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Abstract Mid-infrared spectroscopy, in association with

multivariate chemometric techniques, was employed for

pattern recognition and the determination of the composition

of waste frying oils (WFO); data are presented in terms of the

percentage of soybean oil, palm oil and hydrogenated veg-

etable fat in frying oil blends. Principal component analysis

(PCA) was performed using spectral data (3,000–600 cm-1)

to discriminate between the samples containing 100% soy-

bean oil, 100% palm oil, 100% hydrogenated vegetable fat

groups and their blends. Additionally, the results indicated

that partial least squares (PLS) models based on mid-infrared

spectra were suitable as practical analytical methods for

predicting the oil contents in WFO blends. PLS models were

validated by a representative prediction set, and the root

mean square errors of prediction (RMSEP) were 2.8, 4.7 and

5.5% for palm oil, soybean oil and hydrogenated vegetable

fat, respectively. The proposed methodology can be very

useful for the rapid and low cost determination of waste

frying oil composition while also aiding in decisions

regarding the management of oil pretreatment and produc-

tion routes for biodiesel production.

Keywords Waste frying oils � Principal component

analysis � Partial least squares � Multivariate calibration

Introduction

With a global focus on environmental awareness and

increasing demands for energy, the concept of producing

fuels from renewable resources that are environmentally

acceptable has garnered significant attention in the research

community. Biodiesel derived from vegetable oils or ani-

mal fats can be considered an alternative fuel source to

fossil-based diesel [1, 2]. Biodiesel can be produced from a

large variety of renewable lipid sources and has tradition-

ally been obtained by alcoholysis of vegetable oils in the

presence of an alkaline catalyst, methanol and heat.

A major concern regarding the production and commer-

cialization of biodiesel is the high cost of raw materials,

especially vegetable oil, a consideration that greatly limits

widespread application. One way to reduce the cost of bio-

diesel is to employ low-quality feedstock, such as waste

frying oils or fats, which are cheap, widely available and can

be regarded as an attractive feedstock [3–5]. Additionally,

the generation of waste oils and fats in many countries is

significant and may result in environmental contamination if

proper disposal methods are not employed [6].

Triacylglycerols are main components of vegetable oils

and animal fats and have different physical and chemical

properties. Fatty acid composition is the most important
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parameter and influences the properties of the oils, fats and

the subsequently produced biodiesel [6].

Waste cooking oils are currently collected from large-

scale food processing industries, restaurants and fast food

shops. The waste oils consist of a mixture of residual frying

oils and fats and often contain many impurities, such as

free fatty acids, sterols and water. Free fatty acid and water

contents negatively affect the alkaline catalyzed transe-

sterification reaction and also interfere in the purification

step due to the formation of soap. In addition, dependant on

the source of the oil, the biodiesel produced will have a

different composition of FAME and consequentially dif-

ferent physical and chemical properties [6].

Thus, if waste cooking oil were to be used as feedstock for

biodiesel production, the oil composition must be consid-

ered. To this effect, a pretreatment strategy must be applied

to the raw materials and the production route because the

composition of the oil mixture will greatly affect the

transesterification reaction and the resulting fuel quality.

Infrared spectroscopy has been used as an alternative,

non-destructive analytical technique that allows the reliable

determination of several properties without sample pre-

treatment [7]. The combination of infrared spectroscopy

with various chemometric techniques provides a powerful

tool for monitoring a variety of sample proprieties; this

technique has seen increased interest based on its appli-

cation in quality control [8]. The appealing aspects of

methods that combine infrared spectroscopy with multi-

variate chemometric techniques has fostered its use in the

analysis of virgin vegetable oil to determine: (1) the

composition and the parameters of the oil [9], (2) to con-

firm claims concerning the geographic origin of the oils

[10], and (3) to determine sample authenticity [11].

In the present study, we describe a technique based on

mid-infrared spectroscopy (MIR) in association with the

principal component analysis (PCA) method. This method

was employed to build a screening model for the rapid

supervised pattern recognition of waste frying oil (WFO)

blends and aimed to find and interpret the hidden complex

relationships between features in the data set. Additionally,

partial least squares (PLS) multivariate calibration models

were constructed to determine the content of each oil in the

WFO samples. Waste frying oils consisting of soybean oil,

palm oil and hydrogenated vegetable fat were employed in

the preparation of the blends.

Experimental

Samples

WFO samples were collected from restaurants that used

pure soybean oil (SO), palm oil (PO) or hydrogenated

vegetable fat (VF) for cooking. The WFO and the waste

frying hydrogenated fats used in this study were kindly

supplied by Renove—Recycling Company of Vegetable

Oils (Salvador, Brazil). Any particulate matter present in

the WFO was removed via filtration before analysis.

A group of 48 samples was prepared by combining

different proportions of the WFO (SO, PO and VF). Each

blend was prepared in triplicate using different WFO to

vary the sample compositions. The experimental design is

shown in Table 1.

Apparatus and Data Pre-processing

A Perkin-Elmer Spectrum One spectrometer equipped with

an attenuated total reflection (ATR) sampling accessory

was employed to obtain spectra in the range of

3,000–600 cm-1. The ATR accessory was used in the

absorbance mode and all spectra were recorded at

20 ± 1�C with an average of 16 scans and a spectral res-

olution of 4 cm-1. Background spectra were obtained

using a clean ATR cell accessory. After obtaining a spec-

trum, the cell was cleaned by successive treatments with

hexane and acetone. One sample showed atypical absorp-

tion with a baseline offset; this spectrum was left out of all

further chemometric analyses. All spectral data were

exported to Unscrambler (version 9.1 from CAMO A/S).

First derivative spectra were employed after smoothing by

a Savitzky-Golay filter with a second order polynomial,

using an 11-point window for PCA and a 21-point window

Table 1 Composition of the samples prepared by mixing waste

frying soybean oil, palm oil and hydrogenated vegetable fat

Sample Hydrogenated

vegetable fat (%, v/v)

Soybean oil

(%, v/v)

Palm oil

(%, v/v)

1, 2, 3 100 0 0

4, 5, 6 0 100 0

7, 8, 9 0 0 100

10, 11, 12 33.3 33.3 33.3

13, 14, 15 80 10 10

16, 17, 18 10 80 10

19, 20, 21 10 10 80

22, 23, ASa 60 20 20

24, 25, 26 20 60 20

27, 28, 29 20 20 60

30, 31, 32 40 30 30

33, 34, 35 30 40 30

36, 37, 38 30 30 40

39, 40, 41 20 40 40

42, 43, 44 40 20 40

45, 46, 47 40 40 20

a Sample with atypical spectra
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for PLS, to overcome the problem of systematic baseline

drifts. First derivative spectra with Savitzky-Golay filter

using a 21-point window were used in PLS since this

window size provided lower RMSECV values. The vari-

ables were mean-centered before the modeling procedures.

Chemometric Analysis

Principal component analysis is a tool in multivariate data

analysis that can be used to simplify data by reducing the

number of variables into a smaller number of orthogonal

variables. The simplified variables are linear combinations

of the original variables (wavenumber, in this case) and

maximize the variability contained within them, thereby

displaying most of the original variability in a smaller

number of dimensions. A graphical representation of the

pair-wise components allows the natural grouping of

samples to be observed and indicates any similarity

between the samples while also allowing different groups

of samples to be identified [7, 12]. In the present study,

PCA was used to identify the grouping tendencies between

the WFO samples (SO, PO or VF) and blends containing

the three waste cooking oils. Modeling power (MP) was

used to indicate the important variables, i.e., the wave-

number range selection. The MP is a measure of the

influence of a variable over a given model and can be used

to study the relevance of a variable to indicate how much

of the variable’s variance was used to describe the model

[13]. A preliminary PCA model was built using all vari-

ables of first derivate spectra. Then, the MP was obtained

and the important variables were identified. Subsequently,

another PCA model was built using relevant variables

identified by MP and loading graph inspection.

Partial least-squares regression is a powerful chemo-

metrics method for the analysis of mixtures to assess the

degree of the relationship between a set of X-predictor

variables and a set of Y-outcome variables by a linear

multivariate model. The construction of a PLS model

attempts to derive information from each source that is

relevant to the relationship between the two blocks of

variables [8]. In the present study, the concentrations of

each oil in the WFO blends of the validation set were

determined by PLS. All first derivatives spectral data was

used for PLS calibration purposes. A model was con-

structed using a full cross-validation to define the number

of retained latent variables, and an external set of samples

was used to validate the model. The Unscrambler program

was used for chemometrics calculations [12].

Thirty-four samples were used for the PLS calibration

set. For the external validation set or the prediction sam-

ples, 10 samples were selected using the DUPLEX method

[14] to provide representative sample and calibration sets.

Three samples (24, 41 and 44) were detected at PLS cross-

validation as outliers by the anomalous values of residual

Y-variance, residual X-variance and sample leverage. One

sample showed atypical absorption with an offset baseline;

this spectrum was excluded from all further chemometric

analyses.

In the first step of the DUPLEX sample selection tech-

nique, the two points that are the furthest away from each

other are selected for the calibration set. The two objects

from the remaining points that are the furthest away from

each other are included in the validation set. In the third

step, the remaining point that is furthest away from the two

points previously selected for the calibration set is included

in that set. In the same way, a single point is selected for

the validation set that is furthest from the existing points in

that set. Following the same procedure, the points are

alternately added to each set. These steps are repeated until

the number of samples of the validation set, previously

defined by the user, is reached. The remaining samples are

included in the calibration set.

Results and Discussion

MIR spectra of waste frying oils containing soybean oil,

palm oil and hydrogenated vegetable fat as well as their

blends are shown in Fig. 1. Differences between the spectra

were not easily perceived via visual inspection; a multi-

variate statistical treatment was therefore, essential for

pattern recognition of the blends in the effort to determine

the oil content in each sample. Peaks with high-intensity

absorption due to triacylglycerols, major components in

vegetable oils, were detected at 2,915, 2,845, 1,741, and

1,154 cm-1. The peaks at 2,915 and 2,845 cm-1 can be

assigned to asymmetrical and symmetrical stretching
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Fig. 1 Raw spectra of waste frying oil from soybean oil, palm oil and

hydrogenated fat and their blends
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vibrations of C–H bonds, while the peak at 1,741 cm-1

arose from C=O bond stretching. Stretching and bending of

the C–O and –CH2– accounted for the maximum at

1,154 cm-1. The region between 900 and 1,300 cm-1 is

known as the ‘‘fingerprint’’ region of vegetable oils, as

previously described [10].

In this work, variables with modeling power averages

of C0.7 were thought to be important for modeling. The

closer the value was to 1, the more that variable was taken

into account in the model, i.e., the wavenumbers with

higher modeling power values were more significant with

respect to the pattern recognition model. The modeling

power result is shown in Fig. 2 and confirmed the

importance of the three regions for building the PCA

model: 2,859–2,844 1,139–1,121 and 974–959 cm-1.

These regions correspond to 51 variables (spectral data).

The important variables detected by modeling power

criterion also showed higher loadings values (Fig. 3),

which reinforce that these variables are really relevant for

PCA model. A PCA model was calculated using the

previous selected variable ranges of first derivative spec-

tral data (2,859–2,844 1,139–1,121 and 974–959 cm-1)

and this model was used for further discussions about

PCA results.

Figure 4 illustrates the PC1 versus the PC2 score and the

loading plots, which are related to the sample and variable

profiles, respectively. The first and second PCs accounted

for 54.4 and 37.8%, respectively, of the variance in the data

set. Observing the scores plot of the two components, PC1

versus PC2, samples from the pure soybean oil (SO), palm

oil (PO) and hydrogenated vegetable fat (VF) were dis-

tinguished, which formed the vertices of a triangle. Mix-

tures containing primarily one type of oil were positioned

next to their respective vertices. The samples with more

homogeneous proportions of the oils were located at the

center of the triangle.

The results illustrated by the PCA scores plot agreed

with the ternary diagram, as was theoretically predicted for

the three component mixtures. The pre-processed spectral

data from the frying oil blends of unknown content of SO,

PO or VF could be used to calculate their PC1 and PC2

score vectors. Comparing PC1 and PC2 score vectors of

unknown samples with scores from known composition

frying oil blends allows the identification of the most

similar known sample blend. Since similar scores values

mean similar compositions, by identifying a sample of

known composition that is similar to an unknown sample, a

first estimate of the unknown sample composition could be

obtained.

Variables described by the loading graph that are located

in the same quadrant of a sample group in the scores graph

are the most important ones in describing a particular

sample group. Thus, the loading graph indicates that the

samples with high vegetable fat content were related to

variables that ranged from 44–51 (wavenumbers 966–

959 cm-1), while the samples with high soybean content

were related to variables that ranged from 1–8 and 23–35

(wavenumbers 2,859–2,852 and 1,133–1,121 cm-1,

respectively). Similarly, the samples with high palm oil

content were related to variables that ranged from 11–16 and

17–20 (wavenumbers 2,849–2,844 and 1,139–1,136 cm-1,

respectively). Remaining variables (9, 10, 21, 22, 36–43)

were not related to a particular region of the loading graph,

i.e., samples with high SO, VF or PO content (2,851, 2,850,

1,135, 1,134 and 979–967 cm-1, respectively).

To predict the oil content in WFO blends from the

spectra data, multivariate calibration models were built by
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3000 2500 2000 1500 1000 500

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20
X

-lo
ad

in
g

wavenumber (cm-1)

 PC1
 PC2

2859-2844

1139-1121

974-959
 PC1
 PC2

Fig. 3 Principal component analysis X-loading spectra: PC1 (solid
line) and PC2 (broken line)

784 J Am Oil Chem Soc (2012) 89:781–786

123



PLS regression using different pre-processing strategies.

PLS analysis was performed on the full spectral range. The

best calibration results were obtained from the first deriv-

ative after smoothing by a Savitzky-Golay filter with a

second order polynomial and a 21-point window. The root

mean square error of prediction (RMSEP), the root mean

square error of cross validation (RMSECV), the residual

prediction deviation of calibration (RPDCAL) and valida-

tion (RPDVAL) [15], the number of retained latent variables

(no. LVs) and the percentage of explained variance are

listed in Table 2.

The performance of the PLS model was evaluated using

a validation set with ten samples. The results showed good

agreement between the predicted and actual content of each

oil in the WFO samples. As seen in Fig. 5, the slopes and

intercepts of the regression lines are close to unity and

zero, respectively, indicating low bias and low systematic

regression errors.
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Table 2 Performance of the PLS models for determining the content of soybean oil (SO), palm oil (PO) and hydrogenated vegetable fat (VF) in

waste frying oils

Type of oil or fat No. LVs RMSEP (%, v/v) RPDVAL RMSECV (%, v/v) RPDCAL

VF 4 5.5 6.1 5.9 4.4

SO 3 4.7 7.4 4.6 5.6

PO 3 2.8 12.1 3.5 7.6

Number of retained latent variables (no. LVs), root mean square error for prediction (RMSEP), root mean square error of cross-validation

(RMSECV), residual prediction deviation of validation (RPDVAL) and residual prediction deviation of calibration (RPDCAL)
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Fig. 5 Graphs of predicted versus real oil contents obtained by the PLS models for the validation set: a soybean oil, b palm oil, and
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J Am Oil Chem Soc (2012) 89:781–786 785

123



The results obtained by PLS provided absolute predic-

tion errors between 0.4% (v/v) and 10.3% (v/v). Consid-

ering the maximum absolute prediction errors and RMSEP

values, the prediction quality of the models cannot be

guaranteed for ranges below 5% (v/v) of frying oils, mainly

for VF and SO. Despite the low number of calibration

samples, the maximum number of latent variables retained

was four; the number of samples in the calibration set was

high enough to agree with the recommended minimum

number of calibration samples [16].

RPD was used to measure precision and evaluate how

well the calibration model predicts the validation set. The

higher the RPD the more precisely are the data described

by the calibration. According to Igne and Hurburgh Jr

(2009), a model with an RPD value larger than 5 is con-

sidered good for quality control; with an RPD value larger

than 6.5, the model can be used for process monitoring; and

models with RPD higher than 8 can be used in any appli-

cations [15]. In this way, all calibration models obtained in

this work can be used for quality control when considering

RPDVAL values.

Conclusions

Mid-infrared spectroscopy in association with PCA was

successfully used to evaluate the patterns in various blends

of waste frying oils consisting of soybean oil, palm oil and

hydrogenated vegetable fat. Through this method, careful

examination of the PCA results can be employed for a first

estimate of the composition of oil blends. Additionally,

partial least squares regression based on mid-infrared

spectra was proven suitable to predict the content of each

type of oil present in mixtures of waste frying oils. This

methodology can be very useful for the rapid, reagent-free,

low cost determination of the composition of waste cook-

ing oil and can aid in decision making regarding the pre-

treatment of oils and the production routes for biodiesel.
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