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We use methods of quantum field theory in toroidal topologies to study the N-component

D-dimensional massive Gross-Neveu model, at zero and finite temperature, with compactified spatial

coordinates. We discuss the behavior of the large-N coupling constant (g), investigating its dependence on

the compactification length (L) and the temperature (T). For all values of the fixed coupling constant (�),

we find an asymptotic-freedom type of behavior, with g ! 0 as L ! 0 and/or T ! 1. At T ¼ 0, and for

� � �ðDÞ
c (the strong-coupling regime), we show that, starting in the region of asymptotic freedom and

increasing L, a divergence of g appears at a finite value of L, signaling the existence of a phase transition

with the system getting spatially confined. Such a spatial confinement is destroyed by raising the

temperature. The confining length, LðDÞ
c , and the deconfining temperature, TðDÞ

d , are determined as

functions of � and the mass (m) of the fermions, in the case of D ¼ 2; 3; 4. Taking m as the constituent

quark mass (� 350 MeV), the results obtained are of the same order of magnitude as the diameter

(� 1:7 fm) and the estimated deconfining temperature (� 200 MeV) of hadrons.

DOI: 10.1103/PhysRevD.85.085015 PACS numbers: 11.30.Rd, 11.10.Wx

I. INTRODUCTION

The strong interaction among quarks and gluons, the
constituents of the hadronic matter, has such a structure
that obligates them to live spatially confined, at low tem-
peratures, within distances �1 fm in colorless states. It is
usually accepted that in an earlier stage of the Universe, as
it cooled down, quarks and gluons condensed into hadrons
at an estimated temperature of the order of 200 MeV. At
very high energies, deep inelastic scattering indicates that
the quarks are nearly free, a regime denominated as asymp-
totic freedom.

In the standard model, the theory of strong interactions
is quantum chomodynamics (QCD), which should describe
such facts, accounting also for the nuclear forces. However,
QCD has a very involved mathematical structure, which
practically prevents us from finding analytical results tak-
ing into account both confinement and asymptotic free-
dom. Lattice calculations have been implemented to
simulate the behavior of the theory in the confining region,
both at zero and finite temperature, providing (among
other results) an estimate of the deconfining temperature.
Rigorous QCD calculations, both at zero and finite tem-
perature, have been worked out [1,2] but mainly treating
the asymptotically free domain at high energies or high
temperatures, where perturbation theory is applicable.

Because of the difficulty of treating QCD analytically,
phenomenological approaches and studies of effective,
simplified models have been stimulated along the years
to give clues to the behavior of hadronic systems. A
celebrated effective model, which shares with QCD some
basic properties, is the Nambu-Jona-Lasinio (NJL) model
[3]. One of its sectors, providing the simplest effective
model which may be considered as describing quark inter-
actions, is a direct four-fermion coupling, where gluon
fields and color degrees of freedom are integrated out,
resembling the Fermi treatment of the weak interaction.
This corresponds to the Gross-Neveu (GN) model [4],
considered in space-time dimension D ¼ 4. Although the
GN model is not renormalizable for dimensions greater
than D ¼ 2, the Euclidian model has been shown to exist
and has been constructed for D ¼ 3 in the large-N limit
[5]. But, within the spirit of effective theories, perturbative
renormalizability is not a requirement to have a physically
meaningful model [6–10].
The GN model, as a prototype model for interacting

fermions, has been analyzed extensively in recent years
[11–20], including the study of continuous and discrete
chiral symmetry [21,22]. For the version with N massless
fermions in (2þ 1) dimensions, for instance, a chiral
symmetry breaking is found in perturbative analysis,
with the restoration of such a symmetry at finite tempera-
ture [23]. In particle physics, these results provide in-
sights into the intricate structure of the hadronic matter,
such as for the quark confinement/deconfinement phase
transition [24,25].
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The four-point contact interaction of the GN model is
similar to the delta interaction in the BCS theory of super-
conductivity. In the latter case, as in other systems of
condensed matter, the susceptibility arising from the linear
response theory has a divergence at a finite temperature
indicating the existence of a second-order phase transition
between a disordered and a condensed phase [26].
Spontaneous symmetry breaking is the common feature
underlying all these phenomena [27]. Recently [28], we
have shown that such instability appears in the one-
component massive tridimensional GN model at finite
temperature. Here, we intend to use a similar treatment
to investigate the existence of a phase transition in the
massive, N-component, GN model.

We employ methods of quantum field theory in toroidal
topologies [29–34] to extend previous results [35,36] for
the Euclidian massive, N-component, GN model in the
large-N limit. This amounts to considering the GN model
in a D-dimensional space-time and to compactifying a
d-dimensional (d � D) subspace. The compactification is
a generalization of the Matsubara procedure. The
Matsubara imaginary-time formalism corresponds to con-
sidering fields in a space with topology S1 � RD�1, where
S1 is a circumference of length �, with periodic (antiperi-
odic) boundary conditions for bosons (fermions). Such a
compactification of the Euclidian time can be directly
generalized to include the compactification of space coor-
dinates as well. This allows us to consider field theoretical
models with spatial constraints, at zero or finite tempera-
ture, by using generating functionals with a path-integral
formalism on the topology S11 � � � � � S1d � RD�d

[29–32]. These ideas have been established recently on a
firm foundation [33,34] and applied in different physical
situations, for example: for spontaneous symmetry break-
ing in the compactified�4 model [37–39]; for second-order
phase transitions in superconducting films, wires, and
grains [40–42]; for the Casimir effect for bosons and fer-
mions [43–48]; for size effects in the NJL model [49–53];
and for electrodynamics with an extra dimension [54].

We treat particularly the cases D ¼ 2; 3; 4 with all spa-
tial dimensions compactified, initially at zero temperature
and then we discuss temperature effects by compactifying
the imaginary time in a length � ¼ T�1, T being the
temperature. This corresponds to considering the system
contained in a parallelepiped box, with antiperiodic bound-
ary conditions on its faces, at finite T. We study the
behavior of the system as a function of its size and of
the temperature, concentrating on the dependence of the
large-N coupling constant on the compactification length
and temperature. We show that, even at T ¼ 0, a singular-
ity in the four-point function may appear driven by changes
in the compactification length, suggesting the existence of
a second-order phase transition in the system. This can be
interpreted as a spatial confinement transition, which may
be present in the massive version of the GN model.

We use concurrently dimensional and analytic regulari-
zations and employ a subtraction scheme where the polar
terms, arising from Epstein-Hurwitz generalized zeta-
functions, are suppressed. Results obtained with this pro-
cedure have similar structure for all values of D, which
gives us confidence that they are meaningful for the four-
dimensional space-time. This is reinforced a posteriori by
the fact that the numerical results found for D ¼ 4 are of
the same order of magnitude as the corresponding values
for D ¼ 2 and D ¼ 3. For the massive GN model in the
large-N limit, discussed in the present paper, we obtain
simultaneously an asymptotic-freedom type of behavior
and spatial confinement, in the strong-coupling regime,
for low temperatures. We also show that, as the tempera-
ture is increased, a deconfining transition occurs. We
calculate the values of the confining lengths and the de-
confining temperatures for D ¼ 2; 3; 4.
This article starts by discussing, in Sec. II, the

D-dimensional massive, N-component, Gross-Neveu
model with dð� DÞ compactified dimensions. In Sec. III,
the calculation of the effective large-N coupling constant is
carried out for the cases with D ¼ 2; 3; 4 at zero tempera-
ture. Temperature effects are presented in Sec. IV. The last
section provides a comparison of our estimated confining
lengths and deconfining temperatures with experimental
values.

II. COMPACTIFIED GROSS-NEVEU MODEL

The massive GN model in a D-dimensional Euclidean
space is described by the Wick-ordered Lagrangian density

L ¼ : �c ðxÞðirþmÞc ðxÞ:þ u

2
ð: �c ðxÞc ðxÞ:Þ2; (1)

wherem is the mass, u is the coupling constant, x is a point
of RD, and the �’s are the Dirac matrices. We consider the
GN model in its N-component version, so that c ðxÞ rep-
resents a spin 1

2 field having N (flavor) components, c aðxÞ,
a ¼ 1; 2; . . . ; N, with summations over flavor and spin
indices being understood in Eq. (1). We calculate quanti-
ties of interest by taking the large-N limit where N ! 1
and u ! 0 in such way that Nu ¼ � remains finite.
Throughout the text we use natural units with ℏ ¼ c ¼
kB ¼ 1.
Our main goal is to determine the large-N (effective)

coupling constant when dð� DÞ Euclidian coordinates, say
x1; . . . ; xd, are compactified, that is, considering the system
in a topology S11 � � � �S1d � RD�d. This corresponds to
restricting the coordinates xi to segments of length Liði ¼
1; 2; . . . dÞ, with the fermionic field c ðxÞ satisfying anti-
periodic boundary conditions. If all xi are spatial coordi-
nates, the model refers to the system compactified in a
d-dimensional box at zero temperature while, with one
coordinate being the Euclidian time (say xd), one has the
system with d� 1 compactified spatial dimensions at
finite temperature; in this latter case, Ld would stand for
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� ¼ 1=T, the inverse of the temperature. For massless
fermions, this spatial compactification with antiperiodic
boundary conditions is equivalent to considering the sys-
tem constrained to ‘‘live’’ inside a parallelepiped box, with
edges Liði ¼ 1; 2; . . . dÞ, under bag model conditions (no
outgoing currents) on parallel, opposite, faces [55,56]. In
our case, to calculate n-point functions, we apply the
generalized Matsubara prescription, which amounts to
modifying the Feynman rules performing, the replace-
ments

ki ! �i ¼
2�ðni þ 1

2Þ
Li

; i ¼ 1; 2; . . . ; d;

(2a)

Z dDk

ð2�ÞD FðkÞ ! 1

L1 . . .Ld

Xþ1

fnig¼�1

Z dD�dk

ð2�ÞD�d
Fðfkig;kÞ;

(2b)

where fnig ¼ fn1; . . . ; ndg, with ni 2 Z, and k is a
(D� d)-dimensional vector in momentum space; the dis-
creet momenta �i are referred to as Matsubara frequencies.
Additionally, it should be pointed out that the choice of
antiperiodic boundary conditions for the spatial compacti-
fication, instead of the simpler periodic ones, is also due to
the fact that they emerge naturally in the generalization of
the Kubo-Martin-Schwinger (KMS) conditions satisfied by
correlation functions for fermionic fields in toroidal top-
ologies [33,34].

We shall define the large-N effective coupling constant
between the fermions in terms of the four-point function at
zero external momenta. The fLig-dependent four-point
function, at leading order in 1

N , is given by the sum of

chains of one-loop (bubble) diagrams, which can be for-
mally expressed as

�ð4Þ
Ddð0; fLig; uÞ ¼ u

1þ Nu�DdðfLigÞ ; (3)

where the fLig-dependent one-loop Feynman diagram is
given by

�DdðfLigÞ ¼ 1

L1 � � �Ld

X1
fnig¼�1

Z dD�dk

ð2�ÞD�d

�
�

m2 � k2 �P
d
i¼1 �

2
i

ðk2 þP
d
i¼1 �

2
i þm2Þ2

�
: (4)

Prior to defining an effective large-N coupling constant,
we have to deal with the ultraviolet divergences of
�DdðfLigÞ. To simplify the use of regularization tech-
niques, we introduce the dimensionless quantities
bi ¼ ðmLiÞ�2ði ¼ 1; . . . ; dÞ and qj ¼ kj=2�mðj ¼
dþ 1; . . . ; DÞ, in terms of which the one-loop diagram is
written as

�DdðfbigÞ
¼ �Ddðs; fbigÞjs¼2

¼ mD�2

4�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 � � � bd

p �
1

2�2
UDdðs; fbigÞ

�UDdðs� 1; fbigÞ
���������s¼2

; (5)

where

UDdð�; fbigÞ

¼ X1
fnig¼�1

Z dD�dq

½q2 þPd
j¼1 bjðnj þ 1

2Þ2 þ ð2�Þ�2�� : (6)

We find from Eq. (5) that �Dd has dimension of mD�2,
which is inverse of the mass dimension of the coupling
constant.
We employ a modified minimal subtraction scheme

which uses concurrently dimensional and analytical regu-
larizations. In this scheme, the subtracted terms are poles
(for even D � 2) of the Epstein-Hurwitz zeta-functions.
First, using well-known dimensional regularization formu-
las to perform the integral over q ¼ ðqdþ1; . . . ; qDÞ in
Eq. (6), we obtain

UDdð�;fbigÞ¼�ðD�dÞ=2�ð��D�d
2 Þ

�ð�Þ
X1

fnig¼�1

�Xd
j¼1

bj

�
njþ1

2

�
2

þð2�Þ�2

�ððD�dÞ=2Þ��
: (7)

The summations over half-integers in this expression can
be transformed into sums over integers, leading to

UDdð�;fbigÞ¼�ðD�dÞ=2�ð��ðD�dÞ
2 Þ

�ð�Þ 4�

�
�
Zh2

d ð�;b1; . . . ;bdÞ�
Xd
i¼1

Zh2

d ð�; . . . ;4bi; . . .Þ

þ Xd
i<j¼1

Zh2

d ð�; . . . ;4bi; . . . ;4bj; . . .Þ����

þð�1ÞdZh2

d ð�;4b1; . . . ;4bdÞ
�
; (8)

where h2 ¼ ��2, � ¼ �� D�d
2 , and

Zh2

d ð�; faigÞ ¼
X1

fnig¼�1

�Xd
j¼1

ajn
2
j þ h2

���
(9)

is the multiple (d-dimensional) Epstein-Hurwitz zeta-
function.

The Epstein-Hurwitz zeta-function Zh2

d ð�; faigÞ can be

analytically extended to the whole complex �-plane [39],
through a generalization of the procedure presented in
Refs. [57,58]; then we find
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Zh2

d ð�; faigÞ ¼ �d=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � � �adp

�ð�Þ

2
64 1

h2ð��dÞ �
�
�� d

2

�
þ Xd

	¼1

2	þ1
X
f
	g

X1
fn
	 g¼1

0
B@�
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1

a
1

þ � � � þ n2
	

a
	

vuut
1
CA

��ðd=2Þ

� K��ðd=2Þ

0
B@2�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1

a
1

þ � � � þ n2
	

a
	

vuut
1
CA
3
75; (10)

where f
	g represents the set of all combinations of the
indices f1; 2; . . . ; dg with 	 elements and K�ðzÞ is the
Bessel function of the third kind. Consequently, the func-
tion UDdð�; fbigÞ can also be analytically continued to the
whole complex �-plane.

Taking Zh2

d ð�; faigÞ given by Eq. (10), grouping similar

terms appearing in the parcels of Eq. (8) and using the
identity

XN
j¼1

��1

2

�
j N!

j!ðN � jÞ! ¼
1

2N
; (11)

we obtain

UDdð�; fbigÞ ¼ 22��D�2��ðD=2Þ

�ð�Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 � � � bd
p

�
�
�

�
��D

2

�
þ 2D=2WDdð�; fbigÞ

�
;

(12)

with WDdð�; fbigÞ given by

WDdð�; fbigÞ ¼ 21��
Xd
j¼1

22j
X
f�jg

X
fc�k¼1;4g

�Yj
k¼1

ð�1Þc�k�1

ffiffiffiffiffiffiffi
c�k

p
�
FDjð�; c�1

b�1
; . . . ; c�j

b�j
Þ; (13)

where f�jg stands for the set of all combinations of the
indices f1; 2; . . . ; dg with j elements and the functions
FDjð�; a1; . . . ; ajÞ, for j ¼ 1; . . . ; d, are defined by

FDjð�; a1; . . . ; ajÞ ¼
X1

n1;...;nj¼1

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
a1

þ � � � þ n2j
aj

vuut
1
CA

��ðD=2Þ

� K��ðD=2Þ

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
a1

þ � � � þ n2j
aj

vuut
1
CA:

(14)

Substituting Eq. (12) into Eq. (5) leads directly to an
analytic extension of �Ddðs; fbigÞ for complex values of s,
in the vicinity of s ¼ 2. In fact,�Ddðs; fbigÞ can be written
as

�Ddðs;fbigÞ¼�polar
Dd ðsÞþ mD�2

ð2�ÞðD=2Þ�2sþ4�ðsÞ
�
�
2WDdðs;fbigÞ�ðs�1ÞWDdðs�1;fbigÞ

�
;

(15)

where

�polar
Dd ðsÞ ¼ mD�2�D=2ðs� 1�DÞ

ð2�ÞD�2sþ4�ðsÞ �

�
s� 1�D

2

�
(16)

and the functions WDdð�; fbigÞ are given by Eq. (13). We
notice that the first term in this expression for�Ddðs; fbigÞ,
�polar

Dd ðsÞ, does not depend on parameters bi, that is, it is
independent of the compactification lengths Liði ¼
1; . . . ; dÞ. At s ¼ 2, because of the poles of the
�-function, such a term is divergent for even dimensions
D � 2.
In order to obtain a finite single bubble function, we

shall use a modified minimal subtraction scheme, where
terms to be subtracted have poles appearing at the physical
value s ¼ 2. Thus, the polar parcel given by Eq. (16) will
be suppressed and, for the sake of uniformity, this term is
also subtracted in the case of odd dimensions, where no
pole of the �-function is present; in such a situation, we
perform a finite subtraction. In this way, using the same
notation, we define the finite one-loop diagram by the
relation

�DdðfbigÞ ¼
�
�Ddðs; fbigÞ ��polar

Dd ðsÞ
���������s¼2

: (17)

Therefore, the finite one-loop diagram, which depends on
the compactification lengths Li and arises from the regular
part of the analytical extension of the Epstein-Hurwitz
zeta-functions, is given by

�DdðfbigÞ ¼ mD�2

ð2�ÞD=2
½2WDdð2; fbigÞ �WDdð1; fbigÞ�:

(18)
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From now on, we shall deal only with finite quantities that
are obtained following this subtraction prescription. Notice
that, replacing bi by ðmLiÞ�2 in the above expression, we
recover explicitly �DdðfLigÞ. Now, we proceed to analyze
the behavior of the large-N coupling constant in various
cases.

III. COUPLING CONSTANT IN THE
LARGE-N LIMIT

In field theories with four-fermion interactions, the cou-
pling constant is defined in terms of the four-point function
at fixed external momenta; here we choose p ¼ 0. In this
situation, the coupling constant can be interpreted as mea-
suring the strength of the interaction between the fermions.
The large-N (fbig-dependent) coupling constant, for
dð� DÞ compactified dimensions, is then obtained by
substituting �DdðfbigÞ into Eq. (3) and taking the limit
N ! 1, u ! 0, with Nu ¼ � fixed, we get

gDdðfbig; �Þ ¼ lim
Nu¼�

�
N�ð4Þ

Ddð0; fbig; uÞ
�

¼ �

1þ ��DdðfbigÞ : (19)

It is clear that, while gDdðfbig; �Þ depends on the value of
the fixed coupling constant � in a direct way, its depen-
dence on the compactifiation lengths is dictated by the
behavior of �Dd as fbig is varied. The dependence of
gDd on fLig and � is the main point to be discussed in
the subsequent analysis.

Limiting behaviors of the finite coupling constant gDd

can be readily obtained from the fact that �Dd depends on
fbig through the Bessel functions of the third kind appear-
ing in the definition of the functions FDj, Eq. (14). First, if

we let all the compactification lengths tend to infinity, that
is fbi ! 0g, thus reducing the problem to the free space at
T ¼ 0, then �Dd ! 0 and we obtain, consistently, that

lim
fLi!1g

gDdðfbig; �Þ ¼ �; (20)

where � is the fixed coupling constant in free space at
zero temperature. This is a consequence of the fact that
K�ðz ! 1Þ ! 0, for � integer or half-integer. In the oppo-
site limit, for any bi tending to1 (that is, if any compacti-
fication length Li goes to 0), the single bubble diagram
�Dd ! 1, since K�ðzÞ ! 0 as z ! 1. This implies that
the effective coupling constant gDd vanishes, irrespective
of the value of �, suggesting that the system presents an
asymptotic-freedom type of behavior for short distances
and/or for high temperatures.

From the extreme limits considered above two situations
may emerge, as one changes the compactification lengths
from 0 to 1: either �Dd varies from 1 to 0 through
positive values, or �Dd reaches 0 before tending to 0
through negative values. The latter case, which may ac-
tually happen, would lead to an interesting situation where

a divergence of the effective coupling constant would
appear at finite values of the lengths Li. This possibility,
and its consequences, will be investigated explicitly in the
following subsections, considering the compactified GN
model at T ¼ 0 for space-time dimensions D ¼ 2; 3; 4.
The discussion of finite-temperature effects is postponed
to Sec. IV.

A. Two-dimensional compactified GN model at T ¼ 0

ForD ¼ 2 and d ¼ 1 (two-dimensional space-time with
the spatial coordinate compactified), we put b1 ¼ ðmLÞ�2

in Eqs. (13) and (14), then Eq. (18) becomes

�21ðLÞ ¼ 2E1ð2mLÞ � E1ðmLÞ; (21)

where the function E1ðxÞ is defined by

E1ðxÞ ¼ 1

�

X1
n¼1

½�K0ðxnÞ þ ðxnÞK1ðxnÞ�: (22)

Notice that � is dimensionless for D ¼ 2.
We can calculate �21ðLÞ numerically by truncating the

series appearing in the definition of the function E1ðyÞ,
Eq. (22), at some value n ¼ M. For moderate and large
values of mL (say, mL * 0:5), one can take for M a
relatively small value; e.g., for mL ¼ 0:5, choosing
M ¼ 36 already leads to the correct value of �21 to six
decimal places. As mL increases, the value of M can be
made smaller to give the same precision. However, since
the functions K0ðzÞ and K1ðzÞ diverge for z ! 0 and the
summation involves positive and negative parcels, the
calculation of �21 for small values of mL requires large
values ofM; formL ¼ 0:005, we needM � 4500 to obtain
�21 to six decimal places. Fortunately, the relevant behav-
ior of�21ðLÞ appears for moderate values ofmL so that the
numerical calculations are carried out in a short computa-
tional time with very good precision.
The function �21ðLÞ is plotted as a function of mL in

Fig. 1. From this figure and the numerical treatment of
Eq. (21), we infer that �21ðLÞ diverges ( ! þ1) when
L ! 0 and tends to 0, through negative values, as L ! 1.

1 2 3 4 5 6
mL

-0.05

0.05

0.1

0.15

0.2
S2

FIG. 1. Plot of S2 ¼ �21ðLÞ as a function of mL.
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Also, we find that �21ðLÞ vanishes for a specific value of

L, which we denote by Lð2Þ
min, being negative for all

L > Lð2Þ
min, and assumes a minimum (negative) value at a

value of L denoted by Lð2Þ
max, for reasons that will be

clarified later. Numerically, it is found that Lð2Þ
min ’

0:78 m�1, Lð2Þ
max ’ 1:68 m�1 and �min

21 ’ �0:0445. This
behavior of �21 as L changes, particularly the fact that

�21ðLÞ< 0 for L > Lð2Þ
min, leads to remarkable properties of

the large-N coupling constant g21ðL; �Þ. It is important to
point out that such a dependence of the polarization on L is
a direct consequence of the use of antiperiodic boundary
conditions for the spatial compactification. Taking periodic
boundary conditions (PBC), one would obtain �PBC

21 ðLÞ ¼
E1ðmLÞ=4, which is positive for all values of L, and so no
significant size-effect would exist.

Recall that, in the present case, Eq. (19) becomes

g21ðL; �Þ ¼ �

1þ ��21ðLÞ : (23)

The divergence of�21ðLÞ as L ! 0 ensures that, indepen-
dently of the value of �, g21ðL; �Þ approaches 0 in this limit
and, therefore, the system presents a kind of asymptotic-
freedom behavior for short distances. On the other hand,

since �21ðLÞ assumes negative values for L> Lð2Þ
min, the

denominator of Eq. (23) will vanish at a finite value of L if
� is sufficiently high. This means that, starting from a low
value of L (within the region of asymptotic freedom) and
increasing the size of the system, g21 will diverge at a finite

value of L, Lð2Þ
c ð�Þ, if � is greater than the ‘‘critical value’’

�ð2Þ
c ¼ ð��min

21 Þ�1 ’ 22:47. We interpret this result by stat-

ing that, in the strong-coupling regime (� � �ð2Þ
c ) the

system gets spatially confined in a segment of length

Lð2Þ
c ð�Þ. The behavior of the L-dependent coupling con-

stant as a function of mL is illustrated in Fig. 2, for some
values of the fixed coupling constant �.

It should be emphasized that we are treating the massive
GN model with an arbitrary (but fixed) fermion mass. In
this case, the model does not possess chiral symmetry
which is explicitly broken. Since we do not expect that
this symmetry appears beyond the critical value (with the

radiatively corrected mass vanishing identically), the in-
stability indicated by the divergence of the coupling con-
stant is interpreted as signaling a spatial confining
transition.

For � ¼ �ð2Þ
c , by definition, the divergence of g21ðL; �Þ

is reached as L approaches the value that makes �21

minimal, which we have denoted by Lð2Þ
max. In the other

limit, since g�1
21 ðL; � ! 1Þ ¼ �21ðLÞ, Lð2Þ

c ð�Þ tends to

Lð2Þ
min, the zero of �21ðLÞ, as � ! 1. In other words, the

confining length Lð2Þ
c ð�Þ decreases from the maximum

value Lð2Þ
max, when � ¼ �ð2Þ

c , tending to the lower bound

Lð2Þ
min in the limit � ! 1. The behavior of Lð2Þ

c , as a function

of �, will be presented later.

B. Compactified three-dimensional GN model at T ¼ 0

For the three-dimensional model at zero temperature
with two compactified dimensions (d ¼ 2), denoting the
compactification lengths associated with the two spatial
coordinates x1 and x2 by L1 and L2 (m�1=

ffiffiffiffiffi
b1

p
and

m�1=
ffiffiffiffiffi
b2

p
, respectively), formulas in Eq. (13) and (18) give

�32�ðb1; b2Þ ¼ mffiffiffi
2

p
�3=2

½2F31ð2; b1Þ � F31ð2; 4b1Þ þ 2F31ð2; b2Þ � F31ð2; 4b2Þ � 2F31ð1; b2Þ � 2F31ð1; b1Þ

þ F31ð1; 4b1Þ þ F31ð1; 4b2Þ þ 4F32ð2; b1; b2Þ � 2F32ð2; 4b1; b2Þ � 2F32ð2; b1; 4b2Þ þ F32ð2; 4b1; 4b2Þ
� 4F32ð1; b1; b2Þ þ 2F32ð1; 4b1; b2Þ þ 2F32ð1;b1; 4b2Þ � F32ð1; 4b1; 4b2Þ�: (24)

The functions F3j (j ¼ 1; 2), specified in Eq. (14), involve
the Bessel functions of order 	 1

2 , which are expressed in
terms of elementary functions,

K	1
2
ðzÞ ¼ ffiffiffiffi

�
p expð�zÞffiffiffiffiffi

2z
p : (25)

Thus, the series defining the functions F3j, for both j ¼
1; 2, are geometric series which can be summed up. Using
Eq. (25) in the expression of Eq. (14) and replacing bi by
L�2
i (which corresponds to taking all the compactification

lengths measured in units ofm�1, as will be done from now
on), we obtain

1 2 3 4
mL

2

4

6

8

10
G

FIG. 2. Plots of the relative effective coupling constant, G ¼
g21ðL; �Þ=�, as a function of mL for some values of �: 12:0
(long-dashed line), 17.0 (dot-dashed line), 20.0 (short-dashed
line), and 22.5 (solid line). The dotted vertical lines, passing by

Lð2Þ
min ’ 0:78 m�1 and Lð2Þ

max ’ 1:68 m�1, are plotted as a visual

guide.
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�32ðL1; L2Þ ¼ m

2�

�
1

L1

logð1þ e�L1Þ � 1

1þ eL1

þ 1

L2

logð1þ e�L2Þ þ 1

1þ eL2

�

þm

�
½G2ðL1; L2Þ � 2G2ðL1; 2L2Þ

� 2G2ð2L1; L2Þ þ 4G2ð2L1; 2L2Þ�; (26)

where the function G2ðx; yÞ is defined by

G2ðx; yÞ ¼
X1
n;l¼1

exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

q �

�
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n2 þ y2l2
p

�
: (27)

The numerical computation of �32ðL1; L2Þ is greatly fa-
cilitated by the fact that the double series defining the
function G2ðy; zÞ is rapidly convergent. The need of trun-
cating the summations at a larger value n ¼ M when L1

and L2 are very small, as in the case of D ¼ 2, still exists
but to a much less extent.

It is to be noticed that if either compactification length
L1 or L2 tends to 1, all terms depending on it disappear
from Eq. (26) and we regain the finite bubble diagram for
the case where only one spatial dimension is compactified
in the three-dimensional model [35]. Now, if both L1

and L2 tend simultaneously to 1, �32 goes to zero and
g32 ! �, as expected. On the other hand, if either L1 or L2

tends to 0, �32 ! þ1 implying that the system gets
asymptotically free, with the effective coupling constant
vanishing in this limit. The overall behavior of the bubble
diagram is illustrated in Fig. 3, where we draw the contour
plots of�32ðL1; L2Þ=m. The solid line in Fig. 3 is the locus
of the points such that�32ðL1; L2Þ=m ¼ 0, which for large
L1 (L2) approaches the straight line L1 ¼ 1:14 m�1 (L2 ¼
1:14 m�1); �32ðL1; L2Þ is positive below this curve,
negative above it, and reaches an absolute minimum,
�min

32 ’ �0:009 86 m, at the point L1 ¼ L2 ’ 2:10 m�1.

The fact that �32 assumes negative values in the whole
region of the parameter space ðL1; L2Þ above the full line in
Fig. 3 implies that, for large enough values of �, g32 will
diverge at finite values of Li, i ¼ 1; 2. However, to avoid
unnecessary complication, our analysis is restricted to the
case where the system is confined within a square of size L,
by considering L1 ¼ L2 ¼ L. In other words, we shall
concentrate on the behavior of �32 along the diagonal of
Fig. 3. We plot, in Fig. 4, S3ðLÞ ¼ �32ðLÞ=m as a function
of L. We find that S3ðLÞ vanishes for a specific value of L,
Lð3Þ
min, being negative for all L � Lð3Þ

min. Also, �32ðLÞ
reaches an absolute minimum (negative) value for a

value of L we denote by Lð3Þ
max. We find, numerically, that

Lð3Þ
min ’ 1:30 m�1 and Lð3Þ

max ’ 2:10 m�1, with �min
32 ’

�0:00986 m, as stated before. This behavior of �32ðLÞ

has profound implications on the effective coupling
constant.
With D ¼ 3 and d ¼ 2, Eq. (19) is rewritten as

g32ðL; �Þ ¼ �

1þ ��32ðLÞ ; (28)

and we find that, for � � �ð3Þ
c ¼ ð��min

32 Þ�1 ’
101:42 m�1, the denominator in Eq. (28) will vanish for

1 1.5 2 2.5 3 3.5 4 4.5

1

1.5

2

2.5

3

3.5

4

4.5

FIG. 3. Contour plots of �32ðL1; L2Þ=m, with L1 and L2 in
units of m�1. The open dashed line corresponds to
�32ðL1; L2Þ=m ¼ 0:04, the solid line gives the points where
�32 ¼ 0, while the closed curves are for negative values of
�32=m, �0:0091, �0:0095 and �0:0098 (dot-dashed, dashed,
and dotted lines, respectively). The dot is the location of the
absolute minimum of �32ðL1; L2Þ, which occurs for L1 ¼ L2 ’
2:1 m�1.

1 2 3 4 5 6
L

-0.02

0.02

0.04

0.06

0.08
S3

FIG. 4. Plot of S3 ¼ �32ðLÞ=m as a function of L, in units
of m�1.
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a finite value of L, Lð3Þ
c ð�Þ, leading to a divergence in the

effective coupling constant. The behavior of the effective
coupling constant as a function of L, for increasing values
of the fixed coupling constant �, can be illustrated showing
the same pattern as that of Fig. 2 for the preceding case.

Similarly, we find that the divergence occurs at Lð3Þ
c ð�Þ,

which satisfies Lð3Þ
min <Lð3Þ

c ð�Þ � Lð3Þ
max. Again, we interpret

such a result by considering the system spatially confined
in the sense that, starting with small L (in the region of

asymptotic freedom), the size of the square cannot increase

above Lð3Þ
c ð�Þ, since g32ðL; �Þ ! 1 as L ! Lð3Þ

c ð�Þ.

C. D ¼ 4 case at zero temperature

In the case of the four-dimensional GN model with all
three spatial coordinates compactified, replacing bi by L

�2
i

(again, Li measured in units of m�1) into Eqs. (13), (14),
and (18), gives

�43ðfLigÞ ¼ m2½2H1ð2L1Þ þ 2H1ð2L2Þ þ 2H1ð2L3Þ �H1ðL1Þ �H1ðL2Þ �H1ðL3Þ þ 2H2ðL1; L2Þ þ 2H2ðL1; L3Þ
þ 2H2ðL2; L3Þ � 4H2ðL1; 2L2Þ � 4H2ðL1; 2L3Þ � 4H2ð2L1; L2Þ � 4H2ð2L1; L3Þ � 4H2ðL2; 2L3Þ
� 4H2ð2L2; L3Þ þ 8H2ð2L1; 2L2Þ þ 8H2ð2L1; 2L3Þ þ 8H2ð2L2; 2L3Þ � 4H3ðL1; L2; L3Þ þ 8H3ð2L1; L2; L3Þ
þ 8H3ðL1; 2L2; L3Þ þ 8H3ðL1; L2; 2L3Þ � 16H3ð2L1; 2L2; L3Þ � 16H3ð2L1; L2; 2L3Þ
� 16H3ðL1; 2L2; 2L3Þ þ 32H3ð2L1; 2L2; 2L3Þ�; (29)

where the functions Hj, j ¼ 1; 2; 3, are defined by

H1ðxÞ ¼ 1

2�2

X1
n¼1

�
K0ðxnÞ � K1ðxnÞ

ðxnÞ
�
; (30)

H2ðx; yÞ ¼ 1

2�2

X1
n;l¼1

�
K0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

q �

� K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

p Þ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

p Þ
�
; (31)

H3ðx; y; zÞ ¼ 1

2�2

X1
n;l;r¼1

�
K0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2 þ z2r2

q �

� K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

p Þ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2 þ z2r2

p Þ
�
: (32)

Results for one or two compactified dimensions are
obtained from Eq. (29) if two or one of the compactifica-
tion lengths become infinite. For example, taking L2,
L3 ! 1, we get �41ðL1Þ ¼ m2½2H1ð2L1Þ �H1ðL1Þ�,
which assumes the minimum value �min

41 ’ �0:001 866 m2

atL ¼ Lð41Þ
max ’ 2:01 m�1, leading to the critical value�ð41Þ

c ’
535:91 m�2, and vanishes at L ¼ Lð41Þ

min ’ 1:43 m�1. The

analysis made in Ref. [35] can be extended to this case of
the four-dimensional space with only one spatial coordinate
compactified. Similarly, we could discuss the situation with
two compactified spatial dimensions.

Here, instead of dealing with all possibilities, we con-
centrate on the case where the system is confined to a cubic
box, that is, we take L1 ¼ L2 ¼ L3 ¼ L. With equal com-
pactification lengths, Eq. (29) becomes

�43ðLÞ ¼ m2½6H1ð2LÞ � 3H1ðLÞ þ 6H2ðL;LÞ
� 24H2ðL; 2LÞ þ 24H2ð2L; 2LÞ
� 4H3ðL; L; LÞ þ 24H3ðL; L; 2LÞ
� 48H3ðL; 2L; 2LÞ þ 32H3ð2L; 2L; 2LÞ�:

(33)

This quantity is plotted in Fig. 5, which shows that it has
the same behavior as its counterparts for D ¼ 2 and

D ¼ 3. We find numerically that �43ðLÞ vanishes for L ¼
Lð4Þ
min ’ 1:68 m�1, being negative for L> Lð4Þ

min, and as-

sumes the minimum value, �min
43 ’ �0:002 275 1 m2,

when L ¼ Lð4Þ
max ’ 2:37 m�1.

1 2 3 4 5 6
L

-0.005

0.005

0.01

0.015

0.02
S4

FIG. 5. Plot of S4 ¼ �43ðLÞ=m2 as a function of L, in units
of m�1.
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As in the other cases, the large-N coupling constant,

g43ðL; �Þ ¼ �

1þ ��43ðLÞ ; (34)

diverges at a finite value of L, Lð4Þ
c ð�Þ, if � � �ð4Þ

c ¼
�ð�min

43 Þ�1 ’ 439:54 m�2, meaning that the system gets

confined in a cubic box of edge Lð4Þ
c ð�Þwhich is bounded in

the interval between the values Lð4Þ
min and Lð4Þ

max.

D. Dependence of LðDÞ
c on �

For the cases we have analyzed above, namely D ¼
2; 3; 4 with all spatial coordinates compactified and
L1 ¼ � � � ¼ LD�1 ¼ L, we find that the confining length

LðDÞ
c ð�Þ lies in a finite interval,

LðDÞ
c ð�Þ 2

�
LðDÞ
min; L

ðDÞ
max

�
; (35)

where the maximum value corresponds to �ðDÞ
c , the mini-

mum value of the fixed coupling constant � allowing

spatial confinement, while LðDÞ
min sets the bound as � ! 1.

Then, a question emerges of how LðDÞ
c ð�Þ changes as �

increases from �ðDÞ
c to infinity.

For a given value of � (� �ðDÞ
c ), the confining length

LðDÞ
c ð�Þ can be found numerically by determining the

smallest root of the equation

g�1
DD�1ðL; �Þ ¼

1

�
½1þ ��DD�1ðLÞ� ¼ 0: (36)

That is, following the interpretation provided before, start-
ing from small values of L, the first value at which g�1

DD�1

vanishes does provide the confining length of the system,

LðDÞ
c ð�Þ. In Fig. 6, we plot LðDÞ

c ð�Þ as a function of

l ¼ �=�ðDÞ
c , for the cases D ¼ 2; 3; 4.

IV. COMPACTIFIED GN MODEL AT
FINITE TEMPERATURE

We shall now consider the effect of raising the tempera-
ture on the effective coupling constant for the GN
model with all spatial dimensions compactified. Finite-
temperature effects are introduced through the compacti-
fication of the time coordinate, with the compactification
‘‘length’’ given by LD ¼ � ¼ 1=T, where T is the tem-
perature. It is important to emphasize that, although in a
Euclidean theory, time and space coordinates are treated on
the same footing, the interpretations of their compactifica-
tions are rather distinct; while compactification of spatial
dimensions can be thought as describing confined fields,
time compactification corresponds to taking the system in
thermal equilibrium at temperature ��1.
We generally expect that the dependence of �DD and

gDD on � should follow similar patterns as that for the
dependence on L. As in the case where any compactifica-
tion length Li tends to zero, we find that �DDðL;�Þ ! 1
as � ! 0 (T ! 1), implying that gDD ! 0 independently
of the value of the fixed coupling constant �. This means
that we have an asymptotic-freedom behavior for very high
temperatures.
For � ! 1 (T ! 0), the behavior of �DD�1ðLÞ has

been described earlier: for sufficiently high values of �,
the system is confined in a (D� 1)-dimensional cube of

edge LðDÞ
c . Based on these observations, we expect

that, starting from the compactified model at T ¼ 0 with

� � �ðDÞ
c , raising the temperature will lead to the suppres-

sion of the divergence of gDD and the consequent spatial
deconfinement of the system, at a specific value of the

temperature, TðDÞ
d . The way such a ‘‘deconfining’’ transi-

tion occurs and the determination of the deconfining tem-
perature for the cases of D ¼ 2; 3; 4 are the points
addressed in the next subsections.

A. Two-dimensional compactified GN model at T � 0

To account for the effect of finite temperature on the
two-dimensional compactified GN model [59], we take the
second Euclidean coordinate (the imaginary time, x2) com-
pactified in a length L2 ¼ � ¼ 1=T. In this case, replacing
b1 ¼ L�2 and b2 ¼ ��2 (L and � measured in units of
m�1) into Eqs. (13), (14), and (18), the L and �-dependent
bubble diagram can be written as

�22ðL;�Þ ¼ 2E1ð2LÞ � E1ðLÞ þ 2E1ð2�Þ � E1ð�Þ
þ 2E2ðL;�Þ � 4E2ð2L;�Þ � 4E2ðL; 2�Þ
þ 8E2ð2L; 2�Þ; (37)

where the function E1ðxÞ is given by Eq. (22) and the
function E2ðx; yÞ is defined by

2 4 6 8 10 12
l

0.5

1

1.5

2

2.5
Lc

FIG. 6. Plot of the confining length (in units of m�1), as a

function of l ¼ �=�ðDÞ
c , for D ¼ 2; 3; 4 (dashed, dot-dashed, and

solid lines, respectively); the horizontal dotted lines correspond

to the limiting values LðDÞ
min and L

ðDÞ
max (given in the text), plotted as

a visual guide.
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E2ðx; yÞ ¼ 1

�

X1
n;l¼1

�
�K0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

q �

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n2 þ y2l2
q �

K1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2

q ��
: (38)

We first notice that, due to the behavior of the Bessel
functions K0ðzÞ and K1ðzÞ, all �-dependent terms in
Eq. (37) vanish in the limit � ! 1 and so �22ðL;�Þ
reduces to the expression for zero temperature, �21ðLÞ.
On the other hand, if � ! 0, �22ðL;�Þ ! 1 and,
independently of the value of �, the system becomes

asymptotically free. Therefore, we expect that, within the
strong-coupling regime, raising the temperature leads to
the suppression of the divergence of g22 and the disappear-
ance of the spatial confinement. In other words, for a given

value of � � �ð2Þ
c , there exists a temperature, Tð2Þ

d ð�Þ, above
which g22 has no divergence and the system is spatially
deconfined.

The deconfining temperature Tð2Þ
d ð�Þ is determined by

analyzing the behavior of g�1
22 ðL;�; �Þ as T is increased.

This process is illustrated in Fig. 7, where we plot
g�1
22 ðL;�; �Þ as a function of L, for some values of � and

a fixed value of � > �ð2Þ
c . For this example with � ¼ 30, we

find that the minimum value of g�1
22 vanishes for � ¼

�ð2Þ
d ’ 1:15 m�1 and is positive for �> �ð2Þ

d . Thus, the

deconfining temperature, for � ¼ 30, is given by Tð2Þ
d ¼

ð�ð2Þ
d Þ�1 ’ 0:87 m. The full dependence of deconfining

temperature on � will be discussed later.

B. Three-dimensional compactified GN model
at finite T

We now take the time coordinate (x3) compactified in a
length � ¼ 1=T to investigate the temperature effect in the
three-dimensional compactified GNmodel. In Ref. [36] the
three-dimensional model, with only one spatial dimension
compactified, was treated at finite temperature [60]. Here,
we deal with the fully compactified model. Taking b1 ¼
b2 ¼ L�2 and fixing b3 ¼ ��2 in Eqs. (13), (14), and (18),
the L-� dependent bubble diagram is given by

�33ðL;�Þ ¼ m

2�

�
2

L
logð1þ e�LÞ � 2

1þ eL
þ 1

�
logð1þ e��Þ � 1

1þ e�

�
þm

�
½G2ðL;LÞ þ 2G2ðL;�Þ � 4G2ðL; 2LÞ

� 4G2ð2L;�Þ � 4G2ðL; 2�Þ þ 4G2ð2L; 2LÞ þ 8G2ð2L; 2�Þ � 2G3ðL; L; �Þ þ 4G3ðL; L; 2�Þ
þ 8G3ð2L; L;�Þ � 8G3ð2L; 2L;�Þ � 16G3ð2L; L; 2�Þ þ 16G3ð2L; 2L; 2�Þ�; (39)

where G2ðx; yÞ is given by Eq. (27) and the function G3ðx; y; zÞ is defined by

G3ðx; y; zÞ ¼
X1

n;l;r¼1

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 þ y2l2 þ z2r2

q
Þ
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n2 þ y2l2 þ z2r2
p

�
: (40)

Notice that, taking � ! 1, Eq. (39) reduces to �32ðLÞ,
obtained from Eq. (26) with L1 ¼ L2 ¼ L.

As before, the increase of the temperature destroys the

spatial confinement that exists for � � �ð3Þ
c at T ¼ 0. We

can determine the deconfining temperature by searching
for the value of �ð�Þ for which the minimum of the inverse
of the effective coupling constant, g�1

33 ðL;�; �Þ ¼
ð1þ ��33ðL;�ÞÞ=�, vanishes. For example, taking the

specific case of � ¼ 110 m�1, we find �ð3Þ
d ’ 1:65 m�1

which corresponds to the deconfining temperature of Tð3Þ
d ’

0:61 m; this result can be illustrated in a figure with the
same pattern as that appearing in Fig. 7 for theD ¼ 2 case.

C. D ¼ 4 case at T � 0

For the fully compactified four-dimensional GN model,
fixing b1 ¼ b2 ¼ b3 ¼ L�2 and b4 ¼ ��2 (L and � in
units of m�1), we find from Eqs. (13), (14), and (18), that

1 2 3 4
L

-0.02
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0.04

0.06

0.08
g-1

FIG. 7. Inverse of the effective coupling constant g�1
22 , with

� ¼ 30 fixed, as a function of L (in units of m�1), for some
values of � (in units of m�1): 2.4, 1.15, and 1.0 (dashed, solid,
and dotted lines, respectively).
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�44ðL;�Þ ¼ m2½6H1ð2LÞ � 3H1ðLÞ þ 2H1ð2�Þ �H1ð�Þ þ 6H2ðL; LÞ þ 6H2ðL;�Þ � 24H2ðL; 2LÞ � 12H2ðL; 2�Þ
� 12H2ð2L;�Þ þ 24H2ð2L; 2LÞ þ 24H2ð2L; 2�Þ � 4H3ðL; L; LÞ � 12H3ðL; L; �Þ þ 24H3ðL; L; 2LÞ
þ 48H3ðL; 2L;�Þ þ 24H3ðL; L; 2�Þ � 48H3ðL; 2L; 2LÞ � 48H3ð2L; 2L;�Þ � 96H3ðL; 2L; 2�Þ
þ 32H3ð2L; 2L; 2LÞ þ 96H3ð2L; 2L; 2�Þ þ 8H4ðL; L; L; �Þ � 48H4ðL; L; 2L;�Þ þ 192H4ðL; 2L; 2L;�Þ
� 16H4ðL;L; L; 2�Þ þ 96H4ðL; L; 2L; 2�Þ � 64H4ð2L; 2L; 2L;�Þ � 192H4ðL; 2L; 2L; 2�Þ
þ 128H4ð2L; 2L; 2L; 2�Þ�; (41)

where the functions H1, H2, and H3 are given by
Eqs. (30)–(32), and H4ðx; y; z; wÞ is defined by

H4ðx;y;z;wÞ¼ 1

2�2

X1
n;l;r;s¼1

2
4K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2þy2l2þz2r2þw2s2

q
Þ

�K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2þy2l2þz2r2þw2s2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2þy2l2þz2r2þw2s2

p
3
5:

(42)

Proceeding as before, we determine the deconfining
temperature by searching for the value of �ð�Þ for which
the minimum of the inverse of the effective coupling
constant, g�1

44 ðL;�; �Þ ¼ ð1þ ��44ðL;�ÞÞ=�, vanishes.
For example, taking the specific case of � ¼ 620 m�2,

we find �ð4Þ
d ’ 1:707 m�1 which corresponds to the decon-

fining temperature of Tð4Þ
d ’ 0:59 m.

D. Dependence of TðDÞ
d on �

We now determine the dependence of the deconfining
temperature on the fixed coupling constant. For the system
with all spatial dimensions compactified and at finite tem-
perature, we have

g�1
DDðL;�;�Þ ¼

1

�
½1þ ��DDðL;�Þ�: (43)

As discussed before, the system is deconfined at a given
temperature if the minimal value of g�1

DDðL;�;�Þ with
respect to changes in L is positive. It was also argued
that, no matter how high the value of � is, the system

becomes deconfined above a given temperature, TðDÞ
d ð�Þ.

In fact, one expects that

TðDÞ
d ð�Þ 2

�
TðDÞ
min; T

ðDÞ
max

�
; (44)

with the limiting values corresponding to �ðDÞ
c and � ! 1,

respectively.
From Eq. (43), we find that minfLgg�1

DDðL;�;�Þ ¼ ½1þ
�MDð�Þ�=�, where we have defined the function

MDð�Þ ¼ min
fLg

�DDðL;�Þ: (45)

For a fixed value of �, the behavior of the minimum value
of g�1

DDðL;�;�Þ relative to changes in L is dictated by the

function MDð�Þ. Notice that MDð� ! 1Þ ¼ �Rmin
DD�1 ¼

�½�ðDÞ
c ��1, while MDð�Þ ! 1 as � ! 0.

Consider, initially, the case D ¼ 2. The function M2ð�Þ
is illustrated in Fig. 8. We find that, as � decreases from1
(i.e., T increases from 0), the minimum value of�22ðL;�Þ
(with respect to changes in L) starts to decrease from
negative values, passes through the lowest value, and
then starts to increase, reaching zero at a certain value of
� below which the minima of �22 are positive. Thus, for

� ¼ �ð2Þ
c , increasing the temperature from zero, the system

remains confined until the temperature reaches the value

Tð2Þ
min ¼ ½�ð2Þ

max��1 ’ 0:65 m, corresponding to the finite so-

lution of the equation 1þ �ð2Þ
c M2ð�Þ ¼ 0, � ¼ �ð2Þ

max ’
1:54 m�1, which is indicated by the vertical dotted line

in Fig. 8. Now, if we take � > �ð2Þ
c , the deconfining tem-

perature is obtained from the solution of the equation 1þ
�M2ð�Þ ¼ 0, which can be determined from the intercept
of the horizontal line at ���1 (lying above the line

�½�ð2Þ
c ��1 and below the � axis) and the graph of M2ð�Þ.

Naturally, as one takes � ! 1, the existence of a solution
of this equation requires M2ð�Þ ! 0; this lower (open)

limit occurs at the value � ¼ �ð2Þ
min ’ 0:776 m�1, corre-

sponding to the temperature Tð2Þ
max ’ 1:29 m. The depen-

dence of the deconfining temperature Tð2Þ
d on � is

determined numerically. We find that, for � not close to

�ð2Þ
c (that is, for � * 1:5�ð2Þ

c ), �ð2Þ
d ð�Þ ¼ Lð2Þ

c ð�Þ within six

decimal places; this approximate equality, valid for large
values of �, is a consequence of the symmetry of the

1 2 3 4

-0.04

-0.03

-0.02

-0.01

M2 β

β

FIG. 8. Minimal values of �22ðL;�Þ with respect of changes
in L, as a function of � (in units of m�1). The dotted horizontal

line corresponds to the value �½�ð2Þ
c ��1.
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expression for�22ðL;�Þ by the change L $ �. The whole

behavior of Tð2Þ
d ð�Þ is shown in Fig. 10, together with the

other cases.
It should be remarked that the absolute minimum of

�22ðL;�Þ, �min
22 ’ �0:0466, is slightly smaller than

�min
21 and occurs at the point with L ¼ � ’ 1:98 m�1.

This means, as shown in Fig. 8, that the minimum value
of M2ð�Þ does not occur at zero temperature. This leads to
an anomalous situation, for a small range of values of the

coupling constant � (21:46< �< �ð2Þ
c ’ 22:47), in which

no singularity exists at T ¼ 0 but the equation 1þ
�M2ð�Þ ¼ 0 possesses two solutions for finite values of
�; this would imply that the system being unconfined at
T ¼ 0 would get confined at a finite temperature and then
become unconfined again at a smaller value of �. Such a
situation, which emerges from the mathematical structure
of the zeta-function regularization, has no physical mean-
ing and will be discarded; we shall only consider the
strong-coupling regime which is free from pathologies.

For D ¼ 3, the graph of the function M3ð�Þ=m has a
form similar to that of M2ð�Þ (illustrated in Fig. 8) so that
the same reasoning leads to the deconfining temperature

Tð3Þ
d ð�Þ ¼ ½�ð3Þ

d ð�Þ��1, where�ð3Þ
d ð�Þ is the finite root of the

equation 1þ �M3ð�Þ ¼ 0. In this case, the limiting values

are �ð3Þ
max ’ 1:85 m�1 and �ð3Þ

min ’ 1:14 m�1, associated

with � ¼ �ð3Þ
c and � ! 1, corresponding to Tð3Þ

min ’
0:54 m and Tð3Þ

max ’ 0:88 m. The plot of Tð3Þ
d ð�Þ, as a func-

tion of l ¼ �=�ð3Þ
c , is also shown in Fig. 10. Distinctly from

theD ¼ 2 case, where all the expressions are symmetric by

the change L $ �, here we find that �ð3Þ
d ð�Þ< Lð3Þ

c ð�Þ for
all � � �ð3Þ

c , the difference being of the order of 10%.

The maximum value of Tð3Þ
d ( ’ 0:87 m), which occurs as

� ! 1, corresponds to �ð3Þ
d reaching the value of the

minimal confining length ( ’ 1:14 m�1) when only one
coordinate is compactified.

TheD ¼ 4 case is more subtle due to the behavior of the
function M4ð�Þ, which is presented in Fig. 9. We find that
the minimum value of�44ðL;�Þ (with respect to variations
of L) starts to increase from negative values as � is
diminished from 1, reaches a local maximum value
(Mmax ’ �0:001 835 6 m2), decreases to a local minimum
(Mmin ’ �0:002 091 m2) before increasing to reach zero

and become positive. Therefore, for � ¼ �ð4Þ
c ¼

�½M4ð� ! 1Þ��1 ’ 439:54 m�2, no finite solution of

the equation 1þ �ð4Þ
c M4ð�Þ ¼ 0 exists, which means that

the system is deconfined if the temperature is greater than

zero, no matter how small it is; that is, for � ¼ �ð4Þ
c , spatial

confinement is only possible strictly at T ¼ 0. For �ð4Þ
c <

� < 478:2 m�2 ( ’ �M�1
min), the equation 1þ �M4ð�Þ ¼

0 possesses one solution occurring at finite �, which could
eventually be interpreted as leading to a deconfining
temperature. However, if 478:2 m�2 < �< 544:8 m�2

(’ �M�1
max), the equation 1þ �M4ð�Þ ¼ 0 has three

distinct finite solutions. If we interpret the highest one as
giving the deconfining temperature, we would have to face
the puzzling situation in which the system would reenter a
spatially confined phase for � ranging between the other
two smaller solutions. Such an anomalous behavior can be
avoided if we redefine the strong-coupling regime by con-
sidering the range �M�1

max < �<1.
With such a redefinition of the strong-coupling regime

for D ¼ 4, which amounts to considering the lowest value

of � leading to spatial confinement as being �ð4Þ
c ¼

�M�1
max ’ 544:8 m�2, we find a well-defined deconfining

temperature obtained from the intercept of the horizontal

line at ���1 and the curve M4ð�Þ. We get �ð4Þ
max ’

1:80 m�1 (indicated by the vertical dotted line in Fig. 9)

and �ð4Þ
min ’ 1:43 m�1 (where M4 vanishes), corresponding

to the limits of the deconfining temperature Tð4Þ
min ’ 0:55 m

and Tð4Þ
max ’ 0:70 m, respectively. Similar to the D ¼ 3

case, the value of �ð4Þ
min, giving the upper bound for Tð4Þ

d

(� ! 1), is identical to the smallest confining length when
only one spatial dimension is compactified. The overall

2 4 6 8 10 12
l

0.2

0.4

0.6

0.8

1

1.2

1.4

Td

FIG. 10. Deconfining temperature TðDÞ
d ð�Þ (in units of m), as a

function of l ¼ �=�ðDÞ
c , for D ¼ 2; 3; 4 (dashed, dot-dashed, and

solid lines, respectively); the horizontal dotted lines correspond

to the limiting values TðDÞ
min and T

ðDÞ
max (given in the text), plotted as

a visual guide.

2 4 6 8 10

-0.002

-0.0015

-0.001

-0.0005

0.0005

M4 β

β

FIG. 9. Minimal values of �44ðL;�Þ=m2 with respect
of changes in L, as a function of � (in units of m�1). The

dotted horizontal lines correspond to the values �½�ð4Þ
c ��1 <

Mmin <Mmax.
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behavior of Tð4Þ
d ð�Þ, found numerically, is presented in

Fig. 10 together with the cases of D ¼ 2 and 3.

V. CONCLUDING REMARKS

We have used methods of quantum field theory in
toroidal topologies to investigate the behavior of the
D-dimensional massive, N-component, Gross-Neveu
model with compactified spatial dimensions. The model is
treated both at zero and finite temperatures. We calculate
the large-N coupling constant, gD, as a function of the
compactification length L, the temperature T ¼ ��1, and
the fixed coupling constant �, i.e. gD ¼ gDðL;�;�Þ. We
find that, for either L ! 0 or T ! 1, irrespective of the
value of �, gD tends to 0 indicating that the system presents
a sort of asymptotic-freedombehavior in these limits,where
the effective interaction between the fermions vanishes.

For T ¼ 0, in the strong-coupling regime (� � �ðDÞ
c ),

increasing L from low values (within the asymptotic-
freedom region) leads to a divergence of gD at a finite

critical value L ¼ LðDÞ
c ð�Þ, signaling the existence of a

second-order phase transition, as suggested by the linear
response theory. Also, since we consider a four-fermion
interaction model at zero chemical potential, we should not
expect a first-order phase transition for any value of the
parameters characterizing the system, as happens for mass-
less models. We interpret this singularity as indicating
that the system gets spatially confined in a (D� 1)-

dimensional box of edge LðDÞ
c ð�Þ. We have shown that

LðDÞ
c ð�Þ ¼ fDð�Þ m�1, where the functions fDð�Þ are plot-

ted in Fig. 6, for D ¼ 2; 3; 4.

As T is raised from 0, with � � �ðDÞ
c , the minimum value

of g�1
D ðL;�;�Þ, with respect to changes in L for fixed

values of �, increases from negative values reaching 0 at

a temperature TðDÞ
d ð�Þ above which gD does not present any

divergence. We interpret this fact as the system being

deconfined for temperatures higher than TðDÞ
d ð�Þ. To avoid

any anomalous behavior, we have redefined the value of

�ð4Þ
c augmenting the lower bound which defines the strong-

coupling regime when D ¼ 4. In any case, we find that

TðDÞ
d ð�Þ ¼ hDð�Þ m, where hDð�Þ are the functions plotted

in Fig. 10, for D ¼ 2; 3; 4. It is to be noted that, for the

redefined value �ð4Þ
c ’ 544:8 m�2, the zero-temperature

maximum confining length is given by Lð4Þ
max ’ 2:00 m�1.

It is worth emphasizing that the dependencies of LðDÞ
c

and TðDÞ
d on the parameters � and m are intrinsic results of

the model; that is, they do not emerge from any adjustment.
The dependence on m is precisely what one expects from
dimensional arguments, with L and � being proportional
to m�1 in natural units. But since the functions fDð�Þ
and hDð�Þ take on values in finite intervals (in all cases,
contained in [0.5, 2.5]), we find that extremely light fermi-
ons (m ! 0) are not confined at all, while extremely heavy

ones (m ! 1) would be strictly confined in a dot, no
matter what the value of �. Also, it should be noticed

that the product PDð�Þ ¼ LðDÞ
c ð�ÞTðDÞ

d ð�Þ ¼ fDð�ÞhDð�Þ
is dimensionless and very close to the unit in the whole

strong-coupling regime, � � �ðDÞ
c , irrespective of the value

of D; actually, one finds that PDð�Þ 2 ð1:00; 1:18Þ for all
cases. Such an inverse relation between the confining
length and the deconfining temperature is what one would
expect from strong interaction and QCD physics; if the
length of confinement of a fermion is small, the energy
required to overcome its confining barrier is large, and vice
versa. Roughly speaking, one has a sort of uncertainty
relation L� 1=p, with p being the momentum which, for
relativistic particles, is proportional to the energy. Anyhow,
the questions of how the fermions are confined and how they
get unconfined are not answered with our analysis.
Since we have completely determined the relevant de-

pendence of LðDÞ
c and TðDÞ

d on �, for any value of �ð� �ðDÞ
c Þ,

estimates of values of the confining length and the decon-
fining temperature require the specification of the mass of
the fermions. Viewing the GN model as an effective model
for strong interaction, a natural choice is to take the con-
stituent quark mass, m � 350 MeV ’ 1:75 fm�1 [61].
With such a choice, we obtain the limiting values of the
confining length and the deconfining temperature pre-
sented in Table I.

We find that the range of variation of LðDÞ
c and TðDÞ

d , as

� runs in the strong-coupling regime ( � �ðDÞ
c ), is rela-

tively small and decreases as D increases. These values
compare amazingly well with the size of hadrons (e.g.,
the experimentally measured proton charge diameter is
� 1:74 fm [62]) and the estimated deconfining tempera-
ture (� 200 MeV) for hadronic matter [63].
To summarize, we have established the existence of a

phase transition in the massive large-N GN model with
compactified spatial dimensions. Further investigation is
needed for other aspects of this transition like effects of
finite density and critical exponents. Such a study is left for
a future work.
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TABLE I. Limiting values of LðDÞ
c ð�Þ [fm] and TðDÞ

d ð�Þ [MeV],
for m � 350 MeV ’ 1:75 fm�1.

D LðDÞ
min LðDÞ

max TðDÞ
min TðDÞ

max

2 0.45 0.96 227 451

3 0.74 1.2 189 304

4 0.96 1.14a 193a 245

aThese values of Lð4Þ
max and T

ð4Þ
min correspond to the redefined value

of �ð4Þ
c .
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