Information and Software Technology 54 (2012) 1014-1028

journal homepage: www.elsevier.com/locate/infsof

Information and Software Technology

=

Contents lists available at SciVerse ScienceDirect = INFORMATION |

The Pro-PD Process Model for Product Derivation within software product lines

Padraig O’Leary **, Eduardo Santana de Almeida?, Ita Richardson®

A RIiSE - Reuse in Software Engineering and Computer Science Department, Federal University of Bahia, Salvador, BA, Brazil
bLero - The Irish Software Engineering Research Centre, University of Limerick, Ireland

ARTICLE INFO

Article history:

Received 12 May 2011

Received in revised form 13 March 2012
Accepted 27 March 2012

Available online 1 April 2012

Keywords:

Software product lines
Product derivation
Process

ABSTRACT

Background: The derivation of products from a software product line is a time consuming and expensive
activity. Despite recognition that an effective process could alleviate many of the difficulties associated
with product derivation, existing approaches have different scope, emphasise different aspects of the
derivation process and are frequently too specialised to serve as a general solution.

Objective: To define a systematic process that will provide a structured approach to the derivation of
products from a software product line, based on a set of tasks, roles and artefacts.

Method: Through a series of research stages using sources in industry and academia, this research has
developed a Process Model for Product Derivation (Pro-PD). We document the evidence for the construc-
tion of Pro-PD and the design decisions taken. We evaluate Pro-PD through comparison with prominent
existing approaches and standards.

Results: This research presents a Process Model for Product Derivation (Pro-PD). Pro-PD describes the
tasks, roles and work artefacts used to derive products from a software product line.

Conclusion: In response to a need for methodological support, we developed Pro-PD (Process Model for
Product Derivation). Pro-PD was iteratively developed and evaluated through four research stages. Our
research is a first step toward an evidence-based methodology for product derivation and a starting point

for the definition of a product derivation approach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

A software product line (SPL) is a set of software-intensive sys-
tems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed
way [1]. The SPL approach makes a distinction between domain
engineering, where a common platform for a number of products
is designed and implemented, and application engineering, where
a product is derived based on the platform components [2]. The
separation into domain engineering and application engineering
allows the development of software artefacts which are shared
among the products within that domain. It is during application
engineering that the individual products within a product line
are constructed. The process of creating these individual products
using the platform artefacts is known as product derivation. Prod-
uct derivation is concerned with the construction process of prod-
ucts and does not consider application engineering tasks such as
system delivery, maintenance or support.

* Corresponding author.
E-mail addresses: padraig.oleary@rise.com.br (P. O’Leary), esa@rise.com.br (E.S.
de Almeida), ita.richardson@lero.ie (I. Richardson).

0950-5849/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.03.008

A number of publications discuss of the difficulties associated
with the product derivation process. Hotz et al. [2] describe it as
“slow and error prone, even if no new development is involved”.
Griss [3] identifies the inherent complexity and the coordination
required in the derivation process by stating that “...as a product
is defined by selecting a group of features, a carefully coordinated
and complicated mixture of parts of different components are in-
volved”. Therefore, the derivation of individual products from
shared software assets is still a time-consuming and expensive
activity in many organisations [4,5]. As Deelstra et al. [5] state
there “is a lack of methodological support for application engineer-
ing and, consequently, organisations fail to exploit the full benefits
of software product families.” As a result, current approaches fail to
provide a holistic view of product derivation. This leaves organisa-
tions with no centralised starting point for defining an approach to
product derivation and results in ad hoc solutions. Consequently,
there is a strong need for a structured approach to product deriva-
tion which defines activities, tasks, roles, inputs and outputs of
each step in a structured and systematic way.

Despite this, there has been little work dedicated to the overall
product derivation process. Rabiser et al. [6] claim that “guidance
and support are needed to increase efficiency and to deal with
the complexity of product derivation”. This paper aims to fill this
identified gap and the objective of the research presented is stated


http://dx.doi.org/10.1016/j.infsof.2012.03.008
mailto:padraig.oleary@rise.com.br
mailto:esa@rise.com.br
mailto:ita.richardson@lero.ie
http://dx.doi.org/10.1016/j.infsof.2012.03.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1015

— = g
P Research
Objective

Data E*relrt
; o]
Collection Bt

Academic
Comparative
Analysis

Industrial

Case Study Evaluation

Pro-PD
Version

o

Stage 1

Establishing
Relevance ‘

//
U
.

Fig. 1. Overview of research design.

as: To define a systematic process which will provide a structured
approach to the derivation of products from a software product line
based on a set of tasks, roles and artefacts.

In order to achieve this objective, we have developed and evalu-
ated the Pro-PD process for product derivation. Pro-PD is the conclu-
sion of research which has been iteratively developed through four
research stages (see Fig. 1). In-progress results were previously pub-
lished, for example, in [4], and along with the final model, the results
of each of these research stages are presented in this paper.

The remainder of this paper is structured as follows: Section 2
discusses existing approaches to product derivation. Section 3 pre-
sents the research design. In section 4, we present an overview of
the final Pro-PD process reference model. In Section 5, we describe
the design decisions taken during the development of Pro-PD.
Section 6 presents the evaluation of Pro-PD. Section 7 concludes
the paper.

2. Related research

A number of models have been developed to support software
product line development within organisations. These include
PuLSE, FAST, Dream, COVAMOF, DOPLERY°" (Decision-Oriented
Product Line Engineering for effective Reuse: User-centered
Configuration), FIDJI, FORM and KobrA and the SEI Product Line
Practice Framework (PLPF). In Section 2.1 we will briefly describe
these approaches focusing on the process of application engineer-
ing or product derivation. According to Deelstra, product deriva-
tion is the process of constructing a product from a software
product line’s (SPL) core assets [5]. Therefore this research does
not consider specific development techniques or tool approaches
but focusses on the process involved in the derivation of products.
Our observations are described in Section 2.2.

2.1. Main approaches

PuLSE (Product Line Software Engineering) [7] is a method engi-
neering framework consisting of three major elements: Deployment
Phases, Support Components and Technical Components. PuLSE-I
[8] activities include planning product derivation. However, the ap-
proach defines roles and tasks on a very high-level. According to
Atkinson et al. [9] while PuLSE proved to be helpful for introducing
sound documentation and development techniques into existing
development practices, where a formalised process did not exist,
the introduction of PuLSE in industry turned out to be problematic.

The FAST application engineering process [10] covers require-
ments elicitation, requirements analysis, product configuration,
and additional development and testing. Product derivation is
greatly simplified by describing the products in the application
modelling language and individual products can be developed
quickly. However, to enable automatic product derivation, system
specifications must be precisely defined and specified. Addition-
ally, since requirements are specified using custom domain speci-
fication languages, other organisations may have difficulties in
adopting them.

Kim et al. [11] propose an overview of a complete method,
Dream, which integrates both SPL engineering and model-driven
architecture. However, there is little support for the derivation
process other than a high level description of the activities re-
quired. No guidance is provided as to its use within an industrial
setting.

A product derivation framework presented by Deelstra et al. [5]
was developed based on two industrial case studies. A first product
configuration is derived from the product line artefacts. This initial
configuration is modified in a number of subsequent iterations until
the product sufficiently implements the imposed requirements.
This work by Deelstra et al. provides a framework of terminology
and concepts for product derivation (part of COVAMOF approach).
The approach is tool-focused and centred on the configuration of
products. However, there is no support for the early phases of prod-
uct derivation or product specific development and testing. The
framework assumes that ‘engineers’ perform all the work and does
not specify responsibilities, nor does it define role and task struc-
tures. The framework focuses on product configuration and is only
a high-level attempt at providing the methodological support that
Deelstra et al. [5] and others [8,12,13] agree is required for product
derivation.

DOPLERY®" [14] is a tool-supported approach for product
configuration with capabilities for adapting and augmenting vari-
ability models to guide sales people and application engineers
through product derivation. In a research-industry collaboration
with Siemens VAI Metals Technologies, the researchers developed
a model to support modelling variability in product derivation.
DOPLERY" js focused on providing user-centred tool support for
product derivation, rather than supporting the product derivation
process within the approach. DOPLERV®" is discussed in more
detail in Section 5.3.

The SEI Product Line Practice Framework (PLPF) [1] defines 29
practice areas. A practice area is a body of work or a collection of



1016 P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

activities that an organisation must master to successfully carry
out the essential work of a product line [1]. The PLPF will be dis-
cussed in more detail in Section 6.

In addition to the PLPF, the SEI also supports the automation of
product derivation. McGregor [13] describes a high-level frame-
work of practices for deciding when to automate product deriva-
tion, how to choose the right technology, and how to plan and
carry out the derivation process. According to the framework, pro-
duction plans are used to prepare the derivation process. Such plans
are documents describing inputs, necessary activities, and desired
outputs of product derivation. Chastek and McGregor [15] propose
detailed guidelines for creating, using, and evaluating such produc-
tion plans.

The framework defined by the SEI is a robust description of best
practice involving important technical and non-technical aspects
grouped in software product line practical areas. However, the
framework is generic and does not define process support. There
is a strong focus on planning product derivation with the ultimate
goal to automate the derivation process.

FORM [16] was directly derived and developed from FODA [17]
and extends it to the software design phases. It applies software
engineering principles but gives only a few suggestions regarding
implementation. KobrA [9] has been derived as an instantiation
of PuLSE with the intention of rapid use. It makes use of UML
diagrams and templates for the defined development items and
is component-oriented. However, it does not provide the required
process detail.

The approaches and methods evaluated have very different
scope and emphasise different aspects of the derivation process.
Some of them, like FODA [17], capture only a small part of the
process while others, like PuLSE-I [8] are much broader. All of them
(with the exception of the SEI PLPF) come with different amounts
of prescription and tool support. Some such as [5,8,11,16,18], de-
scribe a generic process at a high level while others such as
[9,10,19] are very close to practice and are prescriptive in the
definition of their process steps and documentation.

2.2. Limitations of current approaches

From our analysis of current approaches, we have identified key
areas which have not been resolved by previous models. Further-
more, evidence collected during the course of this research indi-
cated that from an industry perspective, these areas need to be
addressed. Therefore, the development of a model for product
derivation should include:

o Definition of the flow of artefacts.
e Definition of roles and responsibilities.
e Provision of process support.

2.2.1. Definition of flow of artefacts

Product development within a SPL requires a high degree of
coordination and communication. Frequently, both customer-spe-
cific and platform development occur in parallel. There is a need
for awareness of the artefacts and the stakeholders involved in
product derivation.

Many of the existing approaches do not explicitly define the
flow of artefacts within product derivation. In Dream [11] little
information is provided on the usage of model artefacts during
the different phases of the approach. DOPLERY®" does provide
some description of artefact flow however the specified level of
granularity is too abstract to give useful guidance for practitioners.
PuLSE-I [8] names the development items in a descriptive manner.
However, like the others, it does not provide a detailed description
of artefact usage within the process.

2.2.2. Definition of roles and responsibilities

Diverse people with diverse tasks, roles, and responsibilities are
involved in product derivation. Current approaches do not provide
sufficient support for the managing of roles and assignment of
roles to tasks and artefacts within the product derivation process.
DOPLERY®" acknowledges the need for defining roles and respon-
sibilities during a derivation project but no guidance is provided on
how this should occur. FAST [10] assigns activities to one of the
three defined derivation roles but this is done at a very high level
and is unusable in any practical setting.

2.2.3. Provision of process support

The arguments for defining a process should be a familiar one. A
well-defined process can be managed, measured and observed, and
therefore improved. An emphasis on processes helps software
development to become more like engineering, with predictable
time and effort constraints, and less like art [20]. Bockle et al.
[21] finds that transforming an organisation to create products as
members of a product line requires installing corresponding pro-
cesses, and organisational structure and methods.

Clements and Northrop state that: “organisations that do not
have a strong process culture will find deploying a successful product
line a perilous proposition” [1].

Furthermore, key authors in the area have called for process
support within product derivation [5,6,13,22]. Despite this, there
is relatively modest support for the derivation process in existing
approaches. KobrA [9] provides a detailed analysis model and some
methodological guidelines. However a detailed description is not
provided. Deelstra et al. [5] provide a framework of terminology
and concepts, however it is presented at a high level. A good start-
ing point could be PuLSE-I [8], as it names and briefly describes the
development items, which roles are responsible for which tasks
and which artefacts are consumed or produced by a certain activ-
ity. Furthermore, many dependencies exist to other parts of the
PuLSE process which means that the approach is not very applica-
ble outside the scope of a PuLSE applied product line.

2.2.4. Pro-PD provisions

The development of a useable process reference model needs to
explicitly consider these limitations. For those models that we
have reviewed, there are a number of defined processes but those
described are too abstract or not explicit in their description of the
process, lacking defined flow of artefacts, roles and responsibilities.
Furthermore, they are frequently too specialised to a specific
development technique to serve as a general solution. The research
did not consider specific development techniques or approaches to
product derivation. In Pro-PD, we have aimed to be cognisant of
each of these so that the model is usable in practice.

3. Research methodology

The goal of our research is to provide an evidence based process
approach for product derivation. With this in mind, our research
design was influenced by Ahlemann and Gastl [23] which focused
on empirically grounded and valid process model construction. In
an analogy with systems engineering, the overall construction pro-
cess is based on a cyclic structure to allow for model corrections on
preceding construction stages via feedback-loops. Although the
stages are dealt with sequentially, they contain cyclic sub-pro-
cesses. The research design is compatible with common sugges-
tions for qualitative research designs in process models [24].
Stages 1 and 2 are the primary construction steps. Stage 3 is both
a development and an evaluation step. Stage 4 is the evaluation
step. An overview of the research design is presented in Fig. 1.



P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1017

Stage 1, core construction, entailed a literature review from
which a preliminary version of the model was developed. The liter-
ature review aimed to identify the fundamental practices of prod-
uct derivation, through studying existing identified product
derivation practices. Concurrent to the literature review, a series
of iterative expert opinion workshops was held. Participation of
expert users in the core construction stage is emphasised by Rose-
mann and Schiitte [25] and Schlagheck [26], as the users are the
subject-matter experts of the problem domain. Furthermore, as
the research is designed for use in both industry and academia,
the selection of experts should reflect this. With this in mind, the
participants were two academic SPL experts with 20 years of expe-
rience, an industrial SPL expert with 10 years of experience and a
software process improvement expert.

Participants met twice per month for 6 months. At each work-
shop, the model was presented to the experts and was evaluated
using formal questions on model structure. The model was dis-
cussed amongst the group until a consensus was formed and the
model was revised. After each workshop we returned to the liter-
ature and based upon the expert revisions, Pro-PD V1, was itera-
tively developed.

Stage 2 was an industrial case study within Robert Bosch GmbH.
This was carried out as an inductive, empirical validation [23]. We
chose a case study as they are often considered to be the optimal
approach for researching practice based problems, where the aim
is to represent the case authentically “in its own terms” [27].
Pro-PD V1 was mapped and compared to product derivation within
the company. Robert Bosch GmbH was chosen for the case study
because previous SPL efforts have been judged a success by their
peers [28]. The case study was carried out in conjunction with
the corporate research division. This case study was dual-purpose.
In the first instance, we modelled the Bosch product derivation
process for their internal use and then we updated Pro-PD based
on our observations. This resulted in Pro-PD V2.

In conducting the case study, we analysed internal company
documentation, which illustrated the existing process through
completed projects. We then organised an onsite visit including a
2-day workshop with the corporate research division of Robert
Bosch GmbH. Attendees included selected product architects and
developers from product line business units within the company.
The primary researcher (O’Leary) was accompanied by two other
researchers, one of whom had published extensively on case study
research. After the workshop, a technical report on the company’s
product derivation process was created and validated through
feedback with Bosch SPL experts. Both the documentation analysis
and the workshop outputs were used to identify what components
should be included in Pro-PD V2.

Stage 3 of the research, an academic comparative analysis, was
carried out during a research collaboration with Johannes Kepler
University Linz, Austria (JKU). The results of this comparative
analysis are available here [4]. JKU had previously developed the
DOPLERPY®" approach. Based on initial discussions and existing
documentation of our two approaches, a high-level mapping was
created. This was done in a distributed manner using spreadsheets
to visualise commonalities and differences between the two
approaches. Using this mapping, the authors of this paper met to
analyse the first results, discuss open issues, and detail the com-
parison. We then conducted several telephone conferences with
JKU researchers to work on the details of the comparison. Pro-PD
V2 was compared to the activities identified by DOPLER for Sie-
mens VAL Based on this comparison Pro-PD V3 was developed.

Pro-PD V3 was evaluated during stage 4 of the research by
studying how key activities were supported by prominent existing
approaches and by demonstrating how Pro-PD was compliant with
existing standards. Compliance with standards and norms is pro-
ven by a direct mapping of reference information model elements.

In this stage, we were not looking to identify new elements but to
validate the existing elements of Pro-PD or identify gaps within
Pro-PD. This stage was performed in two steps.

Firstly, an inter-model evaluation was conducted with the SEI
PLPF. During the evaluation, Pro-PD V3 was compared to the SEI
PLPF. According to Ahlemann and Gastl [23], process models that
are compatible with such standards and norms can be regarded
as high quality.

Secondly, we systematically evaluated Pro-PD V3 by analysing
support for its activities in three independently developed, pub-
lished and highly-cited approaches: COVAMOF [22], FAST [10],
and PuLSE-I [8]. The approaches have been developed with differ-
ent goals, for different purposes, and in different domains. Further-
more, in our literature review we identified that these three
approaches were influential through their frequent citations.

Although a framework for evaluating product derivation ap-
proaches does not exist, we adapted a framework! developed for
the purpose of evaluating software product line architecture design
methods [29]. The original framework by Matinlassi [29] considers
software product line architecture design methods by focusing on
method context, user, structure and validation. Its purpose is to
study and compare existing approaches for their design of software
product line architectures. We used this framework as a basis for our
validation for two reasons. Firstly, it provided a simple tabular eval-
uation structure. Secondly, it had previously been published at ICSE,
which ensures that it has been peer-reviewed.

We adapted the questions regarding the category context pro-
posed by Matinlassi [29] from “product line architecture design
method” to “product derivation approach”. We adopted only one
element for the category user (target group) as our focus is on eval-
uating the contents (support for key activities) and not the user
support. For the category contents, we adopted the first two
elements activities and artefacts. Through following the research
stages outlined, we developed and evaluated Pro-PD: Process Mod-
el for Product Derivation.

4. Pro-PD - a Process Model for Product Derivation

When these four stages of the research were completed (Core
Construction, Industrial Case Study, Academic Comparative Analy-
sis and Evaluation), Pro-PD: Process Model for Product Derivation
had been developed. Pro-PD focuses on the roles, artefacts, tasks
and activities used to derive products from a software product line.
Fig. 2 illustrates the interaction of these various process elements
in a matrix. Table 1 presents the matrix legend. These various ele-
ments represent the process building blocks of Pro-PD. Roles repre-
sent a set of related skills and responsibilities. Artefacts are
produced, modified or used by tasks. Tasks are assignable units
of work that usually consume or produce one or more artefacts.
Activities are grouping of related tasks that share a specific devel-
opment goal.

4.1. Units of work: tasks and activities
Pro-PD contains the following activities:

e Initiate Project - the preparatory tasks required to establish a
product derivation project.

e Identify and Refine Requirements - the preparatory tasks
required to commence a new iteration of the product derivation
project.

e Derive the Product - creates an integrated product configuration
that makes maximum use of the platform and minimises the

T This work was a result of a collaboration with Dr. Rick Rabiser.



1018

Roles

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

Work Products

Activities/Tasks

Product Developer

Product Manager

Base Product Configuration
Customer Requirements

Product Analyst
Product Architect
Product Tester

Customer

Initiate Project

Customer Specific Product Requirements
Developed or Adapted Components

Product Specific Platform Requirements

Negotiated Customer Requirements
Product Requirements

Existing Platform Configurations
Glossary

Integrated Product Configuration
New Platform Release

Platform Architecture

Platform Components

Platform Feedback

Platform Requirements

Platform Test Artefacts

Product Release

Product Test Cases

Required Product Development
Selected Platform Components
Translated Customer Requirements

0
N

Translate Customer Requirements

N
v

o

Coverage Analysis

v

N
AN
o
v

Customer Negotiation

A

v

Create the Product Requirements

D|o

Verify the Product Requirements a

w

<f>

Define Role and Task Structures

</>

Identify and Refine Requirements

Find and Outline Requirements P a

> |<f>

Create the Product Test Cases

Allocate Requirements

</>

o

Create Guidance for Decision Makers a

<f>

Derive the Product

Select Closest Matching Configuration

Derive New Configuration

Evaluate Product Architecture <[>

Select Platform Components

W
AA AN

T|w |D|O|O
(1]

A

Platform-Product Integration

Platform-Product Integration Testing

<f> < <

Identify Required Product Development P

[H]

Develop the Product

Component Development

Component Testing

<> < <

Component Integration

oo |TD

Component Integration Testing a

Test the Product

Run Acceptance Tests L T T T 1

<[ T [ |

[<rs] ]

Management and Assessment

Provide Feedback to Platform Team a |a |a

<[> <

Manage Project

<>

Fig. 2. Pro-PD matrix.

Table 1
Pro-PD matrix legend.
Symbol Description
P Primary Performer
A Secondary Performer
< An input to a task
> An output from a task
<[> Both an input and an output from a
task

amount of product specific development required.

e Develop the Product - facilitates requirements that could not be
satisfied by a configuration of the existing assets through com-
ponent development or adaptation.

e Test the Product - validates the current product release.

e Management and Assessment — provides feedback to the plat-
form team and monitors progress of derivation project.

Fig. 3 gives on overview of these Pro-PD activities and the iter-
ative nature of the Pro-PD process. Development iterations allow
the phased implementation of the product requirements. This
permits partial validation of the product with the customer before

the derivation is finished, assisting in identifying whether addi-
tional development iterations are required.

4.1.1. Initiate Project

Derivation does not start “from scratch”, i.e., by just selecting fea-
tures or taking decisions described in a variability model. The Initiate
Project activity contains the preparatory tasks required to establish a
product derivation project. Requirements elicitation is distributed
across three of these tasks: Translate Customer Requirements, Cover-
age Analysis and Create the Product Requirements. Table 2 describes
the Initiate Project tasks and their purpose.

4.1.2. Identify and Refine Requirements

The Identify and Refine Requirements activity contains the prepa-
ratory tasks required to start a new product derivation iteration.
Table 3 describes the Identify and Refine Requirements tasks and
their purpose.

4.1.3. Derive the Product
The Derive the Product activity contains the tasks required to cre-
ate a integrated product configuration that makes maximum use of



P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

Identify and
Refine
Requirements

Initiate Project

1019

Product
Release

Test the
Product

Management
and
Assessment

Develop the
Product

Derive the
Product

Fig. 3. Overview of Pro-PD activities.

Table 2
Initiate Project Tasks.

Task Purpose

Translate Customer
Requirements
Coverage Analysis

To translate the Customer Requirements into the internal organisational language. The Product Analyst used a customer terminology Glossary
to assist in translating specific customer terms to platform specific terminology. Output is the Translated Customer Requirements
To perform a comparison between the Translated Customer Requirements and the Platform Requirements. The Translated Customer

Customer Negotiation

Create the Product
Requirements

Verify the Product
Requirements

Define Role and Task
Structures

Requirements, which are within the scope of the platform, are identified. Requirements outside the scope of the platform are contained in
the Customer Specific Product Requirements

Negotiate customer requirements, which fall outside scope of the product line i.e. Specific Product Requirements. Practical arguments such as
time to market and costs of implementation must be considered before deciding on requirements for implementation. Requirements are
allocated to specific development iterations based on customer priority. The output is the Negotiated Customer Requirements

To form the Product Requirements using the Negotiated Customer Requirements and the Translated Customer Requirements, which were within
the scope of the platform. The Platform Requirements can be used as a baseline

The Product Requirements are reviewed and verified by the key stakeholders in the project, the Customer, Product Architect and Product
Manager

The goal is to define who is responsible for resolving what remaining variability in product derivation to fulfil the Product Requirements.
The output is an annotated Product Requirements with individual requirements assigned to specific teams and personal

Table 3

Identify and Refine Requirements Tasks.

Task

Purpose

Find and Outline
Requirements
Create the Product Test Cases

Allocate Requirements
Create Guidance for Decision

The functional and non-functional requirements for the system are specified and scoped by the Product Analyst. With every requirement,
it must be decided whether to integrate it into the platform or into an individual product [30]

Design the Product Test Cases for requirements in the Product Requirements. Typically, the Product Tester uses the Platform Test Artefacts as
a basis for the creation

The Product Requirements are allocated to relevant disciplines, e.g., hardware discipline, algorithms

Guidance can be linked into the Product Requirements, often to external sources to provide information on the background to a particular

Makers
technical, decisions

decision. Guidance is essential, especially for domain experts like customers and sales people, who are confronted with many, often

the platform and minimise the amount of product specific develop-
ment required. Table 4 describes the tasks and their purpose.

4.1.4. Develop the Product

The Develop the Product activity contains the tasks that imple-
ment requirements that could not be implemented through config-
uration of existing assets. Table 5 describes the tasks and their
purpose.

4.1.5. Test the Product
The Test the Product activity contains the tasks required to test
the product. Table 6 describes the tasks and their purpose.

4.1.6. Management and Assessment

The Management and Assessment activity contains the tasks
required to oversee product derivation and to provide essential
feedback to the platform team. This is an ongoing activity that oc-
curs in parallel to the phased execution of other activities. Table 7
describes the tasks and their purpose.

4.2. Roles

In Pro-PD we identified roles (see Table 8) that represent the
different responsibilities, which occur during product derivation:
Customer, Product Analyst, Product Architect, Product Developer,
Product Manager and Product Tester. These roles are assigned to
specific tasks, which create and modify the different artefacts.



1020

Table 4
Derive the Product Tasks.

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

Task

Purpose

Select Closest Matching
Configuration

Derive New Configuration

Evaluate Product Architecture

Select Platform Components

Platform-Product Integration
Platform-Product Integration

A previous product configuration is found in the platform that respects the majority of the Product Requirements. Configuration
selection can also help speed up the development process by choosing a previously tested solution especially in instances when two or
more configurations can be used

If no Existing Platform Configuration can be found, a new one is derived from the Platform Architecture. Here the Product Architect makes
a copy of the latest Platform Architecture. The Product Architect tailors the Platform Architecture to form the product architecture, which
is contained in the Base Product Configuration and resolves variation points according to the Product Requirements

In the Evaluate Product Architecture task the Base Product Configuration, which contains the instantiated product architecture, is
evaluated to see if it meets the specific behavioural and quality requirements of the product at hand. If the product architecture does
not satisfy these requirements then the product team derive the architecture again by performing Select Closest Matching Configuration
or Derive New Configuration. The results of the evaluation are collected in the Platform Feedback artefact

Components are selected from the collection of Platform Components for addition to or replacement of components in the Base Product
Configuration

The Base Product Configuration and the Selected Platform Components are integrated. The output is the Integrated Product Configuration
Validates the platform assets for this particular configuration. The integration tests should reuse Platform Test Artefacts

Testing
Identify Required Product Theoretically at this stage the Integrated Product Configuration could satisfy customer requirements and testing should begin.
Development However, this is the ideal case and assumes all the Product Requirements are covered by the platform. In most cases some additional
development will be required. This additional development is captured in the Required Product Development artefact
Table 5
Develop the Product Tasks.
Task Purpose
Component The source code to implement new functionality or to adapt an existing platform component at product level is developed by the Product
Development Developer. These changes are implemented based on the Required Product Development artefact. The output is Developed or Adapted Components
artefact

Component Testing When a component is built or adapted, initial or tailored versions of a component will need to be tested rigorously through Component Testing.
For adapted platform components Platform Test Artefacts can be used as a basis for the component unit tests

Component In Component Integration, the Developed or Adapted Components are integrated into the Integrated Product Configuration to create the Product
Integration Release
Integration Testing Integration Testing then validates the Product Release. The integration tests should reuse Platform Test Artefacts. This also ensures that no new

errors appear due to the integration of Developed or Adapted Components into the Integrated Product Configuration

Table 6
Test the Product Tasks.
Task Purpose
Run Acceptance The Product Tester checks the Product Release for compliance with the Product Requirements. The Product Tester does this through using the Product
Tests Test Cases creating in the Create the Product Test Cases task. The majority of the Product Requirements will be a subset of the product line

functionality. Therefore the Product Test Cases contain many reused tests from the Platform Test Artefacts

Table 7

Management and Assessment Tasks.

Task

Purpose

Provide Feedback to
Platform Team

Manage Project

In the Provide Feedback to Platform Team task, feedback is provided to the Platform Manager on core asset usage during the project, how
user friendly the platform assets were and areas for improvement within the platform specifically product requirements which should

be adopted by the platform. In addition, the product team identifies product specific components that the platform could potentially
benefit from through adoption. The Platform Feedback artefact is an input to product line evolution

Product Manager assesses project status and identifies any blocking issues. Assessment of project status includes overseeing the phased
implementation of the product requirements. The phased implementation allows the partial validation of the product with the customer
before the derivation is finished. This assists in identifying whether additional development iterations are required. Identify and manage

exceptions, problems and risks. Communicate project status and manage stakeholder’s expectations

Table 8
Roles and Responsibilities.
Role Primary Responsibilities
Customer Customer Negotiation
Product Analyst Translate Customer Requirements, Find and Outline Requirements
Product Coverage Analysis, Create the Product Requirements, Verify the Product Requirements, Create Guidance for Decision Makers, Select Closest Matching
Architect Configuration, Derive New Configuration, Evaluate Product Architecture, Platform-Product Integration, Component Integration, Identify Required
Product Development
Product Select Platform Components, Component Development, Component Testing
Developer
Product Customer Negotiation, Define Role and Task Structures, Allocate Requirements, Assess Results, Provide Feedback to Platform Team, Manage Project
Manager

Product Tester  Create the Product Test Cases, Platform-Product Integration Testing, Component Integration Testing, Run Acceptance Tests




P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1021

Table 9
Artefacts.

Artefact Type Artefacts

Software Artefact

Base Product Configuration, Developed or Adapted Components, Existing Platform Configurations, Integrated Product Configuration, New

Platform Release, Platform Architecture, Platform Components, Platform Test Artefacts, Product Release, Product Test Cases, Selected Platform

Components

Documentation
Artefact

Requirements

Customer Requirements, Customer Specific Product Requirements, Glossary, Negotiated Customer Requirements, Platform Feedback, Platform
Requirements, Product Specific Platform Requirements, Product Requirements, Required Product Development, Translated Customer

4.3. Artefacts

In Pro-PD, an artefact is produced, modified or used by a task
within the derivation process. The list of Pro-PD artefacts is listed
in Table 9 and classified as software or documentation artefacts.

4.4. Pro-PD as a reference model

Pro-PD is defined at a high level and should not to be used ‘as is’
but through specialisation. In order to create a working company
specific model this process needs to be specialised and a lower
level of model abstraction needs to be constructed. Different
instantiations of Pro-PD are created using the roles, tasks, activities
and artefacts defined. For example, we have demonstrated the
adaptability of Pro-PD as a reference model by proposing an Agile
instantiation (A-Pro-PD) [31], which is an adapted version of
Pro-PD that satisfies the principles of the Agile manifesto [32].

4.5. Pro-PD summary

Pro-PD was developed to meet the needs for process support in
product derivation and is structured around five essential activi-
ties. Each of these activities contains roles, tasks and artefacts.

5. Establishing Relevance and Research Innovation

As described in Section 3, when developing Pro-PD, we followed
four stages of research. Three of these focused on Establishing Rel-
evance and Research Innovation. We now present the high-level
design decisions taken during each of these three stages which re-
sulted in the development of Pro-PD as has been presented in
Section 4.

5.1. Stage one - literature review and expert opinion workshops

During stage 1, core construction, we initially created an appro-
priate model skeleton, showing activities for derivation, to orga-
nise the overall structure of the model. For the development of
the model skeleton the researcher focused on prominent existing
approaches within the literature [8,15,16,22,33]. These approaches
were selected as they proposed a process overview for product der-
ivation that considers all or almost all of the derivation process.
Furthermore, the considered approaches all had a derivation skel-
eton themselves, i.e. a high level activities. Based on these sources,
we identified the following high level activities for Pro-PD V1:

Impact Analysis.

Reusability Analysis.

Component Development and Adaptation.
Product Integration and Validation.

W=

Impact Analysis aims to gather Product Requirements based on
Customer Requirements and negotiation with the Platform Team.
The Customer Requirements are external requirements provided
by the customer. They represent the starting point of product
derivation. The Product Requirements are an internal SPL specific

artefact created through negotiation with the customer. The Prod-
uct Requirements defines the system that will be built.

Reusability Analysis purports to create a Partial Product Configu-
ration based on the Product Specific Requirements and by using the
available core assets. During Component Development and Adapta-
tion, new components are developed (if required) and existing
components are adapted to satisfy requirements, which could not
be satisfied by configuring existing core assets. Finally, Product
Integration and Validation aims to integrate the core asset configu-
ration and newly developed components and to validate the inte-
gration by performing appropriate testing procedures.

The model was then discussed during the expert opinion work-
shop. It was noted that in time it would be interesting to consider a
more incremental development process (such as Boehm’s spiral
model [34]). In particular, this would be worthwhile for the cus-
tomer-specific part of the application; an incremental process
would allow us to validate several pieces of the prototypes with
the customer before the product is finished. However, while the
discussion on an incremental development process was noted,
the workshop experts felt that, until further evidence suggested
otherwise, a product derivation process model should be repre-
sented as linear and not iterative.

After identifying the main model activities during skeleton
construction, the specific tasks to fill these activities were defined.
For example, looking at the skeleton filling for the Impact Analysis
activity, we focused the literature review on tasks that contributed
to the primary goal of this activity, “to form a set of product spe-
cific requirements which satisfy the customer’s needs and ensures
long term viability of the product line.” When two approaches
differed in what accounted for an Impact Analysis task, the variation
was documented. The end result was a documented overview of
the variation and commonalities for that particular activity which
could be presented to experts.

Specific task attributes were elicited from the literature. The
attributes chosen helped to define a systematic process with task,
artefacts and roles. The identification of task attributes was of
particular benefit when eliciting expert opinion during the work-
shops. The researcher formulated these task attributes both as
short statements and as questions. For example, the attribute
‘Purpose’ was reformulated into a question ‘What is the purpose
of the task?’ In the case of the Customer Negotiation task the discus-
sion would run until a consensus among workshop experts as to
the purpose of Customer Negotiation was formed. These short state-
ments and questions could be put to the expert panel where they
could be
answered with one of the attributes values. The identification of
the task attributes was a pre-cursor to deciding the final artefact
flow for a particular activity. The task attributes helped structure
the process flow for an activity. The output of this stage of the
research was Pro-PD V1 [35].

5.2. Stage two - industrial case study: Robert Bosch GmbH

During stage 2, the product derivation process within Robert
Bosch GmbH was researched.



1022

Table 10
Summary of stage 2 changes.

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

Change

Motivation

Modify the waterfall layout of Pro-PD to a iterative structure. Re-organise Impact
Analysis activity into two activities, Initiate Project and Identify and Refine
Requirements

Added new task Translating the Customer Requirements to Initiate Project activity

New artefact Glossary input to Translating the Customer Requirements task

Added artefact Translated Customer Requirements as output of Translating Customer
Requirements task

Changed Map Customer Requirements to Platform Features task name to Coverage
Analysis

Replaced artefact Platform Artefacts with Platform Requirements as input into
Coverage Analysis task

Added task Find and Outline Requirements to Identity and Refine Requirements
activity

Added task Allocate Requirements to Identify and Refine Requirements activity

Renamed Reusability Analysis activity to Derive the Product activity

Changed the Product Integration and Validation activity to two activities: Product
Development and Product Testing.
Removed activity Component Development and Adaptation

Added artefact New Platform Release. Input to Component Development task
Added activity Management and Assessment which includes task Manage Project

Removed decision ‘Have the customer requirements change?’

Workshop participants were critical of the linear representation of Pro-PD. In
Bosch product derivation was more iterative. They initiate a product derivation
project once, however the requirements for the project were continually identified
and refined. The expert panel also provided evidence for an iterative form of
product derivation in stage 1 of the research

Translating the Customer Requirements into internal platform language is an
important Robert Bosch GmbH task for product derivation preparation. This
prevented terminology confusion and customer specific description of assets
Robert Bosch GmbH used a customer terminology glossary to assist in translating
specific customer terms to platform specific terminology within requirements
specifications

This artefact is an output of the Translating Customer Requirements task

Robert Bosch GmbH described the task of mapping Customer Requirements to
platform features as Coverage Analysis

In Robert Bosch GmbH coverage analysis was a comparison between the Customer
System Requirements Specification and the Platform System Requirements
Specification

This task was observed within Robert Bosch GmbH. It involves analysis of the
product requirements. The functional and non-functional requirements of the
system are specified

This task was observed within Robert Bosch GmbH to involve the allocating of
requirements from the product system requirements specification to different
organisational disciplines within the product team

The original name was deemed confusing to Robert Bosch GmbH workshop
participants. There is no analysis aspect to this activity. The primary purpose of this
activity is to configure platform components

In Robert Bosch GmbH the product development team performed product
integration. Product testing was a separate activity performed by testing specialist
The tasks of this activity are now contained within the other activities. In the Find
and Outline Requirements task the development scoping decisions are made. The
tasks relating to product development are moved to the Product Development
activity

Results of observations from platform product synchronisation process pattern
Robert Bosch GmbH monitored project progress through metric collection, and
milestones for development iterations

Within Robert Bosch GmbH, the product requirements were contractually agreed
at this point. If there was a change to the Product Requirements, this was captured
during the task Run Acceptance Tests

5.2.1. Observations from industrial case study
The main observations obtained from the case study on industrial
product derivation practices were that Pro-PD V1 should contain:

Additional Development Disciplines.
Additional Roles and Tasks.
Platform-Product Synchronisation.
Use of Documentation.

The organisational structure in Robert Bosch GmbH for a partic-
ular product derivation business unit is broken into three broad
disciplines - software, hardware and mechanics. Within each of
these disciplines there are further sub-disciplines. This is a reoc-
curring set-up within SPL companies. Therefore, the product deri-
vation process had to support multi-development disciplines.

The Robert Bosch GmbH product derivation process contained
product derivation roles, which were replicated across the inde-
pendent product sub-discipline teams and platform teams. More-
over, similar roles exist for hardware and mechanics, requiring
appropriate communication and task structures. For instance, the
allocation of requirements to responsible teams has to consider
the various disciplines, sub-disciplines and modules. Pro-PD V1
was modified to recognise these additional roles and tasks.

Documentation is required to drive the product derivation pro-
cess. It facilitates communication and synchronised development
between the product and platform teams, the different hardware,
software and mechanical disciplines and also the sub-disciplines.
Document is used as a milestone to plot project progress and as

a driver to trigger particular tasks. For Pro-PD V1 to prepare for
product derivation, this requires a higher degree of granularity
for requirements management tasks than originally envisaged.
This was observed when the case study company starts a prod-
uct-specific project. During the early activities, the customer
requirements are translated into a set of internal company docu-
ments. These documents are processed and augmented during
various tasks where requirements are analysed for reuse potential
and then assigned to disciplines. Pro-PD V1 was adapted to con-
sider the need for this additional requirements management
tasks.

5.2.2. Impact on Pro-PD

Robert Bosch GmbH case study participants reported that while
Pro-PD V1 was a reasonably accurate representation of the product
derivation process, there was room for improvement.

For example, they found some activities and task naming
caused confusion, for instance when describing Product Require-
ments as Product Specific Requirements the participants found the
use of the term ‘specific’ caused confusion. The participants also
found that the analysis of Product Requirements within Pro-PD V1
lacked detail and missed important tasks required for preparing
for product derivation.

In Table 10 a summary of the changes to Pro-PD V1 product der-
ivation preparation as a result of the feedback and observations
from the Robert Bosch GmbH case study are presented. Implemen-
tation of these changes resulted in Pro-PD V2 [36].



P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1023

Table 11
Summary of stage three changes to Pro-PD.

Change

Motivation

Remove task Identify Required Component Development

Modify task Find and Outline Requirements

Add task Create Guidance for Decision Makers to Identify and Refine Requirements
activity

Modify artefact Product Requirements, it now contains a link to variability guidance
to be used by the Product Architect during the Derive the Product activity

Add task Platform-Product Integration. This task integrates the Base Product
Configuration and the selected Platform Components

Add task Integration Testing to Derive the Product activity
Add task Provide Feedback to Platform Team to Management and Assessment activity
Removed task Identify Required Component Adaptation

Add artefact Platform Feedback. This is an output of the task Provide Feedback to
Platform Team

Added task Define Role and Task Structures. Responsibility for implementation of
specific requirements is allocated to team members who hold the roles of
Product Developer and Product Architect

Modify task description of Select Platform Components

Identifying product specific development occurs during the initiation of a
derivation project within the DOPLERV" approach and not during the later
Develop the Product activity

Scoping decisions on required component development and adaptation are
decided during the Find and Outline Requirements task. This is in line with both
Robert Bosch GmbH and DOPLERV®" approaches

In DOPLERY®°" arbitrary guidance (e.g. multimedia) can be created for open
decisions and then related to product requirements. Guidance linking remaining
variability in the product requirements assists in dealing with the complexity
associated with representing product line variability

In DOPLERYC" the arbitrary guidance (e.g. multimedia) created during the task
Create Guidance for Decision Makers is linked to the Product Requirements
Previously this integration was performed within the Select Platform Components
task. The selected base configuration is represented in DOPLERY®" by a derivation
model. In this model, the platform components are selected by taking decisions. A
separate activity integrates the base configuration and selected platform
components

Integration testing is performed by the Product Architect and occurs during the
Derive the Product activity

The DOPLERYC" task Product Line Evolution used feedback passed from the product
team to analyse newly developed assets and analyse new requirements
Decisions on required component development and adaptation are now decided
during the Find and Outline Requirements task

Artefact used to transfer platform feedback to the platform team. It is an output of
the Provide Feedback to Platform Team task

In the DOPLERVC" task Define role and Task Structures, variability is managed by
the product manager through assigning responsibility to different members of the
product team

Based on the responsibility defined during Allocate Requirements task,

responsibility for binding variability is allocated. This is similar to the DOPLERV®°"
approach - Define Roles and Responsibilities and Adapt Variability Model tasks

Table 12
Evaluation of the PLPF Requirements Engineering practice area.

Practice name Requirements Engineering (RE) PLPF practice area

Application to product derivation  Product line requirements define the products in the product line together with the features of and the constraints on those
products. Product Requirements common across the product line are written with variation points that can be filled in or
exercised to create product-specific requirements (RE-1). The product line requirements guide the elicitation of the specific
requirements for that product (RE-2). In product development, requirements engineering plays a key role in determining the
feasibility of producing a particular product as part of the product line (RE-3). You can use a statement of the requirements specific
to that candidate product to help estimate the cost of developing the product (RE-4)

The production, testing, and deployment of the particular product. Requirements play a role in these activities just as they do for
single-system development (RE-5)

Product-specific requirements often “grow up” to become product line requirements if they can be slightly generalised or if they
pop up in more than one product. That is the primary mechanism for the evolution of software product lines over time (RE-6)

Key criteria of practice area RE-1: The platform requirements are used as a baseline to create the product requirements

RE-2: The product line requirements guide the elicitation of the specific requirements for that product

RE-3: In product development, requirements engineering plays a key role in determining the feasibility of producing a particular
product as part of the product line

RE-4: A statement of the requirements specific to that candidate product to help estimate the cost of developing the product
RE-5: The product requirements are input to production, testing and deployment

RE-6: Specific Product Requirements are suggested for adoption by the platform

Does Pro-PD satisfy the practice
area criteria?

RE-1: In the Task Create the Product Requirements, the organisation uses the Platform Requirements as a baseline to create the
Product Requirements. This satisfies RE-1

RE-2: The Platform Requirements are used in the primary requirements elicitation tasks, Coverage Analysis and Create the Product
Requirements tasks. The Platform Requirements are used as a guide for Coverage Analysis and taken as a baseline for the Product
Requirements in Create the Product Requirements. This satisfies RE-2

RE-3: The task Coverage Analysis is at its simplest a comparison between of the Customer Specific Product Requirements and the
Platform Requirements. Coverage Analysis identifies the Customer Specific Product Requirements that are satisfied by the platform. If
the number of Customer Specific Product Requirements is above a certain threshold then the feasibility of the product derivation
project is considered. This satisfies RE-3

RE-4: The task Customer Negotiation takes a statement of the requirements specific to the customer product (Customer Specific
Product Requirements) to help estimate the cost of development. This cost of development is a deciding factor during Customer
Negotiation on the Customer Requirements that are selected for implementation.

RE-5: Pro-PD uses the Product Requirements in production (Develop the Product) and Product Testing

RE-6: In the Provide Feedback to Platform Team task, feedback is provided on areas for improvement within the platform,
specifically product requirements which should be adopted by the platform. This satisfies RE-5




1024 P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

5.3. Stage three — academic comparative analysis: DOPLERV"

We undertook an academic comparative analysis, comparing
Pro-PD V2 with DOPLERPYC°", This stage of the research furthered
the development of Pro-PD. While both Pro-PD V2 and DOPLERPY-
Cn have been developed with different goals, for different pur-
poses, and in different domains, many interesting parallels were
still found.

DOPLERY®" was chosen for comparative analysis for a number
of reasons. Firstly, the approach was driven by industry needs with
the goal to define a user-centred, tool supported product derivation
approach. The approach was mainly influenced by a research-
industry collaboration with Siemens VAI, therefore, there was a
strong practical industry focus in the approach. Secondly, the
approach was focused on adaptable tool support usable in practical
settings. The approach therefore was suitable in terms of develop-
ing an adaptable approach. Thirdly, the approach had academic
credibility, as it had been judged an appropriate tool approach to
product derivation by peers through publications in leading jour-
nals and software conferences e.g. [4,14,19]. Finally, it was designed
to be generic, without focusing on a particular organisation or
domain. The approach had a strong industry focus and through
choosing this case for the comparative analysis, the researcher
was performing a type of indirect industrial study.

In DOPLERYC°" the Initiate Project activity is called configuration
preparation and DOPLERV®®" supports much of this activity as part
of its application requirements engineering activity. DOPLERV<"
does not support Translate Customer Requirements. The missing
support for Translate Customer Requirements in DOPLERPY°" can
be explained with the differences in customer management. In a
collaborative environment, as assumed by DOPLERPY®", customer
requirements are typically delivered in a product line compatible
format. However, Pro-PD has identified that the negotiation with
the customer is often required.

The activity ‘Identify and Refine Requirements’ is partly sup-
ported by DOPLERYC®", as captured requirements can be assigned
arbitrary types. This can also be used to define whether they are
platform or product specific. Create the Product Specific Test Cases
is assumed to happen but not defined. DOPLERV“°" does not con-
sider the ‘Allocate Requirements’ task also.

‘Derive the Product’ is focused on the derivation of a product
configuration from the product line, i.e., selecting, customising,
and integrating reusable assets. In DOPLERV®" this activity is
called ‘Product Configuration’. The three ‘Derive the Product’ tasks
are fully or partly supported by DOPLERPY®", DOPLERY“®" per-
forms the tasks Derive New Configuration and Select Platform Com-
ponents in parallel. The explicit linkage of components with
decisions allows selection of platform components by taking deci-
sions in the base configuration derivation model. The task Select
Closest Matching Configuration is supported by options within DO-
PLERYC°" to allow derivation begin with an existing configuration.

In DOPLERY®" the activity ‘Product Development’ occurs in
Application Engineering. The tool supports all four tasks of this

Table 13
Practice summary results.

activity. The testing tasks of ‘Component Unit Testing’, ‘Integration
Testing’ and ‘System Testing’ is assumed to happen but not defined.
The result of stage three of the research was Pro-PD V3 [37]. In
Table 11 a summary of the changes made from V2 to V3 is pre-
sented along with the primary motivation for these changes.

6. Evaluation

Following the staged development of Pro-PD, we performed an
Evaluation, Stage 4 of the research, by comparing it to prominent
existing approaches, namely an inter-model evaluation with the
SEI Product Line Practice Framework (PLPF) and a systematic anal-
ysis with COVAMOF, FAST and PuLSE-I.

6.1. Inter-model evaluation

To evaluate Pro-PD V3, we examined how it satisfies product
derivation according to the SEI Product Line Practice Framework
(PLPF). The choice of PLPF practices for the evaluation was based
on the documented PLPF practice patterns relevant to product der-
ivation, namely the Product Builder and the Essentials Coverage
patterns. The relevant PLPF practice areas were: Requirements
Engineering; Architecture Definition; Component Development;
Software System Integration; Customer Interface Management;
Structuring the Organisation; Testing; Operations; Architecture
Evaluation.

Using the practice descriptions, a set of criteria was identified
and labelled for each practice e.g. the first criteria for the testing
practice was labelled ‘T-1". Table 12 shows the evaluation for the
Requirements Engineering practice area. The other evaluations
are available in [38].

The practice summary in Table 13 presents the results of the
evaluation for each of the nine practices.

6.1.1. Results of the inter-model evaluation

From the above table (see Table 13), it can be seen that Pro-PD
V3 completely satisfies six of the nine relevant practices.

Pro-PD V3 only partially satisfies the Operations practice as it
does not consider software maintenance, which is outside of the
scope of the research. Pro-PD V3 only partially satisfies the Testing
practice. According to the Testing practice there should be verifica-
tion of artefacts between the different activities of Pro-PD V3.
Therefore in the Initiate Project and Identify and Refine Requirements
activities, a new task Verify the Product Requirements is required
during which the new product requirements and the complete
product requirements are reviewed by the Customer, Product Archi-
tect and Product Manager.

Pro-PD V3 does not satisfy the Architecture Evaluation practice as
there is no separate testing of the Product Architecture in the Derive
the Product activity. Therefore, an Evaluate Product Architecture task
is included. The task evaluates the instantiated Product Architecture
toseeifit meets the specificbehavioural and quality requirements of
the product at hand.

Practice

Pro-PD V3 satisfied the criteria?

Requirements Engineering (RE-1, RE-2, RE-3, RE-4, RE-5, RE-6)
Architecture Definition (AD-1, AD-2, AD-3)

Architecture Evaluation (AE-1, AE-2)

Component Development (CD-1, CD-2, CD-3, CD-4, CD-5, CD-6)
Testing (T-1, T-2, T-3, T-4, T-5)

Software System Integration (SSI-1, SSI-2, SSI-3, SSI-4)
Operations (0O-1, 0-2, 0-3, 0-4)

Customer Interface Management (CIM-1, CIM-2, CIM-3)
Structuring the organisation (SO-1, SO-2, SO-3, SO-4, SO-5)

All criteria are satisfied

All criteria are satisfied

No criteria are satisfied

All criteria are satisfied

T-1 is not satisfied. All other criteria are satisfied
All criteria are satisfied

0-2 is not satisfied. All other criteria are satisfied
All criteria satisfied

All criteria satisfied




Table 14

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1025

Analysis of COVAMOF, PuLSE-I and FAST for Pro-PD support.

Context

Questions

COVAMOF
PuLSE-I
FAST

COVAMOF
PuLSE-I
FAST

User

COVAMOF
PuLSE-I

FAST

Contents

COVAMOF

PuLSE-I

FAST

COVAMOF
PuLSE-I

FAST

COVAMOF

PuLSE-I

FAST

COVAMOF

What aspects of product derivation does the approach cover?

Main focus is on product configuration; only partly covers preparing for derivation and additional development and testing
Covers preparing for derivation, product configuration, as well as additional development and testing

Covers requirements elicitation and analysis, product configuration, and additional development and testing

What is the starting point for the approach?

Creating a “product entity” based on customer requirements.

Customer or management has a product request that falls under the scope of the product line

Final product requirements are established by contract or informal discussion of customer requirements. An application engineer then tries to understand
and validate customer requirements and their relation to product line models

Which stakeholders are addressed by the approach and how?

Engineers are the target group of the approach. They are (tool) supported to enable iterative derivation of a product based on customer requirements
Customers and management are explicitly considered as providing input in form of product requests. Project management is also addressed with a project
plan artefact. Derivation activities are performed by dedicated application engineers

Customers are involved in defining the requirements and in validating the derived product. Application engineers and so-called “producers” define models
from which the application is then generated

What activities/steps/sub-processes does the approach define to accomplish product derivation?

Product definition: Defining customer and product name

Product configuration: Binding of variation points based on customer requirements.

Product realisation: Tool-based translation of the configuration of the variability model to a configuration of an executable product, e.g., by setting
compiler flags or creating make files

Product testing: Determining whether the product meets the customer requirements and deciding whether an additional iteration (product configuration/
realisation/testing) is required

Plan for the product line instance (the product): Determine whether all characteristics of the required product are covered by the product line

Create project plan: Define what is product-specific and what can be fulfilled by the product line

Instantiate and validate product line model: Incrementally resolve decisions defined in the product line model (representing variation points)
Instantiate and validate reference architecture: Instantiate variability to derive an “intermediate architecture” from the product line, validate, and then
modify if necessary

Product construction: Lower level design, implementation, and testing based on reusable assets

Determine requirements: The customer identifies or refines the requirements

Create application model: The application engineer represents the product requirements as an “application model”

Analyse model: The application model is analysed to determine whether it satisfies the product requirements

Generate application: Generation tool(s) are created and used to generate code and documentation based on the application model

Develop product: Engineers develop any custom parts that cannot be generated manually and integrate them with the application

Verify integrated application: The customer either accepts the application or the process returns to start

What artefacts are created and managed by the approach?

Product entity: Created in product definition with selected variants

Detailed project plan: Output of “plan for product line instance” activity

Requirements specification: Output of “instantiate and validate product line model”

Product architecture: Output of “instantiate and validate reference architecture”

Product ready for delivery: Output of “product construction”; comprising specification, architecture, and code

Product configuration: Output of all aforementioned activities; comprising domain decision model instance, architecture decision model instance, and low
level configuration

Application model: Created by application engineers based on product requirements

Product: Deliverable code for the application which is typically generated from the application model using generation tools

Customer documentation: Might be generated from the application model

How are the preparing for derivation tasks Initiate Project and Identify and Refine Requirements supported by the approach?

Partly supported: Customer requirements are assumed to be available and phrased so that engineers can perform product configuration and testing based
on these requirements (no explicit specification and translation of customer requirements). Mapping of customer requirements to the base configuration is
not part of preparing for derivation but rather assumed to be done manually by engineers during product configuration. COVAMOF provides partial
support for creating the product-specific requirements: a list of characteristics that the final system will have is created or reused if the requested product
is fully within the scope of the product line. COVAMOF assumes engineers to do the work supported by COVAMOEF-VS. It does not consider defining role
and task structures. Creating derivation guidance is not considered part of product derivation but may be done in variability modelling by creating
variability views

Partly supported: During the “plan for product line instance” activity a detailed project plan is created as preparation for derivation. Customer
requirements (product request) are assumed to be available and phrased so that they can be used to determine whether the requested product is inside the
scope of the product line. Overlaps are evaluated and required system-specific developments are defined

The output in PuLSE-I is “a set of characteristics upon which the customer (or the marketing) and the developers have agreed”. Defining a base
configuration is also supported: during “plan for product line instance”, a “list of characteristics that the final system will have” is created or reused if the
requested product is fully within the scope of the product line. PuLSE-I as such defines the involved stakeholders and their roles and tasks, however, on a
rather high-level. Creating derivation guidance is assumed to be provided by the product line decision model and no explicit creation of additional
guidance is part of the approach

Partly supported: During activity “determine requirements” the customer identifies the product requirements. The product requirements are the basis for
the created application model. The application model is then analysed to determine whether it satisfies the product requirements. This supports the
activities specify (and translate) customer requirements, define base configuration, and map customer requirements. FAST provides no explicit support for
activities define role and task structures and create derivation guidance

How is the Derive the Product activity supported by the approach?

Fully supported: In the task “Derive new configuration”, a new product entity is created in the COVAMOF variability model. Engineers select variants by
specifying values at variation points. COVAMOF-VS supports this with it’s configure mode where additional configuration information about the product at
hand is shown in variability views. An inference and a validation engine automate this process. A partial product configuration is iteratively created, by

(continued on next page)



1026

P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

Table 14 (continued)

Context

Questions

PuLSE-I

FAST

COVAMOF

PuLSE-I

FAST

COVAMOF
PuLSE-I

FAST

Validation

COVAMOF

PuLSE-I

selecting more and more variants for the product entity. Each selected variant can have “effectuation actions” that can be executed to realise the product
(product realisation activity of COVAMOF), e.g., by creating make files or settings files

Fully supported: PulSE-I supports selecting a subset of existing components as part of the PuLSE-I activity instantiate and validate product line model
where decisions are resolved through the customer. Creating a partial product configuration is part of PuLSE-I activities instantiate and validate reference
architecture (instantiate variabilities to create an “intermediate architecture” from the product line) and product construction (low-level configuration
based on reusable product line assets)

Fully supported: In the “generate application” activity, generation tools are used to generate application code and documentation based on the application
model. This is defined support for the select assets and create partial product configuration activities

How are the Develop the Product and Test the Product activities supported by the approach?

Partly supported: System testing is fully supported through the COVAMOF product testing activity. This determines whether the product meets both the
functional and the non-functional requirements. COVAMOF however defines no explicit support for component development, component testing,
component integration with partial product configurations, or integration testing but assumes this to happen, just like DOPLERV" does

Fully supported: Part of the PuLSE-I activity product construction is the implementation of non-existing product line assets and of product-specifics. This
includes testing (unit testing, integration testing, and acceptance testing). All this is conducted in several iterations under consideration of existing
reusable product line assets. This supports component development and component testing, component integration and integration testing, as well as
system testing

Fully supported: FAST provides full support for additional development and testing. In the “develop product” activity, any custom parts of the application
that cannot be generated are developed and integrated with the generated product. In the “verify integrated application” activity, the customer either
accepts the application or the process returns to start

What activities/sub-activities does the approach include that are not covered by the defined key activities/sub-activities?

Our key activities include all activities defined by COVAMOF

Apart from activities that are considered as application engineering and not product derivation (i.e., system delivery and maintenance), PuLSE-I also
includes several feedback loops to other PuULSE phases (e.g., PULSE-Eco with its scoping activities) belonging to domain engineering. Such feedback loops
are currently not considered by our key activities

Apart from activities that are considered as application engineering activities and not product derivation activities (i.e., product delivery and support), our
key activities include all activities defined by FAST

Has the approach been validated in practical industrial case studies?

COVAMOF has been validated in three industrial product lines [39]; two of them are reported in more detail in [5].[40] report on an industrial validation of
the COVAMOF framework. They focus on showing how the use of COVAMOF (supported by COVAMOEF-VS) reduced the number of iterations required to
derive products from a product line of their industry partner. They also compare results of the use of their framework and tool by “non-experts” vs. the use
by “experts”

The PuLSE approach has been applied in case studies, for example [41]. [9] claim the approach to have been used in various contexts

FAST

Several application examples are presented in [10]. The authors claim that FAST has been applied for several real-world systems

6.2. Analysis of existing approaches

For the second part of the evaluation, support for Pro-PD V3
product derivation preparation tasks within existing approaches
is analysed and shown in Table 14.

There is no activity we defined which has no support. Of course,
how the activities are supported differs from approach to approach
and depends on both the focus and the scope of the approach. For
example, the COVAMOF approach is tool-supported and concen-
trates primarily on product configuration. FAST has a larger scope
but mainly concentrates on automated derivation, i.e., describing
products in an application modelling language and then using gen-
erators based on that language to create products. PuLSE-I has the
largest scope of the three approaches but does not focus on tool
support.

Pro-PD V3 considers all preparation tasks defined by COVAMOF.
Apart from PuLSE-I activities that are considered as application
engineering and not product derivation (i.e., system delivery and
maintenance), PuLSE-I also includes several feedback loops to
other PuLSE phases (e.g., PuLSE-Eco with its scoping activities)
belonging to domain engineering. Such feedback loops are cur-
rently not considered by Pro-PD V3. While there are tasks in FAST
that are considered as application engineering activities and not
product derivation activities (i.e., product delivery and support),
our key activities include all activities defined by FAST.

The preparation for derivation activities (Initiate Project and
Identify and Refine Requirements) is only partly supported by all
three approaches. Our research has demonstrated that preparing
for derivation is an important activity and has to be at least clo-
sely related to product derivation. We have experienced that a
lack of support for preparing derivation is one of the main rea-
sons that product derivation often fails in practice [6,37]. A spe-

cial focus has to be the definition of roles and tasks (the task
Define Role and Task Structures) for product derivation stakehold-
ers as well as the creation of guidance for domain experts (the
task Create Guidance for Decision Makers). However, approaches
such as COVAMOF, recommend that Create Guidance for Decision
Makers could be performed separate from the product derivation
effort.

The Derive the Product activity is fully supported by all three
approaches in different ways. The focus is clearly on automating
the derivation of products as far as possible to ensure return on
investment for adopting a product line approach and to make effi-
cient and effective product derivation possible.

All three approaches perceive derivation as an iterative process.
COVAMOF and FAST include explicit activities (product testing,
verify integrated application) for deciding whether to deliver or
perform additional iterations. The key activities we defined also
strongly focus on testing and on the iterative nature of product
derivation.

PuLSE-I is not an isolated description of product derivation but
has many dependencies to other parts of the overall PuLSE product
line methodology. It would also make sense to relate our key activ-
ities to domain engineering activities and ensure there is a “fast
feedback loop” [42]. For instance PuLSE-I sends requests to adapt
the scope of the product line to be able to address new customer
requirements. Pro-PD by comparison is far more isolated from
the domain engineering activities. It has two primary feedback
loops to the platform team, In the Coordinate with Platform Team
task, feedback is provided to the platform team on core asset usage
during the project. In the Identify and Refine Requirements activity,
the platform team receives the platform software requirements
containing the required extensions to the existing platform in or-
der to facilitate the new product specific requirements.



P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028 1027

The analysis of the three approaches [4] (COVAMOF, FAST and
PuLSE-I) illustrates that the activities defined by other approaches
are considered by Pro-PD. However greater feedback to domain
engineering activities is required. We therefore claim that Pro-PD
should be considered when developing or evaluating a product
derivation approach. However, how the tasks and activities are
implemented in an approach strongly depends on the domain
and context. In some cases it might be best to define a domain-spe-
cific derivation approach. Some tasks may simply not make sense
in particular contexts. The process we define can be used as a
checklist when defining, adapting, or evaluating a product deriva-
tion approach for a certain domain, context, or problem.

7. Threats to validity
7.1. Risk of case study bias

All qualitative research suffers from the risk of bias and multiple
interpretations of data. Data collected during the various research
stages was analysed objectively in order to ensure minimisation
of bias. Despite this, results taken from the data will be influenced
by the inclusion of the Robert Bosch GmbH case study. However,
the focus on published research during the development of the
model, along with the subsequent academic comparative analysis
and evaluation, has given us the opportunity to minimise existing
case study bias.

7.2. Handling refinements

Each stage of the research provided the basis for the revision or
refinement of Pro-PD. A major challenge when making iterations
was the evaluation of different suggestions with respect to each
other. For example, before a correction was integrated it had to
be determined whether the proposal could be characterised as
being universally valid or whether it was tied to a specific context
and therefore not suitable for model refinement. As far as possible,
modifications made were supported by previously published liter-
ature or expert opinion. Furthermore, improvement suggestions
made by different persons were sometimes contradictory. There
were two options to resolve these situations. First, one proposal
was chosen over another if the source was deemed to be of a better
quality, either through its experience or the location of the source.
This evaluation was conducted by the researcher, and involved a
degree of researcher interpretation as to the quality of the various
sources. The alternative approach was to consider both suggestions
and integrate them both into the model.

8. Conclusion

In response to a need for methodological support for product
derivation, the authors identified the following research objective:
To define a systematic process which will provide a structured ap-
proach to the derivation of products from a software product line based
on a set of tasks, roles and work artefacts. To meet this objective, we
developed Pro-PD (Process Model for Product Derivation). Pro-PD
was iteratively developed and evaluated through four research
stages involving academic and industrial sources.

When commencing the research, we identified three limitations
to current approaches; firstly, lack of a defined flow of artefacts;
secondly, no definition of roles and responsibilities; and thirdly,
no provision of process support. Through the development of
Pro-PD, we have sought to address each of these.

To overcome the limitation, lack of defined flow of artefacts,
Pro-PD describes the usage and flow of specific artefacts through
the product derivation process. This was observed in the Robert

Bosch GmbH industrial case study where documentation was used
to drive the product derivation process. These and other observa-
tions on artefact flow were modelled in Pro-PD.

It was clear in the early stages of our research that the variety of
roles and responsibilities for product derivation could not be
undertaken by a single professional group - the engineers (as in
[5]). Pro-PD defines different roles and their responsibilities. For
example, requirements responsibility is assigned to specific roles
and personnel in the Allocate Requirements task (see Table 3).

The third limitation was the lack of process support. Pro-PD is a
process model defining tasks, artefacts and roles. It is evidence-
based, having being developed through industry input. In addition,
it is in line with product derivation practice as defined by the
Software Engineering Institute’s PLPF. In particular, Pro-PD pro-
vides systematic support for product derivation preparation. A lack
of support for preparing derivation is one of the main reasons that
product derivation often fails in practice [37].

In this paper, we have documented the evidence for the con-
struction of Pro-PD and the design decisions made as a result of
this evidence. We have identified and elaborated on the essential
tasks for product derivation, developing and evaluating a Process
Model for Product Derivation, Pro-PD. For SPL to become a mature
engineering discipline it needs to define an evidence-based meth-
odology and this is a step in this direction.

The tasks we present are generic and in some situations do-
main-specific tasks will be required. Therefore, further research
is needed to support the definition of when and how tasks are
tailored to specific contexts, domains or organisation. It would also
be interesting to consider a more rigorous Information Systems
Development approach which considers the interplay between
platform and product development.

Acknowledgements

This work is supported by IRCSET under Grant Number RS/06/
167 and by Science Foundation Ireland through Lero - the Irish
Software Engineering Research Centre under Grant Numbers 03/
CE2/1303_1 and 10/CE/11855. This work was partially supported
by the National Institute of Science and Technology for Software
Engineering (INES[1]), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08 and CNPq grants 305968/
2010-6, 559997/2010-8, 474766/2010-1 and FAPESB.

References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley Longman Publishing Co., Boston, MA, USA, 2001.

[2] L. Hotz, A. Gunter, T. Krebs, A knowledge-based product derivation process and
some ideas how to integrate product development, in Proc. of Soft. Variability
Management Workshop. Groningen, The Netherlands, 2003.

[3] M.L. Griss, Implementing product-line features with component reuse, in:
ICSR-6: Proc. of the 6th Int. Conf. on Software Reuse, Springer-Verlag, London,
UK, 2000, pp.137-152.

[4] R. Rabiser, P. O’Leary, I. Richardson, Key activities for product derivation in
software product lines, J. Syst. Softw. 84 (2) (2010) 285-300.

[5] S. Deelstra, M. Sinnema, J. Bosch, Product derivation in software product
families: a case study, ]J. Syst. Softw. 74 (2) (2005) 173-194.

[6] R. Rabiser, P. Griinbacher, D. Dhungana, Supporting product derivation by
adapting and augmenting variability models, in: 11th Int. Software Product
Line Conf., Kyoto, Japan, 2007.

[7] J. Bayer, O. Flege, P. Knauber. R. Laqua, D. Muthig, K. Schmid, T. Widen, J.-M.
DeBaud, PuLSE: a methodology to develop software product lines, in: Proc. of
Symposium on Software Reusability, ACM, Los Angeles, California, United
States, 1999.

[8] J. Bayer, C. Gacek, D. Muthig, T. Widen, PuLSE-I: Deriving instances from a
product line infrastructure, in: 7th IEEE Int. Conf. and Workshop on the
Engineering of Computer Based Systems, Edinburgh, UK, 2000.

[9] C. Atkinson, J. Bayer, Muthig, Component-based product line development: the
KobrA approach, in: Proc. of the First Conf. on Software Product Lines:
Experience and Research Directions, Kluwer Academic Publishers, Denver,
Colorado, United States, 2000.



1028 P. O’Leary et al./Information and Software Technology 54 (2012) 1014-1028

[10] D. M Weiss, C.T.R. Lai, Software Product Line Engineering: A Family-based
Software Development Process, first ed., Addison-Wesley Professional, 1999.

[11] S.D. Kim, H.G. Min, J.S. Her, S.H. Chang, DREAM: A practical product line
engineering using model driven architecture, in: Proc. of the Third Int. Conf. on
Information Technology and Applications (ICITA’05), Washington, DC, USA,
2005, pp. 70-75.

[12] M. Sinnema, S. Deelstra, J. Nijhus, J. Bosch, Modeling dependencies in product
families with COVAMOF, in: 13th Annual IEEE Int. Conf. and Workshop on the
Engineering of Computer Based Systems (ECBS 2006), Potsdam, Germany,
2006.

[13] J.D. McGregor, Preparing for Automated Derivation of Products in a Software
Product Line, Carnegie Mellon Software Engineering Institute, 2005.

[14] R. Rabiser, A User-Centered Approach to Product Configuration in Software
Product Line Engineering, in Christian Doppler Laboratory for Automated
Software Engineering, PhD Thesis, Institute for Systems Engineering and
Automation, Johannes Kepler University, Linz, 2009.

[15] G. Chastek, ].D. McGregor, Guidelines for Developing a Product Line Production
Plan, in Product Line Practice Initiative, Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, 2002.

[16] K. Kang, S. Kim, J. Lee, K. Kim, G.J. Kim, E. Shin, FORM: a feature oriented reuse
method with domain specific reference architectures, Ann. Softw. Eng. 5 (1)
(1998) 143-168.

[17] K. Kang, S. Cohen, ]. Hess, W. Nowak, S. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, USA, 1990.

[18] N. Guelfi, G. Perrouin, A Flexible Requirements Analysis Approach for Software
Product Lines, in Requirements Engineering: Foundation for Software Quality,
Springer, Berlin/Heidelberg, 2007. 78-92.

[19] R. Rabiser, D. Dhungana, Integrated support for product configuration and
requirements engineering in product derivation, in: 33rd EuroMicro Conf. on
Software Engineering and Advanced Applications, 2007.

[20] D. Rombach, Fraunhofer: the German model for applied research and
technology transfer, in: Proc. of the 22nd Int. Conf. on Software engineering
(ICSE2000), ACM, Limerick, Ireland, 2000.

[21] G. Bockle, ].B. Mufioz, P. Knauber, C.W. Krueger, J.C.S. do Prado Leite, F. van der
Linden, L.M. Northrop, M. Stark, D.M. Weiss, Adopting and institutionalizing a
product line culture, in: Proc. of the Second Int. Conf. on Software Product
Lines (SPLC 2002), Springer Verlag, San Diego, CA, USA, 2002.

[22] M. Sinnema, S. Deelstra, P. Hoekstra. The COVAMOF derivation process, in:
Proc. of the 9th Int. Conf. on Software Reuse (ICSR 2006), Turin, Italy, Springer,
Berlin Heidelberg, 2006.

[23] F. Ahlemann, H. Gastl, Process model for an empirically grounded reference
model construction, in: P. Fettke, P. Loos (Eds.), Reference Modeling for
Business Systems Analysis, IGI Publishing, 2006.

[24] P. Fettke, P. Loos, Reference Modeling for Business Systems Analysis, IGI
Publishing, 2006.

[25] M. Rosemann, R. Schiitte, Multi-perspective reference modelling, in: J. Becker,
M. Rosemann, R. Schiitte (Eds.), Referenzmodellierung. State-of-the-art und
entwicklungsperpektiven, Physica-Verlag, Heidelberg, 1999, pp. 22-44.

[26] B. Schlagheck, Object-oriented Reference Models for Process and Project
Controlling - Foundation Construction Fields of Application, Deutscher Univ.
Verlag, Wiesbaden, 2000.

[27] M. Hammersley, R. Gomm, P. Foster, Case Study Method: Key Issues, Key Texts,
Sage Publications, London, 2000.

[28] The SPLC Product Line Hall of Fame, <http://www.splc.net/fame.html> (cited
03.02.11).

[29] M. Matinlassi, Comparison of software product line architecture Design
methods: COPA, FAST, FORM, KobrA and QADA, in: Software Engineering,
ICSE 2004. Proc. 26th Int. Conf. on. 2004, EICC, Scotland, UK, 2004.

[30] A. Birk, G. Heller, I. John, K. Schmid, T. von der Massen, K. Muller,
Product line engineering: the state of the practice, IEEE Softw. 20 (6) (2003)
52-60.

[31] P. O’Leary, F. McCaffery, S. Thiel, I. Richardson, An agile process model for
product derivation in software product line engineering, J. Softw. Mainten.
Evolut. (2010).

[32] Beck, K., et al. Manifesto for Agile Software Development, 2001 1/3/2006,
<http://agilemanifesto.org/> (cited 10.09.10).

[33] K. Pohl, G. Bockle, F.wv.d. Linden, Software Product Line Engineering:
Foundations Principles, and Techniques, Springer, Heidelberg, 2005.

[34] B.W. Boehm, A spiral model of software development and enhancement, IEEE
Comput. 21 (5) (1988) 61-72.

[35] P. O’Leary, M. Ali Babar, S. Thiel, I. Richardson, Product derivation process and
agile approaches: exploring the integration potential, in: Proc. of 2nd IFIP
Central and East European Conf. on Software Engineering Techniques. Poznan,
Poland, Wydawnictwo Nakom, 2007.

[36] P. O’Leary, S. Thiel, G. Botterweck, L. Richardson, Towards a product derivation
process framework, in: 3rd IFIP TC2 Central and East European Conf. on
Software Engineering Techniques CEE-SET. Brno (Czech Republic), 2008.

[37] P.O’Leary, R. Rabiser, S. Thiel, I. Richardson, Important issues and key activities
in product derivation: experiences from two independent research projects,
in: Software Product Line Conf. San Francisco, CA, USA, 2009.

[38] P. O'Leary, S. Thiel, I. Richardson, Towards a Product Derivation Process
Reference Model for Software Product Line Organisations, in: Department of
Computer Science and Information Systems, University of Limerick, Limerick,
2010, p. 277.

[39] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, COVAMOF: a framework for
modeling variability in software product families, in: Proc. 3rd Int. Conf.
Software Product Lines (SPLC 04), San Diego, CA, 2004.

[40] M. Sinnema, S. Deelstra, Industrial validation of COVAMOF, J. Syst. Softw. 81
(4) (2008) 584-600.

[41] K. Schmid, I. John, R. Kolb, G. Meier, Introducing the PuLSE approach to an
embedded system population at Testo AG, in: Proc. of the 27th Int. Conf. on
Software engineering, St. Louis, MO, USA, ACM, 2005.

[42] W. Heider, R. Rabiser. Supporting evolution of product lines through rapid
feedback from application engineering, in: Proc. 4th Int. Workshop on
Variability Modelling of Software-intensive Systems (VaMoS 2010),
University of Duisburg Essen, Linz, Austria, ICB-Research Report No. 37, 2010.


http://www.splc.net/fame.html
http://agilemanifesto.org/

	The Pro-PD Process Model for Product Derivation within software product lines
	1 Introduction and motivation
	2 Related research
	2.1 Main approaches
	2.2 Limitations of current approaches
	2.2.1 Definition of flow of artefacts
	2.2.2 Definition of roles and responsibilities
	2.2.3 Provision of process support
	2.2.4 Pro-PD provisions


	3 Research methodology
	4 Pro-PD – a Process Model for Product Derivation
	4.1 Units of work: tasks and activities
	4.1.1 Initiate Project
	4.1.2 Identify and Refine Requirements
	4.1.3 Derive the Product
	4.1.4 Develop the Product
	4.1.5 Test the Product
	4.1.6 Management and Assessment

	4.2 Roles
	4.3 Artefacts
	4.4 Pro-PD as a reference model
	4.5 Pro-PD summary

	5 Establishing Relevance and Research Innovation
	5.1 Stage one – literature review and expert opinion workshops
	5.2 Stage two – industrial case study: Robert Bosch GmbH
	5.2.1 Observations from industrial case study
	5.2.2 Impact on Pro-PD

	5.3 Stage three – academic comparative analysis: DOPLERUCon

	6 Evaluation
	6.1 Inter-model evaluation
	6.1.1 Results of the inter-model evaluation

	6.2 Analysis of existing approaches

	7 Threats to validity
	7.1 Risk of case study bias
	7.2 Handling refinements

	8 Conclusion
	Acknowledgements
	References


