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Abstract

We discuss the non-Boltzmannian nature of quasi-stationary states in the Hamiltonian mean field (HMF) model, a

paradigmatic model for long-range interacting classical many-body systems. We present a theorem excluding the

Boltzmann–Gibbs exponential weight in Gibbs G-space of microscopic configurations, and comment a paper recently

published by Baldovin and Orlandini [Phys. Rev. Lett. 96 (2006) 240602]. On the basis of the points here discussed, the

ongoing debate on the possible application, within appropriate limits, of the generalized q-statistics to long-range

Hamiltonian systems remains open.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Hamiltonian mean field (HMF) model is a paradigmatic toy model for long-range interacting
Hamiltonian systems [1]. In a recent paper [2], Baldovin and Orlandini presented new molecular dynamics
numerical results for the HMF model in contact with a thermal bath. They conclude that the energy
distribution in its quasi-stationary state (QSS) is of the Boltzmann–Gibbs (BG) form. In view of their own
numerical results, we cannot agree with their conclusions. In this paper we present three points that are
relevant for the interesting questions raised in Ref. [2].
e front matter r 2007 Elsevier B.V. All rights reserved.
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2. Discussion

In what follows we present three important points regarding the non-Boltzmannian nature of the QSS in the
HMF model.

2.1. The nature of the QSS in the canonical setup presents differences with that in the microcanonical setup

It has already been demonstrated that, in the microcanonical ensemble, the anomalous dynamics
(concerning the presence of a glassy phase, hierarchical structures, velocity correlations, aging, vanishing
Lyapunov exponents, etc.), and therefore the statistical description of the QSS, is strongly dependent on the
initial conditions [3–5]. A fortiori, it is thus not at all justified to extrapolate the conclusions for the canonical
QSS studied in Refs. [2,6] to the microcanonical ones. Although the authors themselves state in Ref. [6] that
the canonical QSSs are only reminiscent of the microcanonical ones (in fact they differ in the lifetimes, the
relaxation times, and, most probably, also in the correlations), they neglect it in Ref. [2]. In order to stress this
point, in Fig. 1(a) we plot three numerical simulations in the microcanonical ensemble (averaged over 10
events) for energy density U ¼ E=N ¼ 0:69, size N ¼ 5000 and for different initial magnetizations M0. Water-
bag initial conditions were used [3]. Following the Central Limit Theorem aspects recently revealed in Ref. [7],
we illustrate in Fig. 1(b) the non-Boltzmannian nature of this QSS regime by studying the probability density
functions (pdfs) of the stochastic values y defined as follows: yj ¼

Pn
i¼1 ljðiÞ, for j ¼ 1; 2; . . . ;L, where ljðiÞ are

the momenta of the jth-rotator taken at fixed intervals of time i inside the QSS regime. We considered
L ¼ 5000 and n ¼ 500 intervals, one every 10 units of time. The length of the time interval was varied as
shown in Fig. 1(c) for the initial magnetization M0 ¼ 0:8 without any relevant change in the pdfs. An average
over 10 events was also considered, in order to have 50 000 values for the y variables for each pdf. In case of no
global correlations, as one would expect at equilibrium, the resulting pdf should be a Gaussian. As Fig. 1(b)
shows, in our case, the Gaussian distribution does not occur. In fact we have pdfs whose shape depends on the
initial magnetization M0 and the central region (up to a few mean standard deviations) of most of them is well
fitted by q-Gaussians. In particular for M0 ¼ 0:8 we get a q-Gaussian with q ¼ 1:75 as in Ref. [7]. We do not
think that this is a universal value in this case, since we do not have a strictly zero largest Lyapunov exponent
as in Ref. [7]. For the HMF model, the latter goes to zero as 1=N1=9 in the QSS regime [4], while it remains
finite at equilibrium at this energy value. We normalized the data to the corresponding standard deviations in
order to compare them. This comparison clearly shows that strong correlations are present in our case
indicating a deviation from the standard Central Limit Theorem, as in Ref. [7]. A more complete study on this
point will be reported elsewhere. In any case the arguments discussed in Ref. [2], and in particular in Fig. 1(a)
of Ref. [2], do not apply to the microcanonical QSS. The effects become increasingly stronger when the initial
magnetization gets closer and closer to 1.

2.2. The energy distribution of the QSS cannot be of the BG exponential form

As clearly seen in Fig. 1(a) of Ref. [2], the one-body momentum distribution is non-Gaussian. This excludes
the BG exponential form as the energy distribution in full phase space G, as proved (by reduction to the absurd)
in what follows. This analytical fact can easily be enlarged to n-dimensional rotators, n41: n ¼ 1; 2; d, and1
correspond respectively to the Ising, XY, Heisenberg, and spherical models. In what follows we illustrate it,
however, for n ¼ 2, the case addressed in Ref. [2].

Theorem. Let H ¼ K þ V be the Hamiltonian of a M-body classical system, where the kinetic energy is

K ¼
PM

i¼1ðl
2
i =2IÞ; I40, and the potential energy V contains arbitrary integrable one-body, two-body, three-body,

. . . terms, concerning (isotropic or anisotropic) rotators localized at a (irregular or regular d-dimensional) lattice

(each term might be characterized by a distance-dependent coupling constant, which can be summable or not in the

M !1 limit). And let the one-momentum marginal probability distribution

pðl1Þ �

Z
dl2 dl3 . . . dlM dy1 dy2 . . . dyM pðl1; l2; . . . ; lM ; y1; y2; . . . ; yMÞ
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Fig. 1. (a) The temperature as a function of time for the HMF model at energy density U ¼ 0:69 and size N ¼ 5000 obtained for three

initial magnetization values, respectively, M0 ¼ 1; 0:8; 0, and averaged over 10 events. The system remains trapped in a QSS at a

temperature value lower than the equilibrium one. The latter is drawn together with the limit temperature at this energy [3]. (b) The pdf of

stochastic values y obtained by summing rotators momenta in the QSS regime illustrated in panel (a), see text. Different initial

magnetizations M0 are reported. A Gaussian (dashed curve) and a q-Gaussian with q ¼ 1:75 (full curve) are also reported for comparison.

(c) For the initial magnetization M0 ¼ 0:8, we plot the pdfs obtained changing the time interval for recording the momenta of the rotators.

No significant change is observed. See text for further details.
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associated with the joint distribution

pðl1; l2; . . . ; lM ; y1; y2; . . . ; yMÞ

be non-Gaussian. Then

pðl1; l2; . . . ; lM ; y1; y2; . . . ; yMÞ

cannot be proportional to

e�bHðl1;l2;...;lM ;y1;y2;...;yM Þ; b40.



ARTICLE IN PRESS
C. Tsallis et al. / Physica A 381 (2007) 143–147146
Proof. Assume that

pðl1; l2; . . . ; lM ; y1; y2; . . . ; yMÞ ¼
e�bHR
e�bH

,

then

pðl1Þ ¼

R
dl2 dl3 . . . dlM dy1 dy2 . . . dyM e�bHR

dl1 dl2 dl3 . . . dlM dy1 dy2 . . . dyM e�bH

¼

R
dl2 dl3 . . . dlM e�bKR

dl1 dl2 dl3 . . . dlM e�bK

R
dy1 dy2 dy3 . . . dyM e�bVR
dy1 dy2 dy3 . . . dyM e�bV

¼
e�bl21=2I

QM
i¼2

R
dli e

�bl2i =2I

QM
i¼1

R
dli e�bl2i =2I

¼
e�bl21=2IR
dl1 e�bl21=2I

,

which is a Gaussian, thus contradicting the hypothesis. &

Hence, the Central Limit Theorem verification exhibited in Ref. [2] refers to a necessary but insufficient
property.
2.3. The Baldovin– Orlandini results do not exclude the non-extensive statistical mechanics q-exponential form

Contrary to what is stated in Ref. [2], q-statistics [8] cannot be excluded on the basis of what they exhibit in
their Fig. 3(d). Indeed, in Fig. 2 we plot the statistical weights corresponding to BG statistics (full circles), and
to a typical illustration of non-extensive statistics (q ¼ 1:5; solid line), for the size M ¼ 1000 example exhibited
in Fig. 3(d) of Ref. [2]. We used nearly the same number of points of Fig. 3(d) in the interval
EHMF 2 ½664; 720�, which covers 4% around its central value 692. The linear correlation is r ¼ �0:99996
(r ¼ �0:99997 in Ref. [2] for a similar analysis). The remarkable closeness of the q ¼ 1 and 1.5 examples comes
660 670 680 690 700 710 720

EHMF

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ln
 e

q
 -

  
E

H
M

F 
- 

69
2

   
  

10
00

 ×
  0

.3
8 

(M = 1000)

q = 1.0

q = 1.5 (r = -0.99996)

Fig. 2. The statistical weights corresponding to BG statistics (full circles), and to a typical illustration of non-extensive statistics (q ¼ 1:5;
solid line), for the size M ¼ 1000 example exhibited in Fig. 3) of Ref. [2], see text for details.
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from two facts. The first one is that

ex
q � ½1þ ð1� qÞx�1=ð1�qÞ ¼ ex½1þ 1

2
ðq� 1Þx2 þ � � �� for x! 0.

Notice the absence of the term linear in x in the latter expression. While the second one is that the spreading
around the central value 692 is very small. Notice also that we rescaled the temperature T ¼ 0:38 by a factor
M, which corresponds to multiplying Hamiltonian (1) of Ref. [2] by M and then rescaling time in the kinetic
energy (see Ref. [9]). This makes the microscopic two-body interaction of the model independent from the
macroscopic quantity M, as desirable. Consider also that, in the q-statistical weight of Fig. 2, we have
subtracted from EHMF a characteristic macroscopic energy, namely the central value 692. This procedure is
long known to be mandatory (see Ref. [10]) for any qa1 in order to preserve the invariance of probabilities
with regard to an uniform shift of the energy scale, i.e., in order to preserve the freedom of the choice of the
zero of energies. Such subtraction, although allowed for all values of q, is clearly not mandatory for the BG
exponential weight (q ¼ 1), since the desired invariance is anyhow guaranteed by the fact that the exponential
of a sum factorizes into the product of exponentials (whereas the q-exponential of a sum does not factorize into
the product of q-exponentials if qa1).

3. Conclusions

On the basis of the points here discussed, the results presented in Ref. [2] should be considered with extreme
care, and by no means they close the ongoing debate on the possible application, in appropriate limits, of
generalized q-statistics to long-range Hamiltonian systems. Finally, let us mention for completeness that
neither the arguments recently advanced in Ref. [11] exclude the possible application of q-statistics, especially
for initial magnetization close to 1, but this point is beyond the scope of the present paper and it will be
discussed elsewhere.
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