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Abstract

We compare the efficiencies of two interesting schemes to generate truncated states of the light field in running mode
the “quantum scissors” and the “beam-splitter array” schemes. The latter is applied to create the reciprocal-binomia
a travelling wave, required to implement recent experimental proposals of phase-distribution determination and of
lithography.
 2003 Published by Elsevier B.V.
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Generation of states of the quantized light field
atomic oscillators), named “quantum states engin
ing” (QSE), turned out to be a very important topic
Quantum Optics [1] and Atomic Physics [2] in rece
years. The issue has interesting potential applicati
as in teletransport [3], quantum computers [4], qu
tum cryptography [5], quantum lithography [6], et
Besides these practical applications it is also relev
in fundamental aspects of quantum mechanics, as
eration of entangled states [7] and Schrödinger’s
states [8], and investigation of decoherence of me
scopic superpositions [9]. Recently, great advan
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have been achieved in engineering quantum state
the electromagnetic field both in cavities and as tr
elling waves; the latter are essential for transmitt
information. It is worth mentioning that even appa
ently exotic states may become very important in
determination of certain properties of a given syste
To give some examples, we cite thereciprocal bino-
mial state (RBS) for running modes, decisive for th
experimental determination of the phase-distribut
P (θ) of an arbitrary state [10,11] and quantum lith
graphy [12]. A similar role is played by the “polyno
mial state”, crucial for the experimental determinat
of the Husimi Q-function [13].

In this Letter we concentrate in QSE for runni
modes of the radiation field. We compare the effici
cies of two procedures recently presented in the lite
ture, namely the “quantum scissors” (QS) [14] and
“beam-splitter array” (BSA) [15] schemes, to gen
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ate quantum states of travelling fields. We then use
BSA scheme to propose a way of producing the R
in a travelling-field mode. Generation of the RBS f
stationary waves, trapped inside a high-Q cavity, w
discussed in Ref. [13].

The QS method appeared [14], initially, as a p
posal for preparation of an arbitrary running-wave
perposition of the vacuum and the one-photon st
|Ψ1〉 = C0|0〉+C1|1〉. In this scheme, a travelling fiel
would be available for further applications, as aux
iary to determine properties of other field states
scribing a system. The scheme is able to achieve
above mentioned superposition by a physical trun
tion of the photon number superposition making
a coherent state. The proposal requires no additi
extension of current experiments and is reasona
insensitive to photodetection efficiency for the fie
most likely to be used in practice. Since the sche
produces a truncation of the Hilbert space, it has b
called “quantum scissors” device. As mentioned
[14], states with higher photon number might be co
structed by superposing fields prepared as superp
tions of zero and one photon number states.

The QS scheme was extended [16] to the c
of generating superpositions of the firstN number
states,|ΨN 〉 = ∑N

n=0 Cn|n〉. To recover the situation
considered in [16], we assume that the quantum s
to be generated is a finite superposition of equ
weighted Fock states:|ΨN 〉a ∼ |0〉 + |1〉 + · · · + |N〉.
We will assume the scheme sketched in Fig. 1, w
the input state entering the beam splitter BS1 gi
by |Ψin〉ab = |1〉a|N − 1〉b. In this case, we have th
output of BS1,|Ψout〉ab = R̂ab|Ψin〉ab, whereR̂ab is
the unitary operator

(1)R̂ab = exp
[
iθ1(â†b̂ + âb̂†)

]

Fig. 1. Experimental setup of the generalized QS scheme to gen
the state|0〉 + |1〉 + · · · + |N〉 by projection synthesis.
-

andθj = tan−1(rj /tj ), with tj = cos(θj ), rj = sin(θj )

standing, respectively, for the reflection and tra
mission coefficients of beam splitters BSj , j = 1,2.
Next, the input of BS2,|Ψin〉bc = |Ψout〉ab|Ψin〉c,
with |Ψin〉c = ∑∞

n=0 γn|n〉; consequently, the out
put state emerging from the BS2 reads|Ψout〉abc =
R̂bc(|Ψout〉ab|Ψin〉c). By measuring the field modeb in
the state|1〉b and the field modec in the state|N −1〉c,
we synthesize the projection of the field modea in the
desired superposition.

Once we have specified the truncated state to
prepared, this implies a system ofN equations. The
solution of such a system can be guaranteed if
number of equations is not greater than the numbe
free variables. Therefore, we stress that for the pre
generalized quantum scissors,θ1 andθ2 are free para
meters to be adjusted for the achievement of the
sired state. WhenN > 3 we must introduceN − 3
new parameters to permit solubility of a system of c
pled equations. This goal is attained by substituting
auxiliary coherent state field|Ψin〉c , entering the BS2
by a (convenient) discrete superposition of coher
states. So, we may write|Ψin〉c =N

∑
n γn|n〉c with

(2)γn = exp

(
−|α|2

2

) |α|n√
n!λN ,

where

(3)λN =
{

1, if N � 3,∑N
m=4 cos(nφm), if N > 3

and theφm are the additional parameters to be de
mined for generation of the desired state.

In this scheme the probabilityP to produce a
state|ΨN 〉a is determined by the requirement that t
detectorsDb and Dc register 1 andN − 1 photons,
respectively. So, it is given by

(4)P = ∣∣
b
〈1|c〈N − 1||Ψout〉abc

∣∣2,

with

b〈1|c〈N − 1||Ψout〉abc

= (it1r2)N

N−1∑
n=0

(
N

k

)

(5)×
(

t2r1

t1r2

)n[
Aγn+1|n + 1〉a + B γn|n〉a

]
,
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where

(6)A = n + 1− (N − n − 1)

(
t2

r2

)2

,

(7)B = −n
r1r2

t1t2
+ (N − n)

t2r1

t1r2
,

ri , ti being the reflection and the transmission coe
cients ofith beam splitter.

The second representative scheme of QSE to ge
ate states of a light field in a running-wave, involvi
an array of beam splitters (the BSA scheme), was
troduced in Ref. [15]. In this method, a state|Ψ 〉 is ap-
proximated by (forN sufficiently large) the truncate
state

(8)|Ψ 〉 �
N∑

n=0

Ψn|n〉 =
N∑

n=0

Ψn(â†)n

√
n! |0〉,

with givenΨn. For convenience, this state can also
rewritten in the form

(9)|Ψ 〉 = ΨN√
N !

N∏
i=1

(
â† − β∗

i

)|0〉,

where theβ∗
i are the roots of the polynomial equatio

(10)
N∑

n=0

Ψn√
n! (β

∗)n = 0.

Next, Eq. (9) is interesting for manipulation in th
set of beam-splitter of Fig. 2. Using the well-know
relation

(11)â† − β∗ = D̂(β)â†D̂†(β),

Fig. 2. Experimental setup of the BSA scheme. The first beam s
ter, with a high transmittancẽT ∼ 1, produces the stateD(α1)|0〉.
The second one, where a photon is added, has transmittanceT and
has a photon detector aligned with its vertical output. This set is
peatedN times.
-

whereD̂(β) stands for the displacement operator,
substitution of (11) in (9) gives

(12)|Ψ 〉 = ΨN√
N !

N∏
i=1

[
D̂(βN)â†D̂†(βN)

]|0〉.

Now, assuming zero detection in the detectorsD1,
D2, . . . ,DN and |Ψ1〉 = D̂(α1)|0〉, we obtain, step
by-step:|Ψ2〉 = â†T n̂|Ψ1〉 = â†T n̂D̂(α1)|0〉, |Ψ3〉 =
D̂(α2)(â†T n̂D̂(α1)|0〉) etc., and

(13)|ΨN 〉 ∼ [
D̂(αN )(â†T n̂D̂(αN−1)

] · · · [D̂(α1)]|0〉.
Of course, Eq. (13) differs from Eq. (12). Howev

they can be connected using successive action of
pair of neighboring beam-splitters, as follows[
D̂†(α)T n̂D̂(α)

]
â†

(14)= T D̂†(�T ∗α)â†D̂(�T ∗α)
[
D̂†(α)T n̂D̂(α)

]
where�T = 1−T −1 (T andR denote the transmittanc
and the reflectance of the beam splitters wher
photon is added). Next, after using Eq. (14) in Eq. (
and comparing the result with Eq. (12), one shows
they become identical when

(15)α1 = −
N∑

l=1

T −lαl+1,

(16)

αk = T ∗N−k+1(βk−1 − βk), k = 2,3,4, . . . ,N,

yielding the experimental parametersαk .
The probabilityP (Ψ ) to produce our desired sta

|Ψ 〉 is given by [15]

(17)P (Ψ ) = ∥∥Ŷ D̂(αN )Ŷ D̂(αN−1) · · · Ŷ D̂(α1)|0〉∥∥2
,

where Ŷ = Râ†T n̂. That is, probability is given by
the square of the norm of the state produced w
no photon is registered in each of theN conditional
output measurements. After some algebra on Eq.
we obtain

P (Ψ ) = |R|2N |T |N(N−1)

∥∥∥∥∥
N∏

m=1

(
â† + b∗

mN

)|ξN 〉
∥∥∥∥∥

2

(18)× exp

(
−|R|2

N∑
m=1

∣∣∣∣∣
m∑

j=1

T m−1αj

∣∣∣∣∣
2)

,
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whereb1N = 0, bmN = −∑m−2
j=0 T ∗−j−1αN − j , m =

2,3, . . . ,N , ξN =∑k
j=1 T k +1− j αj and∥∥∥∥∥

N∏
n=1

(
â† + b∗

mN

) |ξN 〉
∥∥∥∥∥

2

=
N∑

m,l=0

BN,m(0) B∗
N,l(0)

(19)

× 〈ξN |âN−m â†(N−l)|ξN 〉

with

(20)

BN, p(0) =
[

1

(N − p)!
dN−p

dxN−p

(
N∏

i=1

(x + biN)

)]
x=0

.

We now compare the efficiencies of the QS and
BSA schemes. In the procedure of Ref. [14] the pro
bility P for N = 1 is obtained asP1 = 1

4

∑1
n=0 |Cn|2,

which resultsP1 = 1/2e � 18%, forα = 1 and assum
ing an equally weighted superposition (C0 = C1 =
1/

√
2 ). In the extended scheme of [16] we obtain

α = 1 and equally weighted superposition:P2 ∼= 9%
for N = 2; P3 ∼= 4.9% for N = 3; andP4 ∼= 6% for
N = 4. However, these probabilities are only appare
One should correct them by taking into account
probability of having the required input state, name
for the “quantum scissors” we might also consider
probability to have the required input state|N − 1〉 in
the modeb and the input state|α〉 (or a superposition∑

i |αi〉) in the modec. Now, the state|N −1〉 is avail-
able with probabilityP ∼= 20% [17], whereas the sta
|α〉 is available with maximum efficiencyP = 100%
[18]. For N > 3 superposition of coherent states a
required in the modec [16]. In this case, the proba
bility depends on the phaseφ between the coheren
components [18]. For equally weighted superpositi
as employed in [16],φ � 8.8; hence we obtain, usin
[18], P � 50%. Next, multiplying the previous value
by the foregoing corrections we obtain the result
probabilities, which are shown in the second colu
of Table 1.

Next, consider the scheme, proposed in Ref. [1
using the beam-splitter array depicted in Fig.
The detectors are also assumed ideals. Note
for N = 1 the difference between the arrangeme
of QS and BSA procedures relies on the detec
methods. In the BSA scheme, additional beam split
are required whenN � 2. Although no application
for equally weighted superpositions were conside
Table 1
Probabilities for generating the state

∑N
0 |n〉 with QS (PN ) and

BSA (P ′
N ) schemes

N PN (%) P ′
N (%)

1 18 40
2 1.8 14
3 0.9 5
4 0.6 1.5

in [15], a straightforward application of its schem
furnishes the efficiencies for generation of the equ
weighted superpositions:|ΨN 〉 ∼∑N

0 |n〉, for N = 2,
N = 3 andN = 4. In this case we obtain, takingα = 1,
the values of the probabilitiesP ′ presented in the third
column of Table 1.

We now address the question of generating
RBS in travelling modes. The RBS is a truncated s
defined by [19]

(21)|RBS〉 = C

N∑
k=0

(
N

k

)1/2

exp

[
ik

(
φ − π

2

)]
|k〉,

where
(
N
k

)
stands for the binomial coefficient andC

is a normalization constant. We shall investigate
generation using the BSA scheme. As one can
from Table 1, this scheme gives better probabilit
for generation of equal weighted superpositions
the first number states, suggesting that the s
might happen for the generation of other trunca
states. In this case, the coefficientsΨn in Eq. (8) are

identified with the coefficientsC
(
N
k

)1/2
exp[ik(φ −

π
2 )] appearing in Eq. (21), the characteristic equat
(10) is solved forβi and the experimental paramete
αk are determined.

The probability for generate the RBS depends
the transmittanceT of the beam splitters. To b
specific, consider the RBS withN = 5 and φ = π .
For this case, the profile of the probability as
function of T is shown in Fig. 3; we see that th
maximum probability,P � 0.25%, occurs whenT �
0.87. Taking this value forT , we find the values o
the parameters corresponding to the generation o
RBS (withN = 5 andφ = π ) presented in Table 2.

The relevance of producing a RBS in travelli
modes appears in direct connection with some re
developments. For example, the determination of
phase distributionP (θ) of an arbitrary field state
using a simple experimental scheme [10], requ
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Table 2
Values of parametersβk = |βk |exp(iϕk) andαk = |αk |exp(iθk) to
generate the RBS (forN = 5 andφ = π ) with the BSA scheme

k |βk | ϕk |αk | θk

1 1.00 −3.11 0.03 1.25
2 1.00 −1.93 0.64 2.19
3 1.00 1.54 1.30 −1.76
4 1.00 −0.78 1.39 1.95
5 1.00 0.36 0.94 −1.78
6 1.00 0.36

Fig. 3. Probability distribution, as a function of the transmittanceT

of the beam splitters, to creating the RBS with the BSA scheme

the application of a travelling wave prepared in t
RBS. The same requirement was found to be cru
for implementing quantum lithography in the sche
introduced in Ref. [12].

In both QS and BSA procedures described abo
and in the comparison between them, we have
sumed that beam splitters and photon detectors w
ideal. While good beam splitters are available in la
ratories the same does not occur for photon detec
So, to improve our comparison concerning with the
schemes, we will consider only the influence of no
ideal detectors which is dominant upon that com
from non-ideal beam-splitters.

Non-unit efficiency of a photodetector leads
a photon-count which is related to the ideal (e
ciencyη = 1) pre-measured photon distribution by
Bernoulli transformation [20]. Accordingly, the prob
bility pn(η) to detectn-photons using a non-ideal ph
todetector(η < 1) is given in terms of the probabilit
pm(η = 1) (using an ideal one) by

(22)pn(η) =
∞∑(

m

n

)
ηn(1− η)m−npm(1),
m=n
which reduces, for the particular case of zero-coun

(23)p0(η) =
∞∑

m=0

(1− η)mpm(1).

We see from Eq. (23) thatp0(η) > p0(1) which
naively implies the surprising conclusion that the
ficiency of a generation scheme based on 0-photon
tection (like the BSA procedure) would be improv
by using non-ideal detectors. Although this is not tru
the case, the fact that such a relation between
photon-count and the photon distributions does
hold for all n suggests that the QS scheme (which
volves detection of 1 andN − 1 photons) is still worse
than the BSA procedure when non-unit efficiency p
todetectors are considered. This reinforces the pr
ous conclusion on the comparison of these schem
If we concentrate on the BSA scheme, consider
a sequence of independent photodetectors, in ge
grounds the corrected probabilityP|Ψ 〉(η) would be
given by

(24)P|Ψ 〉(η) =
(

N∏
i=1

p
(i)
0 (ηi)

p
(i)
0 (1)

)
P|Ψ 〉(1),

wherep
(i)
0 (ηi) andp

(i)
0 (1) stand for the photon-coun

and the photon incoming distribution relative to theith
photodetector, respectively, andη is an abbreviation
for theN tupleη1, . . . , ηN .

However, the improvement caused by non-id
photodetectors is only apparent, as expected. Actu
such detectors lead to a mixed output state, ins
of our desired pure state|Ψ 〉 = |RBS〉, this “deco-
herence” effect caused by losses being inherent t
generation schemes based on photon detection. He
instead of generating a wanted pure state, whic
auxiliary in the measurement of a property of a
other field state, one ends up with the generation
a mixed state, this mixing increasing when the e
ciencyη becomes worse. Fortunately, there is a so
tion to the problem of detection loss provided by t
inverse Bernoulli convolution (IBC), allowing one
reconstruct the pure state from the mixed state. S
reconstruction of pure states from a mixed output s
via the IBC has been considered for some special
amples, as Fock and Schrödinger’s cat states mixt
[21,22]. In this procedure a pure state, represente
the density operator̂ρp = |Ψ 〉〈Ψ |, is reobtained from
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the smeared data contained in the (mixed) density
eratorρ̂out(k, η) as follows

|Ψ 〉〈Ψ | = 1

p0(1)

∑
k1,...,kN

{
b0;k1

(
η−1

1

) · · ·b0;kN

(
η−1

N

)
(25)× pk(η)ρ̂out(k, η)

}
,

where the functionsb0;ki
are defined by

(26)bl;m(z) =
(

m

l

)
zl(1− z)m−l

and k = (k1, . . . , kN) gives the number of count
obtained in the detectors.

Now, an explanation about the foregoing proced
is necessary: the IBC is no more than a mathema
approach, hence not able to experimentally correc
the mixing introduced by non-ideal detectors; rec
struction is made upon computer-data, not experim
tally acting upon the running field states themselv
When applying a mixed output state in the measu
ment of certain property of another field state one
nally ends up with some measurement data, a se
number inside a computer and not a quantum st
these numbers being the final outcome of the en
procedure. When these final data reproduce prop
of an arbitrary field state then it does not matter h
this property has been obtained. In resume, the re
struction of the auxiliary field state does correspond
the reconstruction of the measured property of ano
field state itself.
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