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Abstract

We compare the efficiencies of two interesting schemes to generate truncated states of the light field in running modes, namely
the “quantum scissors” and the “beam-splitter array” schemes. The latter is applied to create the reciprocal-binomial state as
a travelling wave, required to implement recent experimental proposals of phase-distribution determination and of quantum
lithography.
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Generation of states of the quantized light field (or have been achieved in engineering quantum states of
atomic oscillators), named “quantum states engineer- the electromagnetic field both in cavities and as trav-
ing” (QSE), turned out to be a very important topic of elling waves; the latter are essential for transmitting
Quantum Optics [1] and Atomic Physics [2] in recent information. It is worth mentioning that even appar-
years. The issue has interesting potential applications,ently exotic states may become very important in the
as in teletransport [3], quantum computers [4], quan- determination of certain properties of a given system.
tum cryptography [5], quantum lithography [6], etc. To give some examples, we cite theciprocal bino-
Besides these practical applications it is also relevant mial state (RBS) for running modes, decisive for the
in fundamental aspects of quantum mechanics, as gen-experimental determination of the phase-distribution
eration of entangled states [7] and Schrddinger’s cat P(6) of an arbitrary state [10,11] and quantum litho-
states [8], and investigation of decoherence of meso- graphy [12]. A similar role is played by the “polyno-
scopic superpositions [9]. Recently, great advances mial state”, crucial for the experimental determination

of the Husimi Q-function [13].
In this Letter we concentrate in QSE for running
— _ modes of the radiation field. We compare the efficien-
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ate quantum states of travelling fields. We then use the and¢; = tar1(r; /1), with ; = cog6;), r; = sin(9;)
BSA scheme to propose a way of producing the RBS standing, respectively, for the reflection and trans-
in a travelling-field mode. Generation of the RBS for mission coefficients of beam splitters BSj = 1, 2.
stationary waves, trapped inside a high-Q cavity, was Next, the input of BS2,|%in)se = [Youtas|¥in)e,
discussed in Ref. [13]. with [Win)e = > oo g¥aln); consequently, the out-
The QS method appeared [14], initially, as a pro- put state emerging from the BS2 read&ut)ape =
posal for preparation of an arbitrary running-wave su- I?bc(|glfout>ab|gl/in>c). By measuring the field modein
perposition of the vacuum and the one-photon state, the statd1), and the field modein the statg N — 1),
|W1) = Cp|0) + C1]1). In this scheme, a travelling field  we synthesize the projection of the field madie the
would be available for further applications, as auxil- desired superposition.
iary to determine properties of other field states de- Once we have specified the truncated state to be
scribing a system. The scheme is able to achieve theprepared, this implies a system df equations. The
above mentioned superposition by a physical trunca- solution of such a system can be guaranteed if the
tion of the photon number superposition making up number of equations is not greater than the number of
a coherent state. The proposal requires no additionalfree variables. Therefore, we stress that for the present
extension of current experiments and is reasonably generalized quantum scissofg,andé, are free para-
insensitive to photodetection efficiency for the fields meters to be adjusted for the achievement of the de-
most likely to be used in practice. Since the scheme sired state. Whev > 3 we must introduceV — 3
produces a truncation of the Hilbert space, it has been new parameters to permit solubility of a system of cou-
called “quantum scissors” device. As mentioned in pled equations. This goal is attained by substituting the
[14], states with higher photon number might be con- auxiliary coherent state fiel@in)., entering the BS2
structed by superposing fields prepared as superposi-by a (convenient) discrete superposition of coherent

tions of zero and one photon number states. states. So, we may writ&in)c =N Y, yuln)c With
The QS scheme was extended [16] to the case

of generating superpositions of the firSt number _ xp(—ﬁ) Ial”k @)

states,|¥y) = Z,’f:o C,|n). To recover the situation " 2 ).n! N

considered in [16], we assume that the quantum state
to be generated is a finite superposition of equally
weighted Fock states@y), ~ |0) + |1) + --- + |N). 1, if N<3

We will assume the scheme sketched in Fig. 1, with *V = {22’24 cogngy), if N>3 (3)

the input state entering the beam splitter BS1 given N
bY [¥in)ab = 11)alN — ). In this case, we have the and theg,, are the additional parameters to be deter-

where

output of BSL,|Woudas = Rup|Win)ap, Where Ryp is mined fc_)r generation of the desirgd state.

the unitary operator In this scheme the probability? to produce a
state|Wy ), is determined by the requirement that the

R = exp[iel(a’r,;Jra,;’r)] (1) detectorsD, and D, register 1 andV — 1 photons,
respectively. So, it is given by

¥ al = [, UeN — 1 Woudane )

with

N=1).

I ""’ b<1|c(N - 1||lp0ut>abc

»
L

N-1
I PR
2 n=0 k

n
Fig. 1. Experimental setup of the generalized QS scheme to generate X tzj [Ayn+1|n +L.+ By, |n)a], (5)
the statg0) + |1) + - -- + |N) by projection synthesis. nro
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where whereD(g) stands for the displacement operator, the
) substitution of (11) in (9) gives
A=n+1—(N—n—l)<t—2>, (6) wy N
. e = ﬁ [1(B@BmatDtBw]i0). (12)
B=-nt? 4 (N-—nm2t @) Ti=1
1 nr2

Now, assuming zero dAetection in the detectbis

ri, t; being the reflection and the transmission coeffi- D, ..., Dy and |l1/1) D(«1)|0), we obtain, step-

cients ofith beam splitter. by-step:|W2) = a'T"|¥s) = 1T D(1)(0), [W3) =
The second representative scheme of QSE to gener-D(a) (@ 77 D(a1)|0)) etc., and

ate states of a light field in a running-wave, involving . o

an array of beam splitters (the BSA scheme), was in- [¥n) ~ [D(ay)(@'T" D(ay-1)]- - [D(e1)1/0). (13)

troduced in Ref. [15]. In this method, a stége) is ap-

proximated by (forN sufficiently large) the truncated

state

Of course, Eq. (13) differs from Eqg. (12). However,
they can be connected using successive action of each
pair of neighboring beam-splitters, as follows

Zw n) =XN2 (”T)n|o @ [P@rdw
= = =TD"(T*0)a" D(T*&)[DT()T" D ()] (14)

with given¥,. For convenience, this state can also be \yhere7 = 1— 7-1 (7 andR denote the transmittance

rewritten in the form and the reflectance of the beam splitters where a
N photon is added). Next, after using Eq. (14) in Eq. (13)
_ Yy 1—[(&1 — 8710}, ) and comparing the result with Eq. (12), one shows that

they become identical when

where theg;* are the roots of the polynomial equation

Z

Next, Eq. (9) is interesting for manipulation in the yielding the experimental parameters
set of beam-splitter of Fig. 2. Using the well-known ~ The probabilityP () to produce our desired state
relation |¥) is given by [15]

N
a1 = _ZT_lal"rlv (15)

(10) =71 B, k=2,3,4,...,N
(16)

a'— *=D(B)a'D'(B), (11)  PW)=|7D(an)¥ Dy 1)

. (17)

whereY = Ra'T%. That is, probability is given by
the square of the norm of the state produced when
no photon is registered in each of the conditional

5
lo) % % % % /II/ % . \?vtétzté'i;?ﬁasurements. After some algebra on Eq. (17)

o) [ Jerz) [ [etwar)

Dy D;

0 0

2

N
PW)=RPV|TINNDITT @ + b0 ) En)

m=1
2
Yo ) (18)

Fig. 2. Experimental setup of the BSA scheme. The first beam split-
ter, with a high transmittanc& ~ 1, produces the statb(«1)|0).
The second one, where a photon is added, has transmitfance 2

. n Is addec 1a80e xexpl =R
has a photon detector aligned with its vertical output. This set is re-
peatedN times. m=1

N | m

e

j=1
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wherebiy =0, b,y =
2.3.....NEv=Y"%,
2 N

= Y Bn.m(0) By ,(0)

m,[=0
x (gnlaN "otV =Dgn)

(19)

m—2 —i—
—Yio T ey m =

T*+1=J/q; and

N
Ha +b%n) 1EN)

with
N

(1

H(X + biN)>j| .
x=0

(20)

We now compare the efficiencies of the QS and the
BSA schemes. In the procedure of Ref. [14] the proba-
bility P for N =1 is obtained a®1 = 3 31 _1C, |2,
which resultsPy = 1/2¢ >~ 18%, fora = 1 and assum-
ing an equally weighted superpositiofig(= C1 =
1/+/2). In the extended scheme of [16] we obtain for
a = 1 and equally weighted superpositioPs = 9%
for N =2; P3=4.9% for N = 3; and P4 = 6% for
N = 4. However, these probabilities are only apparent.
One should correct them by taking into account the
probability of having the required input state, namely:
for the “quantum scissors” we might also consider the
probability to have the required input stafé — 1) in
the modeb and the input statgr) (or a superposition
>"; lai)) in the modec. Now, the statg¢N — 1) is avail-
able with probabilityP = 20% [17], whereas the state
|a) is available with maximum efficiency = 100%
[18]. For N > 3 superposition of coherent states are
required in the mode [16]. In this case, the proba-
bility depends on the phasg between the coherent
components [18]. For equally weighted superpositions
as employed in [16]¢ ~ 8.8; hence we obtain, using
[18], P ~ 50%. Next, multiplying the previous values
by the foregoing corrections we obtain the resulting
probabilities, which are shown in the second column
of Table 1.

Next, consider the scheme, proposed in Ref. [15],
using the beam-splitter array depicted in Fig. 2.

1 dnN-r

P ®= [Wd—
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Table 1

Probabilities for generating the staEéV |n) with QS (Py) and
BSA (P, V) schemes
N Py (%) Py (%)
1 18 40
2 18 14
3 0.9 5
4 0.6 15

in [15], a straightforward application of its scheme
furnishes the efficiencies for generation of the equally
weighted superpositiong@y ) ~ Zé\' |n), for N =2,
N =3 andN = 4. Inthis case we obtain, taking= 1
the values of the probabilitie®” presented in the third
column of Table 1.

We now address the question of generating the
RBS in travelling modes. The RBS is a truncated state
defined by [19]

N N\Y? b/

IRBS) = C Z ( ) exp[ik(¢ — —)}|k>, (21)
k 2

k=0
where (}) stands for the binomial coefficient ar
is a normalization constant. We shall investigate its
generation using the BSA scheme. As one can see
from Table 1, this scheme gives better probabilities
for generation of equal weighted superpositions of
the first number states, suggesting that the same
might happen for the generation of other truncated
states. In this case, the coefficiedts in Eq. (8) are
identified with the coefficienti?(’,f)l/zexmk@ -
7)] appearing in Eq. (21), the characteristic equation
(10) is solved forg; and the experimental parameters
oy are determined.

The probability for generate the RBS depends on
the transmittancel’ of the beam splitters. To be
specific, consider the RBS witlv =5 and¢ =7.

For this case, the profile of the probability as a
function of T is shown in Fig. 3; we see that the
maximum probability,P ~ 0.25%, occurs whefT' ~
0.87. Taking this value fof", we find the values of
the parameters corresponding to the generation of the

The detectors are also assumed ideals. Note thatRBS (withN =5 and¢ = ) presented in Table 2.

for N = 1 the difference between the arrangements

The relevance of producing a RBS in travelling

of QS and BSA procedures relies on the detection modes appears in direct connection with some recent
methods. Inthe BSA scheme, additional beam splitters developments. For example, the determination of the
are required wherv > 2. Although no applications phase distributionP(9) of an arbitrary field state,

for equally weighted superpositions were considered using a simple experimental scheme [10], requires
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Table 2 which reduces, for the particular case of zero-count, to
Values of parameterg; = | By | expligr) anday = |ag | expidy) to
generate the RBS (fa¥ =5 and¢ = x) with the BSA scheme ° m
PR ” o o po() =Y _(L=n)" (D). (23)
1 1.00 311 0.03 125 m=0
2 1.00 -1.93 0.64 219 We see from Eq. (23) thapo(n) > po(1) which
3 1.00 154 1.30 —176 naively implies the surprising conclusion that the ef-
4 1.00 —0.78 1.39 195 ficiency of a generation scheme based on 0-photon de-
5 1.00 036 0.94 -1.78 . . .
6 1.00 036 tection (like the BSA procedure) would be improved
by using non-ideal detectors. Although this is not truly
0.0025+ the case, the fact that such a relation between the
photon-count and the photon distributions does not
0.002] hold for all n suggests that the QS scheme (which in-
volves detection of 1 ani¥ — 1 photons) is still worse
— than the BSA procedure when non-unit efficiency pho-
P todetectors are considered. This reinforces the previ-
0.001 ous conclusion on the comparison of these schemes.
If we concentrate on the BSA scheme, considering
60005 a sequence of independent photodetectors, in general
grounds the corrected probabilit)) () would be
097 075 08 08 09 0% given by
T N (@)
D)
Fig. 3. Probability distribution, as a function of the transmittafice Pl (n) = (1_[ l;o(i)(z) ) Pl (1), (24)
i=1 Po

of the beam splitters, to creating the RBS with the BSA scheme.
the application of a travelling wave prepared in the wherep{’ (n;) and p§’ (1) stand for the photon-count
RBS. The same requirement was found to be crucial and the photon incoming distribution relative to iltie

for implementing quantum lithography in the scheme Photodetector, respectively, andis an abbreviation
introduced in Ref. [12]. for the Ntuplena, ..., nw.

In both QS and BSA procedures described above, However, the improvement caused by non-ideal
and in the comparison between them, we have as- photodetectors is only apparent, as expected. Actually
sumed that beam splitters and photon detectors weresuch detectors lead to a mixed output state, instead
ideal. While good beam splitters are available in labo- Of our desired pure statg?) = |RBS), this “deco-
ratories the same does not occur for photon detectors.herence” effect caused by losses being inherent to all
So, to improve our comparison concerning with these generation schemes based on photon detection. Hence,
schemes, we will consider only the influence of non- instead of generating a wanted pure state, which is
ideal detectors which is dominant upon that coming auxiliary in the measurement of a property of an-
from non-ideal beam-splitters. other field state, one ends up with the generation of

Non-unit efﬁciency of a photodetector leads to a mixed state, this mixing increasing when the effi-

a photon-count which is related to the ideal (effi- ciencyn becomes worse. Fortunately, there is a solu-
ciencyn = 1) pre-measured photon distribution by a tion to the problem of detection loss provided by the
Bernoulli transformation [20]. Accordingly, the proba-  inverse Bernoulli convolution (IBC), allowing one to
bility pa (1) to detecti-photons using a non-ideal pho-  reconstruct the pure state from the mixed state. Such
todetecton(n < 1) is given in terms of the probability ~ reconstruction of pure states from a mixed output state

pm(n=1) (using an ideal one) by via the IBC has been considered for some special ex-
~ amples, as Fock and Schrodinger’s cat states mixtures
my , m—n [21,22]. In this procedure a pure state, represented by
= 1- 1 22 . . :
Pn() Z (n)n @ =m™ " pm (D), (22) the density operatgs, = |¥)(¥|, is reobtained from

m=n
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the smeared data contained in the (mixed) density op- [2] D.M. Meekhof, et al., Phys. Rev. Lett. 76 (1996) 1796;

eratorpout(k, n) as follows C.C. Gerry, Phys. Rev. A 55 (1997) 2478;
X.B. Zou, K. Pahlkeand, W. Mathis, Phys. Rev. A 65 (2002)
-1 -1 064303.
- bo. .. bo
Aolid o(L) > {boks(n7) oy (131) [3] D. Bouwmeester, et al., Nature 390 (1997) 575:
ky....ky D. Boschi, et al., Phys. Rev. Lett. 80 (1998) 1121;
x pk (1) pout(K, 77)}» (25) S.L. Braunstein, et al., Phys. Rev. Lett. 84 (2000) 3486;
. . B. Julsgaard, et al., Nature 413 (2001) 400.
where the functionso,, are defined by [4] C.H. Bennett, D.P. DiVicenzo, Nature 404 (2000) 247;
m C.M. Tesch, R. de Vivie-Riedle, Phys. Rev. Lett. 89 (2002)
bim(2) = ( )zl(l — ! (26) 157901.
l [5] S. Wiesner, Signal News 15 (1983) 78;
and k = (k1,...,ky) gives the number of counts A.K. Ekert, Phys. Rev. Lett. 67 (1991) 661;

Ch. Silberhorn, et al., Phys. Rev. Lett. 89 (2002) 167901,

obtained in the detectors.
N | fi bout the f . d H.E. Brandt, Phys. Rev. A 66 (2002) 032303;
ow, an explanation about thé foregoing proceaure G.A. Durkin, C. Simon, D. Bouwmeester, Phys. Rev. Lett. 88

is necessary: the IBC is no more than a mathematical (2002) 187902;

approach, hence not able to experimentally correcting N. Gisin, et al., Rev. Mod. Phys. 74 (2002) 145.

the mixing introduced by non-ideal detectors; recon- [6] A.N. Boto, etal., Phys. Rev. Lett. 85 (2000) 2733.
struction is made upon computer-data, not experimen- [71J:1: Cirac, Nature 413 (2001) 375;

tally acting upon the running field states themselves. X.B. Zou, K. Pahlke, W. Mathis, Phys. Rev. A 66 (2002)

014102;
When applying a mixed output state in the measure- J. Fiurasek, Phys. Rev. A 65 (2002) 053818;
ment of certain property of another field state one fi- P. Horodecki, A. Ekert, Phys. Rev. Lett. 89 (2002) 127902;

nally ends up with some measurement data, a set of  J.-W.Pan, etal, Nature 410 (2001) 1067.
number inside a computer and not a quantum state, [ W-H.Zurek, Phys. Today 44 (1991) 36;
th b bei R[h final t d f th i M. Brune, et al., Phys. Rev. A 45 (1992) 5193;
ese numbers being the final outcome or the entre. ¢ ¢ Gerry, p.L. Knight, Am. J. Phys. 65 (1997) 964;
procedure. When these final data reproduce property  H.p, Breuer, et al., Eur. Phys. J. D 14 (2001) 377.
of an arbitrary field state then it does not matter how [9] M. Brune, et al., Phys. Rev. Lett. 77 (1996) 4887, for field
this property has been obtained. In resume, the recon-  states;
struction of the auxiliary field state does correspondto ~ D:M- Meekhof, et al., Phys. Rev. Lett. 76 (1996) 1796, for

th tructi fth d tv of th atomic states;
€ reconstruction of the measured property ot another J.P. Paz, Nature 412 (2001) 869, and references therein.

field state itself. [10] S.M. Barnett, D.T. Pegg, Phys. Rev. Lett. 76 (1996) 4148;
D.T. Pegg, S.M. Barnett, L.S. Phillips, J. Mod. Opt. 44 (1997)
2135.
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