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Abstract

In this work we deform the φ4 model with distinct deformation functions, to propose a diversity of sine-Gordon-like models. We investigate
the proposed models and we obtain all the topological solutions that they engender. In particular, we introduce non-polynomial potentials which
support some exotic two-kink solutions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The sine-Gordon equation [1–5] has been used in many
different areas of applications in non-linear science [6–
14]. Among the several possibilities of study, the specific
investigations on classical, semiclassical and other aspects of
sine-Gordon, double sine-Gordon and related models [15–39]
have motivated us to propose the present study.

An interesting variation of the sine-Gordon model is the
double sine-Gordon model, which has attracted attention
recently as a non-integrable model that can be studied by the
approach used in the context of integrable models. We believe
that the new models introduced here may perhaps be used for
such a study, in particular along the lines of [20,25,31,36] to
check if the semiclassical study is as in the double sine-Gordon
case. Another line of study could be the search of internal
modes [19,22,24], which seem to appear after deforming an
integrable model [19]. The sine-Gordon model has also been
of interest for the String Theory, since it seems to be related to
the classical string on specific manifolds [40,41].

Phenomenologically, the sine-Gordon model has been used
in a variety of situations, in molecular [7] and DNA [14]
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dynamics, in ferromagnetic waves [11], non-linear optics [9]
and in several other areas [10,13]. The sine-Gordon model that
we investigate are modifications of the original model, and they
may also be used in application since they are in general richer
than the standard model, depending on new parameters which
control important features of the potential, leaving extra room
to fuel applicability.

The sine-Gordon-like models that we investigate in the
present work are all obtained as the deformation of the φ4

model, so we start this work in Section 2, where we review
some basic facts on the deformation procedure first introduced
in [42] and further explored in Refs. [43–49]. In Section 3 we
introduce and study the defect solutions for several distinct
families of sine-Gordon-like models, and in Section 4 we
present our concluding comments.

2. Generalities

We start by considering a model described by a single real
scalar field φ, in (1, 1) space–time dimensions, with Lagrange
density

L =
1
2
∂µφ ∂µφ − V (φ). (1)
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We use the metric (+, −) and work with dimensionless fields
and coordinates, for simplicity. The equation of motion for
φ = φ(x, t) is

∂µ∂µφ + V ′(φ) = 0 (2)

where the prime stands for the derivative with respect to the
argument. For a static field φ = φ(x) we have

d2φ

dx2 = V ′(φ). (3)

This equation has a first integral given by(
dφ

dx

)2

= 2 V (φ) + c, (4)

where c is an integration constant, which can be identified with
the stress of the static solution [50].

The energy associated to a static solution is

E =
1
2

∫
+∞

−∞

dx

((
dφ

dx

)2

+ 2 V (φ)

)
. (5)

Thus, c 6= 0 in Eq. (4) corresponds to infinite energy solutions.
However, if the potential has at least one critical point at φ̄,
that is V ′(φ̄) = 0, for which V (φ̄) = 0, any solution of (4)
satisfying the boundary conditions

φ(x → −∞) → φ̄,
dφ

dx
(x → −∞) → 0, (6)

will require that c = 0, which provides a necessary condition
for the existence of finite energy solutions. Such a circumstance
is not sufficient to ensure the existence of finite energy solution
as shown, for example, by the static solutions φ±(x) = ae±x

(a constant) of the free Klein–Gordon model, where V (φ) =

(1/2)φ2.
If we write c = 0 and V = (1/2)(dW/dφ)2

= W 2
φ/2 in (4),

we can get to

dφ

dx
= Wφ (7)

where the ± has been absorbed into W. The energy of the
solutions of the above first-order equation (7) can be written
as E = |4W |, where 4W = W (φ(x → ∞)) − W (φ(x →

−∞)), and this very much eases the investigation [51].
We investigate linear stability of the static solution using

φ(x, t) = φ(x) + η(x, t) into Eq. (2) to get, for η(x, t) =∑
n ηn(x) cos(wn t), the Schrödinger-like equation Hηn(x) =

w2
nηn(x), with Hamiltonian

H = −
d2

dx2 + V ′′(φ) (8)

where V ′′(φ) has to be calculated at the static solution φ =

φ(x), to become a function of x : V ′′(φ) ≡ U (x).

There are two very well-known models described by a real
scalar field, which are described by

V (φ) =
1
2
(1 − φ2)2 (9)
and by

V (φ) =
1
2

cos2(φ). (10)

The first is the φ4 model, and has kink-like solutions given
by φ±(x) = ± tanh(x); the second is the sine-Gordon model,
and it has solutions φ±(x) = ± arcsin(tanh(x)) + kπ, where
k = 0, ±1, ±2, . . . specifies one among the infinity of sectors
of the model. The study of stability leads to the following
potentials: for the φ4 model

U (x) = 4 − 6 sech2(x) (11)

and for the sine-Gordon

U (x) = 1 − 2 sech2(x). (12)

In the first case, the potential of the Schrödinger-like equation
supports two bound states, the massless zero mode and a
massive eigenstate. In the second case there is only one bound
state, the massless zero mode. By the way, it is not hard to
see that the zero mode is proportional to the derivative of the
static solution, a fact which follows almost directly from the
Schödinger-like equation with Hamiltonian (8). The specific
features of these Schrödinger-like problems have been recently
explored in Refs. [28,30], to reconstruct the corresponding field
theory model.

When we write the potential in the form V = W 2
φ/2 we have

that

V ′′
= W 2

φφ + WφWφφφ (13)

in a way such that the Hamiltonian (8) now can be written as
H = SĎS, for S being the first-order operator

S = −
d

dx
+ Wφφ (14)

which shows that the solutions of the first-order equation (7) are
linearly stable.

The deformation method, introduced in Ref. [42] and
extended in Refs. [43–45], consists of the following general
prescription. Denote the deformed field by χ and assume that
it is mapped into the starting field through the deformation
function f , that is,

φ = f (χ), χ = f −1(φ). (15)

If φ(x) is a static solution of the starting model (1), then
χ(x) = f −1(φ(x)) is a static solution of the deformed model,
described by the Lagrange density

L̃ =
1
2
∂µχ∂µχ − Ṽ (χ), (16)

where the deformed potential Ṽ (χ) has the form

Ṽ (χ) =
1
2

2 V ( f (χ)) + c

[d f/dχ ]2 , (17)

with c being the constant appearing in Eq. (4), associated
with the solution φ(x) of the starting problem. In this case,
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Fig. 1. The potentials of the φ4 (9) (left) and sine-Gordon (10) (right) models, and the mapping of the topological sector of the left model into the topological
sectors of the right model through the branches of the inverse of the deformation function f −1

k (φ).
the potential of the Schrödinger-like equation appearing in the
study of the stability of the deformed classical solution has the
form

Ũ (x) =
d2Ṽ (χ)

dχ2

∣∣∣∣∣
χ=χ(x)

, (18)

and can be directly obtained from the deformation prescription.
The deformation method is powerful and interesting.

Mathematically, it provides a way to construct an uncountable
number of new non-linear differential equations of the type of
Eq. (3), and their solutions, starting from any known solvable
model. Physically, it allows one to deform topological and
non-topological defects, controlling their energy and width,
and generating a large amount of new defect solutions having
characteristics distinct from the original ones.

The method has been used in a broad sense. In Ref. [42], we
considered bijective deformation functions, which do not alter
the topological nature of the defects, but permits the control
of their energy and width. Then, considering non-bijective
deformations [43], with f −1 being a multivalued function,
we show how to deform a non-topological (lump-like) defect
into a kink-like (topological) one. Functions f , for which the
equation f ′(φ) = 0 has finite solutions, can be also considered
if the starting potential is such that Ṽ (χ) does not possess
singularities. In all these cases, the analysis was restricted to
models having finite energy solutions. A further development
[44] extended the method, presenting examples where infinite
energy solutions, with c 6= 0 (as those of the free Klein–Gordon
model), can be deformed into finite energy ones, thus having
physical significance, using deformation functions which are
real valued only when defined in a finite interval of R. We have
also used interesting deformation functions, from which we
have generated distinct families of polynomial potentials [45].
Other investigations have dealt with more general issues,
extending the deformation procedure to tachyonic models [46]
and to models described by two scalar fields [49].

The deformation method can be further extended to generate
acceptable solutions starting from singular solutions of known
models. In the next section, we focus on the important,
physically relevant, models of the sine-Gordon type. Before
doing this, however, let us exemplify the deformation procedure
with the two models given above. We consider the model
(9) and the deformation functions f±(χ) = ± sin(χ).

This function and the prescription (17), with c = 0, lead
immediately to the sine-Gordon potential (10) and its solutions
χ(x) = ± arcsin[tanh(x)] + kπ , where k is an integer that
specifies the branches of the inverse f −1

k (φ) = ± arcsin(φ) +

kπ (from here on, arcsin(φ) denotes the principal branch with
values in [−π/2, π/2] and, similarly, for any other multivalued
inverse function). While the kink solutions of the φ4 model
connect the minima +1 to −1, the infinitely many topological
solutions of the sine-Gordon model run between adjacent
minima π(k − 1/2) and π(k + 1/2), as illustrated in Fig. 1.

3. Some new sine-Gordon models

In this section, we explore new possibilities, considering
three distinct classes of deformation functions to obtain new
sine-Gordon-like models that support topological solutions. All
the deformed models are obtained via specific deformations of
the φ4 model, described by the potential (9). In this case, since
the φ4 model is polynomial, to get to sine-Gordon-like models
we need to use periodic functions as the deformation functions.
We do this below, where we investigate explicit models.

3.1. Type-I models

We turn our attention to a class of models which are obtained
from the φ4 model (9) using the deformation functions

fn(χ) = 1 − 2 sinn(χ) (19)

for n being a constant parameter which specifies the
deformation function. These functions are acceptable functions
if n obeys sinn(χ) ∈ R for all χ(x) ∈ R. This imposes that n
may be a even integer or rational even/odd number. In general,
the deformed potentials are given by

Ṽ (χ) =
2

n2 tan2(χ)
(
1 − sinn(χ)

)2
, (20)

where for n = 2 we have the usual sine-Gordon case. These
potentials have an infinite set of minima given by

χ̄ =
k

2
π, (21)

where k is an integer. There are two kinds of minima: for
k = 2l, even, at the points χ̄e = lπ we have d2Ṽ /dχ2

= 4/n2

and so the concavity depends on the parameter n for these
minima; on the other hand, for odd k, we find that the concavity
is the same at the points χ̄o = (k +1/2)π where d2Ṽ /dχ2

= 1.

The maxima of the potentials obey the following relation

sin(χ̄)2+n
−

n + 1
n

sin(χ̄)n
+

1
n

= 0. (22)
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Fig. 2. The potential (20) (left) and the corresponding kink (25) (right) for k = 0, for the cases n = 2/3 (dashed line), n = 2 (solid line), and n = 4 (dashed–dotted
line).

Fig. 3. The energy density (26) for ρ+ (left) and ρ− (center), for the values n = 2/3 (dashed line), n = 2 (solid line), and n = 4 (dashed–dotted line), and the
energy (right) as a function of n.
Here we notice that the potential (20) can be written in
the form Ṽ (χ) = (1/2)(Wχ )2, where Wχ = dW/dχ =

(2/n) tan(χ)(1 − sinn(χ)). For n even and positive, the
superpotential functions W (χ) can be written as

Wn(χ) =
1
n

n/2∑
j=1

1
j

sin2 j (χ). (23)

From this result, we can find the energy of the topological
solutions that connect two adjacent minima of the potential,
En = Wn(χb) − Wn(χa). Since W (χa) = 0 and W (χb) =

Ψ(n/2 + 1) + γ, where Ψ(z) and γ are the digamma function
and the Euler constant respectively, we find

En =
1
n

[Ψ(n/2 + 1) + γ ] . (24)

In the limit n → 0 we obtain E0 = π2/12, and we have the
values E2 = 1/2, E4 = 3/8, and E6 = 11/36.

The static kink-like solutions of the model (20) are given by

χ±
n (x) = kπ ± arcsin

[(
1
2
(1 ∓ tanh(x))

)1/n
]

, (25)

where k = 0, 1, 2, 3, . . . , which correspond to the deformation
of the kinks of the φ4 model. These potentials and
corresponding solutions are plotted in Fig. 2, for the values
n = 2/3, 2, and 4. Also, the energy densities are given by

ρ±(x) =
1

n2

(1 ∓ tanh(x))2/n−2 (1 − tanh2(x)
)2

22/n − (1 − tanh(x))2/n
. (26)

In Fig. 3 we plot the energy densities for the values n = 2/3, 2,
and 4, and the energy as a function of n; and there we see that
the energy goes to π2/12 for n → 0, and vanishes in the limit
n → ∞.

For both solutions, the potential of the Schrödinger-like
equation can be cast into the form

U (x) = −4 a(x) (1 − 2a(x))

−
12 n a(x) (1 − a(x)) − 8 a(x) (2 − a(x))

n2
(
1 − a(x)2/n

)
+

12 (1 − a(x))2

n2
(
1 − a(x)2/n

)2 (27)

where a(x) = 1/2 (1 ± tanh(x)), with + (−) corresponding
to the χ−(x) (χ+(x)) solution. These potentials are plotted in
Fig. 4, for the values n = 2/3, 2, and 4.

The asymmetry in U (x) in Fig. 4 is due to the different
masses of the excitations around the distinct minima. For
χ±

n (x), we find

U (±∞) = 1 and U (∓∞) =
4

n2 . (28)
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Fig. 4. Plot of the potential of the Schrödinger-like equation (27), for the cases
n = 2/3 (dashed line), n = 2 (solid line), and n = 4 (dashed–dotted line).

This asymmetry is also related to the asymmetry present in the
energy densities ρ+ and ρ− which are plotted in Fig. 3. It is also
known to appear in the φ6 model described by Wφ = φ(1−φ2)

— see e.g., Ref. [52].
If we consider n = 2 + δ, for |δ| � 1, we can approximate

the potential (20) by

Ṽ (χ) =
1
8

sin(2χ)2

−
1
2

(
sin(χ)2 ln

(
sin(χ)2

)
−

1
4

sin(2χ)2
)

δ, (29)

and the corresponding kink-like solutions (25) by

χ̃±
n (x) = χ±

2 (x) ∓
1
4

e∓x ln
(

1
2

(1 ∓ tanh(x))

)
δ. (30)

The energy of these solutions now becomes

Ẽn = E2 −

(
1
2

−
π2

24

)
δ, (31)

for δ � 1. In this case the model is very close to the sine-
Gordon model, and this may be useful for both semiclassical
and phenomenological investigations.

The class of models considered above can be seen as the
deformation of the sine-Gordon model, widening (n ≤ 2)
or narrowing (n ≥ 2) the width around alternate minima of
the sine-Gordon model (n = 2) — see Fig. 2. This changes
the classical mass associated to these minima, and would
modify the way the quantum corrections appear. As we already
know from the φ6 model [52], however, the asymmetry of
the potential of the Schrödinger-like equation makes it hard to
investigate the quantum effects.

3.2. Type-II models

We consider another class of models, obtained with the
deformation function

f p(χ) = cos
(
χ p) . (32)
We use it to deform the φ4 model, to get to the new deformed
potentials

Ṽ (χ) =
1

2p2 χ2−2p sin2(χ p), (33)

where p can be a positive integer or a rational odd/odd, or
even/odd number. For a given value of p, the potential (33) has
infinite minima located at

χ̄
p
0 = ±|kπ |

1
p (34)

where k is a natural number. The non-vanishing maxima satisfy
the relation

χ̄
p
m =

p − 1
p

tan
(
χ̄

p
m
)
. (35)

In this case, the maximum can be approximated by the midpoint
between two minima, and this can be further approximated to
χ̃

p
m ≈ |(k + 1/2)π |

1/p, such that

V (χ̃
p
m) ≈

π2(1−p)/p

2p2

(
k +

1
2

)2(1−p)/p

(36)

and the ratio between two consecutive maxima has the form
(1 + 1/(2k + 1))2(1−p)/p.

We see that for p = 1, the potential (33) reduces to the sine-
Gordon potential. For p 6= 1, the potential is an oscillatory non-
periodic function of χ having two distinct features, depending
on the value of the parameter p. For p ∈ (0, 1), the amplitude
of oscillation of Ṽ (χ) increases with increasing |χ | and for
p ∈ (1, ∞), the amplitude decreases for increasing |χ |, as we
illustrate in Fig. 5. With the exception of the central minimum,
all other minima have the same concavity, given by d2Ṽ /dχ2

=

1. For the minimum at χ = 0, we find d2Ṽ /dχ2
= 1/p2. Thus,

the concavity at the symmetric minimum χ̄ = 0 is greater or
lesser than the concavity at every other (asymmetric) minima
for p ∈ (0, 1) or p ∈ (1, ∞), respectively. In Fig. 5 we plot
the potential (33) for the cases p = 2/3, 2, and 4 and the
corresponding kink (45) for k = 0, and 1.

For an arbitrary value of p, the superpotentials associated
with the potentials (33) do not have a simple form, but can be
expressed in terms of hypergeometric functions as

Wp(χ) =
χ2

2p 1 F

(
1
p
;

3
2
,

p + 1
p

; −
χ2p

4

)
, (37)

and the energy of the localized solutions connecting adjacent
minima labeled by k and k + 1 has the form

E p = |Wp(χ̄
p
0 (k)) − Wp(χ̄

p
0 (k + 1))|. (38)

For some choices of the value of p, however, simpler
superpotentials can be found. For example, with p = 2 we find

W2(χ) =
1
4

Si(χ2), (39)

where Si(z) is the sine integral function. In this case the energy
is

E2 =
(−1)k

4
(Si((k + 1)π) − Si(kπ)) . (40)
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Fig. 5. The potential (33) (left), the corresponding kink (45) for k = 0 (center), and for k = 1 (right), for the cases p = 4/5 (dashed line), p = 1 (solid line), and
p = 6/5 (dashed–dotted line).

Fig. 6. The energy density (46a) for k = 0 (left), and for k = 1 (center), for the cases p = 4/5 (dashed line), p = 1 (solid line), and p = 6/5 (dashed–dotted line),
and the energy (right) as a function of p for k = 0 (solid line) and for k = 1 (dashed line).
For p = 2/3, the superpotential becomes

W2/3(χ) =
9
4

(
sin(χ2/3) − χ2/3 cos(χ2/3)

)
, (41)

and we find the energy

E2/3 =
9
4

(2k + 1) π, (42)

which depends linearly on k. For p = 1/3, the energy is

E1/3 = 9(2π4k4
+ 4π4k3

+ 6π2(π2
− 4)k2

+ 4π2(π2
− 6)k + π4

− 12π2
+ 48) (43)

and it now depends on k as a fourth-order polynomial. For the
cases p = 1/5 and p = 2/5, the energy E p are polynomials in
k of orders 8 and 3, respectively.

The topological solutions can be found by considering the
first-order equation

dχ

dx
=

1
p

sin(χ p)

χ p−1 . (44)

Using the inverse of the deformation function (32) and the kink
solution of the φ4 model, we obtain the solutions

χk(x) = ± ((k + 1)π − arccos(tanh(x)))1/p , (45a)

χk̄(x) = ± (kπ + arccos(tanh(x)))1/p , (45b)

where k = 0, 1, 2, 3, . . . ; the integers k and k̄ label the set of
kink and anti-kink solutions, which appear in the sine-Gordon-
like model described by the potential (33).
The respective energy densities are given by

ρk(x) =
1

p2

sech2(x)

((k + 1)π − arccos(tanh(x)))
2−

2
p

, (46a)

ρk̄(x) =
1

p2

sech2(x)

(kπ + arccos(tanh(x)))
2−

2
p

, (46b)

which we plot in Fig. 6 for k = 0, 1, for some values of p, and
the energy as a function of p. The potentials of the Schrödinger-
like equations associated with these solutions are given by

Uk(x) = 1 − 2 sech2(x) +

(
1
p

− 1
)[(

1
p

− 2
)

sech2(x)

a2
k (x)

− 3
tanh(x) sech(x)

ak(x)

]
, (47a)

Uk̄(x) = 1 − 2 sech2(x) +

(
1
p

− 1
)[(

1
p

− 2
)

sech2(x)

a2
k̄
(x)

+ 3
tanh(x) sech(x)

ak̄(x)

]
, (47b)

where ak(x) = (k + 1)π − arccos (tanh(x)) and ak̄(x) =

kπ + arccos (tanh(x)). The potential of the Schrödinger-like
equation (47) is plotted in Fig. 7, and we notice that they lead
to (12) in the limit p → 1, as expected.

The asymmetry in U (x) is due to the different masses of
the excitations around the distinct minima. For the solutions
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Fig. 7. Plot of the potential of the Schrödinger-like equation (47) for k = 0 (left), and for k = 1 (right), for the cases p = 4/5 (dashed line), p = 1 (solid line), and
p = 6/5 (dashed–dotted line).

Fig. 8. The potential (33) for p = −1, depicted for closer and closer distances from the origin.

Fig. 9. Plots of the p = −1 and k = 1 solutions (left), showing the kink (solid line) and anti-kink (dashed line), the corresponding energy density (center, left) and
the potential of the Schrödinger-like equation (center, right), and the total energy (right) as a function of p for p negative.
χk,k̄(x), we find for k = 0

Uk,k̄(−∞) =
1

p2 , 1 and Uk,k̄(+∞) = 1,
1

p2 , (48)

and for k ≥ 1

Uk,k̄(∓∞) = 1. (49)

In this new class of models, the asymmetry problem which
has appeared in the form case is still present, although now
it is more explicit at the central minimum, involving the two
first topological sectors. All the other sectors are now almost
symmetric, much easier to be investigated — indeed, as Fig. 7
shows, it is very well approximated by the potential which
appears in the sine-Gordon case.

The model (33) can also have p negative. We plot in Fig. 8
the potential for p = −1, and there we see that the amplitude
of the potential oscillates, decreasing as the field decreases.
In Fig. 9 we also plot the k = 1 profile, energy densities,
Schrodinger-like potentials and the total energy of the defect
solutions. We note that the energy starts at zero, reaches its
maximum at p = −2, and returns to zero as p tends to large
negative values.

3.3. Type-III models

An interesting modification of the potential investigated
above is given by

Ṽ (χ) =
1

2p2 χ2−2p cos2(χ p) (50)

which appears with the deformation function f (χ) = sin(χ p)

applied to the φ4 model. For p = 1 we have the normal
sine-Gordon case. For this new class of models, we have to
restrict the parameter p to the interval (0, 1), thus making the
potentials vanish at the origin, since the choice p > 1 would
lead to a divergence at χ = 0. The minima occur at χ̄ = 0
and ±|(k + 1/2)π |

1/p, where k is a natural number. The main
difference between this class of models and the previous one
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Fig. 10. The potential (50) (left) for p = 2/3 (solid line) and p = 1 (dashed line), and the behavior near the origin (right), where the symmetric minimum makes
the second derivative of the potential divergent.

Fig. 11. The kink-like solutions (52) (left) for the cases p = 1/3 (solid line), p = 2/3 (dashed line) and p = 1 (dashed–dotted line), the corresponding density
energy (53) (center), and the energy of the two-kink solution as a function of p (right).
is the behavior at the central minimum. In the present case,
the minimum at χ̄ = 0 is non-perturbative because the second
derivative of Ṽ is not finite at the origin, that is

d2Ṽ (χ)

dχ2

∣∣∣∣∣
χ̄=0

→ ∞. (51)

This feature of the potential (50) has appeared before in a
model introduced in [53]. The potential is plotted in Fig. 10
and, as shown in Ref. [53], the non-perturbative behavior of the
symmetric minimum allows the presence of two-kink solutions.
These solutions, which connect the minima −(π/2)1/p and
(π/2)1/p, are given by

χ(x) = ± sign(x) (arcsin(tanh(|x |)))1/p , (52)

and the corresponding energy density is given by

ρ(x) =
1

p2 arcsin(tanh(|x |))2/p−2 sech2(x). (53)

The two-kink solution and its energy density are also plotted in
Fig. 11 for the value p = 1/3. The other one-kink solutions are
given by

χ(x) = ± (kπ ± arcsin(tanh(x)))1/p , (54)

and the corresponding energy density is given by

ρ(x) =
1

p2 (kπ ± arcsin (tanh(x)))2/p−2 sech2(x), (55)

where k = 1, 2, 3, . . . .
Fig. 12. The potential of the Schrödinger-like equation (47) of two-kink
solution for the case p = 1/3 (solid line) compared with that of one-kink for
p = 1 (dashed line).

For 0 < p ≤ 1/2 the energy of the solutions (52) in terms
of hypergeometric function is given by

E p =
22−

2
p π

2
p −1

p(2 − p) 1 F

(
1
p

−
1
2
;

1
2
,

p + 2
p

; −
π2

16

)
. (56)

The energy of this solution as a function of p is presented in
Fig. 11. The energy diverges for p → 0, and when p → 1 we
have E1 → 2. Some values of the energy for 0 < p ≤ 1/2 are:
E1/5 = 49.87, E1/4 = 20.61, E1/3 = 8.62, and E1/2 = 3.74.
The potentials of the Schrödinger-like equation are given by
the relation (47), like for Type-II models, but here ak(x) =

kπ + arcsin (tanh(x)) and ak̄(x) = kπ − arcsin (tanh(x)). They
are plotted in Fig. 12, for p = 1/3 and p = 1. We can see
that it goes to (12) in the limit p → 1, as expected. The two-
kink solutions only appear connecting the minima ±(π/2)1/p,
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tunneling through the central symmetric minimum at χ̄ = 0.

All the other adjacent minima give rise to standard topological
sectors. In those sectors, the potentials of the Schrödinger-like
equations are very similar to the potentials shown in the right
panel in Fig. 7, and can also be approximated by the potential
of the Schrödinger-like equation which appears from the sine-
Gordon model.

In the present model, we have shown how to find the exotic
two-kink behavior first introduced in [53] for non-polynomial
potentials. This result is also of interest, since it was recently
shown how to experimentally construct this type of solution
in magnetic systems, with geometry specifically constrained to
make them appear as interfaces separating distinct regions of
different magnetization [54].

4. Final comments

In this work we have investigated the presence of defect
structures in several models of the sine-Gordon type. All the
models are obtained as deformations of the φ4 model, and
are constructed with non-polynomial functions. The models
investigated in this work are different from the sine-Gordon
model, and we distinguish each one with the deformation
function used in each case. Specifically, we note that each
deformation function is in general defined with a real parameter,
and we can use such a parameter as a deformation parameter,
to control the way the new potential differs from the sine-
Gordon model. The above identification can be nicely used
in applications where the sine-Gordon model is important,
since now we can use the deformation parameter to control
the model better. In this sense, the models that we have just
investigated will certainly enlarge the applicability of the sine-
Gordon model.

Another interesting issue concerns integrability. Apparently,
all the above sine-Gordon-like models seem to lose integrabil-
ity, and it would be interesting to know how to deal with them
at the semiclassical level. We believe that the method developed
in Ref. [20], which has already made advances with the double
sine-Gordon model, would also work nicely for the models in-
troduced here. Another issue of interest is related to the possible
presence of internal modes. This problem appears in the double
sine-Gordon model [19], and may be investigated considering
the model as a non-integrable deformation of the sine-Gordon
model. The new models that we have introduced above may
engender similar features, and may be studied similarly. These
and other related issues are presently under consideration, and
we hope to report on them in the near future.

Among other things, we believe that the deformation
procedure is also useful in the sense that it engenders the
mapping of solutions of the starting model into the many
solutions of the deformed model in a systematic way. Such
a feature has already appeared in the polynomial potentials
introduced in [45], which were investigated in [39] to unveil the
presence of neutral states very nicely. In this sense, we hope that
the models we have built may be of good use both theoretically
and phenomenologically.
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