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Large-N transition temperature for superconducting films in a magnetic field
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We consider theN-component Ginzburg-Landau model in lafydimit, the system being embedded in an
external constant magnetic field and confined between two parallel planes a distgpexe from one another.
On physical grounds, this corresponds to a material in the form of a film in the presence of an external
magnetic field. Using techniques from dimensional gfdnction regularization, modified by the external field
and the confinement conditions, we investigate the behavior of the system as a function of the film thickness
L. This behavior suggests the existence of a minimal critical thickness below which superconductivity is
suppressed.
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It is usually assumed that it is a good approximation toof external field. This Hamiltonian density describes super-
neglect magnetic thermal fluctuations in the Ginzburg-conductors in the extreme type Il limit. In the following we
Landau(GL) model, when applied to study type Il supercon- assume that the external magnetic field is parallel tozthe
ductors. This problem has been investigated by a number aixis and that the gaugé=(0xH,0) has been chosen. We
authors, both in its single component and inNtgomponent ~ will consider model(1) with N complex components and
versions. An account on the state of the subject can be founthake the largeN limit at Nu fixed. If we consider the system
for instance, in Refs. 1-6. In particular, in R&fa largeN in unlimited space, the fielé should be written in terms of
theory of a second-order transition for arbitrary dimendibon the well-known Landau level basis,
is presented and the fixed-point effective free energy describ-
ing the transition is found. Here we investigate a confined - dp d®~2p
version of the model studied in Ref. 5. We consider the vec- B(r)=2, J 5 yf 5%, pXip, (1), (2
tor N -component Ginzburg-Landau model in presence of an =0 T (2m) ’ ’
external magnetic field at leading order irN1/the system : : ;
being submitted to the constraint of being confined betweexvherex"py'pz(r) are the Landau Ievzel e|ngenfunct|02ns given
two parallel planes a distanteapart from one another. Stud- With energy eigenvalueg;(|p[)=[p|°+ (2! + 1)@+ mg and
ies on confined field theory have been done in the literatur&=€H is the so-called cyclotron frequency. In the above
since a long time ago. In particular, an analysis of the renoréguationp is a (D — 2)-dimensional vector.
malization group in finite size geometries can be found in NOW, et us consider the system confined between two
Ref. 7. This study is performed using a modified Matsubard@rallel planes, normal to theaxis, a distancé apart from
formalism to take into account boundary effects on scaling®e another and use Cartesian coordinatez,z), wherez
laws. From a physical point of view, f@®=3 and introduc- 'S @ (D—3)-dimensional vector, with corresponding mo-
ing temperature by means of the mass term in the Hamilmentak=(k;,q), q being a O —3)-dimensional vector in
tonian, the model studied here should correspond to a filmMomenta space. In this case, the model is supposed to de-
like material in presence of a magnetic field. We investigatescribe a superconducting material in the form of a film. Un-
the behavior of the system as a function of the separation Qer these_ cont_jltlon's the generating functional of the correla-
between the plane@he film thickness using an extended tion functions is written as
compactification formalism in the frameov%%rk of the effective .
potential, introduced in recent publicationsin Ref. 10 this _ * _ D-3
formalism has been employed to perform a study of the 2 fD¢ D¢ exp( fo dzf > zH( L[V D) |
largeN B-function for superconducting films in a magnetic 3
field. For the Ginzburg parametee>1 (which is the case for i o N ]
high temperature superconductorthe Hamiltonian density with the field ¢(z,z) satisfying the condition of confinement

of the GL model in an external magnetic field can be written@long thez axis, ¢(z=0,2) = ¢(z=L,z). Then the field rep-
in the form resentation(2) should be modified and have a mixed series-

integral Fourier expansion of the form

u
H=|(V —ieA)¢|?+mi|p|?+ S| ¢, (1) o d
T2 $22=3 3 ¢ Z—F;yf d°~3gb(q)

where VXA=H and m3=a(T—T,), with «>0 and T, o
corresponding to the bulk transition temperature in absence xe 'enX 20 (0w, ,q), 4
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where w,=2mn/L, the labell refers to the Landau levels, zng Zf(s_(D_g)/z;a) is one of the Epstein-Hurwitz
and the coefficients, andb(q) correspond, respectively, to ;_functions defined by
the Fourier series representation oweand to the Fourier

integral representation over thB (- 3)-dimensionak space. ) +oo

The above conditions of confinement of thdependence of Zy (u{ai}) = > (ain?+---+agni+c? Y,
the field to a segment of length allow us to proceed with R

respect to thez coordinate, in a manner analogous as it is 1D

done in the imaginary-time Matsubara formalism in field\jig for Re@)>K/2 [in our case Ref)>(D—2)/2]. The
theory. The Feynman rules should be modified following theEpstein-Hurwitz -function can be extended to the whole

prescription, complexs plane and we obtain, after some rather long but

+oo straightforward manipulations,

dk 1
2 L2, Ko men O

=—»

D-2-2s)/2
m2+ w ( )

2u?

1F
4

2s—D+2
2

U=h(D,s)w

We emphasize that here we are considering a Euclidean field
theory inD purely spatial dimensions, we aretworking in "
the framework of finite-temperature field theory. Tempera- n 2
ture is introduced in the mass term of the Hamiltonian by =
means of the usual Ginzburg-Landau prescription.

We consider in the following the zero external-momenta (12)
four-point function, which is the basic object for our defini- \\nare
tion of the renormalized coupling constant. The four-point
function at leading order in W is given by the sum of all D-2-2s
chains of single one-loop diagrams. This sum gives for.the h(D,s)= ® ,
and o dependent four-point function at zero external mo- 25+ (D=2)25302p (s)

menta at the lowest Landau level approximation the forma!ade,, are the Bessel functions of the third kind.

K(o-2)2-s(NLYM*+ w)

(D-2)/2—s
w)

(13

expression Applying formula (12) with s=2 to the integral
@ —u 3(D,L,w), the result is that, we can wri(D,L,w) in the

g’ (0;L,w)= 1I*NIE(D.La)’ (6) form
where3 (D,L,w) is the Feynman integral corresponding to 2(D,L,0)=w[H(D,w)+G(D,L,w)], (14

the single one-loop subdiagram, where thel andw dependent contributio®(D,L,w) comes

15 4P 3K 1 from the second term between brackets in 8@), that is,
3(D,L,w)=~— —f .
( =T n;—w 2m) (2m)P 3 [K2+ wi+ m?+ w]? * [Pt o |62
(7 G(D.L,w)= 5(D+2)2, 312 nzl nL
The sum ovem and the integral ovek can be treated o
using the formalism developed in Refs. 8, 9, and 11, which XKp-gnLym™+w), (19

starting point is an expression of the form between brackets in EGL2),
MD*Z*ZS g dD73k D_2 m2+w (D—-6)/2
_(277)25+1w an:_x (an2+02+k2)s’ (8) H(D,a))OCF(Z—T) 2M2 (16)

where we have used dimensionless quantities=(m?
+ w)/(47%1?),(Lu)?>=a"1, and u is a mass scale. Note
that our formalism makes sense only for dimensibrs 3.
Using a well-known dimensional regularization formdla,
Eq. (8) can be written in the form

We see from EQq.(16) that for even dimensionD=6,
H(D,w) is divergent, due to the pole of thE function.
Accordingly, this term must be subtracted to give the renor-
malized single bubble functioBgz(D,L,w). We get simply

2

Sr(D,L,0)=wG(D,L,w). (17)
: C)

UzuDzzsw\/Ef(D,s)Z‘iZ(s— :a

For the sake of uniformity, the terrd(D,w) is also sub-
tracted in the case of lower dimensiobswhere no poles of

I' functions are present. In these cases we perform a finite
D—4—2s P renormalization. From the properties of Bessel functions, it
™ I'(s—(D—-3)/2) (10) can be seen from Eq(15 that for any dimensionD,
22st1 I'(s) ' G(D,L,w) satisfies the conditions,

wheref(D,s) is

f(D,s)=
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imG(D,L,w)=0, IimG(D,L,w)—0°, (18 1 © [g1)(P-6)2 )
L—oo L—0 G(D1L,(1)):2D/2+—17T3/2r§1 I K(D,G)/z(an )
andG(D,L)>0 for any values oD, L. (24)

Taking inspiration from Eq(6), let us define thé and w ) ) )

leading order in N as of coupled equations involving 2, sinceg(D,L,w) is also
dependent on the and w inverse correlation length.
@) —u If we limit ourselves to the neighborhood of criticality,
I'bR(OL,w)==UR(D,L,w)= 1+NuSR(D,L,0) " & 2~0, we may investigate the behavior of the system by

(19 using in both Egs.(20) and (24) and in Eg. (23) an

] asymptotic formula for small values of the argument of the
From Egs.(19) and (17) we can write the new. and w  Bessel functions

dependent renormalized coupling constant

1 z\7"
oNUR(D,L,w)=wpBg(D,L,w) KV(Z)~§F(V)(§ (z~0), (25
=g(D,L,w)= wB : which allows after some straightforward manipulations, in
1+wpG(DL,0) the largeN-limit, to write Eq. (23) in the form
(20)

We see from Eq(18) that 8=Nu corresponds to the renor- m§+wc+ Mr(g_z) L4 P¢(D—-4)~0,
malized coupling constant in absence of boundaries and of g2 2
external field. Note that since the coupling constgnhas (26)

mass dimension of 4D, then the coupling constant _
g(D,L,w) has mass dimension of-€D. where (D ~4)

In order to study the critical behavior of our system, we
start from the gap equation in absence of external field an
boundaries, in the disordered phase,

is the Riemann {-function, {(D—4)
=37_,(1nP~%), defined forD>5 and we have used the
label c to indicate that we are in the region of criticality.

imilarly, inserting Eq(25) in Eqs(20) and(24) g(D,L,w)
can be written fort"2~0 as

- V(N+2) dPk 1
£ =mi+ —; f (21) wcf

D2, ¢£-2' D,L,wy)~= J
(2m)° K2+ ¢ 9 e = AD.)LS P(D—6)

(27)

where¢ is the correlation length. In our case, in particular, in 3

the neighborhood of the critical curve, the gap equation reWhereA(D, u)=(1/32m _%)F((D_G),/Z)-, _

duces to al, )-dependent Dyson-Schwinger equation. So, We cannot obtain critical lines in dlmen3|®<5 by a
the generalization to our case of E@1) in the neighbor- limiting procedure from Eq(26). For D=3, which corre-

hood of criticality can be written in the form sponds to the physically interesting situation of the system
confined between two parallel planes embedded in a three-

o g(D,L,w) (N+2) 1 dimensional Euclidean space, we can obtain critical lines, by

Er=mytot =72 N L performing an analytic continuation @{z) to the values of
2 V the argumentz=<1, by means of the reflection property of
. zoo: f d°-3k 1 ) {-functions
n==e ) (2m)P 2K+ wi+E 2 _ 1 1-2)
{(2)= mr — |7 (12, (28

In Eq. (22), we remember tha >=m?(L,w) + w [the pole
szthe propagator ofp in presence of a magnetic field is at which defines a meromorphic function having only one
m*(L,w)=—-w]™* and g(D,L,») is the renormalized sjmple pole az=1. We obtain takingni=a(T—T,), for

(L,w)-dependent coupling constant, which is itself a func-p =3 (the physical dimensionthe critical surface
tion of & 2 via the massn(L,w). Performing steps analo-

gous to those leading from E@8) to Eq. (12), Eq. (22)

1
becomes a(T—To) +wet+ Fg(D=3,L,wC)L§(2) =0. (29
a
o -171(D-4)/2
£ 2=m2t o+ 9(D.L,w) (N+2) > 5_ Using Egs.(27) and (28) to evaluateg(D=3.L,w.), the
20232 N A= nL tabulated values to the sevelaland ¢ functions appearing
4 in the above formulas, we obtain
XKp-ay(NLE™T). (23
. o 60Bw.L
The coupling constangj(D,L,w) is given by Eq.(20) a(Te—To) + we+ ———————— =0, (30)
with G(D,L,w) in Eq. (15) replaced by 28807+ BwL®
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FIG. 2. Zero-temperature reduced critical field as a function of
the inverse of the reduced film thickness, obtained from (Bi)
takingt=0 andB= 10"

FIG. 1. Plot of th facé=h(l,t defined by Eq(31), . .
takinnglO“.o of the suriac (1.1) as defined by Eq3) We can see from Fig. 1 that each valueloflefines a

critical line on thehXt plane, corresponding to a film of

a and B8 being the phenomenological Ginzburg-Landau pa- thicknesd.. This set of critical lines suggests the existence of
rameters. Notice that ds— we obtain from Eq(30) the & Minimal value for the thickneds below which supercon-
critical line a(T.—To) + w.=0 for the bulk. ductivity is suppressed. Indeed, this can be seen from the
In terms of the dimensionless quantities, respectively, rePlot of the reduced critical field at zero temperating, as a
duced critical field, temperature, and film thicknegs, function of the inverse of the reduced film thickness, shown
— we£2, t=T,/To, andl=L/&,, wherego=(aT,) H2is the in Fig. 2. This behavior may be contrasted with the linear
zero-temperature Ginzburg-Landau coherence length, tHdecreasing off¢ with the inverse of the film thickness in
above equation can be rewritten as absence of external field that has been found experimentally
in materials containing transition metals, for example, in Nb
1 (Ref. 12 and in W-Re alloys? for these cases, it has been
h(l,t)= ——{—60BI—BtI3+ BI*— 2880 (60BI+ BtI® explained in terms of proximity, localization, and Coulomb-
2BI° interaction effects. Notice, however, that our results do not
(31) depend on microscopic details of the material involved nor
account for the influence of manufacturing aspects, like the
whereB= B&,. The surfacen=h(l,t) is illustrated in Fig. 1.  kind of substrate on which the film is deposited. In other
We recall that, since we have used the lowest Landau levelords, our results emerge solely as a topological effect of the
approximation in our calculations, this surface is only mean-compactification of the Ginzburg-Landau model in one di-
ingful for high values of the external field, that is, for low rection.

—BI3+2880m)2+115207BI3(1—1)]Y3,

temperatures and thick films. This work was partially supported by CNPq, Brazil.
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