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Abstract
We propose a two-step genetic algorithm (GA) to fit potential energy curves to both ab initio
and spectroscopic data. In the first step, the GA is applied to fit only the ab initio points; the
parameters of the potential so obtained are then used in the second-step GA optimization,
where both ab initio and spectroscopic data are included in the fitting procedure. We have
tested this methodology for the extended-Rydberg function, but it can be applied to other
functions providing they are sufficiently flexible to fit the data. The results for NaLi and Ar2

diatomic molecules show that the present method provides an efficient way to obtain diatomic
potentials with spectroscopic accuracy.

1. Introduction

For a long time, spectroscopic data of diatomic molecules have
been used to obtain Rydberg–Klein–Rees (RKR) potential
points through a direct semi-classical inversion method [1–3].
These potential points can then be used in a least-squares fit to
an appropriate functional form to obtain the interaction energy
as a function of the interatomic distance. Another source of
data that may be used altogether with the RKR points to build
in potential energy curves arises from the inverse perturbation
approach (IPA) proposed by Kosman and Hinze [4] and by
Vidal and Scheingraber [5]. In opposition to the semi-classical
RKR method, IPA has been established as a fully quantum-
mechanical approach to obtain potential energy curves of
diatomics. However, both RKR and IPA methods are based
on an inversion process of the spectrum data to obtain sets of
points (i.e., energy versus interatomic distance) belonging to
the potential curve, and hence cannot be seen, rigorously, as
direct spectroscopic information. Nonetheless, the joint use of
these kinds of data and rovibrational energies has been recently

carried out [6] in a direct least-squares fit of diatomic potentials
by employing a standard Levenberg–Marquardt algorithm as
implemented in the MINPACK package [7].

In the last decade or so, there has been a great
interest in the application of direct least-squares fitting
procedures to obtain diatomic potential energy curves from
large sets of spectroscopic data. Basically, such methods
consist of fitting the parameters of the radial Hamiltonians
associated with the electronic states of interest so that
the experimental (vibrational–rotational and pure rotational)
spectrum line positions are accurately reproduced by the
corresponding eigenvalues. In addition, the associated atomic-
mass-dependent Born–Oppenheimer breakdown (BOB) radial
strength functions may be also obtained through this direct
fitting procedure providing that data are available for various
isotopologues. It is worth noting in this context the
pioneering work of Coxon and Hajigeorgiou [8–10] and
Zimmermann and collaborators [11] that first developed
numerical methodologies to perform the direct fits. Since
then, many other groups [12–22] have explored and expanded
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upon the advantages of such methods. In turn, an algebraic
approach has been suggested by Ogilvie [23, 24] to deal
with the reduction of diatomic spectrum data to a compact
set of parameters defining both potential energy and BOB
radial functions. Though over the years the numerical and the
algebraic approaches have led to some apparent discrepancies
between each other, Le Roy [17] has recently demonstrated
that the source of such disagreement is simply due to the
truncation convention adopted by Ogilvie for the Dunham
expansion as it is implemented in the RADIATOM program
[23–30].

Although electronic structure calculations are nowadays
affordable for many diatomic systems, most of the available
ab initio potentials cannot still reproduce the experimental
vibrational levels with spectroscopic accuracy. In particular,
some of the present authors [31] have employed multi-
configurational quasi-degenerate perturbation theory [32, 33]
(MCQDPT), which uses the MCSCF orbitals as reference
functions in the perturbation procedure (as implemented in
GAMMESS-US package [34, 35]), to calculate the NaLi
potential curves for some singlet (X1�+ and A1�+) and
triplet (a3�+, b3�+ and c3�+) electronic states, as well as
the transition dipole momenta among states of the same
symmetry; the ab initio points were then interpolated to
calculate the vibrational levels and the radiative transition
probabilities by using the LEVEL program [36]. For example,
the vibrational levels for NaLi(X1�+) present discrepancies
with the experimental values [37, 38] that vary from less than
1 cm−1 for v = 0 up to ∼18 cm−1 for v = 24.

Another kind of system that represents a challenge for
theoreticians is the rare-gas dimers. The diatomic potential
of such systems is characterized by a shallow and small
van der Waals minimum, and is dominated by dispersion
interactions at large interatomic distances. Because of this,
highly correlated ab initio methods and basis sets with a
large number of polarization and diffuse functions must be
used to get an accurate potential energy curve for rare-gas
dimers. In the case of Ar2 (which is a benchmark system
in many contexts) the problem is even more acute due to the
large number of electrons that should be accounted for in
the electronic structure calculation. However, the enormous
progress carried out on this field (e.g., by the use couple-cluster
CCSD(T) methods ( [39] and references therein), augmented
correlation-consistent basis sets [40, 41], bond functions
[42–44] and extrapolating results to the complete basis-set
(CBS) limit [45, 46]) led to the calculation of probably the most
accurate Ar2 potential [47, 48], which can reproduce, among
other properties, the five experimental v′ → v′′ transitions
[49] within less than 1 cm−1.

Since the beginning of the last decade, genetic algorithms
(GAs) have been applied to solve several optimization
problems in chemistry and physics. Indeed, GAs have
shown themselves to be a powerful tool for searching the
global optimum in difficult cases such as atomic clusters
geometry optimization (see [50] and references therein) and
protein folding [51, 52]. Although most of the work on
this topic has been devoted to build in efficient GAs for
discovering the global minimum structure of molecules and

clusters [53–60], there have been also applications to deal
with the fitting process of experimental data (see [61, 62] and
references therein). Due to its difficulty, there are advantages
in applying GAs in the tedious task of spectral assignment
(which was traditionally done by visual identification of
patterns) and, thus, automate the process in an efficient way
[63–66]. Specifically, Hageman et al [63] have shown that
GAs can be used to determine rotational constants from
rovibronic spectra. Such a methodology makes use of the rigid
asymmetric rotor Hamiltonian model to obtain a theoretical
rovibronic spectrum, while the differences between this and
the experimental spectrum are, then, minimized by applying
the GA. Meerts and Schmitt [66] have demonstrated the
efficiency of this method on solving the assignment problem
in various complex cases, e.g., spectra with high overlapping
transitions, coinciding spectra of different isotopomers and
life-time broadened spectra. In addition, GAs have been
successfully applied to fit other spectroscopic data: nuclear
magnetic resonance [67], fluorescence/absorption spectra in
polyatomic molecules [68], Mössbauer spectroscopy [69],
multi-objective x-ray spectroscopic analysis [70] and powder
electron paramagnetic resonance (EPR) spectra [71]. In
particular, Hennessy and Kelley [61] have applied real-valued
multi-objective GAs to solve the spectral inversion problem
for sets of absorption spectra and resonance Raman excitation
profiles. In turn, Spalek et al [71] have proposed the joint use
of a GA with the Powell method to perform a least-squares fit
of the powder EPR spectrum data.

The application of GAs to the difficult task of discovering
the set of nonlinear parameters of a potential energy function
that best fits theoretical and/or experimental data have
motivated also the interest of researchers [72–75]. Recently,
a GA using a binary representation has been applied to fit the
potential energy surface of NaHF [74] and the potential curves
of both H+

2 and Li2 [75]. The extended-Rydberg function has
been used as a model to fit these diatomic systems to accurate
ab initio data, but they cannot reproduce the corresponding
spectra with an accuracy below 1 cm−1; in fact, discrepancies
as large as 5.79 cm−1 and 31.45 cm−1 are observed [75] for
H+

2 and Li2, respectively.
In this work, we want to investigate the possibility of

using a GA to fit diatomic potential curves to both ab initio
energies and experimental vibrational levels. For this purpose,
we suggest and analyse a hybrid real-valued GA which fits the
ab initio data to get a first estimate of the parameters which
will then be used in the joint fit of the ab initio and vibrational
levels. Since the major goal of the present work stems from
testing the ability of the new GA to fit accurately diatomic
spectroscopic data, no attempt has been made to use state-of-
the-art ab initio points (e.g., calculated by including relativistic
effects and BOB corrections). In fact, by including ab initio
data, we just want to guarantee the preservation of the form of
the potential curve during the fitting procedure in the absence
of a large set of experimental data. However, the effect of
fitting only the vibrational levels (i.e., without including ab
initio data) was also analysed here for NaLi. Moreover, we
are interested on the possibility of a simple model function
reproducing the diatomic spectra (i.e., data reduction) and,
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hence, we have no concern about extrapolating realistically
at large and small internuclear distances. Thus, we apply
the extended-Rydberg function to model the Ar2 and NaLi
potentials and analyse the improving in the fitting against
increasing the number of parameters included in the model.
The plan of this paper is as follows. In section 2, we describe
the genetic algorithm (GA) and the fitting procedure proposed
in this work. A discussion about the performance of the GA,
as well as the results for fitting the spectra of Ar2 and NaLi
are given in section 3. Conclusions and final remarks are in
section 4.

2. Methodology

We aim to obtain analytic potential energy curves with
spectroscopy accuracy by performing a nonlinear least-squares
fit to both ab initio and vibrational spectrum information. In
other words, this can be seen as the general problem to find the
best set of parameters z ≡ (z1, z2, . . ., zn) which minimizes
an objective function

χ2(z) =
N∑

j=1

ωj [f (xj ; z) − yj ]2, (1)

where the pair (xj , yj ) designates the point j of the set of N
data points of the fit, ωj is the weight given to point j and
f (x; z) is a model function employed in the fitting procedure.

In this work, we propose to employ a hybrid GA, where
the evolutionary algorithm is complemented by a local search
procedure. Its task is to discover the global minimum of
equation (1). Basically, we want to find out the values that
provide the best least-squares fit of a model function f (xj ; z)
to a data set of N points yj . According to the standard GA
terminology, each parameter zi is a gene, a specific set of
parameters z (i.e., a solution) is an individual and a group of
individuals forms the population. The iterative processing of
successive populations is guided by the two fundamental forces
of evolutionary systems: a probabilistic selection mechanism
gives preference to high-quality individuals from the current
population and, afterwards, variation operators are applied to
selected solutions to obtain the descendants. The goal of the
evolution is to determine the best nonlinear least-squares fit.

In the following subsection, we present the details of the
hybrid GA and the direct fitting procedure is discussed in
subsection 2.2.

2.1. Genetic algorithm

The flow chart in figure 1 presents an overview of the main
steps performed by the hybrid GA. In the beginning of the
optimization, the initial population is generated by randomly
selecting a set of solutions from the search space. The
composition of the search space is established by selecting
an appropriate interval for each one of the fitting parameters
or genes. Figure 2(a) graphically represents the structure of a
population: a set of K solutions (K represents the population
size), where each individual encodes a specific set of
parameters (z1, z2, . . ., zn). The Broyden–Fletcher–Goldfarb–
Shanno limited memory quasi-Newton (L-BFGS) method
[76, 77] is then applied. The application of this method aims to

Figure 1. Flowchart of the genetic algorithm used in the present
work.

perform a local improvement on each one of the solutions that
belong to the current population. During local optimization,
the maximum number of iterations that can be performed is
specified by a parameter of the algorithm, the local search
length (LSL). However, L-BFGS stops as soon as it finds a
local optimum, so the effective number of iterations can be
smaller than the value specified by LSL. Note that L-BFGS is
a powerful optimization technique which combines the modest
storage and computational requirements of conjugate gradient
methods with the superlinear convergence exhibited by full
memory quasi-Newton methods; it only requires the function
(i.e., χ2) and its gradient.

After local optimization, the fitness of each individual is
evaluated with equation (1). The quality of a solution reflects
how well its set of fitting parameters enable the adjustment of
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(a)

(b)

(c)

(d)

Figure 2. Population and main operators used in the present GA: (a) structure of the population; (b) one-point crossover; (c) SBX crossover;
(d) mutation (see the text).

the data points to the model function (f (xj ; z)). Since this is
a minimization problem, individuals with low fitness encode
better solutions.

As this GA adopts a fully generational model, in each
generation the whole population is replaced by its offspring.
The new generation (i.e., the new set of solutions) is obtained
after a sequence of steps. The first step is to select a set
of parents from the individuals that compose the current
generation. Tournament selection is the method adopted in
this work. To select one parent, this mechanism performs the
following operations: it randomly chooses T individuals from
the current population (T is a parameter of the algorithm called
the tourney size). The best solution from this set is selected
as a parent of the new generation. For a population with K
individuals, the procedure is repeated K times.

The standard genetic operators, crossover and mutation,
are then applied to the selected individuals to obtain the

descendants. First, crossover is applied, with a given
probability, to all pairs of parents. Afterwards, mutation is
applied, with a given probability, to each gene of the resulting
individuals.

In what concerns crossover, two different operators
are considered: one-point crossover and simulated binary
crossover (SBX) [78]. The first one is an example of a discrete
recombination operator. It selects a random cut point along
the sequence of fitting parameters and the two parents involved
in the operation are detached after this location. The two
children are obtained by exchanging the tails. Figure 2(b)
illustrates how this operator acts. In this example the cut
point is applied after the second gene. The main disadvantage
of discrete crossover operators is that they do not insert new
values into the population (they just rearrange existing values).
To overcome this limitation there are alternative operators
known as arithmetic crossovers. When they are used, the value
for each fitting parameter from the children is calculated as a
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weighted average of the corresponding values from the parents.
SBX is one well-known operator belonging to this group and it
has achieved good results in a number of real-valued problems
of varying difficulty and dimensionality [78, 79]. Figure 2(c)
illustrates how this operator acts. The values for the parameters
that will compose the children solutions {Child1, Child2} are
obtained from the parent solutions {Parent1, Parent2} in the the
following way [79]:

(1) select a random value µ ∈ [0, 1],
(2) calculate

β = (2µ)1/(η+1), if µ � 0.5

β = (1/2(1 − µ))1/(η+1), if µ > 0.5,

(3) Obtain children

Child1 = 0.5[(1 + β) × Parent1 − (1 − β) × Parent2]

Child2 = 0.5[(1 − β) × Parent1 + (1 + β) × Parent2],

where η should be a non-negative real number. Large values of
η increase the probability of creating descendants that are close
to its parents, while small values of η allow distant solutions
to be selected as children. In this work we adopt η = 3.0, as
it provides a good compromise between these two extremes.

When applied to a gene, mutation changes the value of the
parameter stored at that location. Figure 2(d) exemplifies this
operation. The parameter encoded in the second gene

(
Z1

2

)
is

mutated to a new value
(
Zm

2

)
. Two different operators were

tested in this work: random mutation and sigma mutation.
They differ in how they perform the modification. The first
operator randomly selects a new value on the corresponding
interval. As for sigma mutation, it obtains the new value for
the fitting parameter according to the following expression:

Zm
2 = Z1

2 + σ × (
Zmax

2 − Zmin
2

) × N(0, 1), (2)

where N(0, 1) represents a random value sampled from
a standard normal distribution, Zmax

2 and Zmin
2 represent

the upper and lower bounds of the interval for the fitting
parameter undergoing mutation and σ is a parameter from
the algorithm. The performance of different crossover and
mutation operators, including an analysis of the influence of
its application rates, is studied in subsection 3.1.

The new generation is formed as soon as the genetic
operators finish their work. Individuals are then locally
optimized and evaluated. Afterwards, a straightforward elitist
strategy ensures that the quality of the best individual never
decreases along the optimization. The described process is
repeated until a termination criterion is met. In our study,
we let the GA run until the number of calls to the evaluation
function reaches a pre-specified number.

The best individual (i.e., the best set of fitting parameters)
obtained within a given number of runs is considered as the
best solution found by the described GA.

2.2. Direct fitting procedure

The procedure to obtain directly an analytic potential energy
curve V (R) of a particular electronic state of a diatomic
molecule consists to perform a nonlinear least-squares fit
by using the available experimental information, such as the

vibrational spectrum, and occasionally theoretical data (e.g.,
ab initio electronic energies). In the present paper, we consider
a two-step GA to perform this task: first, the GA is applied to
estimate the appropriate interval for each one of the fitting
parameters by employing only the ab initio points in the
fit; subsequently, the GA is used to find the best set of
potential parameters from the appropriate intervals by fitting
both experimental spectroscopic and ab initio data. In such a
case, the objective function (equation (1)) should be rewritten
as

χ2(z) =
Nexp∑
j=1

ω
exp
j

[
Ecal

j (z) − E
exp
j

]2

+
Nab∑
j=1

ωab
j [V fit(Rj ; z) − V ab(Rj )]

2, (3)

where Nexp and Nab are, respectively, the numbers of
vibrational energies and ab initio points, Ecal

j (z) is the j th
theoretical vibrational energy calculated for the adjustable
potential function V fit(R; z), Eexp

j is the j th experimental
vibrational energy level, V ab(Rj ) is the ab initio energy
associated with the distance Rj and {ωj } are the weights given
to each one of known experimental and theoretical data values.

The analytic potential function applied here is the simple
and well-known extended-Rydberg form, i.e.,

V (R) = −De

(
1 +

p∑
k=1

akρ
k

)
exp(−a1ρ), (4)

where ρ = R − Re (Re is the equilibrium geometry); note
that for R = Re the potential becomes equal to −De, i.e.,
the symmetric of the dissociation energy. Within this model,
we assume all the ak(k = 1, . . . , p),De and Re as fitting
parameters that characterize the individual with n = p + 2
genes in GA, i.e. z = (z1 = a1, . . ., zp = ap, zp+1 =
De, zp+2 = Re). (Although many other functional forms could
be applied in alternative to equation (4), this has been chosen
for simplicity reasons.) On the other hand, the vibrational
eigenenergies Ecal

j (z) are solutions of the time-independent
Schrödinger equation[

− h̄2

2µ

d2

dR2
+ V fit(R; z)

]
ψj(R) = Ecal

j (z)ψj (R) (5)

obtained using the discrete variable representation (DVR)
method with an equally spaced grid [80, 81]. In equation (5),
µ designates the reduced mass of the diatomic system, while
ψj(R) is the j -state vibrational wavefunction.

3. Results and discussion

3.1. Performance of the GA

Since the main goal of the present work is the development
of an efficient GA to be applied in the direct fit of potential
energy curves to both ab initio and spectroscopic data, we have
made some preliminary tests to obtain a better understanding
of the algorithm’s behaviour. Specifically, we need to know
which genetic operators (from those described in section 2.1)
perform best, in what concerns both the convergence rate
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Figure 3. Influence of the crossover and mutation operators in the performance of the GA: (a) tests for combinations of different operators;
(b) tests for different rates of application of the SBX crossover and sigma mutation. In the insert caption ‘mut’ refers to mutation, while ‘cx’
designates crossover; the numbers are crossover and mutation rates (see the text).

of the GA and the best solution found (i.e., the minimum
objective-function achievement within the least-squares fitting
procedure). Additionally, we also tested the influence of
different combinations of crossover and mutation rates. All
the test sets have been carried out by applying the GA for
fitting both ab initio points and experimental vibrational levels
of NaLi to the nine-parameter extended-Rydberg function (see
subsection 3.3 for details).

For these initial tests, the settings of the GA are the
following: number of runs, 10; objective-function evaluations,
8 × 103; population size, 12; tourney size, 2; crossover
operators, {One-point, SBX}; mutation operators, {Random,
Sigma}; σ , 0.1; crossover rate, {0.75; 1.0}; mutation rate,
{0.05, 0.1, 0.2}; LSL, 1000. The number of objective-function
evaluations is specified in such a way that one can extract some
information about the performance of GA with a minimum
computational cost. The main results are displayed in figure 3
and tables 1 and 2.

The evolution of the mean best fitness (MBF) (i.e., the
average of the best fitness values over all runs) along the
generations is shown in figure 3(a); the corresponding values
for the MBF and best-ever-fitness at the end of the optimization
are given in table 1. These tests were performed with a
crossover rate of 0.75 and a mutation rate of 0.05.

It is clear from figure 3(a) and table 1 that the best results
are obtained when SBX is used in combination with sigma
mutation. On the other hand, the worst solutions occur when
one-point crossover and random mutation are used.

Moreover, the results show that the influence of crossover
for discovering good quality solutions is higher than that of

Table 1. Tests performed for different types of crossover and
mutation operators; the crossover rate is 0.75, while the mutation
rate is 0.05. The values of the χ 2 objective-function presented in the
tablea are in cm−2.

Mutation operators
Crossover
operators Random Sigma

One-point 488 431 182 308
21 262 20 772

SBX 102 616 75 146
17 329 17 122

a The mean best fitness (MBF)
and the best-ever-fitness values of
the χ 2 objective function are
given in first and second entries,
respectively.

Table 2. Tests performed for different rates of the SBX crossover
and sigma mutation operators. The values of the χ 2

objective-function presented in the tablea are in cm−2.

Mutation rate
Crossover
rate 0.05 0.1 0.2

0.75 75 146 36 120 43 861
17 122 14 360 26 013

1.0 49 201 29 469 37 581
13 831 13 394 21 635

a The mean best fitness (MBF) and the
best-ever-fitness values of the χ 2

objective function are given in first and
second entries, respectively.
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mutation. Switching from one-point crossover to SXB (while
maintaining the same mutation operator) clearly improves both
the best solution found and the MBF. In contrast, changing
from random to sigma mutation (while maintaining the same
crossover operator) leads only to a small improvement in the
achieved results.

It is important to note that these results should be
considered as preliminary, as they were obtained after a
limited number of evaluations. In depth conclusions about the
performance of different genetic operators would need more
generations, since the slope of the lines in figure 3(a) suggests
that the GA did not yet reach the end of the optimization
process when the termination criterion is met. In spite of
that, the results show a trend that favours the combination of
SBX and sigma mutation as the best set of operators. We
have then performed extra tests to fine-tune the crossover and
mutation rate parameters. The evolution of the MBF along
the generations for various sets of parameters is represented
in figure 3(b), while the corresponding values for the MBF
and best-ever-fitness at the end of the optimization are given
in table 2. For comparison purposes, we repeat in panel (b)
the solid curve for SBX and sigma mutation (now designated
as ‘mut: 0.05, cx: 0.75’) from panel (a).

It is clear that the improvement arising from different
combinations of parameter rates appear to be less relevant
than that from the different sets of crossover and mutation
operators in panel (a). (Note that the χ2-scale of panel (b) has
been reduced by about one order of magnitude in relation to
panel (a).) Nevertheless, it is apparent from figure 3(b) and
table 2 that all combinations of crossover and mutation rates
tend to perform better than both the standard set ‘mut: 0.05,
cx: 0.75’; the MBF is lower in all cases, whilst the best-ever-
fitness is higher only in tests performed with a mutation rate of
0.2. The results suggest that a somewhat intensive application
of genetic operators helps the GA to efficiently explore the
search space (see also below). This might be related to the
existence of a local optimization method. When applied, L-
BFGS drives the search towards the nearest local minimum
from where it departs. A vigorous shake provided by the
genetic operators is then needed to allow the GA to escape
from these local optima. Nonetheless, the results also show
that a mutation rate of 0.2 is excessive. When this value is
adopted, the GA has difficulties in focusing in promising areas
of the search space. The evolution of the MBF presented
in figure 3(b) confirms this supposition: in the beginning
of the optimization, trials performed with a mutation rate of
0.2 perform better, but over time they become worse than tests
performed with a mutation rate of 0.1 showing that they are not
able to perform a more localized search. As a consequence of
this analysis, we have decided to use the parameters from the
set ‘mut: 0.1, cx: 1.0’ in the ‘real’ fitting procedures, whose
results are presented in subsections 3.2 and 3.3.

In addition, we have also tested the influence of the
population size in the behaviour of the algorithm. Specifically,
we performed an additional test where we have increased the
population size by a factor of 5, while reducing the number
of evaluations of the objective function by the same factor.
The result was clearly worse than with the population of 12

individuals, so this size has been used in the tests whose results
are described in subsections 3.2 and 3.3.

To conclude the preliminary analysis, we have also
calculated the best-ever-fitness obtained when all genetic
operators are ‘switched off’ while keeping the local
optimization during the same number of objective-function
evaluations (i.e., 8 × 104 which corresponds to 10 runs); in
this case, the value of the best-ever-fitness is 16299 cm−2.
This result is clearly worse than the best solution found
by the hybrid algorithm, confirming the importance of the
global exploration performed by the genetic component of the
optimization method in the context of data fitting problems.

3.2. Ar2 potential

We begin to apply the fitting procedure suggested in this work
to the ground-electronic state of the Ar2 diatomic. Since Ar2

is a van der Waals molecule with a small energy well, the
number of vibrational levels involved in the fitting procedure
of this system is only six (or five consecutive vibrational
energy differences). Thus, this is probably less demanding
than the case of NaLi (subsection 3.3) for applying the GA
fitting procedure. Nevertheless, Ar2 is a benchmark van der
Waals diatomic studied in many contexts (namely for testing a
new fitting procedure [6]) for which very accurate CCSD(T) ab
initio data are available [47, 48]; also, the energy differences
between consecutive vibrational levels have been extracted
from the measured vibronic spectra of Ar2 [49].

As mentioned in section 2, we have applied the GA
in a two-step fitting procedure to the model function of
equation (4); for Ar2, we have carried out fits (in a total of three
sets) considering 5, 7 and 9 fitting parameters in equation (4).
In the first step, we have fitted 19 CCSD(T) ab initio points
(beginning from R = 3.2 Å up to R = 20 Å, which correspond
to interaction energies of 170.353 cm−1 and −0.0050 cm−1,
respectively) published by Patkowski et al [48]. Note that,
among all the CCSD(T) points of [48], only those in the
attractive region of the potential are important to adequately
describe the spectroscopy of Ar2, and hence we have not used
their data from the high repulsive region. With these points,
the GA converges to the putative best value of χ2 after a small
number of generations, and values of the fitting parameters
so obtained give us insight about the searching intervals to be
used in the second step of the fit. Then, in the second step,
the GA is applied to fit both the previous ab initio points and
the five consecutive vibrational energy differences obtained
from the Ar2 vibronic spectrum of Herman et al [49]. Since
the main goal is to accurately fit the experimental spectrum
data, we have arbitrarily assigned a weight of 100 to the five
consecutive vibrational energy differences, while keeping a
weight of 1 for the ab initio points. The GA is allowed to run
during, at least, 2 × 104 evaluations of the χ2 function, which
guarantees the convergence of the method. The best set of
parameters has been selected among four different runs of the
GA, and the numeric values are given in table 3 for the three
fits considered for Ar2.

Moreover, we represent in table 3 the root-mean-square
deviation (rmsd) values between the fitted curves of Ar2 and
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Table 3. Parameters and root-mean-square deviation (rmsd) for Ar2 obtained in three fits of the extended-Rydberg function to ab initio and
spectroscopic data.

Fitsa

1 2 3

Parametersb

De 4.523 2064(−4) 4.527 0502(−4) 4.525 2211(−4)
Re 7.123 8745 7.119 8023 7.121 2913
a1 1.105 4902 1.054 4889 1.054 0163
a2 −0.196 698 44 −0.243 200 66 −0.239 926 00
a3 8.172 112 57(−2) 0.100 331 11 9.554 7537(−2)
a4 −1.214 0720(−2) −1.367 8454(−2)
a5 1.625 8235(−3) 4.182 6422(−3)
a6 −7.463 6184(−4)
a7 6.427 7258(−5)

rmsdc

Ab initio 0.447 (0.272) 0.134 (0.043) 0.107 (0.017)
Vibrational 0.090 (0.191) 0.019 (0.067) 0.008 (0.069)

a Fits 1, 2 and 3 include 5, 7 and 9 fitting parameters in equation (4),
respectively.
b Values are in atomic units.
c Values are in cm−1; values in parenthesis are for the fit of ab initio data
alone.

both the ab initio points and the vibrational energy differences;
values in parenthesis are for the fits of the ab initio points
alone (i.e., first step of the GA fitting procedure). As
expected, the rmsd decreases with increasing number of fitting
parameters, which is more significant on passing from 5 (fit 1)
to 7 (fit 2). Of course, this is not always true for the
spectroscopic data when fitting only the ab initio points (e.g.,
the rmsd increases from 0.067 cm−1 in fit 2 to 0.069 cm−1 in
fit 3). However, the rmsd of the vibrational energy differences
clearly improves after applying the second step of the GA
fitting, especially for fit 1, which is achieved to the expenses
of worsening the corresponding values for the ab initio data.

It is worth noting that with only five fitting parameters
(fit 1) one obtains already a good fit of the spectroscopic data,
and even the fit of the ab initio points alone leads to a rmsd
∼0.2 cm−1 for the vibrational energy differences. This good
agreement between experiment [49] and fitting model results
from the fact that one starts from very accurate CCSD(T)
ab initio data [48]. Indeed, Patkowski et al [48] have calculated
vibrational energy differences close to the experimental values
[49] by using an analytic function proposed by Korona et al
[82] to which their CCSD(T) data have been fitted. This
potential [48] is compared with the one arising from our best
fit (i.e., fit 3) in the bottom panel of figure 4, where we represent
the spectroscopic-relevant part of the Ar2 potential. Since the
two curves are essentially coincident within the scale of
the figure, we also represent in the top panel of figure 4 the
difference between the two potentials. It is shown in this
figure that, except for internuclear distances smaller than the
equilibrium geometry where the major difference can reach
∼2 cm−1, the two potential curves differ by no more than
0.4 cm−1 in the spectroscopic-relevant region; the equilibrium
geometry and the dissociation energy from our nine-parameter
potential are, respectively, 7.121a0 and 99.32 cm−1 (which
corresponds to De = 4.525 × 10−4Eh, as shown in table 3),
while the corresponding values for the potential of Patkowski
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Figure 4. Potential energy curve for the Ar2 dimer obtained by joint
fitting the ab initio and spectroscopic data (V2, solid line) to a
nine-parameter potential model given by equation (4); parameters
are from fit 3 in table 3. Although essentially coincident with V2

(within the scale of the figure), it also displayed the curve (V1,
dotted line) proposed by Patkowski et al [48], which results from a
least-squares fit of their own ab initio data to a different model
function [82]. Also shown in the top panel is the difference between
the two curves (i.e., V2 − V1).

et al [48] are 7.119a0 and 99.27 cm−1. However, these
discrepancies are sufficient to bring the computed vibrational
data from our potential to coincide (within the error bars)
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Figure 5. Errors in the energy differences between consecutive Ar2

vibrational levels (in relation to the corresponding experimental
values) predicted by the potential curves obtained in fit 1 (panel (a)),
fit 2 (panel (b)) and fit 3 (panel (c)) of table 3. Note the differences
in the energy scales of the panels.

Table 4. Energy differencesa between consecutive vibrational levels
(with rotational quantum number J = 0) of Ar2 predicted by
experiment and different potential models (including the one from
the GA fit 3 of table 3).

(this work)
v′ − v′′ Ecal Ecal ([48]) Ecal ([83]) Eexp ([49])

1 − 0 25.69 25.75 25.68 25.69 ± 0.01
2 − 1 20.57 20.48 20.56 20.58 ± 0.02
3 − 2 15.57 15.44 15.58 15.58 ± 0.02
4 − 3 10.91 10.79 10.92 10.91 ± 0.03
5 − 4 6.83 6.76 6.83 6.84 ± 0.07

a All values are in cm−1.

with experiment [49], while the potential of Patkowski et al
[48] presents small disagreement for some vibrational energy
differences, as displayed in table 4. It is apparent from
table 4 that our potential is spectroscopically as good as the one
from Aziz [83], which is considered as the benchmark for Ar2.
Recently, a potential for Ar2 has been published [6] which is
probably as good as those in the spectroscopic-relevant region.

The evolution of the error in vibrational energy differences
(v′ − v′′) with the number of parameters included in the fitting
function of equation (4) is shown in figure 5; note that we
have calculated the error having as reference the corresponding
experimental values of Herman et al [49]. It is interesting to
observe in figure 5 that the error in all v′−v′′ values diminishes
as the number of fitting parameters increase from 5 (panel (a))
up to 9 (panel (b)). While the major errors for fit 1 (panel
(a)) are in differences 1 − 0 and 5 − 4, they are in differences
2 − 1 and 5 − 4 for fit 2 (panel (b)) and fit 3 (panel (c)).
Such errors for fit 3 are, however, below the experimental
uncertainty (see table 4); even for fit 2, only the 2 − 1 (with

Table 5. MCQDPT ab initio points used for fitting the NaLi(X1�+)
diatomic potential in this work (see the text).

R/a0 Energy/10−6Eh

3.5 178 04
3.75 331 8
4.0 −806 2
4.25 −167 46
4.5 −231 15
5.0 −302 92
5.5 −321 77
6.0 −307 67
6.5 −275 25
7.0 −234 45
7.5 −191 89
8.0 −151 78
8.5 −116 57
9.0 −873 5

10.0 −463 4
11.0 −236 2
12.0 −119 4
13.5 −445
15.0 −184
17.0 −69
20.0 −14
30.0 −1

an error of 0.033 cm−1) is still larger than the experimental
uncertainty.

3.3. NaLi potential

A more challenging test for the GA fitting procedure proposed
in this work is the NaLi diatomic system. Different from
Ar2, the electronic ground state of NaLi presents a deep well
with 48 predicted [38] vibrational levels; the 44 lowest lying
of these vibrational term values (or levels) of NaLi(X1�+)

have been studied experimentally by one of us [38] through
the application of a Fourier transform spectroscopy and laser-
induced fluorescence technique. An extra difficulty arises in
this case, because the set of ab initio points we have used in
the fit of the electronic ground state of NaLi is not as accurate
as that reported above for Ar2. Indeed, we have used in the
fit a set of 22 MCQDPT ab initio points obtained from a
state-average complete active-space self-consistent field (SA-
CASSCF) involving five singlet electronic states using the
aug-cc-pCVQZ atomic basis set of Dunning and collaborators
[84–86]. These ab initio points arise from a preliminary study
[31] on the radiative transitions of the NaLi molecule and are
far from being the most accurate for this system (see [31]);
nevertheless, we have used them to impose a greater challenge
for the present methodology. In turn, this set of ab initio points
covers a range that extends from R = 3.5 a0 up to R = 30 a0,
and the corresponding numerical values are given in table 5
for completeness.

As before, the first step involves the fit of the extended-
Rydberg function (equation (4)) to the ab initio data alone, so
that one may have insight on the best searching intervals for
parameters to be used in the second step. We allow the GA
to proceed up to 1 × 105 evaluations of the objective function,
χ2. In turn, the second step takes the relevant information
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Table 6. Parameters and root-mean-square deviation (rmsd) for NaLi obtained in four fits of the extended-Rydberg function to ab initio and
spectroscopic data.

Fitsa

1 2 3 4

Parametersb

De 0.032 413 373 0.032 272 999 0.032 399 123 −0.032 365 540
Re 5.500 3617 5.513 9121 5.498 2039 5.486 5604
a1 1.057 2296 0.877 4290 1.095 2386 0.985 288 74
a2 0.349 386 79 0.178 001 40 0.393 744 55 0.278 443 97
a3 4.382 6194 (−2) −4.739 1504 (−3) 6.361 0957 (−2) 3.001 0578 (−2)
a4 −4.588 0738 (−3) 2.560 8268 (−3) −1.031 6092 (−3)
a5 4.231 5415 (−4) −1.075 6819 (−3) −1.891 5786 (−3)
a6 −1.164 4694 (−4) −8.637 6274 (−5)
a7 4.233 0714 (−5) 1.354 5263 (−4)
a8 −1.761 8077 (−5)
a9 7.215 8300 (−7)

rmsdc

ab initio 30.792 (18.058) 44.265 (8.489) 22.327 (0.941) 22.634 (0.733)
vibrational 10.474 (28.181) 2.265 (36.631) 0.573 (47.221) 0.184 (38.409)

a Fits 1, 2, 3 and 4 include 5, 7, 9 and 11 fitting parameters in equation (4), respectively.
b Values are in atomic units.
c Values are in cm−1; values in parenthesis are for the fit of ab initio data alone.

from previous step to perform a joint fit of the ab initio and
spectroscopic data sets; a weight of 1 is attributed to the ab
initio points, while the corresponding value for vibrational
levels was 100. This two-step procedure has been applied
in four fits of the extended-Rydberg function (equation (4)),
where 5 (fit 1), 7 (fit 2), 9 (fit 3) and 11 (fit 4) fitting parameters
have been included. In each case, we have carried out a
total of 4 runs of the GA with 2 × 104 or 3 × 104 (for fit 4)
evaluations of χ2-function per run, so that one guarantees
the convergence of the GA fitting. For long runs, however, we
added a straightforward hyper-mutation functionality to the
GA, which is applied to all genes of the individuals from the
current population whenever the best solution is not improved
for 50 generations; the goal is to guarantee that the search
does not get stuck on a local optimum. The best set of fitting
parameters, so obtained, are shown in table 6 for fits 1–4.

Since the parameters Re and De were not imposed a
priori, it would be interesting to compare their experimental
values [37, 38] (i.e., Re = 5.4594 ± 0.0038 a0 and De =
7105.5 ± 1.0 cm−1 ≈ 0.032 375 041 ± 0.000 004 56Eh) with
the corresponding ones given in table 6 for each fit. We observe
that, for both Re and De, the best agreement with experiment
arise in the case of fit 4, being the errors −0.0271 a0 and
2.085 cm−1, respectively; the corresponding errors for Re (De)

arising in fit 1, fit 2 and fit 3 are −0.0409 a0 (−8.413 cm−1),
−0.0545 a0 (22.396 cm−1) and −0.0388 a0 (−5.285 cm−1),
respectively. These errors may be attributed to an insufficient
flexibility of the model function used in the fit. Curiously, fit
1 gives better agreement with experiment for both Re and De

than fit 2.
It is also represented in table 6 the rmsd values between

the fitted curves for NaLi and both the ab initio points and the
experimental vibrational levels; values in parenthesis are for
the fits of the ab initio points alone (i.e., first step of the GA
fitting procedure). From a comparison between tables 6 and 3,

we note that the rmsd values for NaLi are always larger than
the corresponding ones for Ar2. Indeed, as stated above, NaLi
is a much more difficult case, because it has a larger number
of vibrational levels to be fitted than Ar2 and less accurate ab
initio points were employed in the present fit.

It is shown in table 6 that increasing the number of fitting
parameters when the ab initio points are fitted alone clearly
improves the corresponding value of the rmsd, while generally
worsening the rmsd for the vibrational levels (that are not being
fitted); an exception occurs when passing from 9 (fit 3) to 11
(fit 4) fitting parameters: the rmsd for the vibrational levels
diminishes from 47.221 cm−1 to 38.409 cm−1. In contrast,
the ab initio rmsd diminishes from 18.058 cm−1 for the five-
parameters fit to 0.733 cm−1 for the eleven-parameters fit. On
the other side, when performing the joint fit of ab initio and
spectroscopic data (corresponding to the second step of our
method), the rmsd of the vibrational levels may be reduced up
to 0.184 cm−1 (fit 4), while the best rmsd for the ab initio points
is as high as 22.327 cm−1 (fit 3). In fact, the impossibility
of having simultaneously low rmsd values for both
ab initio and vibrational levels is a clear indication of a certain
lack of accuracy of the theoretical data.

The errors in the vibrational levels for NaLi are displayed
in figure 6 for fit 1 (panel (a)), fit 2 (panel (b)), fit 3 (panel
(c)) and fit 4 (panel (d)). It is apparent from this figure that
the error in the levels strongly diminishes as the number of
fitting parameters of the model function increases. Indeed,
one obtains errors of more than 20 cm−1 for fit 1, which is
reduced for less than 5 cm−1 for fit 2. In turn, fit 3 leads
to errors that are all below 1 cm−1 (but some are very near
this value), while in fit 4 all errors are below 0.5 cm−1. In
addition, most of the errors in the levels of fit 4 are even below
0.2 cm−1, being the exception the set of levels from v = 24
up to v = 33. Furthermore, it is interesting to note that such
sets of levels appear to have the major errors in all fits.

10



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 085103 J M C Marques et al

-3

 0

 3

er
ro

r/
10

 c
m

-1

-5

 0

 5
er

ro
r/

cm
-1

-1

 0

 1

er
ro

r/
cm

-1

-5

 0

 5

 0  5  10  15  20  25  30  35  40  45

er
ro

r/
10

-1
cm

-1

vibrational levels

(a)

(b)

(c)

(d)

Figure 6. Errors in the NaLi vibrational levels (in relation to the corresponding experimental values) predicted by the potential curves
obtained in fit 1 (panel (a)), fit 2 (panel (b)), fit 3 (panel (c)) and fit 4 (panel (d)) of table 6. Note the differences in the energy scales of the
panels.

We represent in table 7 the experimental vibrational levels
of NaLi as well as the corresponding ones obtained with the
diatomic potential arising from fit 4; values in parenthesis
correspond to fit 4, but for fitting the ab initio data alone.
It is patent in this table that, after the two-step procedure,
the major error in the vibrational levels arises for v = 28
(with 
E = 4.180 × 10−1 cm−1). Conversely, for fitting
the ab initio points alone, the errors in the vibrational levels
extend from 1.771 cm−1 for v = 0 up to 62.825 cm−1 for
v = 30. In addition, we compare in figure 7 (bottom panel)
the two potentials curves obtained in fit 4 from fitting both
ab initio and spectroscopic data, and ab initio points alone.
Although the two curves essentially overlap within the scale
of the figure, it is clear from the top panel of figure 7 that
the difference between the two potentials may reach values
close to ±50 cm−1 in the spectroscopic-relevant region. This
shows the extension of the correction in the potential model
imposed by the joint fit of inaccurate ab initio data and the
experimental vibrational levels of the electronic ground state
of the NaLi molecule.

Another interesting outcome is related to the fact that
the NaLi(X1�+) potential obtained in fit 4 has 48 vibrational
levels, as predicted by Fellows [38] from his experimental
results on this system; the four highest vibrational levels
calculated with potential from fit 4 (not shown in table 7)
have the following values (in cm−1): 7086.385, 7094.272,
7099.603 and 7102.938 for v = 44, 45, 46 and 47,
respectively. In contrast, the diatomic curves from fit 1 and
fit 2 present only 45 vibrational levels, while one calculates

bound states up to v = 46 (i.e., 47 levels) for the potential
obtained from fit 3.

Finally, it would be interesting to apply the present
methodology for fitting spectroscopic data alone, once such
experimental information is in general more accurate than ab
initio points. We have used the GA to fit the 44 vibrational
levels of NaLi to the eleven-parameter extended-Rydberg
function (i.e., similar to fit 4). In this case, the rmsd of the
vibrational levels has been reduced to 0.140 cm−1, which
constitutes a significant improvement in relation to the above-
mentioned fit 4, i.e., 0.184 cm−1 (that includes both ab
initio and experimental data). However, the decrease in the
rmsd is achieved at the expense of a certain deterioration
of the global behaviour of the potential. Indeed, the fit of
vibrational levels alone tends to reduce the width and the
well depth of the potential which leads it to present only 44
vibrational levels (i.e., the same number as the fitted ones),
in contrast to the experimentally estimated [38] value of 48.
This shortcome of the arising potential may be attributed to
the simple model function (with reduced extrapolation ability)
used here; hence, in the absence of ab initio information,
a more accurate description of the spectroscopic properties
(within this model) can be only guaranteed after including
a larger set of vibrational–rotational data in the direct fitting
procedure. Thus, the role of the ab initio points (extending for
the large range 3.5 � R/a0 � 30) in fit 4 appears to be the
enlargement of the potential well, leading to a deeper potential,
which increases the number of vibrational levels presented by
the potential curve so obtained.
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Table 7. Comparison between the vibrational energiesa (in cm−1) for NaLi obtained from fit 4 (Ecal) of table 6 and the corresponding
experimental values (Eexp) used in the fit.

Vibrational Eexp 
Ea = (Eexp − Ecal)

level Ecal(cm−1) (cm−1) (cm−1)

0 127.846 (126.061) 127.832 −0.014 (1.771)
1 381.162 (375.918) 381.122 −0.040 (5.204)
2 631.167 (622.619) 631.115 −0.052 (8.496)
3 877.845 (866.128) 877.788 −0.057 (11.660)
4 1121.170 (1106.408) 1121.117 −0.053 (14.709)
5 1361.114 (1343.417) 1361.068 −0.046 (17.651)
6 1597.644 (1577.111) 1597.603 −0.041 (20.492)
7 1830.720 (1807.442) 1830.678 −0.042 (23.236)
8 2060.301 (2034.361) 2060.250 −0.051 (25.889)
9 2286.337 (2257.813) 2286.274 −0.063 (28.461)

10 2508.777 (2477.741) 2508.699 −0.078 (30.958)
11 2727.563 (2694.084) 2727.472 −0.091 (33.388)
12 2942.633 (2906.777) 2942.532 −0.101 (35.754)
13 3153.920 (3115.753) 3153.812 −0.108 (38.059)
14 3361.349 (3320.939) 3361.239 −0.110 (40.300)
15 3564.844 (3522.257) 3564.735 −0.109 (42.478)
16 3764.320 (3719.627) 3764.218 −0.102 (44.591)
17 3959.687 (3912.961) 3959.599 −0.088 (46.638)
18 4150.848 (4102.169) 4150.783 −0.065 (48.614)
19 4337.700 (4287.151) 4337.668 −0.032 (50.517)
20 4520.130 (4467.806) 4520.143 0.013 (52.337)
21 4698.021 (4644.021) 4698.088 0.067 (54.067)
22 4871.245 (4815.680) 4871.372 0.127 (55.692)
23 5039.663 (4982.656) 5039.856 0.193 (57.200)
24 5203.130 (5144.815) 5203.386 0.256 (58.570)
25 5361.486 (5302.013) 5361.800 0.314 (59.786)
26 5514.561 (5454.096) 5514.924 0.363 (60.828)
27 5662.171 (5600.895) 5662.570 0.399 (61.675)
28 5804.119 (5742.232) 5804.537 0.418 (62.305)
29 5940.190 (5877.913) 5940.608 0.418 (62.695)
30 6070.154 (6007.726) 6070.551 0.397 (62.825)
31 6193.760 (6131.444) 6194.117 0.357 (62.673)
32 6310.741 (6248.819) 6311.039 0.298 (62.220)
33 6420.806 (6359.578) 6421.035 0.230 (61.457)
34 6523.645 (6463.428) 6523.801 0.156 (60.373)
35 6618.931 (6560.047) 6619.022 0.091 (58.974)
36 6706.321 (6649.088) 6706.364 0.043 (57.276)
37 6785.467 (6730.178) 6785.485 0.018 (55.307)
38 6856.028 (6802.925) 6856.042 0.014 (53.117)
39 6917.697 (6866.933) 6917.706 0.008 (50.773)
40 6970.228 (6921.836) 6970.192 −0.036 (48.356)
41 7013.454 (6967.348) 7013.318 −0.136 (45.970)
42 7047.278 (7003.353) 7047.079 −0.199 (43.726)
43 7071.578 (7029.984) 7071.644 0.066 (41.660)

a Values in parenthesis refer to the fit of the ab initio data alone (i.e., first
step of the GA fitting).

4. Conclusions and final remarks

We have proposed a two-step GA fitting procedure to obtain
diatomic potential curves with spectroscopic accuracy. The
most relevant parameters of the GA have been tuned to
enhance the performance by doing some tests prior to the ‘real’
applications. Then, the method was applied to Ar2, which is a
benchmark van der Waals system, and to the more challenging
NaLi molecule. Specifically, we have fitted the extended-
Rydberg function (equation (4)) (by considering various sets
of fitting parameters) to both ab initio and spectroscopic data.
The method has shown to be robust for searching the best

parameters that fit the ab initio and spectroscopic data. In the
case of NaLi, the application of the present methodology to fit
the vibrational data alone (i.e., without including the ab initio
points) led to a smaller rmsd value, but the potential shows
worse global behaviour than the corresponding one obtained
from the joint fitting procedure.

Although it has been tested here by applying the extended-
Rydberg function, this methodology may be extended to other
analytic diatomic potentials. Moreover, the application of the
two-step GA method to fit diatomic potential energy curves
directly to the experimental wave numbers resulting from
the individual transitions between the rovibrational levels of
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Figure 7. Potential energy curves for the electronic ground state of
NaLi obtained by joint fitting the ab initio and spectroscopic data
(V2, solid line), and by fitting the ab initio energies alone (V1, dotted
line); in both cases, 11 fitting parameters have been used in the
model potential of equation (4). Also shown in the top panel is the
difference V2 − V1.

the electronic excited state and the corresponding ones of
the electronic ground state is straightforward and it will be
employed in the NaLi and RbCs systems in the near future.

Finally, we should comment on the possibility of
extending the present methodology to obtain analytic potential
energy functions for polyatomic systems. Although the results
of the present work for diatomic molecules are encouraging in
the perspective of applying GAs for fitting multidimensional
PESs, it should be pointed out that it is a very difficult
task comprising many problems. For example, a PES to
be used in dynamics scattering calculations must correctly
incorporate the relevant asymptotic dissociation limits, while
studies focusing on the vibrational spectrum need a good
representation of the potential well. Both cases oblige for an
adequate choice of the functional form that has to reproduce
accurately the available data for the system. It should be
emphasized that a large amount of data is necessary to obtain
a good description of a multidimensional PES and, hence,
it is usually imperative to combine experimental information
with ab initio energies in the fitting procedure. In turn, a
common approximation to build up potential energy surfaces
is based on the many-body expansion (MBE) method [87],
where the energy is partitioned in the corresponding two-
body, three-body, etc interaction terms, being each n-body
component represented by a specific function; by construction,
it guarantees the correct description of the asymptotic
dissociation limits. Thus, the analytic potential is a sum of
all diatomic functions (e.g., extended-Rydberg), the three-
body components and higher-order terms (when applied). The

functional form for MBE terms other than the diatomic ones is
not so easy to establish, since it involves various coordinates
(i.e., it is a multidimensional function). An alternative
approach for such a functional representation consists of using
neural networks [88], which have been successfully applied in
the construction of PESs [89–94]. In spite of using the MBE
approach [87], one may simply build up a mode-expanded
PES to obtain a good representation of the spectroscopic
relevant region of the configuration space. This approximation
consists of a linear combination of n-mode cuts of the PES (i.e.,
sections of the PES for which only n normal coordinates are
different from zero) and it has been successfully applied by
Christiansen and collaborators [95, 96]. Concerning the fitting
of spectroscopic data (to represent accurately the potential
well), we can still use the GA providing that one applies an
efficient method to calculate the vibrational states (e.g., to
substitute the DVR method used in this work for diatomics).
Recently, Christiansen [97, 98] has proposed a vibrational-
coupled cluster (VCC) method for the calculation of the
fundamental vibrational frequencies of polyatomic molecules.
The VCC method has shown to give more accurate results
for ethylene [99] than the equivalent vibrational configuration
interaction (VCI) method [100–102]; a recent review on both
VCI and VCC methods is given in [95]. So, it would be
interesting to devise a methodology for the construction of
PESs that couple the GA with the VCC (or VCI) approach to
fit the vibrational spectrum of polyatomic molecules.
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provision of supercomputer time on the IBM Regatta p690+
(Project EPG01).

References

[1] Rydberg R 1931 Z. Phys. 73 376
[2] Klein O 1932 Z. Phys. 76 226
[3] Rees A L G 1947 Proc. Phys. Soc. 59 998
[4] Kosman W M and Hinze J 1975 J. Mol. Spectrosc. 56 93
[5] Vidal C and Scheingraber H 1977 J. Mol. Spectrosc. 65 46
[6] Varandas A J C, Rodrigues S P J and Batista V M O 2006

Chem. Phys. Lett. 424 425
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