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Abstract

Purpose – The purpose of this paper is to analyze mathematical aspects of the q-Weibull model and
explore the influence of the parameter q.

Design/methodology/approach – The paper uses analytical developments with graph
illustrations and an application to a practical example.

Findings – The q-Weibull distribution function is able to reproduce the bathtub shape curve for the
failure rate function with a single set of parameters. Moments of the distribution are also presented.

Practical implications – The generalized q-Weibull distribution unifies various possible
descriptions for the failure rate function: monotonically decreasing, monotonically increasing,
unimodal and U-shaped (bathtub) curves. It recovers the usual Weibull distribution as a particular
case. It represents a unification of models usually found in reliability analysis. Q-Weibull model has its
inspiration in nonextensive statistics, used to describe complex systems with long-range interactions
and/or long-term memory. This theoretical background may help the understanding of the underlying
mechanisms for failure events in engineering problems.

Originality/value – Q-Weibull model has already been introduced in the literature, but it was not
realized that it is able to reproduce a bathtub curve using a unique set of parameters. The paper brings a
mapping of the parameters, showing the range of the parameters that should be used for each type
of curve.
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1. Introduction
Reliability analysis widely uses Weibull (1951) distribution, that is a simple and
powerful empirical model. Many branches of knowledge have applied this distribution.
These are some recent examples: service operations (Hensley and Utley, 2011), the
problem of the strength of a manufactured item against stress (Ali and Kannan, 2011)
and large-scale information systems supporting infrastructures deterioration process
formulated by a Weibull hazard model (Kobayashi and Kaito, 2011). Weibull probability
density function (pdf) at time t, where t , T and T is time to failure, is given by:

f ðtÞ ¼
b

h2 t0

t 2 t0

h2 t0

� �b21

exp 2
t 2 t0

h2 t0
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" #
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with b . 0, h . t0, t $ t0, and
R1

0 f ðxÞdx ¼ 1. Equation (1) may be viewed as a
generalization of the exponential distribution, which is recovered if parameterb is taken
as unity.

Various generalizations of Weibull model have been proposed: linear or nonlinear
transformation of time, use of multiple distributions, time dependence of parameters,
discrete, multivariate, stochastic models, etc. (Murthy et al., 2004) for a comprehensive
approach). Xie et al. (2000) compares the approximated exponential distribution using
the average failure rate with the Weibull reliability. Almost all proposals of
generalization of Weibull model share a common feature: they rely on the exponential
framework (single exponential, exponentials of a variety of functions and so forth).

In the following we briefly point out some theoretical remarks about the emergence of
exponential and non exponential distributions in statistical mechanics, which serve as
motivation for our approach to the problem. Exponentials are usually found in
non-interacting or weakly interacting systems. Systems that exhibit long-range (spatial)
interactions, long-term (temporal) memory, effects of competition/cooperation, among
others, usually can be classified as complex (Bak, 1997) and power-laws dominate their
statistical distributions, in contrast to simple systems, that are the realm of exponential
laws. Failure of a component may have many (recent or not) multiple and interacting
causes, some of them acting on a cooperative and others on a conflictive basis, so it is not
surprising that complex behavior may appear. If this happens, power-law-like
expressions are expected to substitute exponentials in the statistical description.

Statistical mechanics of simple systems has a well established theoretical framework,
and probability distributions with exponentials (e.g. Boltzmann weight, Maxwellian
distribution among many others) are derived from Boltzmann-Gibbs-Shannon (BGS)
entropy. On the other hand, theoretical basis of the statistical description of complex
systems is object of intense current research.

The definition of the nonextensive entropy (Tsallis, 1988), which is a generalization of
BGS entropy (by means of a parameter q, also known as entropic index), has introduced
the possibility to extend statistical mechanics to complex systems in a coherent and
natural way. The developments surpassed the bounds of physics and have lead to
applications in different areas, including topics in applied mathematics (Tsallis, 2009).
We focus on the q-exponential function, which naturally appears in nonextensive
formalism, defined as:

expqðxÞ ¼
ð1 þ ð1 2 qÞxÞð1=ð12qÞÞ; if ð1 þ ð1 2 qÞxÞ $ 0

0; otherwise;

8<
: ð2Þ

with x, q [ R. The q-exponential is reduced to the usual exponential function in the
limiting case q ! 1 (exp1x ¼ expx), and thus equation (2) is a generalization of the later.
The definition of the q-exponential brings a cut-off condition that prevents negative or
even complex values. This is an important feature whenever the function is to be
associated with probabilities. For certain values of the parameters the q-exponential
presents a cross-over between an exponential behavior and a power-law regime (expq
(2ax) with a . 0 and q . 1 is asymptotically a power-law for large x, leading to
fat-tailed distributions).

The q-exponential has been applied to different contexts in pure and applied
mathematics. For the present purposes we are particularly interested in the applications in
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probability distributions. The q-gaussian distribution (Tsallis et al., 1996; Prato and
Tsallis, 1999) generalizes the gaussian (recovered for q ¼ 1), and also the Cauchy-Lorentz
distribution (recovered for q ¼ 2), among others. The central limit theorem has been
generalized into its “q-version” in Tsallis (2005) and Umarov et al. (2008).

If we look to Weibull distribution on the light of nonextensive statistics, a natural step
forward is its generalization with q-exponentials, and this was done in Picoli et al. (2003),
with applications in frequency distributions for different systems. To the best of our
knowledge, the first use of q-Weibull distribution in reliability analysis was presented in
Costa et al. (2006). It was applied to describe time-to-breakdown during the dielectric
breakdown regime of ultra-thin oxides in electronic devices. q-Weibull pdf was also used
to model data of the New York Stock Exchange and the Helsinki Stock Exchange
(Vuorenmaa, 2006).

The aim of the present paper is to recall q-Weibull model and to analyze some
features and details that are important to reliability analysis and were not covered
earlier. It is a continuation of a previous paper (Sartori et al., 2009), in which we have done
a preliminary study of the applicability of q-Weibull distribution. The present paper
shows that q-Weibull distribution is able to reproduce various types of failure rate
behaviors: monotonically decreasing, monotonically increasing, unimodal and
U-shaped (bathtub curve). The possibility to use q-Weibull to describe the bathtub
curve was not realized by previous papers, nor the bathtub curve was well described by
other models using a single set of parameters for its three characteristic regions. Before
introducing the model (what is done in the next section), we show Figure 1 that compares
Weibull distribution with the q-Weibull distribution. Two curves of the Weibull
distribution are displayed, a decreasing function (with shape parameter b , 1), and an
increasing function (with shape parameter b . 1). The q-Weibull model approximates
both curves, for small and large values of time, and properly interpolates in-between,
generating the curve with the bathtub shape.

Figure 1.
Comparison of two
instances of the Weibull
distribution, the
decreasing curve with
shape parameter b ¼ 0.5,
and the increasing curve
with shape parameter
b ¼ 6

q = 0.9, β = 0.5, η = 6
q = 1,    β = 0.5, η = 1
q = 1,    β = 6.0, η = 86

q-Weibull

Weibul, β > 1

Weibul, β < 1

0.4

0.2

0
0 50 100 150

t

h 
(t

)

Notes: The displayed q-Weibull distribution is a generalization
of ordinary Weibull and is able to represent the bathtub curve;
the values of the parameters were chosen just to give a good
visual representation
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Section 2 introduces the model and some of its features are shown in Section 3. Section 4
brings an example and our conclusions and final remarks are developed in Section 5.

2. q-Weibull failure rate model
The q-Weibull model is obtained from the classical Weibull model (equation (1)) by the
substitution of the exponential function by a q-exponential (see details in Costa et al.
(2006)):

f qðtÞ ¼ ð2 2 qÞ
b

h2 t0

t 2 t0

h2 t0

� �b21

expq 2
t 2 t0

h2 t0

� �b
" #

: ð3Þ

The factor (2 2 q) and the constraint q , 2 are necessary due to normalization
requirements. The ordinary Weibull pdf is recovered in the limit q ! 1, and coherently
equation (1) shall now be denoted as f1(t). h is the scale parameter and t0 is the location
parameter of q-Weibull model as well as in Weibull model. However, both the
parameters b and q control the shape of the q-Weibull distribution, while in the Weibull
model, only the parameter b affects its shape.

The q-Weibull distribution is also a generalization of Burr XII distribution function
(Burr, 1942):

f ðtÞ ¼ ck
t c21

s c
1 þ

t

s

� �c� �2k21

ðk . 0; c . 0; s . 0Þ; ð4Þ

if the parameters of q-Weibull are taken as b ¼ c, h ¼ s/(k þ 1)1/c and q ¼
(k þ 2)/(k þ 1) . 1. It is worth a mention that q-Weibull is a generalization of Burr XII,
and not the opposite, as claimed by Nadarajah and Kotz (2006), once equation (4) demands
q . 1, while equation (3) is also defined for q # 1. Burr XII distribution can assume
different shapes, which allow it to be a good candidate to fit various lifetimes data.

The q-Weibull reliability function is consistently given by RqðtÞ ¼
R1
t f qðt

0Þdt 0, i.e.:

RqðtÞ ¼ 1 2 ð1 2 qÞ t2t0
h2t0

� �b� �ð22qÞ=ð12qÞ

þ

¼ expq 2 t2t0
h2t0

� �b� �� �22q

;

ð5Þ

where we use the symbol [A ]þ (first line of equation (5)), that means that [A ]þ ¼ A if
A $ 0 and [A ]þ ¼ 0 if A , 0. This is already implicit in equation (2): we use it here
and also in some equations in the following just to remind the reader of the cut-off
condition of the q-exponential. To deduce equation (5) we have used the following
property of the q-exponential function:Z

expqðaxÞdx ¼
1

ð2 2 qÞa
½expqðaxÞ�

22q: ð6Þ

Note that (expqx)a – expq(ax) for q – 1, but:

ðexpqxÞ
a ¼ exp12ð12qÞ=aðaxÞ; ð7Þ
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So that equation (5) may be alternatively written as Rq(t) ¼ expq0[2 (2 2 q)
((t 2 t0)/(h 2 t0))

b ] with q0 ¼ 1/(2 2 q). The interested reader may find more properties
of q-exponentials at Yamano (2002).

The cumulative distribution function Fq(t) is the complement to the reliability
function, FqðtÞ ¼ 1 2 RqðtÞ, and the instantaneous failure rate, defined as hqðtÞ ;
f qðtÞ=RqðtÞ is generalized to:

hqðtÞ ¼
ð22qÞb
h2t0

t2t0
h2t0

� �b21

£ 1 2 ð1 2 qÞ t2t0
h2t0

� �b� �21

þ

¼ ð22qÞb
h2t0

t2t0
h2t0

� �b21

£ expq 2 t2t0
h2t0

� �b� �� �q21

;

ð8Þ

which is consistently reduced to the usual Weibull version as q ! 1:

h1ðtÞ ¼
b

h2 t0

t 2 t0

h2 t0

� �b21

: ð9Þ

This is precisely the origin of the difference of behaviors between usual (q ¼ 1) and
q-Weibull models: the integral of an ordinary exponential is an exponential (except from
a multiplicative constant), and they cancel out in the expression for the failure rate with
q ¼ 1. That does not happen with hq(t), due to the property given by equation (6).

Equation (8) is able to represent four different types of failure rate function, according
to the values of the parameters, besides the constant type (with q ¼ 1 and b ¼ 1). hq(t) is
monotonically decreasing for 1 , q , 2 and 0 , b , 1, monotonically increasing for q
, 1 andb. 1, unimodal for 1, q, 2 andb. 1 and U-shaped (bathtub curve) for q, 1
and 0 , b , 1. The non-monotonic hazard function cited by Vuorenmaa (2006)
corresponds to the unimodal type and the bathtub shape was not covered by that paper.
Figure 2 shows the four possibilities (detailed analysis of the q parameter is performed in
Section 3), and Figure 3 shows the corresponding four unreliability curves.

For q , 1, equation (8) presents a divergence that defines the maximum allowed
time (lifetime deadline) at:

tmax ¼ t0 þ ðh2 t0Þð1 2 qÞ21=b: ð10Þ

Finite tmax corresponds to a relaxation of the constraint usually imposed to a cumulative
failure rate functionHqðtÞ ¼

R t
0hqðtÞdt (Pham and Lai, 2007): it is normally expected that

H1 ! 1 at t ! 1. According to q-Weibull model, Hq,1 ! 1 at t ! tmax , 1. That is
to say that ordinary Weibull is unlimited, while q-Weibull (with q , 1) is limited to tmax.
Coherently, limq!ð12Þtmax !1, as q approaches the unity from the left.

The time derivative of the q-failure rate is:

h0qðtÞ ¼
ð2 2 qÞbðb2 1Þ

ðh2 t0Þ
2

t 2 t0

h2 t0

� �b22
½1 2 ðð1 2 qÞ=ð1 2 bÞÞððt 2 t0Þ=ðh2 t0ÞÞ

b�

½1 2 ð1 2 qÞððt 2 t0Þ=ðh2 t0ÞÞ
b�

2

þ

:

ð11Þ

For the unimodal case (1 , q , 2 and b . 1) and for the U-shaped case (q , 1 and
0 , b , 1), the root of equation (11) is located at:
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Figure 3.
Unreliability curves of the

q-Weibull distribution
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Notes: The parameters are the same of those used in Figure 2;
the four types of failure rate associated are: (i) monotonically
decreasing (solid line); (ii) monotonically increasing (dashed
line); (iii) unimodal (dot-dashed line); (iv) U-shaped (bathtub
curve) (dot-dot-dashed line)

Figure 2.
Types of failure rate
curves described by

q-Weibull

U-shaped
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Unimodal

Increasing
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h q
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Notes: Values of the parameters were chosen to give a good
visualization of the curves in the same figure; the four types
are: (i) monotonically decreasing function: (q = 1.5, = 0.5, 
= 1); (ii) monotonically increasing function: (q = 0.5, b = 2,
h = 7.071, evaluated from equation (10) with tmax = 10);
(iii) unimodal function: (q = 1.5, b = 2, h = 1); (iv) U-shaped
(bathtub curve): (q = 0.5, b = 0.5, h = 2.5, evaluated from
equation (10) with tmax = 10

Generalized
q-Weibull model

725



t* ¼ t0 þ ðh2 t0Þ
1 2 b

1 2 q

� �1=b

; ð12Þ

which corresponds to the extreme value (maximum for unimodal case, minimum for
bathtub case):

hqðt* Þ ¼
2 2 q

h2 t0

1 2 b

1 2 q

� �ðb21Þ=b

: ð13Þ

Figure 4 shows the change of sign in time derivative of hq(t).
The time derivative of the usual (q ¼ 1) Weibull failure rate is a monotonic

power-law:

h01ðtÞ ¼
bðb2 1Þ

ðh2 t0Þ
2

t 2 t0

h2 t0

� �b22

; ð14Þ

Hence it is unable to represent the whole bathtub curve. h01ðtÞ , 0 for 0 , b , 1, and
this situation can just describe the warm in phase. Wear out phase needs h01ðtÞ . 0, and
this happens in usual Weibull for b . 1. Description of intermediary random failure
phase happens by imposing b ¼ 1. q-Weibull failure rate reproduces the whole curve
by a continuous function with the same set of parameters.

3. Influence of the parameter q
In order to exhibit the effect of the parameter q , 1 on the q-Weibull model, let us consider
the instance b ¼ 0.5. First we keep parameter h constant (let us assume h ¼ 1 for
simplicity). The usual (q ¼ 1) Weibull does not present a limiting lifetime (i.e. tmax ¼ 1).
As q departs from unity (from below), lifetime deadline gets smaller values, as Figure 5
shows. Second, let us keep tmax constant (we choose the instanceb ¼ 0.5 and tmax ¼ 100),

Figure 4.
Time derivative h0qðtÞ,
given by equation (11),
with q ¼ 0.5, b ¼ 0.5 and
h ¼ 2.5 (corresponding to
the U-shaped curve) and
q ¼ 1.5, b ¼ 2 and h ¼ 1
(corresponding to the
unimodal curve)

1
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Notes: Parameters are the same of those in Figure 2 (monotonic
cases are not shown); the change of sign in h'q(t) is responsible
for the proper description of the whole bathtub curve
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soh is obtained according to equation (10). Figure 6 shows curves for different values of q.
As q approaches unity (from below), intermediate random failure phase decreases and
minimum of failure rate (equation (13)) increases. Particularly limq!ð12Þhqðt* Þ!1.
Minimum value of hq is found at limb!1limq! 2 1 hq(t*) ¼ 1/tmax.

Influence of q on unimodal case (1 , q , 2 and b . 1) can be viewed in Figure 7.
There is a displacement of the maximum failure rate as q approaches the value 2.

For 1 , q , 2 and 0 , b , 1, q-Weibull failure rate is a monotonically decreasing
function and Figure 8 shows examples.

4. Examples
We illustrate the flexibility and the reach of the q-Weibull distribution, in
comparison to the usual Weibull model, with three examples, extracted from
components of oil wells.

We maximize the coefficient of determination R 2 of the estimated unreliability
F̂i ¼ ði2 0:3Þ=ðnþ 0:4Þ (Bernard’s approximation), for each sample i (n is the total
number of samples), properly linearized as yi ¼ ln½2lnq0 ð1 2 F̂iÞ� vs xi ¼ lnðti 2 t0Þ,
with q0 ¼ 1=ð2 2 qÞ. Note that the usual procedure must be changed, as we are dealing
with the q-Weibull model, and thus there is a q-logarithm within the expression of yi .
As an additional criterion to evaluate the goodness of the fittings, we also evaluate the
mean squared error (MSE).

When the censoring of the data is simple type-I, type-II or multiply censored data F̂i

is corrected as done with Weibull distribution (Rinne, 2008).
Tables I-III present times to failure data (in days) of oil pumps, pumping rods, and

production tubings, respectively. In Table II, 1,448 times to failure of pumping rods were
grouped within 20 time intervals, and the relative frequency of occurrence was used to
estimate the unreliability, for each interval. Table III shows 115 different values of time
to failure (repetitions were excluded from 438 samples in order to reduce the size of

Figure 5.
q-Weibull failure rate

curve as a function of time
for different values of
q , 1 in log-log scale
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Notes: All curves are calculated with b = 0.5 and h = 1;
limiting lifetime comes from t = ∞, for q = 1 to closer
and finite values, as the parameter q departs from unity
from below
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the table). All 438 sample values were used to estimate the unreliability, according to the
median rank.

Table IV shows the fitting parameters for each example, and also the coefficient of
determination and the MSE. There are two examples with b , 1 and q , 1, and one

Figure 7.
q-Weibull failure rate
for unimodal case, with
b ¼ 2 and h ¼ 1, and
different values of q . 1
(indicated)
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t
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Note: Inset shows maximum of failure rate as a function of q
(equation (13))

Figure 6.
q-Weibull failure rate
curve as a function of time
for different values of
q , 1
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Notes: All curves are calculated with b = 0.5 and tmax = 100,
so h is taken from equation (10): h = 0.09, 0.25, 1, 25, 100,
400 corresponds to q = 0.97, 0.95, 0.9, 0.5, 0, –1, respectively;
as q approaches unity, intermediate random failure phase
decreases, and minimum value of failure rate hq(t*) increases
(hq(t*) → ∞ for q → 1). As q → – ∞, curves tend to a lower
bound (this particular instance, hq(t*) = 0.02, from equation
(9) with b = 0.5 and tmax =100)
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with b . 1 and q . 1, thus covering different behaviors of the failure rate. In all the
cases, the q-Weibull presented a greater coefficient of determination and a smaller
mean square error.

Figures 9-11 shows the reliability and failure rate curves for the three examples. It is
to be noted that the usual Weibull model (with q ¼ 1) systematically departures from
the experimental data (circles) for large times, in the three examples considered, while
the q-Weibull model is able to fit the whole range of the data.

i Time interval Failures i Time interval Failures

1 1 # t # 93.1 625 11 922 , t # 1,014.1 8
2 93.1 , t # 185.2 320 12 1,014.1 , t # 1,106.2 4
3 185.2 , t # 277.3 170 13 1,106.2 , t # 1,198.3 4
4 277.3 , t # 369.4 65 14 1,198.3 , t # 1,290.4 4
5 369.4 , t # 461.5 65 15 1,290.4 , t # 1,382.5 8
6 461.5 , t # 553.6 67 16 1,382.5 , t # 1,474.6 4
7 553.6 , t # 645.7 12 17 1,474.6 , t # 1,566.7 1
8 645.7 , t # 737.8 33 18 1,566.7 , t # 1,658.8 1
9 737.8 , t # 829.9 33 19 1,658.8 , t # 1,750.9 1

10 829.9 , t # 922 22 20 1,750.9 , t # 1,843 1

Table II.
Time to failure of

pumping rods in days

Pump time to failure in ascending order (days)

8 38 42 59 71 146 184
185 199 204 214 379 457 457
494 515 568 680 684 808 964

Table I.
Pump time to failure in

days in ascending order
(days)

Figure 8.
q-Weibull failure rate,

given by equation (8), with
b ¼ 0.5, h ¼ 1 and

different values of q . 1
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Note: hq(t) is a monotonically decreasing function for b < 1
and 1 ≤ q < 2
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Table III.
Time to failure of
production tubing in days
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Two examples (oil pumps and pumping rods) present failure rates with a bathtub shape,
and the last example (production tubings) exhibits the failure rate as a unimodal function.
Of course the usual Weibull model (with q ¼ 1) is unable to represent these cases.

5. Final remarks
Several models for failure rate function are found in the literature, many of them use
Weibull (or Weibull-like) as a basis. These distributions share in common the
exponential nature. The q-Weibull generalization uses a function that is exponential

Pump Pumping rod Production tubing
Weibull q-Weibull Weibull q-Weibull Weibull q-Weibull

b 1.05 0.82 0.95 0.42 0.12 1.31
h (day) 383 1,277 195 520 105 65
t0 (day) 27.66 20.51 256 59 0.61 0.24
Q 1.00 0.00 1.00 0.46 1.00 1.30
R 2 0.9761 0.9815 0.9904 0.9981 0.9818 0.9900
MSE 2.16 £ 1023 1.59 £ 1023 2.05 £ 1024 2.74 £ 1025 5.81 £ 1024 2.52 £ 1024

Table IV.
Fitting results

Figure 10.
Weibull (dotted lines) and

q-Weibull (solid lines)
models, and experimental

data (circles)
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Notes: Left panel: log-log plot of reliability curves; right panel: failure rate curves; both plots
show abscissas in time to failure of pumping rods

Figure 9.
Weibull (dotted lines) and

q-Weibull (solid lines)
models, and experimental

data (circles)
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Notes: Left panel: log-log plot of reliability curves; right panel: failure rate curves; abscissas
show time to failure of pumps
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only as a limiting case, and may yield asymptotic power-laws. The q-Weibull model is
able to describe four types of failure rate function, namely monotonically decreasing,
monotonically increasing, unimodal and U-shaped curves, with a single parsimonious
set of three parameters, representing a unification of various models, including the
versatile Burr XII distribution. Table V summarizes the possibilities with the
corresponding ranges of parameters.

Usual (q ¼ 1) Weibull model is unable to represent the whole bathtub curve, once h1(t)
is monotonically decreasing or monotonically increasing, depending on the value of
parameter b. Modeling of U-shaped bathtub curve with Weibull requires a piecewise
description, with b , 1 for the warm in phase, then b ¼ 1 for the intermediary random
failure phase and finally b . 1 for the wear out phase. In the present work we have
shown the q-Weibull capacity of continuously reproducing the whole bathtub curve with
the same set of constant parameters and without need of introducing ad hoc hypotheses.

We compare the usual Weibull with the q-Weibull models by means of three
examples which present different behaviors: failure rate as a bathtub shape and as a
unimodal curve. In all cases, the performance of the q-Weibull was superior to that of the
usual Weibull. Of course such a result was to be expected, due to the extra parameter q,
but it is important to remark that the improvements of the fittings are not merely
quantitative (as it should be, due to the additional parameter), but also qualitative, once
the q-Weibull model can describe behaviors (bathtub shape, and unimodal shape in the
failure rate curve) that are impossible to be described by the usual Weibull model.

q-Weibull is a natural extension of usual Weibull, and it has the advantage of being
originated from a theoretical background rooted in nonextensive statistical physics. Of
course the introduction of additional (empirically or theoretically based) generalizations,
like the use of linear or nonlinear transformation of time, use of multiple distributions,
time dependence of parameters, etc. as it was done with Weibull, will further enhance
flexibility and accuracy of q-Weibull model.

Figure 11.
Weibull (dotted lines) and
q-Weibull (solid lines)
models, and experimental
data (circles)

100

100 101 102

10–1

10–2

10–3

t (day) t (102day)

0 1 2 3 4 5 6 7

4

6

8

10

12

h q
 (

10
–3

da
y–1

)

Weibull

q-Weibull

Weibull

q-WeibullR
q

Notes: Left panel: log-log plot of reliability curves; right panel: failure rate curves; the
independent variable is time to failure of production tubing for both plots

0 , b , 1 b ¼ 1 b . 1

q , 1 Bathtub curve Monotonically increasing Monotonically increasing
q ¼ 1 Monotonically decreasing Constant Monotonically increasing
1 , q , 2 Monotonically decreasing Monotonically decreasing Unimodal

Table V.
Behavior of q-Weibull
failure rate according to
the range of parameters q
and b
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Appendix. Some mathematical properties of the q-Weibull distribution
A probability distribution is better characterized when its moments are known, and here we
advance them. We consider the usual raw moments (moments about zero), and the usual central
moments (moments about the mean). For a detailed analysis of the generalized moments of
q-distributions, see Tsallis et al. (2009).

To evaluate the raw moments (moments about zero) of equation (3), m0
n ¼

R1
0 t

nf qðtÞdt, we
shall consider separately the cases q , 1 and q . 1. It is not necessary to set h ¼ 1 as shown by
Vuorenmaa (2006). For the case q , 1, it is useful to consider the integral representation of the
q-exponential given by Lenzi et al. (1999). For the case q . 1, it is necessary to use the integral
representation proposed by Tsallis (1994). Straightforward calculations lead to the raw moments.
For q , 1:

m0
n ¼ h nG 1 þ

n

b

� �
Gðð3 2 2qÞ=ð1 2 qÞÞ

ð1 2 qÞn=bGððð3 2 2qÞ=ð1 2 qÞÞ þ ðn=bÞÞ
; if t0 ¼ 0; ðA1Þ

or:

m0
n ¼

Xn
j¼0

n

j

 !
tn2j
0 ðh2 t0Þ

jG 1 þ
j

b

� �
£

Gðð3 2 2qÞ=ð1 2 qÞÞ

ð1 2 qÞj=bGððð3 2 2qÞ=ð1 2 qÞÞ þ ð j=bÞÞ

( )
;

with t0 – 0

ðA2Þ

and for q . 1:

m0
n ¼ h nG 1 þ

n

b

� �
Gððð2 2 qÞ=ðq2 1ÞÞ2 ðn=bÞÞ

ðq2 1Þn=bGðð2 2 qÞ=ðq2 1ÞÞ
; if t 0 ¼ 0; ðA3Þ

or:

m0
n ¼

Xn
j¼0

n

j

 !
tn2j

0 ðh2 t0Þ
jG 1 þ

j

b

� �
£
Gððð2 2 qÞ=ðq2 1ÞÞ2 ð j=bÞÞ

ðq2 1Þj=bGðð2 2 qÞ=ðq2 1ÞÞ

( )
;

witht0 – 0

ðA4Þ

with 1 , q , qupper and qupper ¼ 1 þ b/(n þ b). Note that q ! 1 recovers the
moments of usual Weibull pdf, m0

n ¼ h nGðð1 þ nÞ=bÞ; for t0 ¼ 0

e m0
n ¼

Pn
j¼0

n

j

 !
tn2j
0 ðh2 t0Þ

jGðð1 þ jÞ=bÞ

( )
; for t0 – 0. The upper limit qupper attains
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the values limb!0qupper ¼ 1, limb!1qupper ¼ 2, and limn!1qupper ¼ 1. The latter limiting
behavior means that it is not possible that q-Weibull pdf has all its moments for q . 1
(all moments are defined for q # 1). As q departs from unity from above (for constant b),
q-Weibull loses its higher moments (normalizability, that is m0

0 ¼ 1, is preserved ;q , 2). Note
that tmax is the mean time between failures (MTBF). We remind the reader that there are many
distributions that do not have all its moments. The Cauchy-Lorentz distribution, for instance, has
no mean, variance or higher moments. Usual Weibull pdf has all moments, which is typical for
distributions with exponential decay.

Central moments (moments about the mean) are found using the binomial transformation of
the raw moments, as usual:

mn ¼
Xn
k¼0

n

k

 !
ð21Þn2km0

kðm
0
1Þ

n2k; if t0 ¼ 0; ðA5Þ

or, for t0 – 0:

mn ¼
Xn
j¼0

n

j

0
@

1
Aðt0 2 m0

1Þ
n2jðh2 t0Þ

j £ G 1 þ
j

b

� �
Gððð2 2 qÞ=ðq2 1ÞÞ2 ð j=bÞÞ

ðq2 1Þj=bGðð2 2 qÞ=ðq2 1ÞÞ

8<
:

9=
;;

1 , q , 1 þ b
bþn

;

ðA6Þ

and:

mn ¼
Xn
j¼0

n

j

0
@

1
Aðt0 2m0

1Þ
n2jðh2 t0Þ

j £ G 1 þ
j

b

� �
Gðð3 2 2qÞ=ð1 2 qÞÞ

ð1 2 qÞj=bGððð32 2qÞ=ð1 2 qÞÞ þ ð j=bÞÞ

8<
:

9=
;;

q, 1:

ðA7Þ

The median of q-Weibull pdf is Md ¼ t0 þ (h 2 t0)(2q
02 1q0lnq

02)1/b, with the q-logarithm defined
as Tsallis (1994) lnqx ¼ ðx 12q 2 1Þ=ð1 2 qÞ, that is the inverse function of the q-exponential,
q0 ¼ 1/(2 2 q). Its mode is Mo ¼ t0 þ (h 2 t0){(b 2 1)/[b þ (1 2 q)(b 2 1)]}1/b, if b . 1.

An interesting mathematical feature is found by proper scaling of variables in the failure rate
curve. The dimensionless failure rate may be defined as zðtÞ ; hqðtÞ=hqðt* Þ (hqðt* Þ is given by
equation (13)), and the dimensionless time t ; t=t* , with t* given by equation (12), for the
unimodal case (1 , q , 2 and b . 1), or t ; t=tmax, with tmax given by equation (10), for the
bathtub shaped case (q , 1, 0 , b , 1).

With this procedure, the dependence of the parameters q, h and t0 is curiously absorbed by
the dimensionless time, and the dimensionless failure rate z depends only on b and t. For the
unimodal case, zðtÞ ¼ ðbtb21Þ=ð1 þ ðb2 1ÞtbÞ, and for the bathtub case, zðtÞ ¼ ð1 2
bÞð12bÞ=bðbtb21Þ=ð1 2 tbÞ: Data collapse yielded by proper scaling appears very frequently
in the physics literature, and may be also useful within the context of reliability engineering.
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