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Nonrelativistic Wave Equations With Gauge Fields
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We illustrate a metric formulation of Galilean invariance by constructing wave equa-
tions with gauge fields. It consists of expressing nonrelativistic equations in a covariant
form, but with a five-dimensional Riemannian manifold. First we use the tensorial ex-
pressions of electromagnetism to obtain the two Galilean limits of electromagnetism
found previously by Le Bellac anddviy-Leblond. Then we examine the nonrelativistic
version of the linear Dirac wave equation. With an Abelian gauge field we find, in a
weak field approximation, the Pauli equation as well as the spin—orbit interaction and
a part reminiscent of the Darwin term. We also propose a generalized model involving
the interaction of the Dirac field with a non-Abelian gauge field; the SU(2) Hamiltonian
is given as an example.

KEY WORDS: Galilean invariance; Riemannian geometry; gauge theory; wave
equations.

1. INTRODUCTION

Almost a century ago, Galilean relativity was superseded in a spectacular
fashion by Einstein’s theory for the description of phenomena involving velocities
close to the speed of light. However, there exists a wealth of low-energy sys-
tems, particularly in condensed matter physics and low-energy nuclear physics,
where Galilean invariance cannot simply be ignored. Thus, any new method or
result involving Galilean invariance is likely to be useful. Considering the fact
that Galilean relativity has been known for nearly 200 years prior to Einstein’s
relativity, it may appear surprising that the group theory underlying relativistic
theories, the Poincargroup, has been thoroughly investigated (Bargmann, 1947;
Gelfandet al, 1963; Wigner, 1939) long before its nonrelativistic counterpart, the
Galilei group (Ironti and Wigner, 1952; &vy-Leblond, 1963, 1971). Although
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theprinciple of relativity has been recognized first in the low velocity regime, the
mathematical developments for the Poircgroup have always preceded those
for the Galilean group. Likewise, the present article is part of a program, which
borrows the tensor calculus typically utilized within Lorentz-covariant models, in
order to construct Galilei-invariant theories. Our purpose was to retrieve nonrela-
tivistic models by starting with a manifest Galilei-covariant theory, although in a
five dimensional Riemannian manifold. Such a unified formalism, where the phys-
ical theories look as similar as possible in their Lorentzian and Galilean versions,
would show more manifestly how some concepts or techniques can be shared
between the two theories. Thus it is not surprising that four-dimensional covari-
ant descriptions of Newtonian mechanics and gravitation were given soon after
Einstein’s formulation of special relativity (see, for instance, Carton, 1923 (1924)
and the review in Havas (1964)). This approach was used to explain the appear-
ance of Poincar’'symmetries in the description nbnrelativisticmembranes by

2+ 1dimensional field theory or, equivalently, irrotational isentropic fluid motion
for a specific potential (Bazeia and Jackiw, 1998; Bordemann and Hoppe, 1993;
Hassaie and Harathy, 2000, 2001; Jackiw, 2002; Jackiw and Polychronakos,
1999).

In this paper we use a similar approach to consider nonrelativistic wave equa-
tions for gauge fields and their interaction with fermion fields. We are more ori-
ented toward physical applications than many earlier papers that dealt with this
five-dimensional approach. Most results obtained here are already in the literature;
our purpose here is to express them in a Galilei-covariant form. In Section 2, we
use the manifest covariant tensorial expressions of Maxwell electrodynamics and
obtain thereby the two nonrelativistic versions of electromagnetism derived nearly
three decades ago by Le Bellac aneWi‘Leblond (1973). In Section 3, we turn
to first-order field equations: the Dirac equation for a fermionic field coupled to
an external (Abelian) electromagnetic field, and for a fermion coupled to a non-
Abelian gauge field. We do not investigate Galilean theories of gravitation, which
are already investigated (Duvat al., 1985 Julia and Nicolai, 1995; Nurowski
etal, 1999). Although reminiscent of the old attempts to geometrize all fields into
a unified field theorala Kaluza—Klein, here the aim of the fifth dimension is com-
pletely different, namely, to combine the relativistic and the Galilean structures.
To our knowledge, the use of five dimensions in this context was originally men-
tioned by L8vy-Leblond (1971), Pinski (1968), and Soper (1976) and investigated
more thoroughly by Kinzle and Duval (1994) and Pinski (1968). An interesting
interpretation of the fifth parameter is in the first of Kapik (1986). However
hereafter we shall follow a formulation introduced by Takahashi and his collab-
orators (de Montignyet al,, 2000, 2001a,b; Omotet al,, 1989; Santanat al,,

1998; Takahashi, 1987, 1988a,b), based on a five-dimensional space such that
a Galilean boost with relative velocity = (Vi, Va, V3) acts on aGalilei-vector
(x,t,s) as
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X =x—Vt,

t' =t, (1)

/ 1 2
S =s—-V.x+ V.
2
The scalar product,
(A|B)=A"BMEA~B—A485—A584, (2)

of two Galilei-vectorsA andB is invariant under the transformation, Eq. (1). This
suggests a method to base the tensor calculus on the metric

100 0 O
010 0 O
g’=g,=]0 01 0 O0]. (3)
000 0 -1
000-1 0

Hereafter we refer to this as tl@&alilean metric It may be artificial to refer to a
“Galilean tensor calculus” since the usual tensor operations and index techniques
simply cannot be performed in the Newtonian space—time, but only in five dimen-
sions. Also, the Newtonian space—time must be embedded into that space according
to Eq. (1). As mentioned by Omoet al.(1989), this metric may be diagonalized

into diag&, +, +, 4+, —) so that the Galilean covariance is achieved by embed-
ding the ordinary Newtonian space into &4l Minkowski space. Susskind (1968)

has noticed that working with light-cone coordinates irda~1, 1) Minkowski
space-time reduces to Galilean invariancedirl( dimensions. This corroborates

the unified formalism of Kinzle and Duval ((1994) and references therein) where
both the Lorentzian and the Newtonian space—time can be described in terms of
a five-dimensional Lorentz metric with its Levi-Civita connection together with

a covariantly constant vector field that is null in the Galilei case, and spacelike
in the Lorentz case. The four-dimensional space—time then arises as the quotient
manifold of the orbits of the corresponding vector field. The five-dimensional
Lorentzian metric is (see the end of Ometaal. (1989).

100 0 O
010 0 O

Go)w=|0 01 0 o], (4)
000 0 -1
000 -1 1/
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100 0 O
010 0 O

Go)*=|0 01 o o], (5)
00 0 -1/ -1

000 -1 0

and leads to the metric, Eq. (3), wheapproaches infinity.
The transformationin Eqg. (1) can be written in matrix form for the components
of any five-vector as

X" = AlX", (6)

wherey denotes the row andthe column (so thaA” is the @v)-entry) or

x1 1 0 0 —-Vi 0\ /x!
X2 0 1 0 -V, 0| x2
x3=1] 0 0 0 -V of]|x®]. (7)
NG 0 0 0 1 0| x4
x5 -Vi =V, —Vz 3vZ 1) \x®

The same transformation can be written in matrix form for any five-oneform as
X, = A, Xy, (8)

wherew now denotes the column andhe row (that isA), is the ¢n)-entry), or

1 0 0 Vi O
0 1 0 V. O
(X1, X9, X5, Xy, Xg) = (X1, X2, X3, X4, X5) | O 0 1 Vs 0O]. (9)
0O 0 O 1 O
Vi Vo Va 3VvZ2o1

v
Ay

—
These matrix elements are calculated by usifig= 9. X = g, A§9"X .
Note that the units of the additional coordinatare [lengtR]/[time]. Some-
times it is useful to define a five-vector( ... , x°), where each component has
the dimension of length, from Eq. (1) as

(xt ..., x%) = (x, Vat, ;) , (10)

5
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where bothv, andvs have units of a velocity. The units of thevariant components
of the five-vector X%, ..., x°) = (x, t, s) are
L2
=L 1=T, [x]= T (11)
(whereL andT represent units of length and time, respectively) whereas Eq. (9)
shows that the units of thepntravariant componentsre

L2
X] =1L, ==,
M=L ==
Whether we consider a five-vector or a five-oneform these relative units between
each components must be kept in mind, as illustrated in the next section.
In most of this paper (except in Section 2) we shall use the embedding

[xs] =T. (12)

(x,t) = x* = (x, 1, 9). (13)

Other developments are discussed in de Montigfral. (2001a) and Santared al.
(1998). Using the following definition for the five-momentum:

P =—i9, =(—1V, —id, —ids), (14)
and with the usual identificatioB = i d;, and writingm = i ds, we obtain

P. = (p, —E, —m),
p* =g"'p, =(p,m, E). (15)

We use the conventidm = 1 throughout the whole paper. Also we use the embed-
ding (15) in most of this paper, i.eps = —E andps = —m. Thereupon the mass
does not enter as an external parameter, but as a remnant of the fifth component of
the particle’s momentum, although we started from an apparently massless theory
in five dimensions.

2. GALILEAN ELECTROMAGNETISM

The purpose of this section is to illustrate the elegance of the five-dimensional
approach for a gauge field without any interaction with a fermionic field. Specif-
ically we retrieve the two Galilean limits of electromagnetism obtained by Le
Bellac and levy-Leblond (1973). Their purpose was to write down the laws of
electromagnetism by making use of Galilei relativity instead of Einstein’s relativ-
ity, the latter leading to the electromagnetic theory as we know it today. As they
put it, the laws obtained thereby could have been formulated by a physicist in the
mid-nineteenth century. Here we retrieve their results by using the tensorial form
of Maxwell equations.
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As stated in Le Bellac andeévy-Leblond (1973), the Lorentz transformation
of a four-vector (°, u) (Goldstein, 1980, Chap. 7)

Y,
+ V—(y — 1)V -u, (16)
where

y=— a7)
V1-VZ/c2
with an arbitrary relative velocity, admits two well-defined Galilean limits. The
speed of light in the vacuum is denotedOne limit is for timelike vectors

=Uu-,
1
u=u-— EVuo, (18)

and we shall see that it corresponds to the so-callectriclimit. The second limit
is for spacelike vectors
/0

1
=u—2Vv.u,
c

u =u, (19)

and will be associated to tieagnetidimit. Although the space—time coordinates
can be described by timelike vectors only, other vectors, such as the four-potential
and four-current, are compatible with the two limits. The existence of two Galilean
limits of electromagnetism is but a warning that there is more to nonrelativistic
theories than just taking the speed of light approaching infinity. Another example
is that if one neglects to enforce the condition that a nonrelativistic limit involves
not only low-velocity phenomena but also large timelike intervals then one obtains
different kinematics, referred to as Carroll kinematice\fi-Lebland, 1965). The
existence of events physically connected by large spacelike intervals would imply
loss of causality, among other things. Other such kinematics, all obtained as some
limit of the de Sitter Lie algebra, have been classified in Bacry awyt eblond
(1968).

Now let us set up the five-dimensional quantities that allow us to retrieve the
two Galilean limits of electromagnetism. The Galilean tensor calculus is based on
the fact that a five-vector (i.e., with upper indices) transforms as in Eq. (1) with the
underlying metric (3). Throughout this section, we use a rather trivial embedding
of the Newtonian space—time into this five-dimensional space.

X, 1) = x = (x,t, 0), (20)

u
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so that
W=Vk, =20, 3I=0. (21)
We obtain the two Galilean limits by defining two embeddings of the five-potential
A= (A, Ag, As). (22)
Under the transformation in Eq. (1) its components transform, from Eq. (9), as
A=A+ VA,
Ay =Ai+V-A+ %VZA&
As = As. (23)
The potential defines the five-dimensional electromagnetic antisymmetric tensor,
Fo=0,A —0d,A, (24)
which can be written as
0 by —-b, o d
—bs 0 b c o
Fw=]b -bp 0 c dsf. (25)
—-Cc —-C —-¢c O
—-d; —-d; —-dg —-a O

o))

From Eg. (24) we have

b=V xA,

c= VA, — 04A,

d= VA5 — A,

a = 04As — d5A4. (26)

Anticipating that the componentscorrespond to the magnetic fieR] the units
of the different components are

—_— M —_—

- o=
ML

(6] = T2

M

(A = 5p

whereQ andM denote units of charge and mass, respectively.

[b] [al,

(27)



656 de Montigny, Khanna, and Santana

The five-current
Ju =10, Ja Js), (28)
transforms under the transformation, Eq. (1), as
j"=]+Vijs,
ja=ja+V-j+ %szs,
is = |s. (29)
The continuity equation takes the form
0", =V -] — 045 — 354 = 0. (30)
In the presence of sources, the Maxwell equations are
0 Fap + 0o Fppu + 0gFue =0, (31)
and
F =", (32)
so that in terms of the componentsfofiefined in Eq. (25), we find, from Eq. (31)
V-b=0,
V xCc+db=0,
V xd+dsb =0,
Va — ,d + 8¢ = 0, (33)
whereas Eq. (32) reduces to
V x b—05c—9,d =],
V.C—4a=—js,
V-d—da=—js, (34)
FromF,,, = A% A F,z the entries of in Eq. (9) transform as
a=a+V.-d,
b =b-V xd,
c=c+Vx b+%v2d—av—V(v.d),

d =d. (35)
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Finally let us discuss how the Lorentz forcis contained within a five-force
proportional to the velocity and the electromagnetic field, that is

f* oc qFAVY, (36)

whereq denotes the charge of the particle moving in the field. The spatial compo-
nents are

f1 o q(Fikvk — FISv4 — FI%y5), (37)
Using Eq. (25) it gives
f o q(v x b —dv* — cv®). (38)
Now we shall define two embeddings of the usual four-potential into the
five dimensional version, Eq. (22), and consider their effect on the equations listed

above. This will result in a geometrical formulation of the ‘electric’ and ‘magnetic’
limits obtained in Le Bellac andevy-Leblond (1973).

2.1. Electric Limit

In Newtonian space—time, the electric limit is characterized by four-potential
and four-current vectors which are timelike, that is, their time component is much
larger than the length of their spatial components. In the setting described above
it corresponds to defining the embedding of the potentials and currents as

1
(e o) > A= (Ae, 0, —k—lqse) , (39)
and
(e pe) = je = (kaje, 0, —kope), (40)

respectively. The constanks andk, have dimension#—z and %, respectively.
Note that the units o, are the same as the constant of permittiyity
From Egs. (23) and (39) we find that

1
A’e =Aec— k—lv(be and ¢/e = Qe, (41)

in agreement with Le Bellac andely-Leblond (1973) as long as we choose
ky = —~. Similarly we find from Egs. (29) and (40) that

Ho€o

je=le—Vpe and p, = pe, (42)
as in Le Bellac and &vy-Leblond (1973). The continuity Eq. (30) then reads
V] —0ajs —3sja=V-Jet+ dpe=0, (43)

where Eq. (20) has been used.
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Next we must define the electric and magnetic fields. It is clear from the first
line of Eq. (26) that we have

Be=b=V x A.. (44)
The electric field is defined as the compondnso that from the third line of
Eq. (26) we have
Ee =kid = id = —Ve. (45)
Ho€o

From Eq. (26) we note that= —3A. anda = — -3 ¢e. Then Eq. (35) shows
that

E, = Ee,
B, = Be — jtocoV x Ee (46)

as in Le Bellac and &vy-Leblond (1973). The Maxwell equations are obtained
from Eqgs. (33) and (34) by definiing = 1o. The new equations thus obtained are

V x Ee =0,
V . Be - 0,
V X Be — 1o€0dtEe = ioje,

1
V- -Ee= E_O,Oe- 47

This is Eq. (2.8) Le Bellac andeviy-Leblond (1973). Note that the second
line of Eq. (34) provides a condition similar to Lorentz gauge fixiNg,Ae =

o€t Pe-
The Lorentz force in this limit is obtained by using = v, v® = 0 (because
of EQ. (20)) andd = uoeoEe so that Eq. (38) becomes

fe < gEe + QV x Be =~ gE,, (48)
in the smallB, limit, as in Le Bellac and EVy-Leblond (1973).

2.2. Magnetic Limit

This nonrelativistic limit is characterized by spacelike four-potential and four-
currentvectors; theirtime componentis small compared to the length of their spatial
components. Hereafter we show that it corresponds to defining the embedding of
the potentials and currents as

(Am, dm) = Am = (Am, —¢m, 0), (49)
and
(m» om) = jm = (Ksjm, —Kapm, 0), (50)
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respectively. Since the four- and five-components have different units, the constants

included above are different from those in Egs. (39) and (40). The conktaantd

ks now have unitsgs and i&x L7, respectively. Now the units d are the same as

the constant of permittivity.o, whereas those &, are like the inverse afy. Also
note the absence of such constants in equation (49), since the units are already
compatible. As before, we find that equations of Le Bellac ardytleblond
(1973) are obtained by defining = 1o andks = 1/¢.
From Egs. (23) and (49) we find that

Al =An and ¢, = dm—V-An. (51)
Similarly Egs. (29) and (50) lead to
jm=im and py = pm— po€oV - jm. (52)
Using the continuity Eq. (30) and the embedding, Eg. (21), we find
V] —04js —5ja=V jm=0, (53)

which is Eq. (2.16) of Le Bellac andevy-Leblond (1973) and shows that the
currentj,, cannot be related to a transport of charge.
Next we define the electric and magnetic fields. We take

and the electric field is now defined as the comporerb that from the second
line of Eq. (26) we obtain

Em=cCc=—V¢n — 0An. (55)
From Eg. (26) we note that = 0 anda = 0. Then Eq. (35) shows that
Ej, =Em+V x Bp,
B/, = Bnm (56)

as in Le Bellac and &vy-Leblond (1973). The Maxwell equations are obtained
from Egs. (33) and (34). The new equations thus obtained are

V x Em = —8Bm,

V . Bm == 0,
V x Bm = pojms
1
V-Em=—pm (57)
€0

in agreement with Eq. (2.15) of Le Bellac andwy-Leblond (1973).
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With b = B, ¢ = E, andd = 0, the Lorentz force, Eq. (38) becomes
fm o qv x B, (58)

as shown in Le Bellac anddvy-Leblond (1973).

Let us close this section by deriving the nonrelativistic Proca equation, which
is a generalization of Maxwell’'s equations for massive spin one particles. The
equation of motion takes a form similar to Eq. (32)

3"F,, — m?A, =0, (59)

where the second term replaces the curfgntherefore the ensuing equations can
be obtained directly from the previous results. In the electric limit we find from
Eq. (47) that

V x B — %E = —m?A,

V.E=—-m?%. (60)
In the magnetic limit, the Proca equation leads to
V x B = —m?A,
V.-E = -m?p, (61)

which is similar to Eqg. (57) with the current and density replacedibgnd ¢,
respectively.

3. DIRAC EQUATION: SPIN 1/2

In previous papers, we have constructed nonrelativistic Bhabha equations by
replacing, in their relativistic form, the Lorentz metric with the Galilean metric (de
Montigny et al,, 2000, 2001b). This procedure provides nonrelativistic field equa-
tions without taking any low-velocity limit but rather by starting with a manifestly
covariant equation and by defining an appropriate embedding of the Newtonian
space into the Galilei-de Sitter space. Our purpose is to compare the output of our
algorithm with well-known low-velocity limits.

A Galilean—Dirac equation has been constructed by Orsbtal. (1989)
essentially by enforcing the anticommutation relations of the gamma matrices
with the metric of Eq. (3). Here we first retrieve this equation by starting from
the free Hamiltonian and then writing a compatible linear equation as done in
Léevy-Leblond (1967).

Let us consider a free particle, with nonrelativistic Hamiltonian

p2

= (62)
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Typically, the transition to quantum mechanics is carried out by replacing the
dynamical variable& andp by the operators

E— ihi,
at
p— —ihv, (63)
so that Eq. (62) leads to the nonrelativistic Sitinger equation
L OY(x, 1) h? _,
h =—-——V t). 64
= 5 VIV (X, 1) (64)

Hereafter we write a similar, albeit first-order, nonrelativistic wave equation
compatible with Eq. (62). Essentially we proceed aséwy-Leblond (1967) but
we emphasize the use of five dimensions. A similar approach has been used in
Kapwscik (1985). We need a linear operator which, when applied twice, is equal to

p? — 2mE = 0. (65)
Now let us write the corresponding linear wave equation in five dimensions as
PY =(y-p+ripat y°ps)¥(x) =0, (66)

where all the (translation) operatges commute among themselves. In this paper
we shall use different versions of Eq. (66). Th€are theB* of Levy-Leblond
(1967), and the matrices' andy® are related to\ andC of Levy-Leblond (1967)
by the diagonalization of the metric (3) to diag ¢ + + —). Note that the minus
sign is absent in &vy-Leblond (1967) becausdactors there are included in the
operatorB,. Eq. (66) follows from the Lagrangian

L=V (67)
By squaring the operator of Eq. (66) we obtain

Yyt yty™
{f PmPn + ™+ ¥ Y™ PmpPa + V™ ° + ¥ ™) PmPs

+ e+ vy paps + (rH(pa)? + (V5)2(|05)2}I' =0. (68)

This can be identified with the corresponding terms of Eq. (65) so that we find
ymyn + ynym — 26mn’
Yyt + M =0=y"y %y,
O+ vorpaps + (P (pa)* + (¥°)*(ps)’ = —2mE. (69)
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This is satisfied by choosing, for instance,
h =y + i =2
(r?=0= (">
Paps = ME. (70)

This choice has been used by Ometeal. (1989) and we shall use it hereafter.
Another choice is

O+ (% =-1, v+ =0, (71)
together with the condition
(ps)? = (ps)* = mE. (72)

We will not consider such alternatives any longer here.

The condition given by Eq. (70) is compatible with the embedding, Eq. (15),
so that our nonrelativistic linear wave equation is given by Eq. (66) withythe
matrices such that

{ym, yn} — 28mn'
™y =0=10"r%,

4y =-2
(Y =0=("> (73)
or, in a compact form,
r*, v" =29"", (74)

with g*¥ given by Eq. (3). However it must kept in mind that this holds only if the
last row of Eq. (70) is used.

From the general spinor theory, the Clifford algebra in five dimensions admits
anirreducible four-dimensional representation. The gamma matrices can be chosen

as
o 2 (e oG w)

where each entry is a two-by-two matrix and thare the Pauli matrices

0 1 0 —i 1 0
”1:(1 o)’ “Zz(i o)’ ”3:(0 —1)' (76)

We shall need the following properties:

[0m: On] = OmOn — Onom = 2i EmnpOps
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{om, on} = OmOn + TnOm = 20mn, (77)
as well as
1 .
OmOn = 5({Um0n} + [om, on]) = Smn + l€mnpop. (78)

If we use the Dirac matrices, Eq. (75), with Eq. (66) and the field

W= (‘p), (79)
X

we obtain
. 2
A (19 B N
—v2p, —o-p) \x 0
or
o pe ++2psx =0,
V2psp +o -px =0. (81)

We will generalize these equations in the next section. By isolgtingthe first
equation and substituting in the second, and using the embedding of Eq. (15), we
obtain the anticipated result,ri(2E — p?)¢ = 0.

4. DIRAC EQUATION WITH AN EXTERNAL GAUGE FIELD
4.1. Abelian Gauge Field
First we investigate the interaction of the Dirac-like field with an external
electromagnetic field. The latter comes into play by generalizing the Lagrangian
in Eq. (67) to
L=w(iD)W - %FWF‘”, (82)

where the covariant derivative is

D,=9,—iqA,, nw=1,...,5 (83)
so that we just have to perform the following minimal substitution into (66):

Pu = 7 = =Dy = P — QA (84)

The constang can be related to the elementary chazged will be defined below,
and the five-potentiah,, is the gauge field. As usual we have

Fuv = 0,A, — 0,A,. (85)
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Then Eq. (81) is replaced by
o ~rr<p—+—\/§n5)( =0,

Vomw+o -mx=0 (86)
These two equations can be rearranged as
1 -1
7T4—ZC7-7T(7T5) o-m|e=0. (87)
Let us consider the embedding defined in Eqg. (15).
with Eq. (87) to give
1 qAs\
E—ﬁdﬂ(lﬂ-ﬁ) o -1 —qAs. (89)
Using the weak field approximatiog,As < m, we may use the expansion
qAs\ g CRPCTCAIY
1o ~1l— A+ A2 1 —
(1+%%) Ipr T T ()
so that Eq. (89) becomes
E= i(<7-7r)2—qA4—i<7-7T(A5)cr~71—i—q—z0~71(A5)2<7-7r——i—---
2m 2m2 2m3
kA K
+(-1) T e w(As) o T+ (91)
The leading term is
1
E® = o 7)? — A (92)

(Letusjustremarkthatit corresponds tothe embedding of Eq. (49), which describes
the magnetic limit.) From Eg. (78) we find

(0 7)Y =n%+ioc-(r xn)=n?—(qo - B, (93)
where we have used the definition of magnetic field
B=ipxA. (94)
Then Eq. (92) reduces to

1
ED — %(p - qA)2 — %a -B—qAs, (95)
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and by defining

E=id,
g = e/c,
Ay = —co, (96)

Eq. (95) becomes the well-knowauli equation

1 e \2 e
idp=|—(p—-A) —=—0c-B+ed|gp. 97
1y [Zm (p c ) 2mc’ +e }(p ®7)

As remarked by Evy-Leblond, the second term of this Hamiltonian shows
the existence of an intrinsic magnetic moment equalziQo for the ele-
ctron so that its gyromagnetic ration ;1% with a Land factorgs = 2, thereby
proving it to be anonrelativistic property of the electron @vy-Leblond,
1967).

Now let us turn to the next-to-leading order, that is, the first three terms of
Eqg. (91) with the vector field\ set equal to zero to isolate the correction terms
because of a weak electrostatic potendial

1 q
@ — ) — . .
EY = Zm(g pP)* —qAs o2’ pAso - p. (98)
By using Eq. (78) we find

0 - PAso - P = 0mPmAson Pn,
= OmOn PmAs Pn,
= (6mn + i €mnpop) PmAs P,
= PmAsPm + i €mnpop PmAs Pn,
= Asp® + (PAs) - p+io - [(pAs) x pl, (99)

(hereafter we use summation over repeated indices, unless specified otherwise) so
that

P’ g q q
B® = = = QA= 5 AP’ — o (PAs) P —i 5 50 [(PAs) x pl.
(100)
(We recall that each term in Eq. (99) is an operator acting on a function.)
Now, in order to make further progress, let us considlgmas a spherically
symmetric scalar potential

As = —%cb(r), (101)
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so that the last term of Eq. (99) describes the spin—orbit interaction. Indeed
. i
lo - [(pAs) x p] = ——o - [(pP) x P,

= 2o [(Ve) xpl p=-iV,

1do (X ) Vo do x
=0 - (- x = —=
car? \r P) drr’
11do
=—— g 0L L=xxp, (102)

so that by using Egs. (96) and (101) the last term of Eq. (100) isphe-orbit
interactionterm and we obtain

e 1do e

2
EQ=P | oo “%%5 L
+ + m2cZr dr + 2m2c2

2m

(Pp*+ (p®)-p),  (103)

whereS = %a. Note that the factor 2 is missing; it is probable that this factor

is explained by a purely relativistic effect, the Thomas precession, whereas we
currently use anonrelativistic setting. This feature is most desirable. Equation (103)
contains more terms tharely-Leblond’s, who claimed, for instance, that the spin—
orbit interaction could not be described in a fully Galilean contegt/l-Leblond

1967). However, as mentioned in the conclusion, other authors have obtained even
more terms than we did here.

There are two other terms traditionaly found from the nonrelativistic limit
of the Dirac equation: th®arwin termand the mass—velocity term. The mass—
velocity term (p*/8m3c?) does not follow from our equations, which are quadratic
in momentum. The third and fourth terms of Eq. (100) come fimgis pr, (SUM
over indices). Therefore the last two terms of Eq. (103) are

(®p® + (pP) - P)¢ = P - (PPy). (104)
Therefore we express Eq. (103) as

VZy e 1do e
@, - _ 7 _—~ " g. - V.
B = om TEPOT m2c2r dr ¢ 2m20zv (©Ve). (105)

Let us notice the contrast between the Hamiltonian above ang-Léblond’s
results (1967) according to which neither the spin—orbit coupling nor the Darwin
term can be obtained from a purely nonrelativistic Galilean theory. Here we could
obtain the spin—orbit interaction. However, Nikitin and Fushchich (1980) went
even further and have included the dipole, quadrupole, spin—orbit, and Darwin
couplings of the particle to an external electromagnetic field.
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4.2. Non-Abelian Gauge Field

Let us conclude by generalizing the previous discussion to the interaction
with anon-Abeliangauge field. Let us denote the gauge grougshgenerated by
elementqt?} having commutation relations

[t3,t°] = ifapd®, ab,c,=1,---,dimG. (106)

The Lagrangian (82) is replaced by

L=V(iD)WV - %F;;” Fayuv, (107)
where the covariant derivative takes the form
D, = 8, — igAst%. (108)
This implies that one must replace Eq. (84) with
T, = Pu — ALY (209)
The field strength tensor (85) is generalized as usual:
Fauw = 0 Aay — 0y Aay + 9 ancAou Acy. (110)

Substitutingp — 7 into Eq. (66) and using again Eq. (75), we obtain equa-
tions similar to Egs. (86). Next we define the embedding as in Eq. (15) and find a
generalization of Eq. (88)

7, = (P — gAat?, —E — gAust?, —m — g Agst?). (111)
Then Eq. (87) leads to the operator equation
1 g -1
a —_— . —_ a . e
E+gAut® — 50 n(1+mA5at) o7 =0. (112)

Next we use an expansion similar to Eq. (90)

gAfsata _1~ q a gz a\2 g3 a\3
<1+T) ~1—EA5at +<E) (Asat?) —<a) (Asat®)’ + —-- -,

(113)
so that
E= i(a )% — qAst? — io -7 Asat?o - T + g—za - (Asat®?0 - +
2m 2m?2 2m3
O Ao et (DY o (At o
omé 5a omK+1 5a

(114)
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As inthe Abelian case, the next step is to analyze each term of this expansion.
The first term is
(0-m)°=[o-(p— gAat?)]?,
= (p — gAtY)? —igo - (p X Aa + Aa x P2 +ig%o - (Aa x Ap)tat°.
(115)

Calculations similar to the Abelian case show that

(0 -7)% = (p— gAat?)? — go - Bat® + iégzo (Ag x Ap)([t3, t°] + {t3, t°),

(116)
where, in analogy with Eq. (94), we use the notation
Ba=iP x Aq. (117)
Then we obtain aon-Abeliarversion of the Pauli equation (97)
EO = 1 (0 gAY — gAut’ — 2o . Byt?
2m 2m
00 (A x AR 1]+ (1%, 1%). (118)

From the next term in Eq. (98), we consider the next term of Eq. (114) with
A =0,

1 g
2 2

Using a treatment entirely similar to the one leading to Eq. (99) we find
0 - PAsao - Pt = Asap’t® + (PAsa) - Pt +io - [(PAsa) x pti].  (120)

Whereas the last term would lead to a non-Abelian version of the spin—orbit inter-
action, the first two terms would describe some effect reminiscent of the Darwin
interaction.
For example, with the group SU(2) we hatfe= %Ua whereo is a Pauli
matrix with [t?, t°] = i eapct® and{t?, t°} = 18ap. Then Eq. (118) becomes
2

1
EW = ~gAut® + 5 (P — GAat")? - %a Bat? — f—msabco (A x Ap)tS.

(121)

Note that the last term does not appear in Egs. (95) or (97).
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5. CONCLUDING REMARKS

First we repeat that the original aspect of this paper lies in the covariant ap-
proach to Galilei-invariant equations, rather than in original equations describing
some new physics. The purpose is to have both Lorentz and Galilei covariance
formulations as similar as possible, in order to provide a guiding principle to write
down dynamical equations of nonrelativistic phenomena as well as relativistic
ones. In fact both kinematical theories can be described by starting within a five-
dimensional Riemannian manifold with metric, Eq. (3). We have derived many re-
sults that have been obtained previously from a noncovariant approach: Maxwell
equations, Dirac equation for free fermions and for fermions coupled to an ex-
ternal, Abelian and non-Abelian, gauge field. Our physically original result is the
nonrelativistic wave equations with coupling to a non-Abelian external gauge field.

Let us conclude by recalling some differences between the Hamiltonians ob-
tained in section 4 and similar equations contained in the literature. All agree on the
Pauli equation, and the associated appearance of the correa famtdr. LEvy-
Leblond (1967) has found that neither the spin—orbit coupling nor the Darwin term
can be obtained from a purely nonrelativistic Galilean theory for an elementary par-
ticle, whereas we have obtained the spin—orbit interaction in a theory with Galilean
covariance. On the other hand Fushchich and Nikitin have obtained Hamiltonians
allowing for the dipole, quadrupole, spin—orbit, and Darwin couplings of particles
to an external electromagnetic field to exist (Nikitin and Fuschich, 1980; Fuschich
and Nikitin, 1994). Recently we have learned about a preprint in which a study
similar to ours is performed and in which solutions involve the existence of nega-
tive energy states; these would be interpreted as describing antiparticles (Horzela
and Kapucik, 2002). In addition to clarifying these aspects, further work can be
done in interpreting Hamiltonians such as those found in Section 5, based on non-
Abelian groups. Interpretation of the various terms of the SU(2) Hamiltonian still
needs to be found. Study of larger groups, such as SU(3), can be carried out in a
similar way.
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