3 and 4 for lattices with
temperature dependent numerical values for the free enerdp=3) and (=4), respectively. Similar curves for other
and correlation length for individual realizations of SG on Values ofp, not shown, look like them.

DHL's with p=2, 3 and 4, foiG=0, . .. G,.x. The proce- All plots drawn in Figs. 2—4 are limited to values ®f
dure can be extended, by the inclusion of mép$)—(B4)  >0.15-0.25. For both distributions, the Boltzmann weights
and their counterpart fqs=3 and 4, to evaluate the entropy become very large for smaller valuesTofleading to numeri-
and specific heat. In this section, we present the results faral overflows. The very low values for the dispersion in Fig.
the free energy and its derivatives, which were obtained fo® reflect the high precise values for all obtained quantities. In

the models defined in terms of the Gaussian, fact, within the used vertical scales, the points corresponding
5 to each individual realization can hardly be distinguished
Pa(Jij) = Valmexp — a3), (1D from those shown in the averaged curves in Figs. 3 and 4.
and bimodal, At low temperatures, the entropy has rather different be-
havior for Pg andP,,. For the first distribution, it goes lin-
Pp(Jij) =[(J;;—1)+(J;;+1)]/2, (12)  early to zero ag§—0, while a finite residual entropy builds

probability distributions for the couplingsl;}, where o up for the pimodal dis.tribution. This is an e>.<pected behavior
=1/232, J=1 being the standard deviation. We considered®N® the sites belonging to the last generatlon ofa DH'L have
Gmax=10, 9, 8, respectively, fop=2, 3, 4. This corre- &an even number of_bonds and the_refore, with the bimodal
sponds to~10P— 1.6x 10" randomly chosen bonds for each distribution the net field on these sites can be exactly zero,
realization. The results are based on samples of up to 40hich corresponds to a twofold ground-state degeneracy per
distinct realizationgnever less than 50for each value of such sites. The same behavior is not expected for the con-
temperature, and were performed mainly on a 16-node 80@inuous valuedP . 42?231
MHz Pentiumlll-cluster. For the three different values ¢, the residual entropy
The results are summarized in Figs. 2—4. In Fig. 2, wecan be extrapolated from the finite temperature data leading
show the sample averaged entropy as a function of the tente values shown in Table I, which are compared with those
perature, for bothPg andP,, andp=2. In the inset of Fig. obtained from a counting procedure for the average number
2, we also show the temperature dependent dispersion to tlé ground state for the same models. Tests on the conver-

TABLE I. Values for the residual entropy for the SRISGM wigkbimodal probability distributions of
coupling constants.

d;=2.0(p=2) d;=25%...(p=3) d;=3.0 (p=4)
Present work 0.187060.0006 0.197%0.0003 0.218:0.001
Ref. 22 0.1822% 0.00004 0.1622990.00002 0.20842 0.00003
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10" - - - - . . Pc . Despite the high dispersion, the curve fg strongly
suggests a divergence in tiie-0 limit, although it seems to
be weaker than exp(L). For P,, the presence of frustration
causes a much slower increase for both the averageant

its dispersion. In fact the curve suggests that it remains finite
atT=0.

The analysis of the results become more difficult for
DHL's with d;>d., i.e.,p=3 and 4. According to renor-
malization group investigations, a phase transition from the
paramagneti¢P) to the SG phase should be observé@ur
results indicate that data scattering and sample average start
to increase exponentially at a much higher valud afeach-
ing values as high as bfor T=0.25. The above indicated
results for the finiteG,,,, become meaningless.

A simplistic way to address this problem is to increase the

FIG. 5. Plots of the average correlation lengtbg scalg for ~ Value 0fGpa,. However, let us note that typical CPU time
both probability distributions versus the inverse of the temperaturd0r” performing ~400 realizations for~30 temperature val-
for the d;=2 lattice (p=2). Error bars indicate that dispersion is U€s forp=3 and 4 in our present equipment is of the order
very small forP,,, while its values become significant in the low- Of 1 day. The magnitude of the data scattering and previous

temperature region foPg. For T—0, observe clear indications experience in running similar programs for the homogeneous

that ¢ (a) remains finite forP,, (b) diverges weaker than expfly ~ models, indicate that meaningful results should not be ex-

for Pg. pected unless the used value B, ,, is significantly in-
creased td5/,,, S0 thatG/,,/Gna=2. This implies that the

gence of the present results, performed by increasing théPU time should be increased by a factop)2max a limi-
value of G, for all values ofp, confirm the precision up to tation that can hardly be met by most of the present day
three significant digits. computing systems. To side step this difficulty, we developed
All curves for the specific heat display, as the one showrn approximate procedure that is able to produce reasonable
in Fig. 3, a typical Schottky round profile with a smooth results, for values 06> G4, With very small increase in
maximum. No qualitative distinction is observed from the CPU time. It amounts to first stord §) data, for a number
one atp=2 to those at larger values pfwhere phase tran- NsampOf individually evaluated samples at generat®p.y,
sitions are expected to occur. For the free energy, we noticé a data basi8(Gyax,Nsamp- Then, use this data and maps
qualitative changes in the low-temperature region, betweefA1)—(A4) to generate another data basiB(Gyax
the curves produced by the different distributions. Those fort1,Ngamp, With the same numbeN,,, of samples. Gen-
Py, have a constant nonzero slope, the value of which equalrating new data baseB(G+1Ngymp from B(G,Ngamp
to sp. can be repeated over and over, for @y G,y With a very
low cost, as the required CPU time increases linearly with
G—Gac>0. So we return to a iteration scheme that is quite
IV. CORRELATION LENGTH AND PHASE TRANSITION similar to that one used for the homogeneous system. Con-
vergence criteria, similar to the one used in the last case, or a
Results obtained for the correlation lengthpon iteration  fixed number of iterations can be used to stop the iteration
of Egs.(8), (9) and(A1)—(A4) deserve a more detailed dis- process.
cussion due to a much slower convergence of the results with The actual approximation introduced in this scheme refers
respect to the value d&, in comparison with those for the to the emergence of correlations. EaGhy,., sample in
free energy and its derivatives. As already mentioned, in th@(G,,«,Nsamp bares no correlation with any of the other
investigations carried out for both homogeneous and detesamples, nor within its constituents, as each of its bond was
ministic aperiodic systems, the maps have been iterated untindomly and individually chosen. However, for a
numerical convergence of all 16-digits variables. This does>G,,,,, the sameNg,mp Units will be present in the lattice,
not represent a big problem, as the CPU time increases linn a always larger number, & increases. Despite the fact
early with G. A value for G, is not explicitly required, as  that they are randomly distributed, correlation builds up, so
the iteration proceeds until the convergence condition is methat the obtained results constitute approximations to the ac-
However, it is possible to note that, dependingTom0-80  tual exact scheme, whel®,,,, could be increased without
iterations are required for that convergence. It is also poslimit.
sible to observe thétalways converges at smaller values of  Results obtained within this approximated schemegfor
G than & Thus, a slower convergence fgrin the present =4 (Gaussian cagare shown in Fig. 6. They were obtained
case is also expected. This situation is illustrated in Flg 5. IWNlth Nsamp: 400 Samp|eS, and convergence criterion is to
this figure, we draw the sample averaged and ten individua¢hoose a fixed valu€g=60. There we draw the quantity
realizations for¢ as function of 1T for both distributions i |og,(£,), defined as
thep=2 case, withG,,,=10. It shows that the dispersion of
the data increases dramaticallyasgecreases, especially for logio( £1) = (l0gyé), (13

Correlation Lenght &

Inverse Temperature
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10% - - - - the number of divergences reaches the half of the number of
o samples. We will consider this value as indicative of the
observed phase transition.
10% ] Note also that, due to the huge difference in the order of
magnitude for¢ when it diverges, a jump i) is indicative
10® ] of Thign, but not of ;. This value can be better evaluated

with the help of, . If we assume that the numerical value
for a divergentép~ 10R, and a typical value for a finitég
~10, then logo(&.) ~(RNp+rNg), whereNp andNg in-
dicate the number of samples for whi¢hdiverges and re-
mains finite, respectively. ANp+Ng=Ngamp, it follows
that logo(é ) ~[Np(R—r)+rNgamg. Thus, when Np
=Nsamd2, l0g1o(§.) becomes equidistant to botf, and

Temperature logyoér , Which is the first criterion for evaluating,. The
. second criterion, which leads to almost the same values, is to
FIG. 6. Log-scale plot of the averaged valigver 400 realiza-

tions) of the correlation lengtlf, (solid curve versus temperature look for the m]lexmn point for. the curve I_qggL)T' .
for Pg for d;=3 lattice (p=4). Crosses indicate values for 50  Results forT. are shown in Table Il in comparison to

individual realizations for each value &f Large data dispersion is those found in the literature, the latter is obtained by renor-

observed only close to the critical temperature, where half of thenalization group schemes.

samples diverge to infinity< 10°%) below T, while others remain The presence of correlations induced by the repetition of

finite for T>T,. the sameG,, ¢ units, for anyG> G, must be the reason
for a wide temperature interval abovE. where some

as function of . We indicate also, for each value, the samples have diverget An increase inG,, Causes a re-

individual behavior of the first 50 samples. First, let us dis-duction of the intervallygh— Tc . If Gynay could be increased
cuss the behavior of the individual samples. Much like ho-without limit, all samples would be free from correlations
mogeneous systems, whegenumerically diverges at the and the value foif, be well defined.

very precise temperature critical vallig, we observe that, Estimates for the value of for the four different situa-
as T decreases below some valug,fy,), some individual tions, obtained from the data fdj, , are also indicated in
samples start to diverge, i.e.§ jump from values Table Il and illustrated in Fig. 7 foP, andp=4. Note that
$103—1040 The number of samples that so behave increase@ur estimates fon/, when p:3, are |arger than those pre-
asT decreases, so that for sufficient low valuegdhe large  dicted by RG methods. Fop=4, however, the obtained
majority of samples diverges. This divergent behaviorgor vajue is closer to the one obtained by RG technique, fixing
must be related to the occurrence of a kind of long-rangghe probability distribution at each renormalization stép,
order in the system, hence, of a presumableG phase tran-  which is a procedure more close to the present approach. On
sition. The fact that, for some individual samplésliverges,  the other hand, the difference is greater when compared with
while for other is it remains finite, is related to the particularthe result obtained by the MKRG scheme where the prob-
set of bonds which was chosen for that sample. It is reasomgpility distribution is free to evolvé® The same behavior
able to suppose that each particular samipleas its own  should occur for th@=3 case. It should be noted that in the
critical temperaturel; . As the number of divergences in- |atter RG analysis® the value forv is not obtained from the
creases wheil decreases, a valuk, will be reached when direct evaluation of, but from a finite-size scaling analysis

Correlation Lenght §

TABLE Il. Values for the critical temperaturgC (proportional to the standard deviation of the corresponding distribudod the
correlation length exponentfor the Gaussian anédbimodal probability distributions,

Critical temperaturd ¢ Correlation length exponent
d; Nmax Gaussian Bimodal Gaussian Bimodal
Present work 2.98. .. 8 0.292+0.001 0.47-0.007 6.62-0.15 7.0:0.2
9 0.297:0.003 0.4%0.001 6.57-0.4 7.0:0.5
3 7 0.882:0.002 1.136:0.004 2.4-05
8 0.8770.007 1.142-0.005 2.78:0.02 2.49-0.06
Ref. 14 3 0.880.02 1.05-0.02 2.78
Ref. 11 3 0.88:0.02 1.05-0.02 2.809
Ref. 32 3 0.88:0.05 1.165-0.01
Ref. 33 258 ... 0.29 0.48 2.30.3 2.1+0.1
3 0.88 1.15 1.80.2 1.70.1
Ref. 21 3 0.88%+0.001 1.132-0.001 1.8-0.1 1.8-0.1
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estimate values foll. are in accordance with those in the
literature. We have presented also estimations for critical ex-
ponenty, based on the approximate values for

The nature of the observed transition can be better char-
acterized with a further extension of the proposed scheme. It
amounts to evaluating the magnetic properties of the model
after the inclusion of a residual external field. This procedure
has already been implemented in the case of homogeneous
system, and is currently being developed for the disordered

case.

Correlation Lenght §

10"

t=|T-T.I/T.
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spect to the system size, here expressed by the length of the

minimal path between the root sites. It should also be noted

that the high value of, which corresponds to a small value  APPENDIX A: RECURRENCE MAPS EOR THE FREE

of the thermal exponent, reflects that the system should be ENERGY AND CORRELATION LENGTH EXPONENT
close to the marginal behaviod{ close tod,). FOR THE CASES p=3 AND 4

Let us first introduce a short hand notation with the defi-

nition 26 =26 22621 +1-

In this work, we proposed an exact scheme for analyzing "€ recurrence equations fpr=3 are
short-range interaction spin-glasses on hierarchical lattices
based on the transfer-matrix formalism, which proved to be
quite successful in analyzing both homogeneous and deter- ferio=
ministic aperiodic systems. As the scheme explicitly consid-
ers the individual contributions of each of thep)® bonds
in the generatiors, the CPU time required for the iteration
of the maps which to the thermodynamical properties of the
model increases also exponentially wigh This makes im-
possible the iteration of the maps up to the very large values,q
which have been used in these quoted systems.

Nevertheless, working with the Gaussian and bimodal dis-
tributions, we have been able to obtain results for free energy 1 Mg 1 1
and its derivatives with high degree of accuracy and lowy; —— = M 2 §—+
dispersion of the data. We have also obtained quantitative®*10 " ¢+11=0 ¢G
agreement for the values of the residual entropies, for the
bimodal distribution, with some upper bounds recently ob-
tained by a direct counting of the degeneracy of ground
states.

The convergence of presents more difficulties. Already
in the uniform systems, its convergence requires larger num-
ber of generations. However, this poses a crucial problem for For p=4, the corresponding equations are
fully disordered systems, as the estimated valu& éér the
convergence of requires CPU time beyond the capacity of
our computing system. We developed an approximate proce-
dure that allows for computing values é§for any value ofG G
with low computing cost. However this approximation intro-
duces correlations into the lattice, as the indepen@pi,
units appear several times in the higher generation lattices.

We presented estimations for critical temperature, within
the proposed scheme, based on the divergence of the ap-
proximate values of. We have found that the approximate and

V. CONCLUSIONS

5

N
S > fout
Ng+1=0 ™

G+1

X{IN[4]—In[1+ 2 oZG 2+ 26 026 4t 26 2ZG 4]}
(A1)

5

Mg+1

1425 0Zg 2t 26,026,471 Z6 226 4
1+(ze0Z62) '+(Ze0Zea) '+ (26 2264 "
(A2)

XIn

+1,0— N

! T -
> fo +——In[8]— IN[1+ Zg oZG »
=0 " Ngig N T

G+1 1= G+1

+ 26,026,417 26,026,626 2264 1 26 226 61 26,426 6

+26,026,226 426 6) (A3)
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1 Mg é L
§G+1,0 MG+1 I=0 gG,l MG+1

IN[1+Zg 0ZG 2+ 26,026 4 Z6 026,61 26 226,47 26,226 6T 26,426 6 26,026, 22G 42G 6]

1
Mo, IN[1+(zg 0Zc D'+ (Ze0Z6,4) '+ (ZcZee)  *+ (2 2264)*

+(Zg 2260 '+ (ZcaZce) ' +(Z60Z6 2264260 - (A4)

APPENDIX B: RECURRENCE MAPS FOR THE FIRST DERIVATIVES OF THE FREE ENERGY fAND z

The recurrence maps for the first derivatives of the free enkandz are

dfeii0 Ng < dfe, L T 1 d
= n2—1In z 2g oZ - ——{z Zg oZ
aT Ng., = dT NG+1{ [ 6.026,126,226 3]} Nos1 1+ 26 oZ6 126 226 3 dT{ 6,026,126 226 3}
(B1)
and
2 2 d 2 2 d
dZs: 10 (1_ZG,lzG,S)ﬁ(ZG,OZG,Z)+(1_ZG,OZG,2)E-(ZGJZG,3)
- = (B2
dT (1+ 26,026,126 226 9)°
For the second derivatives, the corresponding maps are
dfid.1o Ng < d’fg, 2 1 d { }
dT2  Ngi1150 dT2  Ngy1 1+26076,126,2263dT 6.076.126,226.3
T 1 d? { \ 1 1 d ; \ 2
- —{z Z2G 22 3t T+ ——=1z 2g oZ
Ng+1 1726026126 226 3 d T? 6.076,1%6,226.3 No+1 (142 26 1262632 L AT 6.0%6,126,226.3
(B3)
and
d? d?
5 (125,28 S)_Z(ZG,OZG,2)+(1_Z(23 26 275 (261263
dZg110 TUdT TTdT
dT? (1+ 26,026 126,226 3)°
d 2 d 2
2 2
ZG,1ZG,3(1_Zé,1Zé,3) d_-l—(ZG,OZG,Z) +26,026 21— 25 026 2) d_-l—(ZG,lze,s)
-2
(1426 026126 226 3)°
d
(26,026 21 26,126 3) d—T(ZG,oZG,z) ﬁ(ZG,lzG,B)
—4 3 (B4)
(1+ 26,026,126 226 ,3)
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