
1. Introduction 
Biodiesel has attracted considerable interest as an 
alternative to diesel fuel [1]. Biodiesel blends are 
advantageous for several reasons. For example, 
biodiesel is non-toxic, it contains no aromatics or 
sulfur, it biodegrades faster than fossil diesel, it is 
less polluting to water and soil, and it helps to reduce 
both the greenhouse effect and our dependence on 
petroleum [2]. Biodiesel is miscible with diesel in any 
proportion; however, the suitability of biodiesel blends 
as fuels is influenced by biodiesel’s physical properties. 
The concentration of biodiesel in biodiesel blends has 
significant effects on performance and efficiency of 
biodiesel-powered machines. Therefore, the careful 

control of biodiesel concentrations is important. The use 
of biodiesel blends at concentrations below 20% helps 
to maintain the engine due to the inherent lubricity of 
the fuel. Biodiesel blends at concentrations higher than 
20% dissolve rubber components, and their use requires 
changes in the engines of some vehicles [3]. 

Viscosity is the resistance offered by a fluid deformed 
by one force, such as, shear or tensile stress. Dynamic 
or absolute viscosity is more common measure of this 
property. Kinematic viscosity is the value found by 
dividing the dynamic viscosity by density of the fluid. In 
some fluids, viscosity has a constant value over a wide 
range of shear rates. These fluids are called Newtonian 
fluids. Fluids without a constant viscosity cannot 
be described by a single value and are called non-
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Regressions based on fluorescence spectroscopy were developed to provide relatively inexpensive and rapid measurements 
of the concentration, viscosity, and specific gravity of biodiesel-diesel blends. The methods involved obtaining a mathematical model 
from spectrofluorimetric data and data from a given property (concentration, dynamic viscosity, or specific gravity) using partial least 
squares (PLS) regression, which was then applied as a model for predicting properties of interest. The predicted concentrations, 
dynamic viscosities, and specific gravities of the biodiesel-diesel blends were compared with actual values and agreed reasonably 
well with the obtained results. The models showed high correlation between real and predicted values. The R-square values near 1 
indicated excellent model accuracy for predicting concentrations, specific gravities, and dynamic viscosities of biodiesel-diesel blends. 
The residual distribution did not follow a trend with respect to the predicted variables, indicating an excellent fit to the data.
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Newtonian fluids. Non-Newtonian fluids exhibit a variety 
of different correlations between shear stress and shear 
rate. Viscosity is measured with either viscometers 
or rheometers. In general, viscometers are used for 
Newtonian fluids, and rheometers are used for non-
Newtonian fluids. Vegetable oils and animal fats tend 
to cause problems when used directly in diesel engines 
due to their high viscosity [4]. If the oils and fats are 
first transesterified, however, the resulting biodiesels 
have viscosities that are closer to diesel [5-7], although 
the viscosities of monoesters tend to be higher than 
the viscosity of petroleum-based fuel [8]. The ability to 
control viscosity in fuels promotes optimal atomization. 
Viscosity values below an established lower limit may 
lead to excessive injection system wear, fuel pump 
leaks and piston damage. Viscosity values above 
the upper limit may lead to an increased workload of the 
fuel pump. Additionally, exceptionally high viscosities 
provide poor fuel atomization and incomplete 
combustion with a subsequent increase in smoke 
and particulate matter emission. Viscosity values 
that are too high may lead to ineffective engine 
operation [8].

The specific gravities of biodiesels and diesels 
depend on their composition and purity. The composition 
of biodiesel depends primarily on the composition 
of the mixed esters. The composition of diesel can 
also change, depending on the refinery feedstock 
and day-to-day variability of the blending streams in 
the diesel fuel boiling range. The specific gravities of 
hydrocarbons, and therefore of diesel, are strongly 
affected by temperature [4]. 

Multivariate calibrations are increasingly used to 
extract relevant information from different types of 
spectral data to predict properties of complex samples 
[9-15]. Recent works have shown the viability of 
spectroscopy associated with multivariate calibration 
for predicting certain properties of fuel. Multivariate 
near-infrared (NIR) spectroscopy models have been 
used successfully for the prediction of several physical 
and operating properties of oil fractions and diesel fuels 
[16], concentrations and specific gravities of biodiesel-
diesel blends [17], methanol and water content [18] as 
well as iodine value, kinematic viscosity, density and 
cold filter plugging point in biodiesel [19]. The NIR 
and NMR have been used to determine blend levels 
of biodiesel-diesel mixtures [20]. Multivariate NIR and 
middle infrared spectrometry (MIR) models have been 
developed to predict quality parameters of biodiesel-
diesel blends (density, sulfur content and distillation 
temperatures) [21], to monitor transesterification 
reactions [22-24], to determine total sulfur in diesel [25] 
and to determine several gasoline properties [26,27]. 

In addition, multivariate NIR spectroscopy models have 
also been employed to monitor the quality of oils for 
biodiesel production [28]. Spectrofluorimetry has been 
used to determine the adulteration of biodiesel-diesel 
blends with residual oil [29,30] and stability oxidation 
[31,32].

In this work, multivariate calibration methods based 
on spectrofluorimetric data were developed to provide 
relatively inexpensive and rapid measurements of the 
concentrations, specific gravities and viscosities of 
biodiesel-diesel blends. Multivariate analysis methods 
allow the simultaneous use of all variables for the 
interpretation of data resulting from chemical analyses. 
Chemometric techniques are currently important tools 
in diverse technological areas, such as in the analysis 
of food, pharmaceutical, agricultural, environmental 
and industrial chemistry.  

There are several methods of multivariate analysis 
used for very different purposes. The most common 
are principal component analysis (PCA) and partial 
least squares (PLS) analysis. PCA analysis allows for 
a reduction in the number of variables to a few principal 
components that are responsible for explaining most 
variation associated with the original set. PCA analysis 
provides tools to identify the most important variables in 
the principal components space in addition to classifying 
samples according to their similarities. 

With PLS, it is possible to find a mathematical 
relationship between one variable (the dependent 
variable) and the remainder of the variables that describe 
the system (independent variables). PLS analysis then 
finds a function that describes the variables X and Y 
by maximizing the correlation between them. PLS is 
chiefly applied to the prediction of analytical results for 
a dependent variable in the presence of independent 
variables. 

2. Experimental procedure
The data set consisted of blends prepared using 
biodiesel and diesel samples supplied by Petrobras. 
The two types of biodiesel used in this study were soy 
and cottonseed biodiesel. Mixtures of biodiesel and 
diesel were made with concentrations of biodiesel 
ranging from 0 to 100%, as shown in Table 1.

Viscosity measurements of soy and cottonseed 
biodiesel-diesel blends (Table 1) were made using an 
MCR 501 rheometer Anton Paar at 25°C with a shear 
rate ranging from 10-100 s-1. All analyses of viscosity 
were performed in 20 replicates and their average 
values were calculated. The data showed in Table 1 are 
the average values.
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Specific gravities were determined by dividing the 
mass of 5 mL of each sample by the mass of the same 
volume of distilled water at room temperature (25°C). 
The samples were weighed on an analytical balance 
(precision of 1 mg) and the volumes were measured 
with a micropipette. All analyses of specific gravities 
were performed in 3 replicates and their average values 
were calculated. The data showed in Table 1 are the 
average values.

Fluorescence measurements were performed with 
a spectrofluorimeter constructed in-house that was 
equipped with a light-emitting diode (LED) and quartz 
cells with 1 cm optical paths. The fluorescence emission 
spectra of the samples were obtained by exciting the 
samples with the ultra-violet LED and capturing the 
emission from 350 nm to 1000 nm with 1 nm increments 
(total of 651 emission wavelengths). The spectra were 
arranged into a general matrix of 15×651 (samples 
versus emission wavelengths), processed using mean 
centering and then analyzed using PLS. 

In this study three regression models were 
developed for each type of biodiesel. One model was for 
determining the concentration of biodiesel in biodiesel-
diesel blends, a second model was for determining 
specific gravity, and the third was for estimating the 
viscosity of biodiesel-diesel blends. Each multivariate 
calibration model was developed using PLS regression 

with regions previously established using PCA. 
The calibration models were constructed using the PLS 
regression technique with the software Unscrambler® 
10.0.1. The number of latent variables for PLS 
was determined based on the validation error using 
the default software. The general matrixes (15×651) 
were used to construct the mathematical models 
using PLS. By adding one column for the property 
measurement, each final matrix had the dimensions 
15×652. 

Each PLS model was built using mean-centered 
fluorescence spectra as independent variables and 
the measured corresponding values of concentration, 
specific gravity, or viscosity as the dependent variables. 
For the calibration step using PLS, the relationship 
between the spectra and property measurement was 
estimated from a set of reference samples of mixtures 
of soy and cottonseed biodiesel in diesel (Table 1). 
In this study, we used the method of cross-validation 
leave-one-out as a strategy for validation. This strategy 
involves using a single observation from the data set 
as the validation data, and the remaining observations 
as the training data. This is repeated such that each 
observation in the data set is used once as the validation 
data. In each figure, blue points and curves represent 
calibration data and red points and curves represent 
validation data.

Table 1. Concentrations, viscosities and specific gravities of biodiesel-diesel blends at 25ºC.

Samples Biodiesel in 
diesel (%)

Soy biodiesel-diesel 
blend Viscosity (cP)

Cottonseed 
biodiesel-diesel 

blend Viscosity (cP) 

Soy biodiesel-
diesel blend 

specific gravity 

Cottonseed 
biodiesel-diesel 

blend specific gravity

M s M s M s M s

1 0 3.6015 0.06418 3.5915 0.06409 0.821 0.004 0.823 0.004

2 5 3.6635 0.06675 3.6835 0.05650 0.824 0.004 0.828 0.001

3 10 3.6650 0.06525 3.6870 0.07610 0.832 0.004 0.830 0.002

4 15 3.7300 0.06489 3.7120 0.07736 0.834 0.005 0.832 0.002

5 20 3.7545 0.06509 3.7785 0.06499 0.836 0.002 0.834 0.002

6 25 3.7995 0.06245 3.8435 0.07450 0.838 0.004 0.841 0.002

7 30 3.8580 0.06437 3.8875 0.09408 0.851 0.011 0.842 0.003

8 35 3.9375 0.05981 3.9740 0.07783 0.844 0.002 0.846 0.002

9 40 3.9980 0.06229 4.0170 0.06929 0.851 0.003 0.852 0.002

10 50 4.1550 0.0338 4.1280 0.10938 0.852 0.001 0.858 0.002

11 60 4.2555 0.06278 4.3080 0.08727 0.865 0.013 0.863 0.002

12 70 4.3910 0.07188 4.4630 0.10058 0.867 0.011 0.867 0.004

13 80 4.5330 0.06868 4.6655 0.05680 0.876 0.012 0.875 0.007

14 90 4.6865 0.05958 4.8505 0.07156 0.887 0.016 0.883 0.002

15 100 4.8000 0.06262 5.0460 0.06012 0.898 0.030 0.885 0.002

M = Mean; s = standard deviation
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3. Results and discussion
The PCA built using entire fluorescence of soy biodiesel-
diesel blends as variables showed that two principal 
components (PC1 and PC2) were responsible for 
capturing 99.8% of the variance being 99.4% for PC1 
and 0.4% for PC2 (Fig. 1). For cottonseed biodiesel-
diesel blends, the PCA built with entire fluorescence 
showed that PC1 and PC2 were responsible for 
capturing  99.9% of the variance being 99.5% for PC1 
and 0.4% for PC2 (Fig. 2). 

Initially each PLS model was built with all data 
and were then evaluated in order to detect outliers. 
Then models were rebuilt with the remaining set of 
samples. Sample 7, with 30% of soy biodiesel in diesel, 
was detected as an outlier and removed from the 
dataset in developing the PLS models for determining 

concentration, specific gravity, and viscosity of soy 
biodiesel-diesel blends (Figs. 3, 7 and 11). Similarly, 
sample 15 with 100% of cottonseed biodiesel in diesel 
was detected as outlier and removed from the dataset in 
developing the PLS model for determining concentration 
of cottonseed biodiesel-diesel blends (Fig. 4).

The PLS models were evaluated by examining the 
calibration parameters: the correlation, the coefficient 
of determination (R2), and the residual distribution. The 
correlation shown the strength of the linear relationship 
between actual values and values predicted by the 
calibration model. The correlation values can vary in 
the range from −1 to +1, and values closer to +1 suggest 
higher correlation between data. The R2 is defined as 
the proportion of variability in y that may be attributed 
to the variability in x, and it indicates the accuracy of 
the model to predict answers to new observations. 
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Figure 1. PCA of fluorescence spectra for samples of soy biodiesel.
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Figure 2. PCA of fluorescence spectra for samples of cottonseed biodiesel. 
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The residual distribution is the distribution of differences 
between calculated and observed values over the 
observed values of the studied response. The residual 
distribution indicates the quality of the fits. The fits are 
good quality when the residual distribution does not 
follow a trend with respect to the predicted variables.

For soy and cottonseed biodiesel-diesel blends, 
the models were shown to be practical for predicting 
changes in concentration based on fluorescence spectral 
variances. Figs. 3 and 4 show plots of reference versus 
predicted concentration values for soy and cottonseed 
biodiesel-diesel blends, respectively. Correlations 
of 0.99946 and 0.99968 for soy and cottonseed 
biodiesel-diesel blends, respectively, indicated a strong 
association of the observed data for the two variables. 
An R2 of 0.99892 and 0.99936 for soy and cottonseed 

biodiesel-diesel blends, respectively, demonstrated the 
efficiency of the models for predicting concentrations.  

Figs. 5 and 6 show plots of the residual distributions 
of the models built with concentration values for soy 
and cottonseed biodiesel-diesel blends, respectively. 
All of the residuals in the two curves are less than 2.5%, 
which indicates that the models adequately represented 
the concentrations for soy and cottonseed biodiesel-
diesel blend samples, respectively, over the studied 
experimental range. 

Multivariate calibration models for viscosity were 
then developed for soy and cottonseed biodiesel-
diesel blends using fluorescence as the independent 
variables for each biodiesel and viscosity values as the 
dependent variables (Table 1). Figs. 7 and 8 show plots  
of the reference versus predicted viscosity values for soy 
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Figure 3. Reference versus predicted concentrations for soy biodiesel samples. Blue line represents calibration data and red line represents  
        validation data.
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Figure 4. Reference versus  predicted  concentrations  for  cottonseed  biodiesel samples. Blue line  represents calibration data and red line  
        represents validation data.
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Figure 5. Plot of the residuals  for the model built with concentration values for soy biodiesel-diesel blends. Blue points represent calibration  
         data and red points represent validation data.
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Figure 6. Plot  of the residuals for  the model built  with concentration values  for cottonseed  biodiesel-diesel  blends. Blue  points represent  
        calibration data and red points represent validation data.
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Figure 7. Reference versus predicted viscosity values for soy biodiesel-diesel blends at 25oC. Blue line represents calibration data and 
                             red line represents validation data.
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and cottonseed biodiesel-diesel blends, respectively. 
Correlations of 0.996365 and 0.996185 for soy and 
cottonseed biodiesel-diesel blends, respectively, 
indicated good correlation between the fluorescence 
spectra and viscosity values. The efficiency of the PLS 
models for predicting viscosity was confirmed with R2 
values of 0.99275 and 0.9924 for soy and cottonseed 
biodiesel-diesel blends, respectively.

Figs. 9 and 10 present plots of the residual 
distributions of the models built with viscosity values 
for soy and cottonseed biodiesel-diesel blends, 
respectively. All of the residuals from the two curves 
are less than 0.10%, which indicates that the models 
adequately represented the viscosity for soy and 
cottonseed biodiesel-diesel blend samples over the 
studied experimental range.

Multivariate calibration models for specific gravity 
were next developed for soy and cottonseed biodiesel-

diesel blends using fluorescence as the independent 
variables for each biodiesel and specific gravity as the 
dependent variables (Table 1). Figs. 11 and 12 present 
plots of the reference versus predicted specific gravity 
values for soy and cottonseed biodiesel-diesel blends, 
respectively. Correlations were 0.99603 and 0.98812 
for the soy and cottonseed biodiesel-diesel blends, 
respectively. The R2 values were 0.99196 and 0.97652 
for soy and cottonseed biodiesel-diesel blends, 
respectively. Both correlations and R2 values near 1 
indicated good correlation between the fluorescence 
spectra and specific gravity values, and they 
demonstrated the ability of the PLS model to accurately 
predict specific gravity.

Figs. 13 and 14 show plots of the residual 
distributions for the models built with specific gravity 
values for soy and cottonseed biodiesel-diesel blends, 
respectively. All of the residuals from the two curves 
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Figure 8. Reference versus predicted viscosity values for cottonseed biodiesel-diesel blends at 25oC. Blue line represents calibration data 
                           and red line represents validation data.
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Figure 9. Plot of the residuals for the model built with viscosity values for soy biodiesel-diesel blends at 25oC. Blue points represent 
                             calibration data and red points represent validation data.
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Figure 10. Plot of the residuals for the model built with viscosity values for cottonseed biodiesel-diesel blends at 25oC. Blue points 
                                represent calibration data and red points represent validation data.
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Figure 11. Reference versus predicted specific gravity values for soy biodiesel-diesel blends at 25oC. Blue line represents calibration 
                               data and red line represents validation data.
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Figure 12. Reference versus predicted specific gravity values for cottonseed biodiesel-diesel blends at 25oC. Blue line represents 
                                 calibration data and red line represents validation data.
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were less than 0.01%, which indicated that the models 
adequately represented the specific gravity for soy and 
cottonseed biodiesel-diesel blend samples over the 
studied experimental range.

The root mean square error of the calibration 
(RMSEC) and root mean square error of the validation 
(RMSEV) were calculated to evaluate the models. 
For soy biodiesel-diesel blends, the RMSEC values 
(using two factors) were 1.0398, 0.0332 and 0.0020 
for calibration models developed for concentration, 
viscosity and specific gravity, respectively. The RMSEV 
values (using two factors) were 1.347, 0.0362 and 0.0025 
for validation models developed for concentration, 
viscosity, and specific gravity, respectively. 

For cottonseed biodiesel-diesel blends, the RMSEC 
values (using two factors) were 0.692, 0.0386 and 0.0030 
for calibration models developed for concentration, 
viscosity, and specific gravity, respectively, from soy 
biodiesel-diesel blends. The RMSEV values (using two 
factors) were 1.351, 0.0479 and 0.0036 for validation 

models developed for concentration, viscosity, 
and specific gravity, respectively. The RMSEC and 
RMSEV results exhibited acceptable levels of error for 
determinations of concentration, viscosity and specific 
gravity of both soy and cottonseed biodiesel-diesel 
blends.

4. Conclusions
In conclusion, advantages of fluorescence 
spectroscopy, such as simplicity, speed, low cost, 
and ability to implement on-line monitoring systems, 
suggest that this method is a powerful analytical tool. 
The association of spectrofluorimetry with the PLS 
calibration developed in this study was proven perfectly 
suitable as an analytical method to simultaneously 
predict concentration, viscosity, and specific gravity of 
biodiesel-diesel blends. The prediction of these quality 
parameters displayed good agreement with the results 
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Figure 13. Plot of the residuals for the model built with specific gravity values for soy biodiesel-diesel blends at 25oC. Blue points 
                                 represent calibration data and red points represent validation data.
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Figure 14. Plot of the residuals for the model built with specific gravity values for cottonseed biodiesel-diesel blends at 25oC. 
                                  Blue points represent calibration data and red points represent validation data.
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obtained empirically. The models for soy biodiesel-
diesel blends exhibited R2 values of 0.99892, 0.99275 
and 0.99196 for concentration, viscosity and specific 
gravity, respectively. The models for cottonseed 
biodiesel-diesel blends exhibited R2 values of 0.99936, 
0.9924 and 0.97652 for concentration, viscosity and 
specific gravity, respectively. These R2 values were 
all nearly 1, which demonstrated the accuracy and 
efficiency of the models for making predictions.
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