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Large-N transition temperature for superconducting films in a magnetic field
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We consider theN-component Ginzburg-Landau model in largeN limit, the system being embedded in an
external constant magnetic field and confined between two parallel planes a distanceL apart from one another.
On physical grounds, this corresponds to a material in the form of a film in the presence of an external
magnetic field. Using techniques from dimensional andz-function regularization, modified by the external field
and the confinement conditions, we investigate the behavior of the system as a function of the film thickness
L. This behavior suggests the existence of a minimal critical thickness below which superconductivity is
suppressed.
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It is usually assumed that it is a good approximation
neglect magnetic thermal fluctuations in the Ginzbu
Landau~GL! model, when applied to study type II superco
ductors. This problem has been investigated by a numbe
authors, both in its single component and in itsN-component
versions. An account on the state of the subject can be fo
for instance, in Refs. 1–6. In particular, in Ref. 5 a large-N
theory of a second-order transition for arbitrary dimensionD
is presented and the fixed-point effective free energy desc
ing the transition is found. Here we investigate a confin
version of the model studied in Ref. 5. We consider the v
tor N -component Ginzburg-Landau model in presence of
external magnetic field at leading order in 1/N, the system
being submitted to the constraint of being confined betw
two parallel planes a distanceL apart from one another. Stud
ies on confined field theory have been done in the litera
since a long time ago. In particular, an analysis of the ren
malization group in finite size geometries can be found
Ref. 7. This study is performed using a modified Matsub
formalism to take into account boundary effects on scal
laws. From a physical point of view, forD53 and introduc-
ing temperature by means of the mass term in the Ha
tonian, the model studied here should correspond to a fi
like material in presence of a magnetic field. We investig
the behavior of the system as a function of the separatioL
between the planes~the film thickness!, using an extended
compactification formalism in the framework of the effecti
potential, introduced in recent publications.8,9 In Ref. 10 this
formalism has been employed to perform a study of
large-N b-function for superconducting films in a magnet
field. For the Ginzburg parameterk@1 ~which is the case for
high temperature superconductors!, the Hamiltonian density
of the GL model in an external magnetic field can be writt
in the form

H5u~“2 ieA!fu21m0
2ufu21

u

2
ufu4, ~1!

where “3A5H and m0
25a(T2T0), with a.0 and T0

corresponding to the bulk transition temperature in abse
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of external field. This Hamiltonian density describes sup
conductors in the extreme type II limit. In the following w
assume that the external magnetic field is parallel to thz
axis and that the gaugeA5(0,xH,0) has been chosen. W
will consider model~1! with N complex components an
take the large-N limit at Nu fixed. If we consider the system
in unlimited space, the fieldf should be written in terms o
the well-known Landau level basis,

f~r !5(
l 50

` E dpy

2p E dD22p

~2p!D22
f̂ l ,py ,px l ,py ,p~r !, ~2!

wherex l ,py ,pz
(r ) are the Landau level eingenfunctions give

with energy eigenvaluesEl(upu)5upu21(2l 11)v1m0
2 and

v5eH is the so-called cyclotron frequency. In the abo
equationp is a (D22)-dimensional vector.

Now, let us consider the system confined between t
parallel planes, normal to thez axis, a distanceL apart from
one another and use Cartesian coordinatesr5(z,z), wherez
is a (D23)-dimensional vector, with corresponding m
mentak5(kz ,q), q being a (D23)-dimensional vector in
momenta space. In this case, the model is supposed to
scribe a superconducting material in the form of a film. U
der these conditions the generating functional of the corr
tion functions is written as

Z5E Df* Df expS 2E
0

L

dzE dD23zH~ ufu,u“fu! D ,

~3!

with the fieldf(z,z) satisfying the condition of confinemen
along thez axis,w(z50,z)5w(z5L,z). Then the field rep-
resentation~2! should be modified and have a mixed serie
integral Fourier expansion of the form

f~z,z!5(
l 50

`

(
n52`

`

cnE dpy

2p E dD23qb~q!

3e2 ivnx2 iq•zw̃ l~vn ,q!, ~4!
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wherevn52pn/L, the labell refers to the Landau levels
and the coefficientscn andb(q) correspond, respectively, t
the Fourier series representation overz and to the Fourier
integral representation over the (D23)-dimensionalz space.
The above conditions of confinement of thez dependence o
the field to a segment of lengthL allow us to proceed with
respect to thez coordinate, in a manner analogous as it
done in the imaginary-time Matsubara formalism in fie
theory. The Feynman rules should be modified following
prescription,

E dkz

2p
→ 1

L (
n52`

1`

, kz→
2np

L
[vn . ~5!

We emphasize that here we are considering a Euclidean
theory inD purelyspatial dimensions, we arenot working in
the framework of finite-temperature field theory. Tempe
ture is introduced in the mass term of the Hamiltonian
means of the usual Ginzburg-Landau prescription.

We consider in the following the zero external-momen
four-point function, which is the basic object for our defin
tion of the renormalized coupling constant. The four-po
function at leading order in 1/N is given by the sum of all
chains of single one-loop diagrams. This sum gives for thL
and v dependent four-point function at zero external m
menta at the lowest Landau level approximation the form
expression

GD
(4)~0;L,v!5

2u

11NuS~D,L,v!
, ~6!

whereS(D,L,v) is the Feynman integral corresponding
the single one-loop subdiagram,

S~D,L,v!5
1

L (
n52`

`
v

2pE dD23k

~2p!D23

1

@k21vn
21m21v#2

.

~7!

The sum overn and the integral overk can be treated
using the formalism developed in Refs. 8, 9, and 11, wh
we resume below, adapted to the situation under study.
starting point is an expression of the form

U5
mD2222s

~2p!2s11
vAa (

n52`

1` E dD23k

~an21c21k2!s
, ~8!

where we have used dimensionless quantities,c25(m2

1v)/(4p2m2),(Lm)25a21, and m is a mass scale. Not
that our formalism makes sense only for dimensionsD>3.
Using a well-known dimensional regularization formula7

Eq. ~8! can be written in the form

U5mD2222svAa f~D,s!Z1
c2S s2

D23

2
;aD , ~9!

where f (D,s) is

f ~D,s!5
pD2422s

22s11

G~s2~D23!/2!

G~s!
, ~10!
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and Z1
c2
„s2(D23)/2;a… is one of the Epstein-Hurwitz

z-functions defined by

ZK
c2

~u;$ai%!5 (
n1 , . . . ,nK52`

1`

~a1n1
21•••1aKnK

2 1c2!2u,

~11!

valid for Re(u).K/2 @in our case Re(s).(D22)/2]. The
Epstein-Hurwitzz-function can be extended to the who
complexs plane and we obtain, after some rather long b
straightforward manipulations,

U5h~D,s!vF1

4
GS 2s2D12

2 D S m21v

2m2 D (D2222s)/2

1 (
n51

` S Am21v

m2nL
D (D22)/22s

K (D22)/22s~nLAm21v!G ,

~12!

where

h~D,s!5
mD2222s

2s1(D22)/2p3/2G~s!
, ~13!

andKn are the Bessel functions of the third kind.
Applying formula ~12! with s52 to the integral

S(D,L,v), the result is that, we can writeS(D,L,v) in the
form

S~D,L,v!5v@H~D,v!1G~D,L,v!#, ~14!

where theL andv dependent contributionG(D,L,v) comes
from the second term between brackets in Eq.~12!, that is,

G~D,L,v!5
1

2(D12)/2p3/2 (
n51

` FAm21v

nL G (D26)/2

3K (D26)/2~nLAm21v!, ~15!

and H(D,v) is a polar parcel coming from the first term
between brackets in Eq.~12!,

H~D,v!}GS 22
D22

2 D Fm21v

2m2 G (D26)/2

. ~16!

We see from Eq.~16! that for even dimension,D56,
H(D,v) is divergent, due to the pole of theG function.
Accordingly, this term must be subtracted to give the ren
malized single bubble functionSR(D,L,v). We get simply

SR~D,L,v!5vG~D,L,v!. ~17!

For the sake of uniformity, the termH(D,v) is also sub-
tracted in the case of lower dimensionsD, where no poles of
G functions are present. In these cases we perform a fi
renormalization. From the properties of Bessel functions
can be seen from Eq.~15! that for any dimensionD,
G(D,L,v) satisfies the conditions,
2-2
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lim
L→`

G~D,L,v!50, lim
L→0

G~D,L,v!→`, ~18!

andG(D,L).0 for any values ofD, L.
Taking inspiration from Eq.~6!, let us define theL andv

dependentrenormalizedcoupling constantuR(D,L,v) at the
leading order in 1/N as

GD,R
(4) ~0,L,v![2uR~D,L,v!5

2u

11NuSR~D,L,v!
.

~19!

From Eqs.~19! and ~17! we can write the newL and v
dependent renormalized coupling constant

vNuR~D,L,v![vbR~D,L,v!

[g~D,L,v!5
vb

11vbG~D,L,v!
.

~20!

We see from Eq.~18! that b5Nu corresponds to the renor
malized coupling constant in absence of boundaries an
external field. Note that since the coupling constantb has
mass dimension of 42D, then the coupling constan
g(D,L,v) has mass dimension of 62D.

In order to study the critical behavior of our system, w
start from the gap equation in absence of external field
boundaries, in the disordered phase,

j225m0
21

V~N12!

N E dDk

~2p!D

1

k21j22
, ~21!

wherej is the correlation length. In our case, in particular,
the neighborhood of the critical curve, the gap equation
duces to a (L, v)-dependent Dyson-Schwinger equation. S
the generalization to our case of Eq.~21! in the neighbor-
hood of criticality can be written in the form

j225m0
21v1

g~D,L,v!

2(D22)/2Ap

~N12!

N

1

L

3 (
n52`

` E dD23k

~2p!D22

1

k21vn
21j22

. ~22!

In Eq. ~22!, we remember thatj225m2(L,v)1v @the pole
of the propagator off in presence of a magnetic field is
m2(L,v)52v] 1,2 and g(D,L,v) is the renormalized
(L,v)-dependent coupling constant, which is itself a fun
tion of j22 via the massm(L,v). Performing steps analo
gous to those leading from Eq.~8! to Eq. ~12!, Eq. ~22!
becomes

j225m0
21v1

g~D,L,v!

2D/2p3/2

~N12!

N (
n51

` Fj21

nL G (D24)/2

3K (D24)/2~nLj21!. ~23!

The coupling constantg(D,L,v) is given by Eq.~20!
with G(D,L,v) in Eq. ~15! replaced by
21250
of

d

-
,

-

G~D,L,v!5
1

2D/211p3/2 (
n51

` Fj21

nL G (D26)/2

K (D26)/2~nLj21!.

~24!

Equations~20!, ~23!, and~24! are, in fact, a complicated se
of coupled equations involvingj22, sinceg(D,L,v) is also
dependent on theL andv inverse correlation length.

If we limit ourselves to the neighborhood of criticality
j22'0, we may investigate the behavior of the system
using in both Eqs.~20! and ~24! and in Eq. ~23! an
asymptotic formula for small values of the argument of t
Bessel functions

Kn~z!'
1

2
G~n!S z

2D 2n

~z;0!, ~25!

which allows after some straightforward manipulations,
the largeN-limit, to write Eq. ~23! in the form

m0
21vc1

g~D,L,vc!

8p3/2
GS D

2
22DL42Dz~D24!'0,

~26!

where z(D24) is the Riemann z-function, z(D24)
5(n51

` (1/nD24), defined forD.5 and we have used th
label c to indicate that we are in the region of criticality
Similarly, inserting Eq.~25! in Eqs.~20! and ~24! g(D,L,v)
can be written forj22'0 as

g~D,L,vc!'
vcb

11bvcA~D,m!L62Dz~D26!
, ~27!

whereA(D,m)5(1/32p3/2)G„(D26)/2….
We cannot obtain critical lines in dimensionD<5 by a

limiting procedure from Eq.~26!. For D53, which corre-
sponds to the physically interesting situation of the syst
confined between two parallel planes embedded in a th
dimensional Euclidean space, we can obtain critical lines
performing an analytic continuation ofz(z) to the values of
the argumentz<1, by means of the reflection property o
z-functions

z~z!5
1

G~z/2!
GS 12z

2 Dpz21/2z~12z!, ~28!

which defines a meromorphic function having only o
simple pole atz51. We obtain takingm0

25a(T2T0), for
D53 ~the physical dimension!, the critical surface

a~Tc2T0!1vc1
1

8p3
g~D53,L,vc!Lz~2!50. ~29!

Using Eqs.~27! and ~28! to evaluateg(D53,L,vc), the
tabulated values to the severalG and z functions appearing
in the above formulas, we obtain

a~Tc2T0!1vc1
60bvcL

2880p1bvcL
3

50, ~30!
2-3
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a and b being the phenomenological Ginzburg-Landau p
rameters. Notice that asL→` we obtain from Eq.~30! the
critical line a(Tc2T0)1vc50 for the bulk.

In terms of the dimensionless quantities, respectively,
duced critical field, temperature, and film thickness,h
5vcj0

2, t5Tc /T0, andl 5L/j0, wherej05(aTo)21/2 is the
zero-temperature Ginzburg-Landau coherence length,
above equation can be rewritten as

h~ l ,t !5
1

2Bl3
$260Bl2Btl31Bl322880p@~60Bl1Btl3

2Bl312880p!2111 520pBl3~12t !#1/2%, ~31!

whereB5bj0. The surfaceh5h( l ,t) is illustrated in Fig. 1.
We recall that, since we have used the lowest Landau le
approximation in our calculations, this surface is only me
ingful for high values of the external field, that is, for lo
temperatures and thick films.

FIG. 1. Plot of the surfaceh5h( l ,t) as defined by Eq.~31!,
taking B5104.
ev

v.

a
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We can see from Fig. 1 that each value ofl defines a
critical line on theh3t plane, corresponding to a film o
thicknessL. This set of critical lines suggests the existence
a minimal value for the thicknessL below which supercon-
ductivity is suppressed. Indeed, this can be seen from
plot of the reduced critical field at zero temperature,h0, as a
function of the inverse of the reduced film thickness, sho
in Fig. 2. This behavior may be contrasted with the line
decreasing ofTc with the inverse of the film thickness in
absence of external field that has been found experimen
in materials containing transition metals, for example, in
~Ref. 12! and in W-Re alloys;13 for these cases, it has bee
explained in terms of proximity, localization, and Coulom
interaction effects. Notice, however, that our results do
depend on microscopic details of the material involved n
account for the influence of manufacturing aspects, like
kind of substrate on which the film is deposited. In oth
words, our results emerge solely as a topological effect of
compactification of the Ginzburg-Landau model in one
rection.

This work was partially supported by CNPq, Brazil.

FIG. 2. Zero-temperature reduced critical field as a function
the inverse of the reduced film thickness, obtained from Eq.~31!
taking t50 andB5104.
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