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Abstract We present an extension of the notion of infinitesimal Lyapunov function to singu-
lar flows, and from this technique we deduce a characterization of partial/sectional hyperbolic
sets. In absence of singularities, we can also characterize uniform hyperbolicity. These con-
ditions can be expressed using the space derivative DX of the vector field X together with
a field of infinitesimal Lyapunov functions only, and are reduced to checking that a certain
symmetric operator is positive definite at the tangent space of every point of the trapping
region.
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1 Introduction

The hyperbolic theory of dynamical systems is now almost a classical subject in mathematics
and one of the main paradigms in dynamics. Developed in the 1960s and 1970s after the
work of Smale, Sinai, Ruelle, Bowen [11,12,42,43], among many others, this theory deals
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864 V. Araujo, L. Salgado

with compact invariant sets � for diffeomorphisms and flows of closed finite-dimensional
manifolds having a hyperbolic splitting of the tangent space. That is, T�M = Es ⊕ E X ⊕ Eu

is a continuous splitting of the tangent bundle over �, where E X is the flow direction, the
subbundles are invariant under the derivative DXt of the flow Xt

DXt · E∗
x = E∗

Xt (x), x ∈ �, t ∈ R, ∗ = s, X, u;

Es is uniformly contracted by DXt and Eu is likewise expanded: there are K , λ > 0 so that

‖DXt | Es
x‖≤K e−λt , ‖(DXt | Eu

x )
−1‖≤K e−λt , x ∈ �, t ∈ R.

Very strong properties can be deduced from the existence of such hyperbolic structure; see
for instance [11,12,18,37,41].

More recently, extensions of this theory based on weaker notions of hyperbolicity, like
the notions of dominated splitting, partial hyperbolicity, volume hyperbolicity and singular
hyperbolicity (for three-dimensional flows) have been developed to encompass larger classes
of systems beyond the uniformly hyperbolic ones; see [7] and specifically [5,47] for singular
hyperbolicity and Lorenz-like attractors.

One of the technical difficulties in this theory is to actually prove the existence of a
hyperbolic structure, even in its weaker forms. We mention that Malkus showed that the
Lorenz equations, presented in [22], are the equations of motion of a waterwheel, which
was built at MIT in the 1970s and helped to convince the skeptical physicists of the reality
of chaos; see [44, Section 9.1]. Only around the year 2000 was it established by Tucker in
[45,46] that the Lorenz system of equations, with the parameters indicated by Lorenz, does
indeed have a chaotic strange attractor. This proof is a computer assisted proof which works
for a specific choice of parameters, and has not been improved to this day. More recently,
Hunt and Mackay in [16] have shown that the behavior of a certain physical system, for a
specific choice of parameters which can be fixed in a concrete laboratory setup, is modeled
by an Anosov flow.

The most usual and geometric way to prove hyperbolicity is to use a field of cones. This
idea goes as far back as the beginning of the hyperbolic theory; see Alekseev [1–3]. Given a
continuous, splitting T�M = E ⊕ F (not necessarily invariant with respect to a flow Xt ) of
the tangent space over an invariant subset �, a field of cones of size a > 0 centered around
F is defined by

Ca(x) := {�0} ∪ {(u, v) ∈ Ex × Fx : ‖u‖ ≤ a‖v‖ }, x ∈ �.

Let us assume that there exists λ ∈ (0, 1) such that for all x ∈ � and every negative t

(1) DXt · Ca(x) ⊂ Ca(Xt (x)) (the overline denotes closure in TXt (x)M);
(2) ‖DXt · w‖ ≤ λ‖w‖ for each v ∈ Ca(x).

Then there exists an invariant bundle Es contained in the cone field Ca over�whose vectors
are uniformly contracted. The complementary cone field satisfies the analogous to the first
item above for positive t . This ensures the existence of a partially hyperbolic splitting over�.

We present a simple extension of the notion of infinitesimal Lyapunov function, from
[17], to singular flows, and show how this technique provides a new characterization of
partially hyperbolic structures for invariant sets for flows, and also of singular and sectional
hyperbolicity. In the absence of singularities, we can also rephrase uniform hyperbolicity
with the language of infinitesimal Lyapunov functions.
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Infinitesimal Lyapunov functions 865

This technique is not new. Lewowicz used it in his study of expansive homeomorphisms
[20] and Wojtkowski adapted it for the study of Lyapunov exponents in [49]. Using infin-
itesimal Lyapunov functions, Wojtkowski was able to show that the second item above is
superfluous: the geometric condition expressed in the first item is actually enough to conclude
uniform contraction.

Workers using these techniques, like Lewowicz [19], Markarian [25], Wojtkowski [51],
Burns-Katok [17], have only considered either dynamical systems given by maps or by flows
without singularities. In this last case, the authors deal with the linear Poincaré flow on the
normal bundle to the flow direction.

We adapt ideas introduced first by Lewowicz in [19], and developed by several other
authors in different contexts, to the setting of vector bundle automorphisms over flows with
singularities; see also [25,50,52] for other known applications of this technique to billiards
and symplectic flows, and also [34,35] for a general theory of J-monotonous linear transfor-
mations. Recently in [6] a general framework was established relating Lyapunov exponents
for invariant measures of maps and flows with eventually strict Lyapunov functions.

We improve on these results by showing, roughly, that the condition on item (1) above on
a trapping region for a flow implies partial hyperbolicity, even when singularities are present.
This also provides a way to define uniform hyperbolicity on a compact invariant set for a
smooth flow generated by a vector field X , using only X and DX together with a family of
Lyapunov functions.

We then provide an extra necessary and sufficient condition ensuring that the comple-
mentary cone, containing invariant subbundle Ec, which contains the flow direction, is such
that the area form along any two-dimensional subspace of Ec is uniformly expanded by the
action of the tangent cocycle DXt of the flow Xt (this property is today known as sectional-
hyperbolicity; see [26]).

Moreover, these conditions can be expressed using the vector field X and its space deriv-
ative DX together with an infinitesimal Lyapunov function, and are reduced to checking that
a certain symmetric operator is positive definite on all points of the trapping region. While
we usually define hyperbolicity by using the differential D f of a diffeomorphism f , or the
cocycle (DXt )t∈R associated to the continuous one-parameter group (Xt )t∈R, we show how
to express partial hyperbolicity using only the interplay between the infinitesimal genera-
tor X of the group Xt , its derivative DX and the infinitesimal Lyapunov function. Since in
many situations dealing with mathematical models from the physical, engineering or social
sciences, it is the vector field that is given and not the flow, we expect that the theory here
presented to be useful to develop simpler algorithms to check hyperbolicity.

1.1 Preliminary definitions

Before the main statements we collect some definitions in order to state the main results.
Let M be a connected compact finite n-dimensional manifold, n ≥ 3, with or without

boundary, together with a flow Xt : M → M, t ∈ R generated by a C1 vector field X : M →
T M , such that X is inwardly transverse to the boundary ∂M , if ∂M �= ∅.

An invariant set � for the flow of X is a subset of M which satisfies Xt (�) = � for all
t ∈ R. The maximal invariant set of the flow is M(X) := ∩t≥0 Xt (M), which is clearly a
compact invariant set.

A trapping region U for a flow Xt is an open subset of the manifold M which satisfies:
Xt (U ) is contained in U for all t > 0; and there exists T > 0 such that Xt (U ) is contained
in the interior of U for all t > T .
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866 V. Araujo, L. Salgado

A singularity for the vector field X is a point σ ∈ M such that X (σ ) = �0 or, equivalently,
Xt (σ ) = σ for all t ∈ R. The set formed by singularities is the singular set of X denoted
Sing(X). We say that a singularity is hyperbolic if the eigenvalues of the derivative DX (σ )
of the vector field at the singularity σ have nonzero real part.

Definition 1 A dominated splitting over a compact invariant set � of X is a continuous
DXt -invariant splitting T�M = E ⊕ F with Ex �= {0}, Fx �= {0} for every x ∈ � and such
that there are positive constants K , λ satisfying

‖DXt |Ex ‖·‖DX−t |FXt (x)
‖ < K e−λt , for all x ∈ �, and all t > 0. (1.1)

A compact invariant set � is said to be partially hyperbolic if it exhibits a dominated
splitting T�M = E ⊕ F such that subbundle E is uniformly contracted. In this case F is the
central subbundle of �.

A compact invariant set� is said to be singular hyperbolic if it is partially hyperbolic and
the action of the tangent cocycle expands volume along the central subbundle, i.e.,

| det(DXt |Fx )| > Ceλt , ∀t > 0, ∀ x ∈ �. (1.2)

Definition 2 We say that a DXt -invariant subbundle F ⊂ T�M is a sectionally expanding
subbundle if dim Fx ≥ 2 is constant for x ∈ � and there are positive constants C, λ such
that for every x ∈ � and every two-dimensional linear subspace Lx ⊂ Fx one has

| det(DXt |Lx )| > Ceλt , ∀t > 0. (1.3)

And, finally, the definition of sectional-hyperbolicity.

Definition 3 [26, Definition 2.7] A sectional hyperbolic set is a partially hyperbolic set
whose singularities are hyperbolic and the central subbundle is sectionally expanding.

We note that a sectional hyperbolic set always is singular hyperbolic, however the reverse
is only true in dimension three, not in higher dimensions; see for instance Metzger–Morales
[26] and Zu–Gan–Wen [54].

Remark 1.1 The properties of sectional hyperbolicity can be expressed in the following
equivalent way; see [5]. There exists T > 0 such that

• ‖DXT |Ex ‖ < 1
2 for all x ∈ � (uniform contraction); and

• | det(DXT |Fx )| > 2 for all x ∈ � and each 2-subspace Fx of Ec
x (2-sectional expansion).

We say that a compact invariant set � is a volume hyperbolic set if it has a dominated
splitting E ⊕ F such that the volume along its subbundles is uniformly contracted (along E)
and expanded (along F) by the action of the tangent cocyle. If the whole manifold M is a
volume hyperbolic set for a flow Xt , then we say that Xt is a volume-hyperbolic flow.

We recall that a flow Xt is said to be Anosov if the whole manifold M is a hyperbolic set
for the flow. Based on this definition, we say that Xt is a sectional Anosov flow if the maximal
invariant set M(X) is a sectional-hyperbolic set for the flow.

From now on, we consider M a connected compact finite dimensional Riemannian man-
ifold, U ⊂ M a trapping region, �(U ) = �X (U ) := ∩t>0 Xt (U ) the maximal positive
invariant subset in U for the vector field X and EU a finite dimensional vector bundle over
U . We also assume that all singularities of X in U (if they exist) are hyperbolic.
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Infinitesimal Lyapunov functions 867

1.1.1 Fields of quadratic forms: positive and negative cones

Let EU be a finite dimensional vector bundle with base U and J: EU → R be a continuous
field of quadratic forms Jx : Ex → R which are non-degenerate and have index 0 < q <

dim(E) = n. The index q of J means that the maximal dimension of subspaces of non-positive
vectors is q .

We also assume that (Jx )x∈U is continuously differentiable along the flow. The continuity
assumption on J means that for every continuous section Z of EU the map U � x �→
J(Z(x)) ∈ R is continuous. The C1 assumption on J along the flow means that the map
R � t �→ JXt (x)(Z(Xt (x))) ∈ R is continuously differentiable for all x ∈ U and each C1

section Z of EU .
We let C± = {C±(x)}x∈U be the field of positive and negative cones associated to J

C±(x) := {0} ∪ {v ∈ Ex : ± Jx (v) > 0} x ∈ U

and also let C0 = {C0(x)}x∈U be the corresponding field of zero vectors C0(x) = J−1
x ({0})

for all x ∈ U .

1.1.2 Linear multiplicative cocycles over flows

Let A: E × R → E be a smooth map given by a collection of linear bijections

At (x): Ex → EXt (x), x ∈ M, t ∈ R,

where M is the base space of the finite dimensional vector bundle E , satisfying the cocycle
property

A0(x) = I d, At+s(x) = At (Xs(x)) ◦ As(x), x ∈ M, t, s ∈ R,

with {Xt }t∈R a smooth flow over M . We note that for each fixed t > 0 the map At : E →
E, vx ∈ Ex �→ At (x) · vx ∈ EXt (x) is an automorphism of the vector bundle E .

The natural example of a linear multiplicative cocycle over a smooth flow Xt on a manifold
is the derivative cocycle At (x) = DXt (x) on the tangent bundle T M of a finite dimensional
compact manifold M .

The following definitions are fundamental to state our results.

Definition 4 Given a continuous field of non-degenerate quadratic forms J with constant
index on the trapping region U for the flow Xt , we say that the cocycle At (x) over X is

• J-separated if At (x)(C+(x)) ⊂ C+(Xt (x)), for all t > 0 and x ∈ U ;
• strictly J-separated if At (x)(C+(x) ∪ C0(x)) ⊂ C+(Xt (x)), for all t > 0 and x ∈ U ;
• J-monotone if JXt (x)(At (x)v) ≥ Jx (v), for each v ∈ Tx M\{�0} and t > 0;
• strictly J-monotone if ∂t

(
JXt (x)(At (x)v)

) |t=0> 0, for all v ∈ Tx M\{0}, t > 0 and
x ∈ U ;

• J-isometry if JXt (x)(At (x)v) = Jx (v), for each v ∈ Tx M and x ∈ U .

Thus, J-separation corresponds to simple cone invariance and strict J-separation corresponds
to strict cone invariance under the action of At (x).

We say that the flow Xt is (strictly) J-separated on U if DXt (x) is (strictly) J-separated
on TU M . Analogously, the flow of X on U is (strictly) J-monotone if DXt (x) is (strictly)
J-monotone.
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Remark 1.2 If a flow is strictly J-separated, then for v ∈ Tx M such that Jx (v) ≤ 0 we have
JX−t (x)(DX−t (v)) < 0 for all t > 0 and x such that X−s(x) ∈ U for every s ∈ [−t, 0].
Indeed, otherwise JX−t (x)(DX−t (v)) ≥ 0 would imply Jx (v) = Jx

(
DXt (DX−t (v))

)
> 0,

contradicting the assumption that v was a non-positive vector.
This means that a flow Xt is strictly J-separated if, and only if, its time reversal X−t is

strictly (−J)-separated.

A vector field X is J-non-negative on U if J(X (x)) ≥ 0 for all x ∈ U , and J-non-positive
on U if J(X (x)) ≤ 0 for all x ∈ U . When the quadratic form used in the context is clear, we
will simply say that X is non-negative or non-positive.

1.2 Statement of the results

We say that a compact invariant subset � is non-trivial if

• either � does not contain singularities;
• or � contains at most finitely many singularities, � contains some regular orbit and is

connected.

Our main result is the following.

Theorem A A non-trivial attracting set� of a trapping region U is partially hyperbolic for
a flow Xt if, and only if, there is a C1 field of non-degenerate quadratic forms J with constant
index, equal to the dimension of the stable subspace of�, such that Xt is non-negative strictly
J-separated on U.

This is a direct consequence of a corresponding result for linear multiplicative cocycles
over vector bundles which we state in Theorem 2.13 and prove in Sect. 2.4.

We obtain a criterion for partial and uniform hyperbolicity which extends the one given by
Lewowicz [19] and Wojtkowski [52]. The condition of strict J-separation can be expressed
only using the vector field X and its spatial derivative DX , as follows.

Proposition 1.3 A J-non-negative vector field X on U is (strictly) J-separated if, and only
if, there exists a compatible field of forms J0 and there exists a function δ: U → R such that
the operator J̃0,x := J0 · DX (x)+ DX (x)∗ · J0 satisfies

J̃0,x − δ(x)J0 is positive (definite) semidefinite, x ∈ U,

where DX (x)∗ is the adjoint of DX (x) with respect to the adapted inner product.

In the statement above, we say that a field of quadratic forms J0 on U is compatible to J,
and we write J ∼ J0, if there exists C > 1 satisfying for x ∈ �

1

C
· J0(v) ≤ J(v) ≤ C · J0(v), v ∈ Ex ∪ Fx ,

where E ⊕ F is a DXt -invariant splitting of T�M .
Again this is a consequence of a corresponding result for linear multiplicative cocycles

where DX is replaced by the infinitesimal generator

D(x) := lim
t→0

At (x)− I d

t

of the cocycle At (x).
As a consequence of Theorem A, we characterize hyperbolic maximal invariant subsets

in trapping regions without singularities as follows. We recall that the index of a (partially)
hyperbolic set is the dimension of the uniformly contracted subbundle of its tangent bundle.

123



Infinitesimal Lyapunov functions 869

Corollary B The maximal invariant subset� of U is a hyperbolic set for X of index s if, and
only if, there exist J,G smooth fields of non-degenerate quadratic forms on U with constant
index s and n −s −1, respectively, where s < n −2 and n = dim(M), such that Xt is strictly
J-separated non-negative on U with respect to J, Xt is strictly G-separated non-positive with
respect to G, and there are no singularities of X in U.

1.2.1 Incompressible vector fields

To state the next result, we recall that a vector field is said to be incompressible if its flow
has null divergence, i.e., it is volume-preserving on M .

In this particular case, we have the following easy corollary of Theorem A, since a partially
hyperbolic flow in a compact manifold must expand volume along the central direction.
Moreover, if the stable direction has codimension 2, the central direction expands area.

Corollary C Let X be a C1 incompressible vector field on a compact finite dimensional
manifold M which is non-negative and strictly J-separated for a field of non-degenerate and
indefinite quadratic forms J with index ind(J) = dim(M)− 2. Then Xt is an Anosov flow.

Indeed, the results of Doering [13] and Morales–Pacifico–Pujals [29], in dimension three,
Vivier [48] and Li–Gan–Wen [21], in higher dimensions, ensure that there are no singularities
in the interior of a sectional-hyperbolic set, and so this set is hyperbolic; see Sect. 3.1.

To present the results about sectional-hyperbolicity, we need some more definitions.

1.2.2 J-monotonous linear Poincaré flow

We apply these notions to the linear Poincaré flow defined on regular orbits of Xt as follows.
We assume that the vector field X is non-negative on U . Then, the span E X

x of X (x) �= �0
is a J-non-degenerate subspace. According to item (1) of Proposition 2.1, this means that
Tx M = E X

x ⊕ Nx , where Nx is the pseudo-orthogonal complement of E X
x with respect to

the bilinear form J, and Nx is also non-degenerate. Moreover, by the definition, the index
of J restricted to Nx is the same as the index of J. Thus, we can define on Nx the cones of
positive and negative vectors, respectively, N+

x and N−
x , just like before.

Now we define the linear Poincaré flow P t of Xt along the orbit of x , by projecting DXt

orthogonally (with respect to J) over NXt (x) for each t ∈ R:

P tv := �Xt (x)DXtv, v ∈ Tx M, t ∈ R, X (x) �= �0,
where �Xt (x): TXt (x)M → NXt (x) is the projection on NXt (x) parallel to X (Xt (x)). We
remark that the definition of�x depends on X (x) and JX only. The linear Poincaré flow P t

is a linear multiplicative cocycle over Xt on the set U with the exclusion of the singularities
of X .

In this setting we can say that the linear Poincaré flow is (strictly) J-separated and (strictly)
J-monotonous using the non-degenerate bilinear form J restricted to Nx for a regular x ∈ U .
More precisely: Pt is J-monotonous if ∂tJ(Ptv) |t=0≥ 0, for each x ∈ U, v ∈ Tx M\{�0}
and t > 0, and strictly J-monotonous if ∂tJ(Ptv) |t=0> 0, for all v ∈ Tx M\{�0}, t > 0 and
x ∈ U .

Theorem D Let � be a non-trivial attracting set � of U which is contained in the non-
wandering set �(X). Then � is sectional hyperbolic for Xt if, and only if, there is a C1

field J of non-degenerate quadratic forms with constant index, equal to the dimension of
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the stable subspace of �, such that Xt is a non-negative strictly J-separated flow on U,
whose singularities are sectionally hyperbolic with index ind(σ ) ≥ ind(�), and for each
compact invariant subset 	 of � without singularities there exists a field of quadratic forms
J0 equivalent to J so that the linear Poincaré flow is strictly J0-monotonous on 	.

As usual, we say that q ∈ M is non-wandering for X if for every T > 0 and every
neighborhood W of q there is t > T such that Xt (W ) ∩ W �= ∅. The set of non-wandering
points of X is denoted by�(X). A singularity σ is sectionally hyperbolic with index ind(σ ) if
σ is a hyperbolic singularity with stable direction Es

σ having dimension ind(σ ) and a central
direction Ec

σ such that Tσ M = Es
σ ⊕ Ec

σ is a DXt (σ )-invariant splitting, Es
σ is uniformly

contracted and Ec
σ is sectionally expanded by the action of DXt (σ ).

As before, the condition of J-monotonicity for the linear Poincaré flow can be expressed
using only the vector field X and its space derivative DX as follows.

Proposition 1.4 A J-non-negative vector field X on a forward invariant region U has a linear
Poincaré flow which is (strictly) J-monotone if, and only if, the operator Ĵx := DX (x)∗ ·
�∗

x J�x + �∗
x J�x · DX (x) is a (positive) non-negative self-adjoint operator, that is, all

eigenvalues are (positive) non-negative, for each x ∈ U such that X (x) �= �0.

The conditions above are again consequence of the corresponding results for linear mul-
tiplicative cocycles over flows, as explained in Sect. 4.

1.3 Examples

With the equivalence provided by Theorems A and D and Corollaries B and C, we have
plenty of examples illustrating our results.

Example 1 We can consider

• the classical examples of uniformly hyperbolic attractors for C1 flows, in any dimension
greater or equal to 3; see e.g. [12].

• The classical Lorenz attractor from the Lorenz ODE system and the geometrical Lorenz
attractors; see e.g. [22,45,47].

• Singular-hyperbolic (or Lorenz-like) attractors and attracting sets in three dimensions;
see e.g. [5,28,30].

• Contracting Lorenz (Rovella) attractors; see e.g. [27,38].
• Sectional-hyperbolic attractors for dimensions higher than three; see e.g [7,9,26].
• Multidimensional Rovella-like attractors; see [4].

The following examples illustrate the fact that the change of coordinates to adapt the
quadratic forms as explained in Sect. 2 is important in applications.

Example 2 Given a diffeomorphism f : T
2 → T

2 of the 2-torus, let Xt : M → M be a
suspension flow with roof function r : M → [r0, r1] over the base transformation f , where
0 < r0 < r1 are fixed, as follows.

We define M := {(x, y) ∈ T
2 × [0,+∞): 0 ≤ y < r(x)}. For x = x0 ∈ T

2 we denote
by xn the nth iterate f n(x0) for n ≥ 0 and by Snϕ(x0) = S f

n ϕ(x0) = ∑n−1
j=0 ϕ(x j ) the

nth-ergodic sum, for n ≥ 1 and for any given real function ϕ: T
2 → R in what follows.

Then for each pair (x0, s0) ∈ M and t > 0 there exists a unique n ≥ 1 such that Snr(x0) ≤
s0 + t < Sn+1r(x0) and we define

Xt (x0, s0) = (
xn, s0 + t − Snr(x0)

)
.
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Infinitesimal Lyapunov functions 871

We note that the vector field corresponding to this suspension flow is the constant vector
field X = (0, 1). We observe that the space M becomes a compact manifold if we identify
(x, r(x)) with ( f (x), 0); see e.g. [32].

Hence, if we are given a field of quadratic forms J on M and do not change coordinates
accordingly, we obtain DX ≡ 0 and so the relation provided by Proposition 1.3 will not be
fulfilled, because J̃x − δ(x)J = −δ(x)J is not positive definite for any choice of δ.

Remark 1.5 Moreover, if a flow Xt is such that the infinitesimal generator X is constant in
the ambient space is J-separated, then strict J-separation implies that −δ(x)J is positive
definite for all x ∈ U , and so δ is the null function on the trapping region.

Example 3 Now consider the same example as above but now f is an Anosov diffeomorphism
of T

2 with the hyperbolic splitting Es ⊕ Eu defined at every point. Then the semiflow will
be partially hyperbolic with splitting Es ⊕ (E X ⊕ Eu) where E X is the one-dimensional
bundle spanned by the flow direction: E X

(x,s) = R · X (x, s), (x, s) ∈ M .
Hence, Theorem A ensures the existence of a field J of quadratic forms such that Xt is

strictly J-separated.
Comparing with the observation at the end of Example 2, this demands a change of

coordinates and, in those coordinates, the vector field X will no longer be a constant vector
field.

Example 4 Now we present a suspension flow whose base map has a dominated splitting but
the flow does not admit any dominated splitting.

Let f : T
4 × T

4 be the diffeomorphism described in [10] which admits a continuous dom-
inated splitting Ecs ⊕ Ecu on T

4, but does not admit any hyperbolic (uniformly contracting
or expanding) subbundle. There are hyperbolic fixed points of f satisfying, see Fig. 1:

• dim Eu(p) = 2 = dim Es(p) and there exists no invariant one-dimensional subbundle
of Eu(p);

• dim Eu( p̃) = 2 = dim Es( p̃) and there exists no invariant one-dimensional subbundle
of Es( p̃);

• dim Es (̃q) = 3 and dim Eu(q) = 3.

Hence, the suspension semiflow of f with constant roof function 1 does not admit any
dominated splitting. In fact, the natural invariant splitting Ecs ⊕ E X ⊕ Ecu is the continuous
invariant splitting over T

4 × [0, 1] with bundles of least dimension, and is not dominated
since at the point p the flow direction E X (p) dominates the Ecs(p) = Es(p) direction, but
at the point q this domination is impossible.

We now present simple cases of partial hyperbolicity/strict separation and hyperbolic-
ity/strict monotonicity, obtaining explicitly the function δ.

Fig. 1 Saddles with real and
complex eigenvalues

s
q

p
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Example 5 Let us consider a hyperbolic saddle singularity σ at the origin for a smooth vector
field X on R

3 such that the eigenvalues of DX (σ ) are real and satisfy λ1 < λ2 < 0 < λ3.
Through a coordinate change, we may assume that DX (σ ) = diag{λ1, λ2, λ3}. We consider
the following quadratic forms in R

3.

Index 1: J1(x, y, z) = −x2 + y2 + z2. Then J1 is represented by the matrix J1 =
diag{−1, 1, 1}, that is, J1( �w) = 〈J1( �w), �w〉 with the canonical inner product.
Then J̃1 = J1 · DX (σ )+ DX (σ )∗ · J1 = diag{−2λ1, 2λ2, 2λ3} and J̃ ′

1 − δ J1 > 0 ⇐⇒
2λ1 < δ < 2λ2 < 0. So δ must be negative and J̃1 is not positive definite. From
Proposition 1.3 and Theorem 2.7 we have strict J1-separation, thus partial hyperbolicity
with the negative x-axis a uniformly contracted direction dominated by the yz-direction;
but this is not an hyperbolic splitting.
Moreover the conclusion would be the same if λ3 where negative: we get a sink with a
partially hyperbolic splitting.
Index 2: J2(x, y, z) = −x2 − y2 + z2 represented by J2 = diag{−1,−1, 1}.
Then J̃2 = diag{−2λ1,−2λ2, 2λ3} and J̃2 − δ J1 > 0 ⇐⇒ 2λ2 < δ < 2λ3. So
δ might be either positive or negative, but we still have strict J2-separation, and J̃2 is
positive definite. Hence by Theorem 2.7 Xt is strictly J2-monotone at σ and the splitting
R

3 = (R2 × {0})⊕ ({(0, 0)} × R) is hyperbolic.
Index 1, not separated: J3(x, y, z) = x2 − y2 + z2 represented by J2 = diag{1,−1, 1}.
Now J̃3 = diag{2λ1,−2λ2, 2λ3} is not positive definite and J̃3 − δ J3 is the diagonal
matrix diag{2λ1−δ,−2λ2+δ, 2λ3−δ} which represents a positive semidefinite quadratic
form if, and only if, δ ≤ 2λ1, δ ≥ 2λ2 and δ ≤ 2λ3, which is impossible. Hence we do
not have domination of the y-axis by the xz-direction.

1.4 Organization of the text

We study J-separated linear multiplicative cocycles over flows in Sect. 2.2, where we prove
the main results whose specialization for the derivative cocycle of a smooth flow provide
the main theorems, including Proposition 1.3. We then consider the case of the derivative
cocycle and prove Theorem A and Corollaries B and C in Sect. 3. We turn to study sectional
hyperbolic attracting sets in Sect. 4, where we prove Theorem D and Proposition 1.4.

2 Some properties of quadratic forms and J-separated cocycles

The assumption that M is a compact manifold enables us to globally define an inner product
in E with respect to which we can find the an orthonormal basis associated to Jx for each x ,
as follows. Fixing an orthonormal basis on Ex we can define the linear operator

Jx : Ex → Ex such that Jx (v) = 〈Jxv, v〉 for all v ∈ Tx M,

where 〈, 〉 = 〈, 〉x is the inner product at Ex . Since we can always replace Jx by (Jx + J ∗
x )/2

without changing the last identity, where J ∗
x is the adjoint of Jx with respect to 〈, 〉, we

can assume that Jx is self-adjoint without loss of generality. Hence, we represent J(v) by a
non-degenerate symmetric bilinear form 〈Jxv, v〉x .

2.1 Adapted coordinates for the quadratic form

Now we use Lagrange’s method to diagonalize this bilinear form, obtaining a base
{u1, . . . , un} of Ex such that
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Jx

(
∑

i

αi ui

)

=
q∑

i=1

−λiα
2
i +

n∑

j=q+1

λ jα
2
j , (α1, . . . , αn) ∈ R

n .

Replacing each element of this base according to vi = |λi |1/2ui we deduce that

Jx

(
∑

i

αivi

)

=
q∑

i=1

−α2
i +

n∑

j=q+1

α2
j , (α1, . . . , αn) ∈ R

n .

Finally, we can redefine 〈, 〉 so that the base {v1, . . . , vn} is orthonormal. This can be done
smoothly in a neighborhood of x in M since we are assuming that the quadratic forms are
non-degenerate; the reader can check the method of Lagrange in a standard Linear Algebra
textbook and observe that the steps can be performed robustly and smoothly for all nearby
tangent spaces; see for instance [33,40].

In this adapted inner product we have that Jx has entries from {−1, 0, 1} only, J ∗
x = Jx

and also that J 2
x = Jx . Having fixed the orthonormal frame as above, the standard negative

subspace at x is the one spanned by v1, . . . , vq and the standard positive subspace at x is the
one spanned vq+1, . . . , vn .

2.1.1 J-symmetrical matrixes and J-selfadjoint operators

The symmetrical bilinear form defined by (v,w) = 〈Jxv,w〉, v, w ∈ Ex for x ∈ M endows
Ex with a pseudo-Euclidean structure. Since Jx is non-degenerate, then the form (·, ·) is
likewise non-degenerate and many properties of inner products are shared with symmetrical
non-degenerate bilinear forms. We state some of them below.

Proposition 2.1 Let (·, ·): V × V → R be a real symmetric non-degenerate bilinear form
on the real finite dimensional vector space V .

(1) E is a subspace of V for which (·, ·) is non-degenerate if, and only if, V = E ⊕ E⊥.
We recall that E⊥ := {v ∈ V : (v,w) = 0 for all w ∈ E}, the pseudo-orthogonal
space of E, is defined using the bilinear form.

(2) Every base {v1, . . . , vn} of V can be orthogonalized by the usual Gram–Schmidt
process of Euclidean spaces, that is, there are linear combinations of the basis vec-
tors {w1, . . . , wn} such that they form a basis of V and (wi , w j ) = 0 for i �= j .
Then this last base can be pseudo-normalized: letting ui = |(wi , wi )|−1/2wi we get
(ui , u j ) = ±δi j , i, j = 1, . . . , n.

(3) There exists a maximal dimension p for a subspace P+ of J-positive vectors and a
maximal dimension q for a subspace P− of J-negative vectors; we have p + q = dim V
and q is known as the index of J.

(4) For every linear map L: V → R there exists a unique v ∈ V such that L(w) = (v,w)

for each w ∈ V .
(5) For each L: V → V linear there exists a unique linear operator L+: V → V (the

pseudo-adjoint) such that (L(v), w) = (v, L+(w)) for every v,w ∈ V .
(6) Every pseudo-self-adjoint L: V → V , that is, such that L = L+, satisfies

(a) eigenspaces corresponding to distinct eigenvalues are pseudo-orthogonal;
(b) if a subspace E is L-invariant, then E⊥ is also L-invariant.

The proofs are rather standard and can be found in [23].
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2.2 Properties of J-separated cocycles

In what follows we usually drop the subscript indicating the point where J is calculated to
avoid heavy notation, since the base point is clear from the context.

2.2.1 J-separated linear maps

The following simple result will be very useful in what follows.

Lemma 2.2 Let V be a real finite dimensional vector space endowed with a non-positive
definite and non-degenerate quadratic form J: V → R.

If a symmetric bilinear form F : V × V → R is non-negative on C0 then

r+ = inf
v∈C+

F(v, v)

〈Jv, v〉 ≥ sup
u∈C−

F(u, u)

〈Ju, u〉 = r−

and for every r in [r−, r+] we have F(v, v) ≥ r〈Jv, v〉 for each vector v.
In addition, if F(·, ·) is positive on C0\{�0}, then r− < r+ and F(v, v) > r〈Jv, v〉 for all

vectors v and r ∈ (r−, r+).

Proof This can be found in [52] and also in [35]. We present the simple proof here for
completeness.

Let us assume that the F is non-negative on C0 and argue by contradiction: we also assume
that

inf
v∈C+

F(v, v)

〈Jv, v〉 < sup
u∈C−

F(u, u)

〈Ju, u〉 . (2.1)

Hence we can find v0 ∈ C+ and u0 ∈ C− with J(v0) = 1 and J(u0) = −1 such that
F(v0, v0)+ F(u0, u0) < 0. We can also find an angle α such that both linear combinations

v = v0 cosα + u0 sin α and w = −v0 sin α + u0 cosα

belong to C0. Then we must have F(v, v) ≥ 0 and F(w,w) ≥ 0, but we also have

F(v, v)+ F(w,w) = cos2 α · F(v0, v0)+ + sin 2α · F(u0, v0)+ sin2 α · F(u0, u0)

+ sin2 α · F(v0, v0)− sin 2α · F(u0, v0)+ cos2 α · F(u0, u0)

= F(v0, v0)+ F(u0, u0) < 0

and this contradiction shows that the opposite of (2.1) must be true.
Analogously, if F is positive on C0\{�0}, then we can argue in the same way: we assume that

(2.1) is true with ≤ in the place of<; we obtain F(v0, v0)+ F(u0, u0) ≤ 0 and then construct
v,w such that F(v, v) + F(w,w) > 0; and, finally, we show that F(v, v) + F(w,w) =
F(v0, v0)+ F(u0, u0) ≤ 0 to arrive again at a contradiction. ��
Remark 2.3 Lemma 2.2 shows that if F(v,w) = 〈 J̃v,w〉 for some self-adjoint operator J̃
and F(v, v) ≥ 0 for all v such that 〈Jv, v〉 = 0, then we can find a ∈ R such that J̃ ≥ a J .
This means precisely that 〈 J̃v, v〉 ≥ a〈Jv, v〉 for all v.

If, in addition, we have F(v, v) > 0 for all v such that 〈Jv, v〉 = 0, then we obtain a
strict inequality J̃ > a J for some a ∈ R since the infimum in the statement of Lemma 2.2
is strictly bigger than the supremum.

The (longer) proofs of the following results can be found in [52] or in [35]; see also [53].
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Proposition 2.4 Let L: V → V be a J-separated linear operator. Then

(1) L can be uniquely represented by L = RU, where U is a J-isometry (i.e. J(U (v)) =
J(v), v ∈ V ) and R is J-symmetric (or J-pseudo-adjoint; see Proposition 2.1) with
positive spectrum.

(2) the operator R can be diagonalized by a J-isometry. Moreover the eigenvalues of R
satisfy

0 < rq
− ≤ · · · ≤ r1− = r− ≤ r+ = r+

1 ≤ · · · ≤ r p
+.

(3) the operator L is (strictly) J-monotonous if, and only if, r− ≤ (<)1 and r+ ≥ (>)1.

For a J-separated operator L: V → V and a d-dimensional subspace F+ ⊂ C+, the
subspaces F+ and L(F+) ⊂ C+ have an inner product given by J. Thus both subspaces are
endowed with volume elements. Let αd(L; F+) be the rate of expansion of volume of L |F+
and σd(L) be the infimum of αd(L; F+) over all d-dimensional subspaces F+ of C+.

Proposition 2.5 We have σd(L) = r1+ . . . rd+, where r i+ are given by Proposition 2.4(2).
Moreover, if L1, L2 are J-separated, then σd(L1L2) ≥ σd(L1)σd(L2).

The following corollary is very useful.

Corollary 2.6 For J-separated operators L1, L2: V → V we have

r1+(L1L2) ≥ r1+(L1)r
1+(L2) and r1−(L1L2) ≤ r1−(L1)r

1−(L2).

Moreover, if the operators are strictly J-separated, then the inequalities are strict.

2.3 J-separated linear cocycles over flows

The results in the previous subsection provide the following characterization of J-separated
cocycles At (x) over a flow Xt in terms of the infinitesimal generator D(x) of At (x); see (2.2).
The following statement is more precise than Proposition 1.3.

Let At (x) a linear multiplicative cocycles over a flow Xt . We define the infinitesimal
generator of At (x) by

D(x) := lim
t→0

At (x)− I d

t
. (2.2)

Theorem 2.7 Let Xt be a flow defined on a positive invariant subset U, At (x) a cocycle
over Xt on U and D(x) its infinitesimal generator. Then

(1) ∂tJ(At (x)v) = 〈 J̃Xt (x)At (x)v, At (x)v〉 for all v ∈ Ex and x ∈ U, where

J̃x := J · D(x)+ D(x)∗ · J (2.3)

and D(x)∗ denotes the adjoint of the linear map D(x): Ex → Ex with respect to the
adapted inner product at x;

(2) the cocycle At (x) is J-separated if, and only if, there exists a neighborhood V of�, V ⊂
U and a function δ: V → R such that

J̃x ≥ δ(x)J for all x ∈ V . (2.4)

In particular we get ∂t log |J(At (x)v)| ≥ δ(Xt (x)), v ∈ Ex , x ∈ V, t ≥ 0;
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(3) if the inequalities in the previous item are strict, then the cocycle At (x) is strictly J-
separated. Reciprocally, if At (x) is strictly J-separated, then there exists compatible
field of forms J0 on V satisfying the strict inequalities of item (2).

(4) Define the function

�t
s(x) :=

t∫

s

δ(Xs(x)) ds. (2.5)

For a J-separated cocycle At (x), we have
|J(At2 (x)v)||J(At1 (x)v)| ≥ exp�t2

t1(x) for all v ∈ Ex and

reals t1 < t2 so that J(At (x)v) �= 0 for all t1 ≤ t ≤ t2.
(5) if At (x) is J-separated and x ∈ �(U ), v ∈ C+(x) andw ∈ C−(x) are non-zero vectors,

then for every t > 0 such that As(x)w ∈ C−(Xs(x)) for all 0 < s < t

|J(At (x)w)|
J(At (x)v)

≤ |J(w)|
J(v)

exp
(
2�t

0(x)). (2.6)

(6) we can bound δ at every x ∈ 	 by supv∈C−(x)
J′(v)
J(v) ≤ δ(x) ≤ infv∈C+(x)

J′(v)
J(v) .

Remark 2.8 If δ(x) = 0, then J̃x is positive semidefinite operator. But for δ(x) �= 0 the
symmetric operator J̃x might be an indefinite quadratic form.

Remark 2.9 The necessary condition in item (3) of Theorem 2.7 is proved in Sect. 2.5 after
Theorem 2.17 and Proposition 2.21.

Remark 2.10 We can take δ(x) as a continuous function of the point x ∈ U by the last item
of Theorem 2.7.

Remark 2.11 Complementing Remark 1.2, the necessary and sufficient condition in items
(2–3) of Theorem 2.7, for (strict) J-separation, shows that a cocycle At (x) is (strictly) J-
separated if, and only if, its inverse A−t (x) is (strictly) (−J)-separated.

Remark 2.12 The inequality (2.10) shows that δ is a measure of the “minimal instantaneous
expansion rate” of |J ◦ At (x)| on positive vectors; item (6) of Theorem 2.7 shows that δ is
also a “maximal instantaneous expansion rate” of |J ◦ At (x)| on negative vectors; and the
last inequality shows in addition that δ is also a bound for the “instantaneous variation of the
ratio” between |J ◦ At (x)| on negative and positive vectors.

Hence, the behavior of the area under the function δ, given by�(x, t) = ∫ t
0 δ(Xs(x)) ds as

t tends to ±∞, defines the type of partial hyperbolic splitting (with contracting or expanding
subbundles) exhibited by a strictly J-separated cocycle.

In this way we have a condition ensuring partial hyperbolicity of an invariant subset
involving only the spatial derivative map of the vector field.

Proof of Theorem 2.7 The map ψ(t, v) := 〈J At (x)v, At (x)v〉 is smooth and for v ∈ Ex

satisfies

∂tψ(t, v) = 〈(J · D(Xt (x)))At (x)v, At (x)v〉
+〈J · At (x)v, D(Xt (x))At (x)v〉

= 〈(J · D(Xt (x))+ D(Xt (x))
∗ · J )At (x)v, At (x)v〉,

where we have used the fact that the cocycle has an infinitesimal generator D(x): we have
the relation

∂t At (x)v = D(Xt (x)) · At (x)v for all t ∈ R, x ∈ M and v ∈ Ex . (2.7)
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This is because we have the linear variation equation: At (x) is the solution of the following
non-autonomous linear equation

{
Ẏ = D(Xt (x))Y
Y (0) = I d

. (2.8)

We note that the argument does not change for x = σ a singularity of Xt .
This proves the first item of the statement of the theorem.
We observe that the independence of J from Xt (x) is a consequence of the choice of

adapted coordinates and inner product, since in this setting the operator J is fixed. However,
in general, this demands the rewriting of the cocycle in the coordinate system adapted to J.

For the second item, let us assume that At (x) is J-separated on U . Then, by definition, if
we fix x ∈ U

〈J At (x)v, At (x)v〉 > 0 for all t > 0 and all v ∈ Ex such that 〈Jv, v〉 > 0. (2.9)

We also note that, by continuity, we have 〈J At (x)v, At (x)v〉≥0 for allv such that 〈Jv, v〉=0.
Indeed, for any given t > 0 and v ∈ C0 we can findw ∈ C+ such that v+w ∈ C+. Then we
have 〈J At (x)(v+ λw), At (x)(v+ λw)〉 > 0 for all λ > 0, which proves the claim letting λ
tend to 0.

The map ψ(t, v) satisfies ψ(0, v) = 0 ≤ ψ(t, v) for all t > 0 and v ∈ C0(x), hence from
the first item already proved

0 ≤ ∂tψ(t, v) |t=0= 〈(J · D(x)+ D(x)∗ · J )v, v〉.

According to Lemma 2.2 (cf. also Remark 2.3) there exists δ(x) ∈ R such that (2.4) is true
and this, in turn, implies that ∂tJ(At (x)v) ≥ δ(x)J(At (x)v), for all v ∈ Ex , x ∈ U, t ≥ 0.
This completes the proof of necessity in the second item.

Moreover, from Lemma 2.2 we have that δ(x) satisfies the inequalities in item (6).
To see that this is a sufficient condition for J-separation, let J̃x ≥ δ(x)J, for some

function δ: U → R. Then, for all v ∈ Ex such that 〈Jv, v〉 > 0, since ∂tJ(At (x)v) ≥
δ(Xt (x))J(At (x)v), we obtain

|J(At (x)v)| ≥ |J(v)| exp

⎛

⎝
t∫

0

δ(Xs(x)) ds

⎞

⎠ = |J(v)| exp�(x, t) > 0, t ≥ 0,

(2.10)

and J(At (x)v) > 0 for all t > 0 by continuity. This shows that At (x) is J-separated. This
completes the proof of the second item in the statement of the theorem.

For the third item, we only prove the first statement and leave the longer proof of the
second statement for Sect. 2.5 in Proposition 2.21. If J̃x > δ(x)J for all x ∈ U , then for
t > 0 we obtain (2.10) with strict inequalities for v ∈ C0(x), hence J(At (x)v) > 0 for t > 0.
So At (x) is strictly J-separated.

For the fourth item, we just itegrate the inequality of item (2) from s to t in the real line.
For the fifth item, we calculate the derivative of the ratio of the forms and use the previous

results as follows
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∂t

( |J(At (x)w)|
J(At (x)v)

)
= −〈 J̃Xt (x)At (x)w, At (x)w〉

J(At (x)v)
− J(At (x)w)

J(At (x)v)
· 〈 J̃Xt (x)At (x)v, At (x)v〉

J(At (x)v)

≤ −δ(Xt (x))
J(At (x)w)

J(At (x)v)
− J(At (x)w)

J(At (x)v)
· δ(Xt (x))

= 2δ(Xt (x)) · |J(At (x)w)|
J(At (x)v)

and the result is obtained by integrating this equation from 0 to t . The proof is complete. ��
In Sect. 2.6 we show that the asymptotic behavior of the function �t

s(x) as t − s grows
to ±∞ defines the type of partial hyperbolic splitting exhibited by a strictly J-separated
cocycle.

In this way we have a condition ensuring partial and uniform hyperbolicity of an invariant
subset involving only the vector field and its spatial derivative map.

2.4 Strict J-separated cocycles and domination

We assume from now on that a family At (x) of linear multiplicative cocycles on a vector
bundle EU over the flow Xt on a trapping region U ⊂ M has been given, together with a
field of non-degenerate quadratic forms J on EU with constant index q < dim EU .

Theorem 2.13 The cocyle At (x) is strictly J-separated if, and only if, EU admits a dominated
splitting F−⊕F+ with respect to At (x) on the maximal invariant subset� of U, with constant
dimensions dim F− = q, dim F+ = p, dim M = p + q.

Moreover the properties stated in Theorem 2.13 are robust: they hold for all nearby cocy-
cles on EU over all flows close enough to Xt ; see Sect. 2.5.

We now start the proof of Theorem 2.13. We construct a decomposition of the tangent space
over � into a direct sum of invariant subspaces and then we prove that this is a dominated
splitting.

2.4.1 The cones are contracted

To obtain the invariant subspaces, we show that the action of At (x) on the set of all p-
dimensional spaces inside the positive cones is a contraction in the appropriate distance. For
that we use a result from [52].

Let us fix C+ = C+(x) for some x ∈ � and consider the set G p(C+) of all p-subspaces
of C+, where p = n −q . This manifold can be identified with the set of all q × p matrices T
with real entries such that T ∗T < Ip , where Ip is the p × p identity matrix and < indicates
that for the standard inner product in R

p we have 〈T ∗T u, u〉 < 〈u, u〉, for all u ∈ R
p .

A J-separated operator naturally sends G p(C+) inside itself. This operation is a contrac-
tion.

Theorem 2.14 There exists a distance dist on G p(C+) so that G p(C+) becomes a complete
metric space and, if L: V → V is J-separated and T1, T2 ∈ G p(C+), then

dist(L(T1), L(T2)) ≤ r−
r+

dist(T1, T2),

where r± are given by Proposition 2.4.

Proof See [52, Theorem 1.6]. ��
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2.4.2 Invariant directions

Now we consider a pair C−(x) and C−(X−t (x)) of positive cones, for some fixed t > 0
and x ∈ �, together with the linear isomorphism A−t (x): Ex → EX−t (x). We note that the
assumption of strict J-separation ensures that A−t (x) | C−(x): C−(x) → C−(X−t (x)). We
have in fact

A−t (x) · C−(x) ⊂ C−(X−t (x)). (2.11)

Moreover, by Theorem 2.14 we have that the diameter of A−nt (x) · C−(Xnt (x)) decreases
exponentially fast when n grows. Hence there exists a unique element F−(x) ∈ Gq(C−(x))
in the intersection of all these cones. Analogous results hold for the positive cone with respect
to the action of At (x). It is easy to see that

At (x) · F±(x) = F±(Xt (x)), x ∈ �. (2.12)

Moreover, since the strict inclusion (2.11) holds for whatever t > 0 we fix, then we see that
the subspaces F± do not depend on the chosen t > 0.

2.4.3 Domination

The contraction property on C+ for At (x) and on C− for A−t (x), any t > 0, implies
domination directly. Indeed, let us fix t > 0 in what follows and consider the norm | · |
induced on Ex for each x ∈ U by

|v| :=
√

J(v−)2 + J(v+)2 where v = v− + v+, v± ∈ F±(x).

Now, according to Lemma 2.2 together with Proposition 2.4 we have that, for each x ∈ Xt (U )
and every pair of unit vectors u ∈ F−(x) and v ∈ F+(x)

|At (x)u|
|At (x)v| ≤ r t−(x)

r t+(x)
≤ ωt := sup

z∈Xt (U )

r t−(z)
r t+(z)

< 1,

where r t±(x) represent the values r± shown to exist by Lemma 2.2 with respect to the strictly
J-separated linear map At (x). The value of ωt is strictly smaller than 1 by continuity of the
functions r± on the compact subset Xt (U ).

Now we use the following well-known lemma.

Lemma 2.15 Let Xt be a C1 flow and� a compact invariant set for Xt admitting a contin-
uous invariant splitting T�M = F− ⊕ F+. Then this splitting is dominated if, and only if,
there exists a Riemannian metric on � inducing a norm such that

lim
t→+∞ ‖At (x) |F−(x) ‖ · ‖A−t (Xt (x)) |F+(Xt (x)) ‖ = 0,

for all x ∈ �.

This shows that for the cocycle At (x) the splitting E� = F− ⊕ F+ is dominated, since
the above argument does not depend on the choice of t > 0 and implies that

lim
n→+∞

|Ant (x)u|
|Ant (x)v| = 0,

and we conclude that

lim
t→+∞

|At (x)u|
|At (x)v| = 0, x ∈ �, u ∈ F−(x), v ∈ F+(x).
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2.4.4 Continuity of the splitting

The continuity of the subbundles F± over � is a consequence of domination together with
the observation that the dimensions of F±(x) do not depend on x ∈ �; see for example [7,
Appendix B]. Moreover, since we are assuming that At (x) is smooth, i.e. the cocycle admits
an infinitesimal generator, then the At (x)-invariance ensures that the subbundles F±(x) can
be differentiated along the orbits of the flow.

This completes the proof that strict J-separation implies a dominated splitting, as stated
in Theorem 2.13.

2.5 Domination implies strict J-separation

Now we start the proof of the converse of Theorem 2.13 by showing that, given a dominated
decomposition of a vector bundle over a compact invariant subset � of the base, for a C1

vector field X on a trapping region U , there exists a smooth field of quadratic forms J for
which Y is strictly J-separated on EV over a neighborhood V of � for each vector field Y
sufficiently C1 close to X and every cocycle close enough to At .

We define a distance between smooth cocycles as follows. If DA(x), DB(x): Ex → Ex

are the infinitesimal generators of the cocycles At (x), Bt (x) over the flow of X and Y respec-
tively, then we can recover the cocycles through the non-autonomous ordinary differential
equation (2.8). We then define the distance d between the cocycles At and Bt to be

d
(
(At )t , (Bt )t

) := sup
x∈M

‖DA(x)− DB(x)‖,

where ‖·‖ is a norm on the vector bundle E . We always assume that we are given a Riemannian
inner product in E which induces the norm ‖·‖.

As before, let � = �(U ) be a maximal positively invariant subset for a C1 vector field
X endowed with a linear multiplicative cocycle At (x) defined on a vector bundle over U .It
is well-known that attracting sets are persistent in the following sense. Let U be a trapping
region for the flow of X and �(U ) = �X (U ) the corresponding attracting set.

Lemma 2.16 [36, Chapter 10] There exists a neighborhood U of X in X1(M) and an open
neighborhood V of�(U ) such that V is a trapping region for all Y ∈ U, that is, there exists
t0 > 0 for which

• Yt (V ) ⊂ V ⊂ U for all t > 0;
• Yt (V ) ⊂ V for all t > t0; and
• Yt (V ) ⊂ U for all t > 0.

We can thus consider �Y = �Y (U ) = ∩t>0Yt (U ) in what follows for Y ∈ V in a small
enough C1 neighborhood of X .

Theorem 2.17 Suppose that� has a dominated splitting E� = F− ⊕ F+. Then there exists
a C1 field of quadratic forms J on a neighborhood V ⊂ U of �, a C1-neighborhood V of
X and a C0-neighborhood W of At (x) such that Bt (x) is strictly J-separated on V with
respect to Y ∈ V and B ∈ W. More precisely, there are constants κ, ω > 0 such that, for
each Y ∈ V, B ∈ W, x ∈ �Y and t ≥ 0

|J(Bt (x)v−)| ≤ κe−ωtJ(Bt (x)v+), v± ∈ F B± (x), J(v±) = ±1;
where F B± are the subbundles of the dominated splitting of E�Y .
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The quadratic form J is a inner product in each F±, since F± are finite dimensional
subbundles of E where J does not change sign, thus the compactness of � ensures the
following.

Lemma 2.18 There exists a constant K > 0 such that for every pair of non-zero vectors
(w, v) ∈ F−(x) × F+(x) we have 1

K ‖w‖2 ≤ |J(w)| ≤ K‖w‖2, 1
K ‖v‖2 ≤ J(v) ≤ K‖v‖2

and

1

K

√
|J(w)|
J(v)

≤ ‖w‖
‖v‖ ≤ K

√
|J(w)|
J(v)

.

To prove Theorem 2.17 we use the following result from [14], ensuring the existence of
adapted metrics for dominated splittings over Banach bundle automorphisms and flows.

Let� be a compact invariant set for a C1 vector field X and let E be a vector bundle over
M .

Theorem 2.19 Suppose that T�M = F− ⊕ F+ is a dominated splitting for a linear mul-
tiplicative cocycle At (x) over E. There exists a neighborhood V of � and a Riemannian
metric 〈〈·, ·〉〉 inducing a norm | · | on EV such that there exists λ > 0 satisfying for all t > 0
and x ∈ �

|At (x)|F−(x)| · ∣∣(At (x)|F+(x))
−1| < e−λt .

Remark 2.20 A similar result holds for the existence of adapted metric for partially hyper-
bolic and for uniformly hyperbolic splittings. Moreover, in the adapted metric the bundles
F± over� are almost orthogonal, that is, given ε > 0 it is possible to construct such metrics
so that |〈〈v−, v+〉〉| < ε for all v± ∈ F± with J(v±) = ±1. However this property will not
be used in what follows.

We may assume, without loss of generality, that V given by Theorem 2.19 coincides with
U . Now, we use the adapted Riemannian metric to define the quadratic form on a smaller
neighborhood of � inside U .

2.5.1 Construction of the field of quadratic forms

First we choose a continuous field of orthonormal basis (with respect to the adapted metric)
{e1(x), . . . , es(x)} of F−(x) and {es+1(x), . . . , es+c(x)} of F+(x) for x ∈ �, where s =
dim F− and c = dim F+. Then {ei (x)}s+c

i=1 is a basis for Ex , x ∈ �.
Secondly, we consider the following quadratic forms

Jx (v) = Jx

(
s+c∑

i=1

αi ei (x)

)

:= |v+|2 − |v−|2 =
s+c∑

i=s+1

α2
i −

s∑

i=1

α2
j , v ∈ Ex , x ∈ V,

where v± ∈ F±(x) are the unique orthogonal projections on the subbundles such that v =
v− + v+. This defines a field of quadratic forms on �.

We note that, since F− ⊕ F+ is At (x)-invariant over �, and the vector field X and the
flow Xt are C1, the field of quadratic forms constructed above is differentiable along the flow
direction, because F±(Xt (x)) = At (x) · F±(x) is differentiable in t ∈ R for each x ∈ �.

Clearly F− is a J-negative subspace and F+ is a J-positive subspace, which shows that
the index of J equals s and that the forms are non-degenerate.
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In addition, we have strict J-separation over�. Indeed, v = v−+v+ ∈ C+(x)∪C0(x) for
x ∈ �means |v+| ≥ |v−| and the At (x)-invariance of F± ensures that At (x)v = At (x)v− +
At (x)v+ with At (x)v± ∈ F±(Xt (x)) and

√
J(At (x)v+) = |At (x)v+| > eλt |At (x)v−| =√|J(At (x)v−)|, so that At (x)v ∈ C+(Xt (x)).

We are ready to obtain the reciprocal of item 3 of Theorem 2.7.

Proposition 2.21 If the cocycle At (x) is strictly J-separated over a compact Xt -invariant
subset�, then there exist a compatible field of quadratic forms J0 and a function δ:� → R

such that J̃0,x > δ(x)J0 for all x ∈ �.

Proof We have already shown that a strictly J-separated cocycle has a dominated splitting
E = F− ⊕ F+ in Sect. 2.4. Then we build the field of quadratic forms J0 according to
the previous arguments in this section, and calculate for v0 ∈ C0(x), v0 = v− + v+ with
v± ∈ F±(x) and |v±| = 1, for a given x ∈ � and all t > 0

J0(At (x)v0) = |At (x)v
−|2

( |At (x)v+|2
|At (x)v−|2 − 1

)
≥ |At (x)v

−|2 · (e2λt − 1). (2.13)

The derivative of the right hand side above satisfies

2λe2λt |At (x)v
−|2 + (e2λt − 1)∂t |At (x)v

−|2 −−→
t↘0

2λ.

Since the left hand side and the right hand side of (2.14) have the same value at t = 0 (we
note that J0(v0) = 0 by the choice of v0), we have

J̃x (v0) = ∂tJ0(At (x)v0) |t=0≥ 2λ > 0, x ∈ �.
Thus, J̃x (v0) > 0 for �0 �= v0 ∈ C0(x) which implies by Lemma 2.2 that J̃x > δ(x)J0 for
some real function δ(x). Finally, the quadratic forms J0 and J are compatible. ��

2.5.2 Continuous/smooth extension to a neighborhood

We recall that the adapted Riemannian metric is defined on a neighborhood V of�. We can
write Jx (v) = 〈〈Jx (v), v〉〉x for all v ∈ Tx M, x ∈ �, where Jx : Tx M � is a self-adjoint
operator. This operator can be represented by a matrix (with respect to the basis adapted to
Jx ) whose entries are continuous functions of x ∈ �.

These functions can be extended to continuous functions on V yielding a continuous
extension Ĵ of J. We recall that the field J is differentiable along the flow direction. Thus Ĵ

remains differentiable along the flow direction over the points of �.
Finally, these functions can then be C1 regularized so that they become ε-C0-approximated

by C1 functions on V . We obtain in this way a smooth extension J̄ of J to a neighborhood
of � in such a way that J̄ is automatically C1 close to J over orbits of the flow on �. This
means that, given ε > 0, we can find J̄ such that

• |Ĵy(v)− J̄y(v)| < ε for all v ∈ Ey, y ∈ V (C0-closeness on V );
• |∂t ĴXt (x)(At (x)v)− ∂t J̄Xt (x)(At (x)v)| < ε for all v ∈ Ex , x ∈ � and t ∈ R.

Remark 2.22 We note that F±(x) are subspaces with the same sign for both J and J̄. Hence
±J and ±J̄ define inner products in these finite dimensional vector spaces, thus we can find
C±(x) such that C±(x)−1|J |F±(x) | ≤ |J̄ |F±(x) | ≤ C±(x)|J |F±(x) |. This ensures that J

and J̄ are equivalent forms over �: since J and J̄ are continuous on � we just have to take
C = max{C±(x): x ∈ �}. Moreover we also have that the Riemannian norm ‖·‖ of M and
the adapted norm | · | are also equivalent: we can assume that C−1| · | ≤ ‖·‖ ≤ C | · |.
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Using the compatibility between J and J̄ we obtain for v± ∈ F±(x)

|J̄(At (x)v−)| ≤ C |J(At (x)v−)|≤C · K‖At (x)v−‖2 ≤ C K · C2|At (x)v−|2
≤ C3 K · e−2λt |At (x)v+|2 ≤ C4 K e−2λt‖At (x)v+‖2

≤ C4 K e−2λt · K · J(At (x)v+) ≤ C4 K 2e−2λt · C J̄(At (x)v+)
≤ κe−2λt J̄(At (x)v+)

for all t > 0, where we used Lemma 2.18 together with Theorem 2.19.
Therefore we have the relations in the statement of Theorem 2.17 if we set ω = 2λ.

2.5.3 Strict separation for the extension/smooth approximation

We now show that Y is strictly J̄-separated on V for every vector field Y in a neighborhood
V of X and for every multiplicative cocycle Bt (x) over Y which is C0 close to At (x).

We start by observing that J̄ is differentiable along the flow direction. Then we note that,
from Proposition 2.21

ι := inf {̃Jx − δ(x)Jx : x ∈ �} > 0

and recall that J̃x = Jx · D(x)+ D(x)∗ · Jx . Hence, by choosing V sufficiently small around
�, we obtain

ι̂ = inf{ ˜̂Jy − δ(y)Ĵy : y ∈ V } ≥ ι

2
> 0,

since Ĵ is an extension of J on �, and the function δ is defined by Ĵ and D(x) accord-
ing to Remark 2.10. Finally, by taking a sufficiently small ε > 0 in the choice of the C1

approximation J̄ , we also get

ῑ = inf {̃J̄y − δ(y)J̄y : y ∈ V } ≥ ι̂

2
≥ ι

4
> 0.

From Theorem 2.7 and Proposition 2.21, we know that this is a necessary and sufficient
condition for strict J̄-separation of At (x) over V .

2.5.4 Strict separation for nearby flows/cocycles

Given a vector field X on M and a linear multiplicative cocycle At (x) on a vector bundle E
over M , for a C1 close vector field Y and a C0 close cocycle Bt (x) over Y , the infinitesimal
generator DB,Y (x) of Bt (x) will be a linear map close to the infinitesimal generator D(x) of
At (x) at x . That is, given ε > 0 we can find a C1 neighborhood V of X and a C0 neighborhood
W of the cocycle A such that

(Y, B) ∈ V × W "⇒ ‖DB,Y (x)− D(x)‖ < ε, x ∈ M.

Hence, since δ also depends continuously on the infinitesimal generator, we obtain

ι̃ = inf {̃J̄y − δB,Y (y)J̄y : y ∈ V, Y ∈ V, B ∈ W} ≥ ῑ

2
> 0.

This shows that we have strict J̄ separation for all nearby cocycles over all C1-close enough
vector fields over the same neighborhood V of the original invariant attracting set �.

Finally, to obtain the inequalities of the statement of Theorem 2.17, since we have strict
J̄-separation for Bt (x), we also have a dominated splitting E�Y = F B− ⊕ F B+ over�Y whose
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subbundles have the same sign as the original F± subbundles of E� for At (x). We can then
repeat the arguments leading to the constant κ , which depends continuously on Y .

This completes the proof of Theorem 2.17.

2.6 Characterization of the splitting through the function δ

We now use the area under the function δ to characterize different dominated splittings that
may arise in our setting.

Theorem 2.23 Let 	 be a compact invariant set for Xt admitting a dominated splitting
E	 = F− ⊕ F+ for At (x), a linear multiplicative cocycle over 	 with values in E. Let J be
a C1 field of indefinite quadratic forms such that At (x) is strictly J-separated. Then

(1) F− ⊕ F+ is partially hyperbolic with F− not uniformly contracting and F+ uniformly
expanding if, and only if, �t

s(x) −−−−−−−→
(t−s)→+∞ +∞ for all x ∈ 	.

(2) F− ⊕ F+ is partially hyperbolic with F− uniformly contracting and F+ not uniformly
expanding if, and only if, �t

s(x) −−−−−−−→
(t−s)→+∞ −∞ for all x ∈ 	.

(3) F−⊕F+ is hyperbolic (that is, F− is uniformly contracted and F+ is uniformly expanded)
if, and only if, there exists a compatible field of quadratic forms J0 in a neighborhood of
	 such that J′

0(v) > 0 for all v ∈ Ex and all x ∈ 	.

Above we write J′(v) =< J̃xv, v > where J̃x is given in Proposition 1.3.
In the proof we use the following useful equivalence.

Lemma 2.24 Let F ⊂ E be a continuous At (x)-invariant subbundle of the finite dimensional
vector bundle E with compact base �. Then, there are constants K , ω > 0 satisfying for
�0 �= v ∈ Fx , x ∈ �, t > 0

‖At (x)v‖≤K e−ωt‖v‖ (‖A−t (x)v‖≤K e−ωt‖v‖, respectively)

if, and only if, for every x ∈ � and �0 �= v ∈ Ex

lim
t→+∞ ‖At (x)v‖ = 0 ( lim

t→+∞ ‖A−t (x)v‖ = 0, respectively).

Proof See e.g. [24]. ��
Proof of Theorem 2.23 We consider a compact Xt -invariant subset	, a vector bundle E over
	 and a linear multiplicative cocycle At (x) over Xt with values in E .

We fix a C1 field of indefinite quadratic forms J such that At (x) is strictly J-separated
and J is compatible with the splitting E	 = F− ⊕ F+.

(1) If �t
s(x) −−−−−−−→

(t−s)→+∞ +∞ for all x ∈ 	 then, from Proposition 2.7(4a) we get

limt→+∞ J(At (x)v+) = +∞ for every �0 �= v+ ∈ F+(x); and this ensures that F+
is uniformly expanded, after Lemma 2.24.

(2) If �t
s(x) −−−−−−−→

(t−s)→+∞ −∞ for all x ∈ 	 then, from Proposition 2.7(4a) we get

|J(v−)|
|J(At (x)v−)| ≥ exp�0

t (x) = exp(−�t
0(x)) −−−−→

t→+∞ +∞ and so |At (x)v−| −−−−→
t→+∞ 0

for every �0 �= v− ∈ F−(x), x ∈ 	; and this ensures that F− is uniformly contracted after
Lemma 2.24.

Clearly cases (1) and (2) are mutually exclusive and so each case proves the sufficient con-
ditions of items (1) and (2) of the statement of Theorem 2.23. Reciprocally:

123



Infinitesimal Lyapunov functions 885

(1) If F+ is formed by uniformly expanded vectors then, for �0 �= v+ ∈ F+(x) and s ∈ R

exp�s
t (x) ≤ |J(As(x)v+)|

|J(At (x)v+)| −−−−→
t→+∞ 0 thus �s

t (x) −−−−→
t→+∞ −∞.

This implies that �t
s(x) −−−−−−−→

(t−s)→+∞ +∞ for all x ∈ 	.

(2) If F− is formed by uniformly contracted vectors then, for �0 �= v− ∈ F−(x) and s ∈ R

exp�s
t (x) ≤ |J(As(x)v+)|

|J(At (x)v+)| −−−−→
t→−∞ 0 thus �s

t (x) −−−−→
t→−∞ −∞.

This implies that �t
s(x) −−−−−−−→

(t−s)→+∞ −∞ for all x ∈ 	.

This proves items (1) and (2) of Theorem 2.23.
Now let us assume that F− ⊕ F+ is a uniformly hyperbolic splitting and take J0 the field

of quadratic forms provided by Theorem 2.19, which is compatible with J.
For v = v− + v+ ∈ Ex with v± ∈ F±(x) and J(v) > 0 (note that the difference below is

positive for small |t |)

J0(At (x)v) = |At (x)v+|2
(

1 − |At (x)v−|2
|At (x)v+|2

)
≥ |At (x)v+|2

(
1 − e−2λt |v−|2

|v+|2
)
.

(2.14)

The derivative of the right hand side above satisfies

2λe2λt |At (x)v+|2 |v−|2
|v+|2 + (|v+|2 − e2λt |v−|2) ∂t |At (x)v+|2

|v+|2 −−→
t↘0

2λ|v−|2

+J0(v)
∂t |At (x)v+|2

|v+|2 .

Since the left hand side and the right hand side of (2.14) have the same value at t = 0, the
limit above is a lower bound for ∂tJ0(At (x)v) |t=0. Because J0(At (x)v+) ≥ e2λtJ0(v) and
J0(v) > 0

J′
0(v) = ∂tJ0(At (x)v) |t=0≥ 2λ|v−|2 + 2λJ0(v) = 2λ|v+|2 > 0.

Moreover, since for any non-zero vector v0 = v− + v+ in C0(x) we can make an arbitrarily
small perturbation to v−, keeping v+, so that J0(ṽ− + v+) > 0, we obtain J′

0(ṽ− + v+) ≥
2λ|v+|2 and so J′

0(v0) > 0 for all non-zero v0 in C0(x). Now for J0(v) < 0 we have

J0(At (x)v) = |At (x)v−|2
( |At (x)v+|2

|At (x)v−|2 − 1

)
≥ |At (x)v−|2

(
e2λt |v+|2

|v−|2 − 1

)

≥ e−2λt |v−|2
(

e2λt |v+|2
|v−|2 − 1

)
= |v+|2 − e−2λt |v−|2 (2.15)

where we used domination in the first inequality and J0(v) < 0 and |t | small in the second
inequality. Hence J′

0(v) ≥ 2λ|v−|2 > 0. This completes the proof of the sufficient condition
of item (3).

Reciprocally, let us assume that J′ is a positive definite quadratic form. Hence J′ is an
inner product on a finite dimensional vector bundle E	 with compact base, and so there exists
κ > 0 such that J′ ≥ κ| · |2 and κ|J| ≤ | · |2. Thus J′(v) ≥ κ2|J(v)| for all v ∈ E , which
implies J(At (x)v+) ≥ eκ

2tJ(v+) for �0 �= v+ ∈ F+(x); and |J(At (x)v−)| ≤ e−κ2t |J(v−)|
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for all �0 �= v− ∈ F−(x). This shows, from the comparison results given in Lemma 2.18, that
F− ⊕ F+ is a uniformly hyperbolic splitting of E	 , and completes the proof of Theorem 2.23.

��

3 Partial hyperbolicity: proof of Theorem A

Now we prove Theorem A. We show that strict J-separation of a J-non-negative flow Xt on
a trapping region U implies the existence of a dominated splitting and that the dominating
bundle (the one with the weakest contraction) is necessarily uniformly contracting. That is,
we have in fact a partially hyperbolic splitting.

The strategy is to consider the derivative cocycle DXt of the smooth flow Xt in the place
of At (x) and use the results of Sect. 2.2. In this setting we have that the infinitesimal generator
is given by D(x) = DX (x) the spatial derivative of the vector field X . Since the direction of
the flow E X

x := R · X (x) = {s · X (x): s ∈ R} is DXt -invariant for all t ∈ R, if U is a trapping
region where Xt is J-separated and J(X (x)) ≥ 0 for some x ∈ U , then J(DXt (X (x))) ≥ 0
for all t > 0 and this function is bounded.

We recall Lemma 2.16 and deduce the following.

Corollary 3.1 Let Xt be strictly J-separated on U. Then there exist a neighborhood U of X
in X1(M) and a neighborhood V of �(U ) such that V is a trapping region for every Y ∈ U

and each Y ∈ U is strictly J-separated in V .

Proof The assumption implies that J̃x = J̃X
x > α(x)J for all x ∈ U . Let U and V be the

neighborhoods of X and � given by Lemma 2.16. Let also Y ∈ U be fixed.
Writing J̃ Y

x := J · DY (x)+ DY (x)∗ · J , we can make the norm ‖J̃x − J̃Y
x ‖ smaller than

1

2
min

{

inf
v∈C+(x)

〈 J̃xv, v〉
〈Jv, v〉 − α(x): x ∈ U0

}

for all x ∈ V by shrinking U if needed. This ensures that there exists β: V → R such that
J̃Y

x > β(x)J for all x ∈ V , so Y is strictly J-separated on V . ��
From Sect. 2.4 we know that there exists a continuous dominated splitting FY− (x)⊕ FY+ (x)

of Tx M for x ∈ �Y (U ), with respect to Yt for all Y ∈ U.
The strict J-separation on U for Xt implies that any invariant subbundle of Tx M along

an orbit of the flow Xt must be contained in F±(x). In particular, the characteristic space
corresponding to the flow direction is contained in F+(x).

Lemma 3.2 Let � be a compact invariant set for a flow X of a C1 vector field X on M.

(1) Given a continuous splitting T�M = E ⊕ F such that E is uniformly contracted, then
X (x) ∈ Fx for all x ∈ �.

(2) Assuming that � is non-trivial and has a continuous and dominated splitting T�M =
E ⊕ F such that X (x) ∈ Fx for all x ∈ �, then E is a uniformly contracted subbundle.

Proof For the first item, we denote by π(Ex ): Tx M → Ex the projection on Ex parallel to
Fx at Tx M , and likewise π(Fx ): Tx M → Fx is the projection on Fx parallel to Ex . We note
that for x ∈ �

X (x) = π(Ex ) · X (x)+ π(Fx ) · X (x)
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and for t ∈ R, by linearity of DXt and DXt -invariance of the splitting E ⊕ F

DXt · X (x) = DXt · π(Ex ) · X (x)+ DXt · π(Fx ) · X (x)

= π(EXt (x)) · DXt · X (x)+ π(FXt (x)) · DXt · X (x)

Let z be a limit point of the negative orbit of x , that is, we assume that there is a strictly
increasing sequence tn → +∞ such that lim

n→+∞ xn := lim
n→+∞ X−tn (x) = z. Then z ∈ �

and, if π(Ex ) · X (x) �= �0 we get

lim
n→+∞ DX−tn · X (x) = lim

n→+∞ X (xn) = X (z) but also

‖DX−tn · π(Ex ) · X (x)‖ ≥ ceλtn ‖π(Ex ) · X (x)‖ −−−−→
n→+∞ +∞. (3.1)

This is possible only if the angle between Exn and Fxn tends to zero when n → +∞.
Indeed, using the Riemannian metric on Ty M , the angle α(y) = α(Ey, Fy) between Ey

and Fy is related to the norm of π(Ey) as follows: ‖π(Ey)‖ = 1/ sin(α(y)). Therefore

‖DX−tn · π(Ex ) · X (x)‖ = ‖π(Exn ) · DX−tn · X (x)‖
≤ 1

sin(α(xn))
· ‖DX−tn · X (x)‖

= 1

sin(α(xn))
· ‖X (xn)‖

for all n ≥ 1. Hence, if the sequence (3.1) is unbounded, then lim
n→+∞α(X−tn (x)) = 0.

However, since the splitting E ⊕ F is continuous over the compact �, the angle α(y) is
a continuous and positive function of y ∈ �, and thus must have a positive minimum in �.
This contradiction shows that π(Ex ) · X (x) is always the zero vector and so X (x) ∈ Fx for
all x ∈ �.

This completes the proof of the first item.
For the second item, fix x ∈ � with X (x) �= �0, take v ∈ Ex and use the definition of

(K , λ)-domination to obtain for each t > 0

K e−λt ≥ ‖DXt · v‖
‖DXt · X (x)‖ = ‖DXt · v‖

‖X (Xt (x))‖ ≥ 1

C
‖DXt · v‖

where C = sup{‖X (y): y ∈ �} is a positive number. For σ ∈ � such that X (σ ) = �0, we fix
T > 0 such that C K e−λT < 1/2 and, since� is non-trivial, we can find a sequence xn → σ

of regular points of �. The continuity of the derivative cocycle ensures 1/2 ≥ ‖DXT |
Eσ ‖ = limn→+∞ ‖DXT | Exn ‖ and so Eσ is also a uniformly contracted subspace. ��

Since X and� = �X are in the conditions of the second item of the previous lemma, we
have proved partial hyperbolicity for T�M = F− ⊕ F+.

At this point, we have concluded the proof of sufficiency in the statement Theorem A.
The necessary part of the statement of Theorem A is a simple consequence of Theorem 2.17

applied to the cocycle DXt acting on the vector bundle TU M , the tangent bundle on the
trapping region U .

This completes the proof of Theorem A.

3.1 Uniform hyperbolicity

By using Theorem A, we are able to present the proof of the Corollaries B and C.
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Proof of Corollary B Let X ∈ X1(M) and � be the maximal invariant set of a trapping
region U for X . Consider J,G two differentiable fields of non-degenerated quadratic forms
on U with constant indices s and n − s − 1, respectively, where n = dim M and s < n − 2.
Since�∩Sing(X) = ∅, the flow direction X (x) is non-zero for all point x ∈ � and generates
an invariant line bundle E X over �.

On the one hand, by Remark 2.11, −X is a non-negative strictly separated with respect
to −G on �. Then Theorem A implies that there is a partially hyperbolic splitting T�M =
Ecs ⊕ Eu with the subbundle Eu uniformly expanding, and dimensions dim Ecs = s + 1
and dim Eu = n − s − 1. Thus, by Lemma 3.2, the flow direction E X is contained in Ecs .

On the other hand, with analogous arguments, we prove that, for J, � has a partially
hyperbolic splitting T�M = Es ⊕ Ecu , with Es uniformly contracting, and so E X ⊂ Ecu ,
with dimensions dim Es = s and dim Ecu = n − s.

Moreover we clearly have Es ∩ Ecu = {0} and Eu ∩ Ecs = {0}. Hence we have the
following dominated splittings

(Es ⊕ E X )⊕ Eu = Es ⊕ (E X ⊕ Eu) = T�M,

with dim Ecs = dim(Es ⊕ E X ) and dim Ecu = dim(Es ⊕ E X ). By uniqueness of dominated
splittings with the same dimensions we obtain Ecu = E X ⊕ Eu and Ecs = Es ⊕ E X , and
the splitting of T�M above is a hyperbolic splitting. ��
Proof of Corollary C Consider M a closed Riemannian manifold with dimension n ≥ 3 and
X ∈ X1(M) a incompressible vector field.

Let J be a field of non-degenerate quadratic forms on M , with constant index ind(J) =
dim(M)− 2, such that Xt is a non-negative J-separated flow.

By Theorem A and the hypothesis on ind(J), we obtain a partially hyperbolic splitting
T M = E ⊕ F , with dim E = dim(M) − 2 and dim F = 2 and E uniformly contracted.
Hence, as the flow is volume-preserving, the area along the two-dimensional direction F is
expanded. Indeed, the angle θ(Ex , Fx ) between the subbundles is uniformly bounded away
from zero (by domination of the splitting; see [31]) and so

1 = | det DXt (x)| = | det DXt |Ex | · | det DXt |Fx | · sin θ(EXt (x), FXt (x))

which for t < 0 ensures that

| det DXt |Fx | ≤ sin θ0 · | det DXt |Ex |−1 −−−−→
t→−∞ 0.

Thus, M is a singular-hyperbolic set for X . Moreover, there can be no singularities, since they
cannot be in the interior of a singular-hyperbolic set; see Doering [13] and Morales–Pacifico–
Pujals [29] in dimension three; Li–Gan–Wen [21] and Vivier [48] for higher dimensions; or
[5, Chapter 4]. Hence M is a singular-hyperbolic set for Xt without singularities. Therefore
X is an Anosov flow. ��

4 Sectional hyperbolicity: proof of Theorem D

Here we prove Theorem D. We assume that X is a C1 vector field in an open trapping region
U with a smooth field of non-degenerate quadratic forms J such that X is non-negative
and strictly J-separated, and the linear Poincaré flow on any compact invariant subset 	 of
�∗

X (U ) := �X (U )\Sing(X) is strictly J0-monotone, for some field of quadratic forms J0

equivalent to J.
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We show that, in this setting, the linear Poincaré flow of X on 	 has a hyperbolic splitting.
After that, as a consequence, we show that either there are no singularities in � and then
� is a hyperbolic attracting set; or, otherwise, � is a sectional hyperbolic attracting set, as
long as the singularities are sectional hyperbolic with index compatible with the index of the
attracting set.

4.1 Strict J-monotonicity for the linear Poincaré flow and hyperbolicity

Strict J-monotonicity is clearly stronger than strict J-separation, so that on a compact invariant
subset 	 of �∗

X (U ) the linear Poincaré flow Pt admits a dominated splitting N s ⊕ N u of N
over 	. But with strict J-monotonicity we can say more.

Consider X ∈ X1(M) with a trapping region U, �X (U ) its attracting set and a smooth
field of non-degenerate quadratic forms J on U .

Proposition 4.1 If Xt is non-negative strictly J-separated on �X (U ) and the associated
linear Poincaré flow Pt over any compact invariant subset 	 of �X (U )∗ is strictly J0-
monotone for some field of quadratic forms J0 on T	M equivalent to J, then	 is a hyperbolic
set for Pt .

Proof The property ∂tJ0(Ptv) |t=0> 0 for all v ∈ Nx , x ∈ 	 is equivalent to say that the
quadratic form ∂tJ0,x |Nx is positive definite for all x ∈ 	. This implies the existence of a
function α1: U → (0,+∞) such that

∂tJ0(P
tv) |t=0> α1(x) · ‖v‖2 > 0, x ∈ 	, v ∈ Nx , v �= �0.

Since 	 is compact, the smoothness of J0 ensures the existence of α2 > 0 such that |J0(v)| ≤
α2‖v‖2 for all v ∈ Nx , x ∈ 	. Hence we obtain

∂tJ0(P
tv) |t=0≥ α1(x) · ‖v‖2 ≥ α1(x)

α2
|J0(v)|

where α1(x) > 0 for all x ∈ 	. Therefore we have

log
J0(Ptv)

J0(v)
≥

t∫

0

α1(Xs(x))

α2
ds =: H(x, t) for J0-positive vectors v; and

log
J0(Ptv)

J0(v)
≤ −

t∫

0

α1(Xs(x))

α2
ds = −H(x, t) for J0-negative vectors v.

From Lemma 2.18 we can compare |J0| with the square of the Riemannian norm, so all that
is left to do is to prove that H(x, t) is unbounded for t > 0 and each x ∈ 	. ��
Lemma 4.2 For every point x in a compact invariant subset 	 ⊂ �X (U )∗, we have

lim
t→+∞ H(x, t) = +∞.

Proof of Lemma 4.2 If there are no singularities in �, then �X (U )∗ = �X (U ) is compact
and so there exists α0 > 0 such that α1(x) ≥ α0 for all x ∈ �. This clearly implies the
statement of the lemma in this case.

Let S = � ∩ S(X) be the set of finitely many singularities of X in �; we recall that
we are assuming that S is formed by hyperbolic fixed points of Xt . We fix ε > 0 such that
{B(σ, ε)}σ∈S is pairwise disjoint sets and �\B(S, ε) �= ∅, where B(S, ε) = ∪σ∈S B(σ, ε).
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We have that K := �\B(S, ε) is compact and so there exists α0 > 0 such that α1(x) ≥ α0

for all x ∈ K . Moreover, since the norm of the vector field X is bounded from above in �,
there exists a minimum time T > 0 between consecutive visits of any orbit of x ∈ �\W s(S)
to B(S, ε). That is, for x ∈ �\W s(S), if we define sequences t1 < s1 < t2 < s2 < · · · such
that X(ti ,si )(x) ⊂ B(S, ε) and X[si ,ti+1](x) ⊂ K , then ti+1 − si > T, i ≥ 1.

Since x ∈ 	 and 	 ∩ S = ∅, we have ωX (x) ∩ B(S, ε) = ∅ for some small ε > 0
dependent on 	 only, in which case the sequence above terminates at some sl for l ≥ 1.

Hence we can write, for all t ≥ sl and t < tl+1 (if tl+1 does not exist, the last conditions
is vacuous)

H(x, t) ≥ α0t1 + α0

l−1∑

i=1

(ti+1 − si )+ (t − sl)α0 ≥ α0[(l − 1)T + t1 + (t − sl)].

Either the sequences are infinite, or tl+1 does not exist. Hence H(x, t) grows without bound
when t → +∞. ��

Restricting x to a compact invariant subset 	 of �X (U )∗, we obtain

lim
t→−∞ ‖Pt |N s

x
‖ = +∞ and lim

t→+∞ ‖Pt |N u
x
‖ = +∞, x ∈ 	.

By well-known results, this ensures that Pt is hyperbolic over	; see e.g. [24]. This concludes
the proof. ��
4.2 Sectional hyperbolicity from the linear Poincaré flow

Here we prove Theorem D through the following results.
Let � = �X (U ) be an attracting set contained in the non-wandering set �(X) for a C1

flow given by a vector field X . We recall that �∗
X (U ) = �X (U )\Sing(X).

Theorem 4.3 The set� is sectional-hyperbolic for X if, and only if, there is a neighborhood
U of X in X1(M) such that any compact subset 	 of�∗

Y (U ) is hyperbolic of index ind(�) for
the linear Poincaré flow associated to any Y ∈ U and each singularity σ of Y in the trapping
region U is sectionally hyperbolic with index ind(σ ) ≥ ind(�).

Proof Let us assume that� = �X (U ) ⊂ �(X) is sectionally hyperbolic for X . If Es ⊕ Ec

is a partially hyperbolic splitting of T M over �, then the projections N s := � · Es and
N u := � · Ec are P t -invariant, and N s is uniformly contracted by P t . Indeed, since the
orthogonal projection does not increase norms, for v ∈ Es

x we get ‖Ptv‖ = ‖�Xt (x)DXt (x)·
v‖≤‖DXt (x) · v‖, which is uniformly contracted for t > 0, as long as X (x) �= �0.

Moreover, the above property persists for all vector fields Y in a small enough C1 neigh-
borhood of X , by the normal hyperbolic theory; see [15].

Now we assume, additionally, that Ec is sectionally expanding on � for X . This ensures
that the continuation Es,Y ⊕ Ec,Y of the partially hyperbolic splitting for C1 close vector
fields is also sectional hyperbolic. For otherwise, according to Remark 1.1, for any given
fixed T > 0 we would obtain a sequence Yn of vector fields converging to X in the C1

topology, a sequence xn of points in �Y n (U )∗ and a sequence Fxn of 2-subspaces of Ec,Y
xn

such that | det(DY n
T |Fxn

)| ≤ 2, n ≥ 1. Then for a limit point x of (xn)n in�X (U ) and a limit

2-subspace Fx of the sequence Fxn inside Ec,Y
x (using the compactness of the Grassmannian

over the compact set U together with the continuity of the splitting with respect to Yn), we
get | det(DXT |Fx )| ≤ 2. Since T > 0 was arbitrarily chosen, this contradicts the assumption
of sectional-expansion on �.
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Hence we may argue with any fixed Y close enough to X in the C1 topology. Let us take 	
a compact subset of �∗

Y . For x ∈ 	 the uniform expansion along N u is obtained as follows.
Let v be a unit vector on N u

x and let Fx be the subspace spanned by v and X (x). For some
K > 0 we have K −1 ≤ ‖Y (x)‖≤K for all x ∈ 	 by compactness. Let us fix t > 0 and
consider the basis { T (x)

‖T (x)‖ , v} of Fx . We note that DYt (Fx ) is a bidimensional subspace Ft
x

of Ec
Yt (x)

, where we take the basis { Y (Yt (x))‖Y (Yt (x)x)‖ , wt }, with

wt := �Yt (x) · DYt (x)(v)

‖�Yt (x) · DY t (x)(v)‖ belonging to N u
Yt (x)

.

With respect to these orthonormal bases we have

DYt |Fx =
[ ‖Y (Yt (x))‖

‖Y (x)‖ �

0 �

]

,

because the flow direction is invariant. Hence

det
(
DYt |Ec

x

) = ‖Y (Yt (x))‖
‖Y (x)‖ � ≤ K 2�

for some K > 0 depending only on 	 ⊂ �Y (U )∗, and

‖P Y,t
x · v‖ = ‖�Xt (x) · DYt (x)(v)‖ = ‖� · w‖ = |�|

≥ K −2| det(DYt |Fx )| ≥ K −2Ceλt .

This proves that N u is uniformly expanded by the linear Poincaré flow PY,t over	. Moreover,
for every singularity σ ∈ � we have Tσ M = Es

σ ⊕ Eu
σ a sectional hyperbolic splitting, thus

ind(σ ) ≥ ind(�); in fact, sectional expansion on Ec
σ ensures that either ind(σ ) = ind(�) or

ind(σ ) = ind(�)+ 1.
Reciprocally, let us assume that� is a compact attracting set with isolating neighborhood

U such that: the linear Poincaré flow over any compact subset 	 ⊂ �∗
Y (U ) is hyperbolic

with constant index ind(�), for all Y in a C1 neighborhood U of X ; and that the singularities
σ in U for each Y ∈ U are sectionally hyperbolic with index ind(σ ) ≥ ind(�). In particular,
the index of all periodic orbits of U for Y ∈ U is constant ind(�), and the flows in U are
homogeneous. Hence, every periodic point p in U for Y is hyperbolic with uniform bounds
on the expansion and contraction on the period and, moreover, admits a sectional-hyperbolic
splitting Tp M = EY,s

p ⊕ EY,c
p of the tangent bundle with constant index ind(�) and with

angle between the stable and central directions uniformly bounded away from zero; see [5,
Section 5.4.1].

This is enough to deduce that the tangent bundle on �Y (U ) ∩ �(X) admits a partially
hyperbolic splitting Es ⊕ Ec with index dim Es = ind(�). Indeed, for a non-singular x ∈
�Y (U )we can use Shub’s Closing Lemma to obtain sequences Y k ∈ U and pk ∈ U a periodic

point for Y k such that Y k C1−→ Y and pk → x . We then define Es,Y
x = limk→∞ Es,Y k

pk and

Ec,Y
x = limk→∞ Ec,Y k

pk . This decomposition will be DYt -invariant and partially hyperbolic
by construction. Moreover the assumption on the index of the singularities ensures that the
partial hyperbolic splitting on every periodic orbit for each flow Y ∈ U can be extended to
a partially hyperbolic splitting on the entire �, including the singularities; see [5, Section
5.4.2]. Having these properties robustly on U with sectional hyperbolicity on periodic orbits
implies that the subbundle Ec is sectionally expanding, for Y ∈ U; see [5, Section 5.4.3].
This completes the proof. ��
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Now Proposition 4.1 shows that strict J-monotonicity for the linear Poincaré flow over a
compact invariant subset implies hyperbolicity. Together with Theorem 4.3 we conclude the
proof of sufficiency in Theorem D.

This completes the proof that strict J -monotonicity of the linear Poincaré flow implies
sectional hyperbolicity, which is half of the statement of Theorem D.

4.3 Strict J-monotonicity for the linear Poincaré flow

Now we prove that having a sectional hyperbolic splitting implies that there exists a field of
non-degenerate and indefinite quadratic forms J with constant index equal to the dimension
of the contracting direction, such that the linear Poincaré flow is strictly J0-monotonous on
every compact invariant set without singularities, for some compatible field of forms J0,
completing the proof of Theorem D.

Let � = �X (U ) be a compact maximal invariant set admitting a sectional hyperbolic
splitting T�M = Es

� ⊕ Ec
�. As noted in the first part of the proof of Theorem 4.3, the

existence of sectional hyperbolic splitting is a robust property: there exists a neighborhood
U of X in the C1 topology in X1(M) such that all Y ∈ U have a maximal invariant subset
�Y (U ) which is also sectional hyperbolic. Hence the results we obtain below hold robustly
in a neighborhood of X .

We have already shown, in Sect. 2.5, how to construct a field of quadratic forms J such
that X is strictly J-separated on a neighborhood V ⊂ U of � satisfying for some λ > 0 and
all x ∈ � and t > 0

|DXtv
+| =

√
J(DXtv+)≥eλt

√
J(DXtv−) = eλt |DXtv

−|, v− ∈ Es
x , v

+ ∈ Ec
x , |v±| = 1.

The results in [14] extend the properties of adapted metrics to partial hyperbolic splittings,
in such a way that we can also obtain for all t > 0

|DXtv
−| ≤ e−λt , v− ∈ Es

x , |v−| = 1.

On �∗ = �\Sing(X) we define N s = ∏ ·Es and N u = ∏ ·Ec, where
∏

is the projection
of the tangent bundle onto the pseudo-orthogonal complement N of X with respect to J. We
note that since Pt = ∏ ·DXt

|Pt |N s
x

| · |P−t |N u
Xt (x)

| ≤ |DXt |Es
x

| · |DX−t |Ec
Xt (x)

| ≤ e−λt , and (4.1)

|Pt |N s
x

| ≤ |DXt |Es
x

| ≤ e−λt , x ∈ �∗, t > 0 (4.2)

so that the linear Poincaré flow has a partially hyperbolic splitting over �∗.
The assumption of sectional expansion ensures that, if we fix any unit vector v ∈ N u

x for
x ∈ �∗, then for some C, λ > 0 and every t > 0

Ceλt ≤ | det DXt |span{X (x),v} | = vol(DXtv, X (Xt (x)))

vol(X (x), v)

= |X (Xt (x))|
|X (x)| |DXtv| sin � (DXtv, X (Xt (x))) = |X (Xt (x))|

|X (x)| |Ptv|.

Since we are in a compact set we have 0 < c0 = supz∈� |X (z)| < ∞ and so

|Ptv| ≥ C |X (x)|
c0

eλt , x ∈ �∗, v ∈ N u
x , |v| = 1, t > 0. (4.3)

We write c(x) := C |X (x)|/c0 and note that 0 < c(x) ≤ 1 by letting t → 0 in the above
inequality.

123



Infinitesimal Lyapunov functions 893

We restrict now to the case of a compact invariant subset 	 of �∗. In this case c(x) ≥
c1 > 0 for all x ∈ 	 and N s

	 ⊕ N u
	 is a uniformly hyperbolic splitting for Pt . We can then

obtain an adapted Riemannian metric for this splitting following [14] and define a field J0

of quadratic forms using this adapted metric as in Sect. 2.5.1. With respect to the adapted
metric we obtain both (4.1) and (4.2), and also (4.3) but with unit constants multiplying the
exponential. From Remark 2.22, since J and J0 have the same signs on the Es

	 and Ec
	 , then

J0 ∼ J.
We show that Pt is strictly J0-monotonous. We consider a vector v ∈ Nx with v =

v− + v+, v− ∈ N s
x , v

+ ∈ N u
x and J0(v

+)− J0(v
−) = |v+|2 + |v−|2 = 1 for x ∈ 	, and the

norm of its image under the linear Poincaré flow. Since Ptv = Ptv+ + Ptv− and N s and
N u are Pt -invariant, if v+ �= �0 we get for t > 0

J0(P
tv) = J0(P

tv+)+ J0(P
tv−) = J0(P

tv+) ·
(

1 + J0(Ptv−)
J0(Ptv+)

)

≥ e2λtJ0(v
+)

(
1 + e−2λt J0(v

−)
J0(v+)

)
,

since J(Ptv−) < 0. We note that the value of the left hand side and the right hand side above
are the same at t = 0. Moreover the derivative of the right hand side with respect to t at t = 0
equals
[

2λe2λtJ0(v
+)

(
1 + e−2λt J0(v

−)
J0(v+)

)
− e2λtJ0(v

+) · 2λe−2λt J0(v
−)

J0(v+)

]∣∣∣∣
t=0

=2λJ0(v
+)>0.

Hence we conclude that ∂tJ0(Ptv) |t=0≥ 2λJ0(v
+) > 0 when v has a non-zero positive

component. In the remaining case, v = v− we obtain (again because J0(Ptv−) < 0)

J0(P
tv−) ≥ e−2λtJ0(v

−)

with the same value at t = 0 on both sides, so that ∂tJ0(Ptv−) |t=0≥ −2λJ0(v
−) > 0 also

in this case.
We have proved that for all vector fields Y sufficiently C1 close to X and for every compact

invariant subset 	 of�Y (U )∗, we can find a field J0 of quadratic forms compatible to J over
	 such that Pt

Y is strictly J0-monotonous, as claimed in Theorem D.
This together with Theorem 4.3 completes the proof of Theorem D.

4.4 Criteria for J-monotonicity of the linear Poincaré flow

Here we prove Proposition 1.4. We have already characterized partial hyperbolicity using the
notion of J-separation, or the existence of infinitesimal Lyapunov functions, which depend
only on the vector field X and its derivative DX . To present a characterization of sectional
hyperbolicity along the same lines, we must use the conclusion of Theorem D, and obtain a
criterion for the linear Poincaré flow to be J-monotonous.

The condition of J-monotonicity for the linear Poincaré flow can be expressed using only
the vector field X and its space derivative DX .

Recall that a self-adjoint operator is said to be (positive) non-negative if all eigenvalues
are (positive) non-negative.

Lemma 4.4 Let X be a J-non-negative (positive) vector field on U. Then, the linear Poincaré
flow is (strictly) J-monotone if, and only if, the operator

Ĵx := DX (x)∗ ·�∗
x J�x +�∗

x J�x · DX (x)
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is a non-negative (positive) self-adjoint operator.

Here, we consider�∗ as the adjoint operator of the orthogonal projection� in the defin-
ition of the linear Poincaré flow.

The conditions above are again consequence of the corresponding results for linear mul-
tiplicative cocycles over flows, as explained in Sect. 4.

Proof We shall prove only the positive case, once the non-negative is similar.
We denote by |v| := 〈Jv, v〉1/2 the J-norm of a vector v and observe that we can write

�Xt (x)v := v − 〈Jv,
X (Xt (x))

|X (Xt (x))| 〉
X (Xt (x))

|X (Xt (x))| ,

for all v ∈ Tx M with X (Xt (x)) �= �0 and t ≥ 0. Then, to conclude that J(Ptv) > J(v) for
every v ∈ Nx , x ∈ U, X (x) �= �0 it is enough to prove

∂tJ(P
tv) > 0 for every v ∈ Tx M, X (Xt (x)) �= �0 and t ≥ 0. (4.4)

Reciprocally, if we have that J(Ptv) > J(v) for every v ∈ Nx , x ∈ U, X (x) �= �0, then we
also must have (4.4).

Now the above derivative can be written, just like in the previous sections

〈J ·�Xt (x)DXtv, ∂t (�Xt (x)DXtv)〉 + 〈J · ∂t (�Xt (x)DXtv),�Xt (x)DXtv〉. (4.5)

To expand the above expression, we note that

∂t (�Xt (x)DXtv) = ∂t

(
DXtv −

〈
J · DXtv,

X (Xt (x))

|X (Xt (x))|
〉

X (Xt (x))

|X (Xt (x))|
)

can be written in the following way,

DX (Xt (x))DXtv + 〈J · DXtv,
X (Xt (x))

|X (Xt (x))| 〉 · ∂t
X (Xt (x))

|X (Xt (x))|
−

(〈
J · DX (Xt (x))DXtv,

X (Xt (x))

|X (Xt (x))|
〉
+

〈
J · DXtv, ∂t

X (Xt (x))

|X (Xt (x))|
〉)

X (Xt (x))

|X (Xt (x))| .

Since ∂t
X (Xt (x))|X (Xt (x))| equals

−
〈

X (Xt (x))

|X (Xt (x))| , DX (Xt (x))
X (Xt (x))

|X (Xt (x))|
〉
· X (Xt (x))

|X (Xt (x))| + DX (Xt (x))
X (Xt (x))

|X (Xt (x))|
and must be J-orthogonal to the flow direction at Xt (x), then this last expression is the
projection on NXt (x) as follows

∂t
X (Xt (x))

|X (Xt (x))| = (
�Xt (x)DX (Xt (x))

) · X (Xt (x))

|X (Xt (x))|
Now replacing Xt (x) by z throughout and the vector X (z) J-normalized by X̂(z) we obtain
the following expression for the derivative of Ptv

DX (z)DXtv − 〈J · DXtv, X̂(z)〉 ·�z DX (z)X̂(z)

−(〈J · DX (z)DXtv, X̂(z)〉 + 〈J · DXtv,�z DX (z)X̂(z)〉)X̂(z)
or, easier for a geometrical interpretation

DX (z)DXtv − 〈J · DX (z)DXtv, X̂(z)〉X̂(z)

−〈J · DXtv, X̂(z)〉 ·�z DX (z)X̂(z)− 〈J · DXtv,�z DX (z)X̂(z)〉X̂(z).
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We observe that the first line above is the projection on Nz of DX (z)DXtv so we have that
∂t P tv equals

�z DX (z)DXtv − 〈J · DXtv, X̂(z)〉�z DX (z)X̂(z)− 〈J · DXtv,�z DX (z)X̂(z)〉X̂(z).

In the expression (4.5), we take the J-(inner)-product with a vector on Nz , so the X̂ component
above contributes nothing to the final result. Therefore (4.5) becomes

〈J ·�z DXtv,�z DX (z)DXtv〉 + 〈J ·�z DX (z)DXtv,�z DXtv〉
−〈J · DXtv, X̂(z)〉(〈J ·�z DXtv,�z DX (z)X̂(z)〉 + 〈J ·�z DX (z)X̂(z),�z DXtv〉)

and using the adjoint of DX (z) = DX (Xt (x)) we define Ĵ = Ĵx := (
�x DX (x)

)∗
J�x +

�∗
x J�x DX (x) and obtain

∂t P tv = 〈 ĴXt (x)DXtv, DXtv〉 − 〈J · DXtv, X̂(Xt (x))〉 · 〈 Ĵ · DXtv, X̂(Xt (x))〉.
Letting t = 0, since 〈J · v, X̂(x)〉 = 0 for v ∈ Nx , we arrive at

∂t
(
P tv

) |t=0= 〈 Ĵxv, v〉 − 〈J · v, X̂(x)〉 · 〈 Ĵ · v, X̂(x)〉 = 〈 Ĵxv, v〉. (4.6)

We conclude that condition (4.4) is equivalent to

〈 ĴXt (x)v, v〉 > 0, v ∈ NXt (x), (4.7)

that is, Ĵx is a positive definite self-adjoint operator on Nx for each x ∈ U with X (x) �= �0.
Indeed, by the flow property of P t we have, for all s > 0

∂tJ(P
t+sv) |t=0= ∂tJ

(
P t (P sv)

) |t=0> 0 because P sv ∈ NXs (x)

and P s : Nx → NXs (x) is an isomorphism. ��
So (4.7) is the condition that the vector field and its derivative must satisfy in U , except

at singularities, so that the linear Poincaré flow admits a hyperbolic splitting.
This concludes the proof of Proposition 1.4.
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