Int. J. Quantum Inform. 2013.11. Downloaded from www.worldscientific.com
by UNIVERSIDADE FEDERAL DA BAHIA on 04/29/14. For personal use only.

World Scientific

Vol. 11, No. 7 (2013) 1350065 (13 pages) nor'c Scentite

© World Scientific Publishing Company
DOI: 10.1142/50219749913500652

International Journal of Quantum Information \\’

QUASITRIANGULAR HOPF ALGEBRAS, BRAID GROUPS
AND QUANTUM ENTANGLEMENT

ERIC PINTO

Instituto de Fisica, Universidade Federal da Bahia, Campus Ondina,
Salvador, Bahia 40210-340, Brazil
erpintoQufba.br

MARCO A. S. TRINDADE

Departamento de Ciéncias Fzxatas e da Terra,
Universidade do Estado da Bahia,
Rodovia Alagoinhas/Salvador, BR 110, Km 03,
48040-210 Alagoinhas, Bahia, Brazil

J. D. M. VIANNA

Instituto de Fisica, Universidade Federal da Bahia,
Campus Ondina, Salvador, Bahia 40210-340, Brazil

Instituto de Fisica, Universidade de Brasilia,
70910-900 Brasilia, DF, Brazil

Received 19 June 2013
Accepted 22 November 2013
Published 7 January 2014

The aim of the paper is to provide a method to obtain representations of the braid group through
a set of quasitriangular Hopf algebras. In particular, these algebras may be derived from group
algebras of cyclic groups with additional algebraic structures. In this context, by using the flip
operator, it is possible to construct R-matrices that can be regarded as quantum logic gates
capable of preserving quantum entanglement.
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1. Introduction

The discovery of quantum entanglement has its origins in the seminal article by
Einstein, Podolsky and Rosen in 1935.! In this work, they proposed a thought ex-
periment that attempted to show that quantum mechanical theory was incomplete.
Currently, the quantum entanglement plays a key role in the quantum information
and quantum computation theory? and has been widely exploited in quantum tele-

portation,® quantum algorithms® and quantum cryptography.”® An interesting
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proposal in quantum computing is the topological quantum computation that
employs two-dimensional (2D) quasiparticles called anyons,” whose world lines cross
over one another to form braids in a three-dimensional (3D) spacetime. These braids
form the logic gates that make up the quantum computer. One advantage of this
proposal is the fact that it allows a fault-tolerant computing. Small perturbations can
cause decoherence and introduce errors in computing, however these small pertur-
bations do not change the topological properties of braids. Experimental evidences of
non-Abelian anyons appear in quantum Hall systems in 2D electron gases subject to
high magnetic fields.”

From a mathematical perspective, the anyons are described by representations of
the braid groups, an algebraic structure that was explicitly introduced by Artin in
1925.% In algebraic topology and knot theory, they can be recognized as the funda-
mental group of a configuration space, by using the homotopy concept.” A bridge
between knot theory and quantum information can be found in Refs. 10-15. In
particular, in Ref. 16, the quantum teleportation has been described by the group of
braids and Temperley—Lieb algebra, providing diagrammatic representations for
teleportation. In this line, no explicit link is established with the anyons, with a
general algebraic-topological perspective. An approach for non-Abelian anyons
through quasitriangular Hopf algebras'” was performed by Kitaev.'®' The quasi-
20,21 provides a unified description of the braiding properties, by
using the Yang—Baxter equations. The final piece is the universal R-matrix that can

triangular structure

be used to define representations of the braid group on fusion spaces, also called
topological Hilbert spaces.

Hopf algebras?? 25
to the H-space concept. Its origin is in the axiomatizations of the works of Hopf on

appear naturally in algebraic topology, where they are related

topological properties of Lie groups. The notion of quasitriangular Hopf algebras, or
quantum groups, in its turn, is due to Drinfeld'” as an abstraction of structures
implicit in the studies of Sklyanin,?®?” Jimbo®® and others.?” There are many
applications of these structures in physics, especially related to quantum gravity.?*2°
A relationship between quantum groups and quantum entanglement can be found in
Refs. 29 and 30. Trindade and Vianna?® performed a study to understand a possible
connection between quantum groups, nonextensive statistical mechanics and en-
tanglement through the entropic parameter q. Korbicz et al.? addressed the problem
of separability in terms of compact quantum groups, resulting in an analog of posi-
tivity of partial transpose criterion in quantum information theory. In Ref. 20, it was
shown that quasitriangular Hopf algebras can generate R-matrices. This result is
particularly interesting because it allows to obtain representations of braid groups,
since we have a quasitriangular structure.

In this paper, we developed a general method to obtain representations of the
braid groups from a set of quasitriangular Hopf algebras. We applied these results to
Hopf algebras derived of cyclic group. In particular, we investigated our general

results for the CZ ), group and obtained a quantum gate leading to entangled states
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in themselves. We performed a comparative analysis with other work emphasizing
the differences, advantages, and necessity of symmetry considerations.

The paper is organized as follows: Section 2 presents some basic concepts about
quasitriangular Hopf algebras and braid groups. Section 3 contains a general method
for obtaining the representations of braid groups. In Sec. 4, we derive a quantum logic
gate that turns Bell states into Bell states. Section 5 is devoted to concluding remarks
and outlooks.

2. Basic Concepts
In this section, we are going to review some basic concepts®! that we shall need later.

Definition 1. Let (H,u,n,A,e) be a bialgebra. We call it quasi-cocomutative,
if there exists an invertible element R of the algebra H ® H such that for all x € H
we have

A%(z) = RA(z)R, 1)

where A% = 75 o A denotes the opposite coproduct on H, i and 7 are linear maps
that express the multiplication and unit, respectively; A is a product and ¢ is counity.
An element R satisfying this condition is called a universal R-matrix.

Definition 2. A quasi-cocomutative Hopf algebra (H,pu,n,A,e,S,S7' R) is
quasitriangular, if the universal R-matrix R satisfies the two relations

(A ®idy)(R) = Ri3Ry3, (2)
and
(idy @ A)(R) = Ri3Rya, (3)

by using Sweedler’s notation®® for R;;.
It is possible to show that universal R-matrix R satisfies the equation

Ryy Ri3Ro3 = Roz Ri3 Ry, (4)
denoted by algebraic Yang—Baxter equation.

Definition 3. Let V be a vector space over a field k. A linear automorphism
R’ of V®V is said to be an R-matrix of it is a solution of the Yang-Baxter
equation

(R @ idy)(idy @ R)(R' ®idy) = (idy @ R')(R' @ idy)(idy @ R'), (5)

that holds in the automorphism group of V® V.
The latter relation has fundamental importance because by identification

R} =1%0-D @ R’ @ T®WN-1), (6)
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where I is an identity operator and allows to build representations of braid groups
with N strands that have to satisfy

RiR; = RiR;, |i—j|>2, (7)
and

RIR,, R =R, \RiR,,\, i=1,...,N—2. (8)

3. Results

We now perform generalization about some results in Ref. 20 and we explore these
expressions in the context of cyclic groups.

Lemma 1. Let (H17I‘L177717 Alagh Sla Sf17 R1>7 ey (anl’bnanna Anvgna Sn7 Sglan)
quasitriangular Hopf algebras. Hence, there is an invertible element R such that for all
reHH ®- - -®H,, we have

A (2)R = RA(x), )
with Rl = Zil 82'1 (39 til’ ‘e ,Rn = Z’i,, SZ‘" (9 tz'”7 and
R= ) s5,® s Ot @ Dt . (10)

Moreover, the following relations

(A®idy,e..com,)(R) = RizRys, (11)
(idp,o0m, @ A)(R) = Ri3Rys, (12)
Ri3 Ri3Ry3 = Rog Ry3Ryo, (13)

with Rip =32 .4,80, @8, Ol @@t @1®@--- @1, Rig=73 .45 &
Sln®1®®1®tll®®tzn Cl/fld R23:ZZIZ?11®®1®8“®®8%®
t;, @ - ®@t; are satisfied.

Proof. Let the coproduct:

Az) = Zm' ® ",
)

in Sweedler’s notation

Al @ @x,) = Y (0105:8-01,) @@ 058 -1,
(21 ®®@,)
— Z 17/1®"‘®17;m®1’,1,®"'®$;;-
(21 ®®@2,)
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Then, in a general case, we have

Consequently

AOP(:El & -

A%P(z, ®---Qx,) = Z Q- Rrrer® - Qx,.
(21®-@,)
®r,)R= Y (@{o- @10 -0))
(1®®z,)

X Z 5, @ @8 Rt @@t

i1t
_ " " "
= E 18, @ T8, ® - QTS
(T3 301 ooty

Rt @ @xpt;

= Z x’l’sil®1®...®x’ltil®...®1

(@150 301 yeenl)

SN 1eeals, ®le- et

(@150 301 yeenli)

- Z ST IO @t @ @1

(T s @31 yeenin)

Z 1®"'®5i”x;n®1®"'®ti,,$2

_ ’ / ’ "
= E $;, X1 ® 8, Ty @+ Q8 Ty, @t T

(@150 301 yeensl)

®"'®tinxx

= RA(x).

For relations (11) and (12)

(A ®idy) (Z 5, ® - ®Sin®ti1®"'®tin>

GER

=) Als;, @@, ) @idy(t;, ®-- ©1;)

iy
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:Z 5;1®5;2®...5; ®5/'/®"‘®5§/,,®til®"'®ti”

L n 1
By ey
= <Zs;l®1®--~®s§§®---®t;,®-~-®1>...
i1 81
(Z1®"'®Sén®"'®S’Ii;®"'®tin>

= <Zsi1®1®”'®8j1®1®"'®ti1tj1®"'®1>"'

i1
(Z 1g---®s, ®"'®Sjn®1®"'®tz‘nt.jn>
i”jﬂ
= Ry3Ry3.
Similarly
(idp,0m, @ A) = Rz Rys.
For the last expression, we have
Riy Ri3 Ry = Z Sk Sjy, @ B 8, 85, Oty 85, @ - By, 8i, Oty
O

®- Q1L

bn

= (Z sk.]sj]®--~®1®tklsil®---®1®tljlti]®~--®1>...

i1,J1,k1

( Z 1®"'®5kn51n®"'®1®%5iﬂ®"'®fjn,tftn>

s ki

= (55,8, @ 1@ sty @ Dty by @D 1)...

iy

( Y, 18 ®s;,5,0 @18 5,1, ® "'®tk,,fjn>

= > 55,8, @ @88, & Q8
T AT S
® T ® tk’ﬂ tjn

= Ry3Ri3Ryy. O

® i, tj,

n

Let now Vi,...,V, and W;,..., W, H-modules. We can build a isomorphism
CXI/%....WW...W,, of Hy,...,H, modules between V;®--- @V, @W;® --® W, and
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W W,V ---®V,, defined by
C\?.AAMI,LVIMWH(W ® QU @W; B+ @ wy)
=Ty v, w.w,( B> (1@ - ®v, @w; @+ Qw,))

= E ti1[>wl®"'®ti”[>wn®8il>U1®"'®Si”|>’l]n,

..y

where > denotes the action of H on U,V and W.

Theorem 1. For any triple (U, ®---@U,,Vi®---V,,W,®---@W,) of
H, ®---® H,-module we have
(a) the map C%_nwwlmwn is an isomorphism of H| ® --- ® H,,-module.

(0) (C‘}/?l'...v,,wl...vm ®idy, ..y, )(idy,..v, ® Cgl...U,,,Wl W,,)(CIIJ?'I...U,“Vl...m, ®idy,..w,)

v

. . R
w,.w, ®idy, v )(idy, v, @CV._v w, w,)

ns

= (idw,..w, ® CIIJ?’I...U”.VI...V,,)(C(IJ?'I...U

Proof. (a) Forany 7, ® --- ® x, € H; ® - - - ® H,-module by using definition
C\I/zl.‘.w,,wl.,.w,, (1@ RT,)> (1@ RV, Qu - Qw,)

= Tu,..vpw0; .., (R DA(xl K- xn,) > (Ul DV, QW @ ®wn))'

By using Lemma 1 and the notation C‘I/%l...V,,.,Wl...W,,,(Il R Qx> (@ ®
v, QW ® - Quw,) =C, we get

C = 7—1114..177,,w1.,4wn,(Aop(xl - xn)R(vl DRV, QW Q- ® wn))

_ 2 : " " "
= Toy..vpwi..w, ( T8, >v & T28i, DU T nSi, > vy,

Tpeeelpyby ety

@zt >wy @ xht, > wy @ -+ @ Tty l>wn>

= E Tt Dwy @ Tyt Dwy ® - @ Tpt; D w,

LTyt -p

" " "
QxS DU QXy8;, PV Q- QTys; >,

A(Jc1®---®xn)z L, Dw @ Qt; Dw, ®TYS; DU @ Qs >,

1.0y

- A(1.1 K xn)7—1,'14..1;,,,,11:1...w,, (RD [Ul QU QW -+ wn])

= (1‘1 - ® xTL)(O‘F/i].“V",W/]...LVH [Ul D QU QW Q- @ wn])'
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(b) It is easy to verify that

R . . R R .
(Cvl...w,wl.,w,, ® ZdUl.“Un)(ldV.“.u,, ® CUIH.U,,A,WIH.WW)(CUIMU,,,,VIN.V,, ® ldwl.uwn)
= E tkltj1>w1®'“®tk’,,tj,,[>w71®8k1ti1‘>v1“'

iyl 1ok

@ Sp, ti, PV, ®8,8, DU Q- RS S DUy,

= <Z tkltjl\>w1®"'®8kltil[>Ul®"'®8j18il‘>ul®"'®l>...

11,01,k

( Z 1@t t; bw, @ Qs 8 PU, @ - ®1®s; 5 > un>

O

= (Z tj.ti1‘>w1®"'®tk.3i.'>U1®"'®5j15z‘]l>ul®"'®1)

i1,J1,k1

Z 1®t]"t"l>wn®~~®tk”s7;">’un® ®1®8kns]n[>u >

i sinskin

= (idw,..w, ® CT v, v,..v)(Cl, v, w,.w, ®idy,_v,)

x (idy,..v, ® C%..‘/mwlmvvn)a
by using of Lemma 1. O

Note that the setting, is U; =V, = W,..., U, =V, = W,,. From this setting, we
conclude that C ‘}/%-MHVVIMM is a solution of the Yang-Baxter equation and therefore
can be used to generate representation of braid groups.

Consider now Z,, , Z,,,, ..., 2, be the finite cyclic groups of order n;,ns,...,n,

and CZ,, ,CZ, ,...,CZ,, be its group algebras respectively, so that we can build
Hopf algebras® with the quasitriangular structures

1 s

Bi= - 3 e gnagh, (14)
™ ay,b=0
1 el g,

rm L s
2 o =0
1 " m

R,=— Y e g @gh, (16)
a4, 5,=0
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and has coproduct Ag® = g™ @ g%, Ag® = g® @ g»,...,Ag" = g™ ® g*. The
counit is given by eg® = eg® =--- =€g® =1 and the antipode Sg* = (g*)~!,

Sg”:? = (9“2)71’ e Sg”w = (g”'n)*l'
According to our formulation, we have

1 m—1m—1,...n,—1 —27lay by...anby
R= —— e mmem g™
e N S
®ga2®...®gan®gbl®gb2®...®gbn' (17)

Using the notation C[IZ.“U,“VP..V (U QU ® - Ru, RV QU R+ Qv,) =Cq, we

n

can show that

1 m=Lmp =Ly, —1 —2rlay by ag by...ap by
e NL712-1n gbl > vl ® gbZ > '1.}2

vyl b1,bo . by,

®...®gbn DU, @GUDU DGR U R - ® gl D>, (18)

Cl T o
mns .. .My ay,a9,.

4. Applications

In order to illustrate our formalism, we consider a simple case CZ), with group
G = {e,x}, where € is the identity. In this case

1 —Tlal a
R = 5 Ze fabga @ gb
a,b=0
1
=§(e®e+x®6+e®x—z®x). (19)

Using the regular representation I' of the algebra, we have

1000 0010
010 0 00 1

€@d=10 01 0| T@@I={1 5o o)
000 1 010 0
010 0 000 1
1000 0010

r - T -

(e®) 000 1] TE®D=15 19 0]
0010 1000

resulting in
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We next consider I'(R) = R. The associated flip operator is given by

1 000
. 0 010 (21)
01 00
0 0 0 1
Consequently,
1 1 1 -1
R R 1 1 -1 1 1 (22)
=T = —
2 1 1 -1 1
-1 1 1 1
This matrix satisfies the braid relation
T RYNRDI®R)=(R o) (Ie R)(R' &), (23)

where [ is a identity matrix 2 X 2, and it can be visualized as quantum logic gate.
Its action on the Bell states is given by

|5 (00)+ 1) = (ot + 110) = ), (24)
R (01) +10)] = = (100) + 1)) = o), (25)
| (00) = 1)) = =00} - [11) = o) (26)
|5 (01) = 10)| = 5 (10) - jory) = ) (27)

i.e. the entanglement is preserved under the action of this gate. Importantly, the
symmetry groups in 3D are cyclic as abstract group. Therefore, the cyclic groups may
indirectly reflect symmetries of physical systems transforming maximally entangled
states in themselves. Interestingly, starting from an extremely simple case, it is
possible to generate a nontrivial structure.

In a seminal work that established a connection between quantum entanglement
and topological entanglement, Kauffman and Lomanaco Jr.'? introduced the fol-
lowing matrix solution to the Yang-Baxter equation

a 000
00doO
R= ;
0 00
000D

1350065-10
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where a, b, ¢ and d are any scalars on the unit circle in the complex plane. It
was shown that, if R is chosen so that ab# cd, then the state R(¢ ® 1),
with ¢ =10) +|1), is entangled. All the 4 x 4 unitary matrix solutions to the
braided Yang-Baxter equation was obtained by Dye*!. For this dimension, the re-
lationship between quantum entanglement and topological entanglement was ana-
lyzed and the families of solutions have been classified. A solution explored by
Zhang® is given by:

10 0

B:i 01 -1 0 7
2 01 0
-1 0 1

called Bell matrix. The action of this matrix on the basis state results in Bell states:

1 _
BI00) = = (100) = [11)) = "),
Blo1) = %uon +[10)) = |9 ),
1 _
Bl10) = === (01) + |10)) = ~|¥").
BI1L) = - (00) 4 |11)) = [&7).

V2

In this context, equations for teleportation and their diagrammatical repre-
sentations were presented. Here, unlike the above mentioned approaches, our pur-
pose is to obtain representations of braid groups in a systematic way for arbitrary
dimensions, exploiting the structure of underlying symmetries. This is interesting
because anyonic physics, for example, Monchon®® showed that for anyons obtained
from a finite gauge theory, the computational power depends on the symmetry group.
Besides that, for cyclic groups, according to the recent investigations about anyons
in integer quantum Hall magnets,>® the nontrivial fundamental homotopy group
m1(0(3)) = Z, guarantees the existence of the Z, vortices. It is noteworthy that,
although our analysis have been done for cyclic groups, any group or algebra could
have been used, since our method is general.

5. Conclusions

The main objective of this paper has been to present a systematic method to derive
representations of braid groups through a set of quasitriangular Hopf algebras. This
approach should be related to the topological quantum computation. In Ref. 35,
possible experimental implementations of lattice models based on non-Abelian discrete
symmetry groups have been proposed. The group elements can be viewed as trans-
formations between the states of the sites of a superconducting Josephson-junction

1350065-11
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array. The algebraic structure employed was the dihedral group that can be expressed

in terms of cyclic groups, using the semidirect product. In this paper, we generalize

some results obtained in Ref. 20 and we explore the structure of a quasitriangular Hopf

algebra derived from a cyclic group. In particular, we show how to obtain a quantum

logic gate of a simple Abelian structure generated by C'Z), group algebra. This gate

becomes entangled states in themselves. Furthermore, we compared our method with
some related works, highlighting differences and possible advantages, and the necessity
of symmetry considerations. As perspectives, it seems interesting to investigate other
cyclic groups, as well as, possible associated topological structure.
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