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Fluxes of cosmic rays: a delicately balanced stationary state
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Abstract

The analysis of cosmic rays fluxes as a function of energy revéatealightly below 13° eV and arankle close to 189 eV.
Their physical origins remain up to now quite enigmatic; in particular, no elementary process is known which occurs at energies
close to 186 ev. We propose a phenomenological approach along the lines of honextensive statistical mechanics, a formalism
which contains Boltzmann—Gibbs statistical mechanics as a particular case. The knee then appears as a crossover between tw
fractal-like thermal regimes, the crossover being caused by process occurring at energies ten million times lower than that of
the knee, in the region of the quark hadron transiticﬂnl()9 eV). This opens the door to an unexpected standpoint for further
clarifying the phenomenon.
0 2003 Elsevier Science B.V. All rights reserved.
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Cosmic rays fascinate since long. They provide but many others have been advanced [3-10] in rela-
galactic, extragalactic and cosmological information, tion with theknee and energies below it; for the ener-
related to recent or very old events concerning vari- gies beyond these, for tlamkle, as well as for general
ous sources, going back to the early times of the uni- reviews, see [11-13]).
verse [1]. They reflect all types of elementary process  Through various types of detectors, the flux of
and interactions, and are associated with phenomenacosmic rays at the top of the Earth atmosphere has
of very different space and time scales. The com- been measured [14] and varies from*1@own to
plete physical scenario still remains quite enigmatic, 10-2° [m?srsGe\[~! for energies increasing from
although a variety of specific mechanisms for acceler- 108 up to near 18! eV: see Fig. 1. This distribution
ation and propagation have been advanced along the(which spans 13 decades in energy and 33 decades
years for various energy regions. The most known of in flux!) is not exponential, hence it does not corre-
these mechanisms is the Fermi one [2], which ad- spond to Boltzmann—Gibbs (BG) statistical mechanics
dresses acceleration in magnetized turbulent plasma,thermal equilibrium. Consistently, even at a phenom-
enological level, i.e., without specifying any concrete

model or mechanism, this problem represents a chal-

mspondmg author. Iengg. This _is the one we address here. We_ sh_aII use
E-mail address: tsallis@cbpf.br (C. Tsallis). a point of view based on a current generalization of
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Fig. 1. Energy dependence of the fluxes of cosmic rays. Experimental error bars are indicated whenever available. The continuous curve is the
one we obtain within the present phenomenological approach. The dashed curve is an optimized BG one (even at relatively low energies it fails
by very many decades). The knee correspondsctgssover Inset: Linear-linear representation of the low energy fluxes.

Boltzmann—Gibbs statistical mechanics, referred to as self-organized criticality see, for instance, [29]; for
nonextensive statistical mechanics, we shall briefly de- long-range interactions see, for instance, [30-32].
scribe later on. The first step will be to remark that the Let us now first briefly review the usual, BG ther-
fluxes of cosmic rays in general, and the studies of the mostatistics. If we optimize under appropriate con-
“knee” and the “ankle” in particular, involve phenom-  straints the BGS = —k ), p; In p; (k = Boltzmann
ena such as turbulence (see, for instance, [15]), anom-constant{ p;} = microscopic probabilities) we obtain
alous diffusion and fractality (see, for instance, [16]), the celebrated equilibrium distributiop; = #
self-organized criticality (see, for instance, [17]),l0ng-  ,—8E (g = 1/kT, E; = energy of theith state;
range interactions (classical and quantum gravitation), » — 3" e~PEi = partition function). Excepting for
among other complex phenomena (such as, for exam-the trivial normalizing factor A7, this distribution can
ple, possible non-Markovianity [18]). It is precisely ajternatively be obtained as the solution of the linear
such phenomena that constitute the scope of nonex-gitferential equation

tensive statistical mechanics; for turbulence and re-

lated matters see, for instance, [19-21]; for anomalous

diffusion and fractality see, for instance, [22-28]; for dp;/dE; = —Bpi. 1)

X
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In order to deal with a variety of thermodynami-

cally anomalous systems, a more general formalism,
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generalization of the BG distribution by considering
By =By or By =0o0reveng =q.Forl<q <gq

nonextensive statistical mechanics, was introduced in andg, <« ,, a crossover occurs at

1988 [33-36]. It is based on the generalized en-

tropic form S, = k(1 —Y"; p1)/(¢ — 1) (g € R and

S1=9). Its optimization under appropriate constraints
1

yields [37] a power-lawp; « [1— (1 —¢q)B,Ei174

eq_ﬁqu (definition), which recovers the BG weight for

g =1 (1= P). As usual,kT, = 1/B, characterizes

g'-1 g-1
Ecrossover= [(6] - 1),311]‘1“’/ /[(q’ - 1)/%/]‘1—‘/ . (5
For E <« EcrossoverWe have an anomalous distribu-

tion characterized byg, 8,) (namely, p; « e,,_ﬂ"E"),
whereas folE > EcrossoveWe have a different anom-

the conveniently averaged energy. This anomalous glous distribution characterized ey, B,) (namely,

equilibrium-like distribution can be alternatively ob-
tained (excepting for the normalizing factor) by solv-
ing the nonlinear differential equation

dpi/dE; = —Byp]. (2)

This generalized weight naturally emerges in ubig-
uitous problems such as fully developed turbulence
[19-21] (which is relevant for the Fermi mecha-
nism, and most probably for others as well), electron—
positron annihilation [18], motion oHydra viridis-
sima [38], long-range many-body Hamiltonians [31],
among many others.

We now use the above differential equation path in
order to further generalize the anomalous equilibrium
distribution, in such a way as to have a crossover from
anomalousq # 1) to normal § = 1) thermostatistics,
while increasing the energy. We consider then the
differential equation
dpi/dE; = —B1pi — (Bg — BV P} (3)
whose solution ig; o« [1— ’S—‘i 4+ e(qfl)/’lEi]_q%l.
The crossover typically occurs flo[ >1andg K
By, the distribution being anomalous at low ener-
gies and BG at high energies. It is undoubtedly in-
teresting to notice that this differential equation pre-
cisely coincides, forg = 2, with the heuristic one
that in 1900 led Planck to the discovery of the black-
body radiation law and ultimately to quantum mechan-
ics [39].

Finally, by doing one more step along the same
direction, we can further generalize the differential
equation, now becoming

dpi JdEi = —Byp? — (B — B! )

This manner of writing the coefficient of the!

pi eq_,ﬁq'E’). The exact solution of the above dif-
ferential equation (the most general one considered
here) is given byp; « f(E;) where f~1(x) is an
explicit monotonic function ofc involving hyperge-
ometric functions (see Ref. [40] for details). Inter-
estingly enough, this precise solution arrives in the
discussion of the re-association of CO molecules in
myoglobin [40], where time plays a role very anal-
ogous to the one played by energy in our cosmic
rays problem. This time-energy analogy is not sur-
prising after all if we take into account that, in the
history of the universe after the Big Bang, the time
scale reflects the energy scale, as discussed in detail in
Ref. [41].

The flux @ (E) can be obtained straightforwardly
from p; « f(E;) by calculating the density of states
o (E). In the ultrarelativistic limitE o |p| (p being the
momentum), which we adopt here for simplicity given
the high values of the involved energies, the density
of states of an ideal gas in three dimensions is given
by w(E) « E2, hence,®(E) = AE2f(E), where A
is a normalizing factor (and where red shift effects
have been neglected). With this expression we fit the
observational data and obtain the results displayed in
Fig. 1. As we can see, the agreement is quite remark-
able.

Our summarizing comments are:

(i) The high quality agreement over so many dec-
ades, including crossovers between different regimes,
suggests that the phenomenological approach is cor-
rect, and specific models clarifying the various phys-
ical mechanisms that are involved should essentially
satisfy it;

(i) The deep explanation of the knee might well
be found at energies extremely lower (ten million

term has the advantage of recovering the simplesttimes lower, in fact), basically at energies related to
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