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Abstract: Reliability-based design, such as LRFD, aims at meeting desired probability of failure levels for engineered structures. The present
work attempts to contribute to this field by analyzing the influence of spatially variable soil/rock strength on the axial resistance uncertainty of
single and multiple shafts in group layouts. This includes spatial variability over the individual shaft surfaces, effects of limited data, random
measurement errors, and workmanship. A possible correlation between boring data inside or near the footprint of a foundation and the foun-
dation itself is considered. In a geostatistical approach, spatial averaging (upscaling) and a degenerate case of ordinary kriging are applied to
develop variance reduction charts and design equations for a series of foundation group layouts (single, double, triple, and quadruple). For the
potential situation of an unknown horizontal correlation range at a site, the worst case scenarios are identified and demonstrated in an example
problem. Resulting probabilities of failure are applied to the whole foundation (i.e., group) rather than single objects. It is found that a boring at
the center of a group footprint can significantly reduce resistance prediction uncertainty, especially under the worst case scenario for unknown
horizontal correlation range. In contrast, independent of the presence of a center boring or not, the uncertainty reduction through additional
borings becomes small, once four or five borings are available. DOI: 10.1061/(ASCE)GT.1943-5606.0000728. © 2013 American Society
of Civil Engineers.
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Introduction

The need and advantages of reliability-based foundation design,
such as LRFD, have beenwidely recognized in existing research and
standardization literature (AASHTO 2004; Phoon et al. 2003). The
fundamental idea is to use a probabilistic design framework, which
rationally accounts for inherent uncertainties in both the load and
resistance parameters, to not exceed a prescribed target probability
of failure independent of site/job-specific characteristics. Given
a particular design-load distribution (e.g., mean/nominal load, co-
efficient of variation, and lognormality) as a function of super-
structure properties, the geotechnical engineer has to estimate
a foundation’s probabilistic resistance distribution. With load and
resistance distributions in hand, the probability of failure may be
computed and the foundation design adjusted to meet a target
value. In the case of existing foundations, this process may occur in
the inverse direction in that a respective resistance distribution is

evaluated first, for which a maximum admissible load (distribution) is
then defined. For practical design in the LRFD context, foundation
resistance uncertainty is accounted for by multiplication of a nominal
resistance value with a so-called resistance factor, which is typically
smaller than one.

A considerable amount of work has been dedicated to evaluating
and processing the different sources of uncertainty involved. Lim-
iting attention to the resistance side, these sources may be catego-
rized into four principal classes: (1) spatial variability of ground
properties, (2) measurement errors, (3) uncertainty in data trans-
formation, and (4) construction workmanship (Phoon and Kulhawy
1999a, b). Amethod to estimate a lump value of all uncertainty types
is based on past experience and the compilation and analysis of
comprehensive load test databases, which allow for assessment of
prediction error distributions (and possibly model calibration) for
different combinations of site conditions, prediction, and con-
struction methods (Haldar and Sivakumar Babu 2008; Zhang et al.
2008; Zhang et al. 2001). However, inherent shortcomings with this
method are that it does not offer an explicit possibility to account for
site specific data, and the characteristics of a site/job have to be
matched with a sufficient number of corresponding observations
from the past. As an alternative, general approaches have been
proposed that evaluate the contributing sources of uncertainty
separately and then combine them according to appropriate physical
and statistical laws (Foye et al. 2006; Phoon andKulhawy 1999a, b).
Approaches that explicitly account for spatial variability are not very
abundant; however, there are several studies considering shallow
foundations in two (SivakumarBabu et al. 2006; Popescu et al. 2005;
Fenton andGriffiths 2002, 2003; Paice et al. 1996) and three (Fenton
and Griffiths 2005) dimensions. Fenton et al. (2005, 2008) relate
their previous results to the LRFD context and investigate effects of
data in the vicinity of a shallow foundation to reduce resistance
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uncertainty. Furthermore, Fenton and Griffiths (unpublished report,
2007) present a preliminary study for a single object deep foundation
subject to vertically variable ground properties. In contrast, reliabil-
ities of deep foundations in the form of pile groups are evaluated by
Zhang et al. (2001) based on a respective load test database, however,
without explicit consideration of spatial variability or nearby data.

Based on a geostatistical approach, Klammler et al. (2010a) in-
vestigate the influence of spatially variable side friction on the ul-
timate resistance and LRFD resistance factors of single drilled shafts
against axial loads. The present work expands on this work by
considering (1) multiple shaft foundations under rigid pile caps
(which are assumed to not contribute to the foundation resistance),
(2) conditioning data inside or near a foundation’s footprint (single
or group layouts), and (3) random measurement and construction
uncertainties. According to current practice in Florida limestone
(Florida Department of Transportation [FDOT] 2011), resistance
contributions of end bearing are hereby neglected. For this purpose,
a (geo)statistical approach (Isaaks and Srivastava 1989; Journel
and Huijbregts 1978) is adopted with the following notation: qðxÞ
(stress)—or in short q—denotes a spatially variable (random)
function for local side friction (i.e., strength or cohesion at zero
confining pressure) with x (length) being a spatial coordinate vector.
For instance, in the case of rock, the measured local values of q at
a site may be available from core sampling and laboratory testing
using q5 rðquqtÞ1=2=2, where qu (stress) is the unconfined com-
pression strength, qt (stress) is the split tension strength, and r
(dimensionless) is the local recovery (FDOT 2011; Chung et al.
2011). Similarly, for soil, the cone penetrometer (CPT) tip resistance
at a given depth multiplied by a soil and installation method factor
may be used to assess local side friction q (Brustamante and
Gianeselli 1982). Regardless of themethod, q is described by amean
mq (stress), variance s

2
q (stress

2), and a spatial covariance function
CqðhÞ—or in short Cq (stress2)—with h (length) being a spatial
separation vector between two locations x1 and x2. Cq may be
anisotropic with a correlation range ah (length) in all horizontal
directions and a correlation range av (length) in the vertical direction.
A normalized spatial covariance function C9

q
ðhisoÞ5CqðhisoÞ=s2

q
of unit sill and unit isotropic range may be defined using
hiso5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhh=ahÞ21ðhv=avÞ2

p
, where hh and hv (both length) are the hor-

izontal and vertical separation vector components, respectively,
between two locations. fs (stress) with mean ms (stress) and variance
s2
s (stress

2) is a random function used to describe the mean unit side
friction over the lateral surface of area As (area) of a single shaft
of diameter D (length) and embedment length L (length). Similarly,
ff withmeanmf (stress) and variances

2
f (stress

2) is a random function
used to represent the mean unit side friction over the lateral surface of
area Af of all ns (dimensionless) shafts of diameter D, length L, and
fundamental center-to-center separation distance Ds (length) in the
group foundation. Finally,Rn (force) andCVR (dimensionless) denote
the foundation nominal resistance (defined as themean of the random
foundation resistance R ½force�) as a result of side friction at the ul-
timate limit state and the respective coefficient of variation as
a measure of uncertainty, which are used in determining the LRFD
resistance factor F (dimensionless).

Theoretical Development

Multiple Shaft Foundations without Nearby Data

As opposed to single shaft foundations, failure of multiple shaft
foundations in a group from axial loads may occur in one of two
different forms: (1) along the set of disjoint lateral surfaces
encompassing all of the individual shafts or (2) along a single

surface enclosing all shafts of a foundation or group (block failure).
For Ds=D. 2, block failure may not be expected to occur (Zhang
et al. 2001), and Scenario 1 will be investigated with results pre-
sented for a typical value of Ds=D5 3. As in Klammler et al.
(2010a), it is assumed that the geostatistical parameters of q (i.e.,mq,
s2
q, and Cq) within a geostatistically homogeneous site (or subzone

thereof), are well known, which may be the case because of ex-
haustive rock core sampling or CPT soil testing, for example. If end
bearing is neglected (FDOT 2011), Eq. (1) describes the simple
relationship between ff and total foundation resistance R as

R ¼ Af ff ð1Þ

where Af 5 nsLDp is considered deterministic, that is, with negli-
gible uncertainty compared with ff , and ns is the number of shafts in
a foundation. Based on a study of a series of load tests (FDOT 2003),
Eq. (1) assumes that local side friction at the ultimate limit state is
fully mobilized and, hence, deformation independent. R and ff are
random variables linked to q by the spatial upscaling (arithmetic
averaging) process

ff ¼ 1
Af

ð
Af

q � dA ð2Þ

By taking the expectation and variance of Eq. (2), the parameters mf
and s2

f are found as (Journel and Huijbregts 1978)

mf ¼ mq ð3Þ

s2
f ¼ s2

q

A2
f

ð
Af

ð
Af

C9
q
dA1dA2 ð4Þ

where a variance reduction factoraqf (dimensionless) between local
strength q andmean foundation unit side friction ff maybe defined as

aqf ¼ s2
f

s2
q
¼ asf

s2
s

s2
q
¼ asfaqs ð5Þ

which links the variability in local strength q to the uncertainty in
foundation or group resistance R by CVR 5a

1=2
qf CVq (where CV is

the notation for the coefficient of variation of the variable in the
index). asf in Eq. (5) denotes an intermediate variance reduction
factor between single shaft unit side friction fs and the foundation
unit side friction ff . Furthermore, aqs quantifies the variance re-
duction between local strength q and fs, as studied byKlammler et al.
(2010a). The double integral in Eq. (4) is nothing but the summation
of the normalized covariance values between all possible combi-
nations of point pairs on the ns lateral shaft surfaces (i.e., the sum of
all elements in the variance-covariance matrix between all possible
point pairs) and may be evaluated numerically by discretizing each
shaft surface into a large enough number of points (Journel and
Huijbregts 1978). Calculations may hereby be accelerated by rec-
ognizing that center-to-center separation distances between different
shaft pairs are limited to a certain pattern (e.g., 3D for all shaft pairs
on a side of a quadruple square foundation and 3

ffiffiffi
2

p
D for shaft pairs

on a diagonal). Thus, normalized covariances C9
q
ðhsÞ5CsðhsÞ=s2

s
(dimensionless) between upscaled single shaft resistances fs (with
hs [length] representing the horizontal separation distance between
shaft centers) may be determined for these separation distances
using Eq. (6) (Journel and Huijbregts 1978) to populate a respective
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variance-covariance matrix between all individual shafts in a
foundation through

C9
q

�
hs
� ¼ s2

q

s2
s As1As2

ð
As1

ð
As2

C9
q
dA1dA2 ð6Þ

where As1 and As2 5 lateral surface areas of two horizontally offset
shafts. Eq. (6) is, in fact, a generalization of Eq. (4) (normalized to
s2
s , i.e., unit sill), which is obtained by settingAs1 5As2 5Af , that is,

the total of all shaft’s lateral surfaces. For As1 5As2 5 LDp, that is,
a single shaft’s lateral surface or zero separation between two shafts,
Eq. (6) reduces to the upscaled variance of fs for single shafts, as in
Klammler et al. (2010a).

Fig. 1 shows an example of a quadruple square configuration
(hereafter called Q) with respective shaft separation and variance-
covariance matrices. The matrix in Fig. 1(c) is based on numerical
integration of Eq. (6), where a spherical covariance function Cq is
used with parameters L=av 5 5 and D=ah 5 0:1. Based on the same
principle of Eq. (6), the average of all the elements in the variance-
covariance matrix of all shafts directly results in the respective
variance reduction factor asf defined in Eq. (5). The shape of C9

s
from Eq. (6) is not easily described analytically; however, its
horizontal correlation range is known to be equal to ah 1D, cor-
responding to the minimum horizontal separation distance between
shaft centers, for which all location pairs between shafts are beyond
ah and, thus, uncorrelated. Based on this, an approximation toC9

s
, in

the form of a spherical covariance function of range ah 1D, is pro-
posed in Eq. (7), which avoids the numerical integration of Eq. (6) and
allows for a quick anddirect populationof the respective shaft variance-
covariance matrix, as shown in Fig. 1(d)

C9
q
ðhsÞ�

�
121:5

�
hs

ah þ D

�
þ 0:5

�
hs

ah þ D

�3

for hs
ah þ D

, 1

0 for hs
ah þ D

$ 1

ð7Þ

In addition to the quadruple configuration of Fig. 1(a), Fig. 2
illustrates further multiple shaft configurations considered in this

work (D1, T1, and T2). In analogy to Fig. 1, for every configuration
considered here and associated shaft separation distances, the
variance-covariance matrices may be constructed using Eqs. (6) or
(7), and asf may be found by averaging all matrix elements. The
averaging of the matrix elements may be summarized by the fol-
lowing equations, where the type of foundation is indicated in the
subscripts. Extensions to other group configurations not considered
herein are straight-forward

asf ;D1 ¼ 0:5C9s ð0Þ þ 0:5C9s ðDsÞ
asf ;T1 ¼ 0:33C9s ð0Þ þ 0:44C9sðDsÞ þ 0:22C9sð2DsÞ
asf ;T2 ¼ 0:33C9s ð0Þ þ 0:67C9

s
ðDsÞ

asf ;Q ¼ 0:25C9
s
ð0Þ þ 0:5C9

s
ðDsÞ þ 0:25C9s

� ffiffiffi
2

p
Ds

	

ð8Þ

For the exact solution of Eq. (6), values of C9s and asf in Eq. (8) are a
function of L=av, D=ah, and Ds=D. For a typical value of Ds=D5 3
and using Eqs. (5) and (8), Fig. 3 graphically represents the outcome
of the exact solution of a1=2

qf for different shaft configurations (single
shafts S from Klammler et al. 2010b is included for reference). Using
the approximation of Eq. (7) (not shown for clearness of charts)
instead of Eq. (6) results in maximum errors in a

1=2
qf (and hence

CVR for a given CVq) of approximately 65%. Errors are close to
zero forD=ah , 0:05,D=ah � 0:15, andD=ah . 0:5. For 0:05,
D=ah , 0:15 errors are negative (i.e., unconservative, whichmay be
avoided by multiplication of a1=2

qf by 1.05 in this range), while for
0:15 , D=ah , 0:5 errors are positive. Maximum positive and
negative errors of the approximation also decrease asDs=D increases
and unconservative errors do not exceed 5% down to a theoretical
value of Ds=D5 1 (results not shown).

The topgraphs (caseofD=ah 5 0) in Fig. 3 are all identical; in this
case the variance reduction is independent of the number and ar-
rangement of shafts and equal to variance reductiona0 for averaging
over a vertical line of length L (termed line shaft approximation in
Klammler et al. 2010a, b). For a spherical covariance function

a0 ¼ 12 L
2av

þ L3

20a3v
for 0 #

L
av

# 1

a0 ¼ 3av
4L

2
a2v
5L2

for L
av

$ 1

ð9Þ

This is seen to be the common worst case scenario (maximum aq f

and CVR) for all configurations in case of potentially unknown ah.
For D=ah . 0:5, correlation between individual shafts is zero, and

Fig. 1. (a) Example of quadruple Q square configuration with (b) shaft
separation matrix in multiples of D; (c) and (d) are variance-covariance
matrices in multiples of the upscaled single shaft variance s2

s

Fig. 2. Further examples of multiple shaft configurations with rigid
pile caps and possible center borings (crosses)
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asf from shaft to foundation level becomes equal to 1=ns. Based on
a computed CVR and the assumption of lognormality for founda-
tion resistance, determination of LRFD resistance factor F may be
achieved along the lines of Klammler et al. (2010a) by the following
AASHTO (2004) formulae:

F ¼
lR

�
gD

QD

QL
þ gL

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ CV2

Q

1 þ CV2
R

s
�
lQD

QD

QL
þ lQL

�
exp

n
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
h�
1 þ CV2

R

��
1 þ CV2

Q

	ir o
ð10Þ

CV2
Q ¼

�
QD

QL
lQDCVQD

�2

þ �
lQLCVQL

�
�
QD

QL
lQD

�2

þ 2
QD

QL
lQDlQL þ l2QL

2

ð11Þ

where CVQ 5 coefficient of variation of the random load, b5 user-
selected reliability index depending on the importance of a structure
(admissible probability of failure), and lR 5 prediction method
specific resistance bias factor. The remaining dimensionless param-
eters in Eqs. (10) and (11) may be chosen according to AASHTO
(2004) for load Cases I, II, and IV, where dead-load factor gD 5 1.25,
live-load factor gL 5 1.75, dead-to-live load ratio QD=QL 5 2, dead-
load bias factor lQD5 1:08, live-load bias factor lQL5 1:15, dead-
load coefficient of variation CVQD5 0:128, and live-load coefficient
of variation CVQL5 0:18. F from Eq. (10) is based on CVR of the
whole foundation and, as such, assures a target probability of failure
of the whole foundation and not just of a single shaft of the group
(which would not be the actual design goal). The assumption of
lognormality ofR inherent in Eq. (10) appears to be plausible for two
reasons: (1) q is a nonnegative quantity with typically pronounced
positive skewness, such that a lognormal fit to q is likely to be

appropriate, and (2) sums or integrals of lognormal variables, such as
that of Eq. (2), are again well approximated by other lognormal
distributions (Isaaks and Srivastava 1989). The latter is not con-
tradictory to the central limit theorem, because lognormal dis-
tributions with decreasing coefficients of variation (e.g., because of
spatial averaging) approach the normal distribution (Klammler et al.
2011).

Single andMultiple Shaft Foundationswith Nearby Data

In practice, the assumption of an exhaustively sampled sitemay not be
appropriate and additional uncertainty because of limited sampling
may become significant. In contrast, knowing the exact locations of
each foundation in the design process allows for collection of addi-
tional boring data inside or near the footprint of a foundation (e.g., at
the center as indicated by crosses in Figs. 1 and 2 and considered
hereafter). This may decrease uncertainty in predicted foundation
resistances. To incorporate the influences of limited data and collo-
cated borings, spatial correlations between borings and between
borings and the foundation are explored. The geostatistical tool used
for this purpose is ordinary kriging (Isaaks and Srivastava 1989;
Journel and Huijbregts 1978), which delivers a predicted mean unit
side friction f pf with an error variance s2

fk between f pf and its true
counterpart ff . The resulting problem may be studied in a two-
dimensional (horizontal) plane, where each of the nb borings on
a site is represented by a point associated to a data value equal to the
mean qbi ði5 1; 2; :::; nbÞ of the local strength observations in that
boring (assuming that all borings are of approximately the same length
L). The foundation is represented by its horizontal cross section
centered on one of the borings, as illustrated by Fig. 4. For a full
ordinary kriging solution, the horizontal covariances among all the
borings themselves and between all the borings and the foundation
would be required to determine a specific krigingweightwi ð

P
wi51Þ

for each boring. ff , as given by Eq. (2), is then predicted in the well
know form

Fig. 3.Uncertainty reduction factora1=2
qf as a function of normalized shaft length L=av for single andmultiple shaft configurations of Figs. 1 and 2with

normalized fundamental shaft separation distance Ds=D5 3; thick solid line corresponds to line shaft approximation a
1=2
0
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f
p
f ¼ Pnb

i¼1
wiqbi ð12Þ

with a variance s2
fk of the prediction error f

p
f 2 ff as

s2
fk ¼ s2

f þ Pnb
i¼1

Pnb
j¼1

wiwjCb
�
xi 2 xj

�
2 2

Pnb
i¼1

wiCbf
�
xi 2 xf

�
ð13Þ

whereCb 5 horizontal covariance function of qb, that is, a vertically
upscaled version of Cq according to Eq. (6) with s2

s 5 1 and As1 and
As2 reduced to borings (vertical lines) at locations xi and xj. In turn,
Cbf is the horizontal covariance function between qb and ff , which
may also be obtained from Eq. (6) using s2

s 5 1 in combination with
As1 as a vertical line at xi and As2 as Af centered at location xf . It is
hereby assumed that the borings are sampled at intervals smaller than
av such that additional sampling in a boring would only deliver
highly redundant (i.e., correlated) information. With this, each
boring may be considered as continuously sampled over depth, and
the actual numbers of samples per boring become irrelevant [i.e., do
not appear in Eqs. (12) and (13)]. The three terms on the right-hand
side of Eq. (13) are the variances2

f of ff [Eq. (4)], the variance s
2
f p of

f pf , and twice the covariance Cðf pf ; ff Þ between f pf and ff , whose
negative sign reflects the benefit of conditioning data on prediction
uncertainty.

In typical design situations the nb borings at a site may consist of
n1 largely spaced borings from the preliminary site investigation
(i.e., previous to the definition of foundation locations) and n2
subsequent borings at potential foundation locations. In such cases,
it may be reasonable to assume that no correlation exists between the
borings at a site [i.e., Cbðxi 2 xjÞ5Cbð0Þ for i5 j and equal to zero
otherwise], except forwhen a preliminary boring happens to be in the
vicinity of a future foundation location where a collocated boring is
also obtained. In the latter case, it is conservative to consider full
correlation between such nearby pairs of borings and reduce them to
one effective boring by averaging. Thus, a conservative effective
number of uncorrelated borings is obtained as nbe # nb (e.g., in Fig. 4
nb 5 8 and nbe 5 6). With the further assumption that only the
collocated boring (i5 1) presents possible spatial correlation with ff
[i.e., Cbf ðxi 2 xf Þ5Cbf ðx1 2 xf Þ for i 5 1 and zero otherwise],
a very simple ordinary kriging system may be constructed for
determination of the kriging weights wi, as represented by Eq. (14).
w1 represents the weight for the collocated boring, w2 5
ð12w1Þ=ðnbe 2 1Þ, the equal weights for all other borings (wi 5w2

for i . 1), and m is a Lagrangian operator

2
666664

Cbð0Þ 0 ⋯ 0 1

0 Cbð0Þ ⋱ « «

« ⋱ ⋱ 0 «

0 ⋯ 0 Cbð0Þ 1

1 ⋯ ⋯ 1 0

3
777775

2
666664

w1

w2

«

wbe

m

3
777775 ¼

2
666664

Cbf
�
x12 xf

�
0

«

0

1

3
777775

ð14Þ

Solving for w1 and w2 gives

w1 ¼ 1 þ ðnbe 2 1Þr
nbe

w2 ¼ 12 r
nbe

ð15Þ

where r5Cbf ðx1 2 xf Þ=Cbð0Þ is a normalized covariance between
qb1 (collocated boring) and ff (foundation). With Eq. (15) and
qbm 5 1=nbe

P
qbi denoting the mean of all i5 1; 2; :::; nbe effective

borehole data, Eq. (12) may be written as

f pf ¼ rqb1 þ ð12 rÞqbm ð16Þ

For r5 0, the collocated boring has no more predictive power than
the other borings and f pf 5 qbm, while for r5 1 the collocated boring
is a perfect predictor such that f pf 5 qb1. Further, obtaining
m5Cbð0Þðr2 1Þ=nbe and using s2

fk 5s2
f 2w1Cbf ðx1 2 xf Þ2m

(Isaaks and Srivastava 1989) gives

aqfk ¼ s2
fk

s2
q
¼ a0


ð12 rÞ2
nbe

2 r2
�
þ aqf ð17Þ

as a respective variance reduction factor, which accounts for limited
data through nbe and data conditioning through r. Theoretically,
perfect prediction with r 5 1 is only possible if the foundation is
reduced to a vertical line (identical to the collocated boring), such
that aqf 5a0 correctly leading to aqfk 5 0. For the opposite case of
r 5 0 (no conditioning to nearby data or random/unknown foun-
dation location) and the conservative line shaft approximation
ðaqf 5a0Þ, Eq. (17) reduces to a respective expression developed in
Klammler et al. (2010b) for the presence of a limited number of test
borings. Finally, Eq. (17) is seen to correctly reduce to aqfk 5aqf of
the previous section for r 5 0 and nbe � 1, that is, no data condi-
tioning and exhaustive data set available.

Eqs. (16) and (17) are directly valid for any type of single or
multiple shaft foundation, and required values of a0 and aqf may be
readily obtained from Fig. 3 and Eq. (9). What remains to be de-
termined is the correlation parameter r, which is obtained from Eq.
(6)withA1 being a vertical line of lengthL (collocated boring) andA2

being the total lateral foundation surface Af . As such, Eqs. (16) and
(17) are generally valid for arbitrary boring locations inside or
nearby the foundation footprint. For the particular (but quite typical)
case of a boring at the center of the footprint (i.e., x1 5 xf ), results
from numerical integration of Eq. (6) are graphically represented in
Fig. 5 as a function of ah=D for various shaft configurations. As to be
expected, spatial correlation in the vertical direction only has a small
influence on the horizontal correlation parameter r, with this in-
fluence becoming quite insignificant for L=av . 1. The latter is also
the range encountered in practical applications for which Fig. 5 is
valid (L=av , 1 would be reflected by a nonstationary variogram
over the foundation depths and would be handled by subtraction of
a deterministic trend function such that L=av . 1 is again the case for
the random residuals). For given foundation types (S, D1, T1, T2, or
Q), dimensions (D and L ; Ds 5 3D), and site conditions (qb1, qbm,
CVq, av, and ah), Fig. 5 with Eqs. (16) and (17) can be used to find
a nominal resistance Rn equal to

Rn ¼ Af f
p
f ð18Þ

A respective coefficient of variation CVR results as

Fig. 4. Exemplary plan view of borehole (crosses) and foundation
locations (e.g., quadruple shaft foundation for a bridge site); not to scale
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CVR ¼ sqfk

f pf
¼

ffiffiffiffiffiffiffiffi
aqfk

p

1 þ r

�
qb1
qbm

2 1

�CVq ð19Þ

Assuming again thatR is approximately lognormal, Eq. (10) may be
used to find F.

Worst Case Scenario for Unknown ah

As previously discussed, the horizontal correlation range ah is
a potentially unknown parameter because of a generally limited
number of borings (i.e., horizontal information) at a site. One way of
dealingwith this problem is to adopt hypothetical values of ah within
a reasonable practical range and conservatively choose to design
according to the worst case scenario, that is, where the resulting
design load, or the product RnF, are a minimum. The equations for
(numerically) minimizing RnF are previously given; however,
results will depend on a large number of case-specific parameters,
such as foundation type, nbe, qb1=qbm, CVq, b, and many more in
Eqs. (10) and (11).

Pursued here is a simpler and more general method to conser-
vatively minimize RnF by minimizing each factor Rn and F sep-
arately. FromEq. (16), it is immediately seen that Rn is minimized to
Rnw by equating f pf to the lower value between qb1 and qbm

Rnw ¼ Af minðqb1; qbmÞ ð20Þ

On the other hand, knowing that F for any value of b is
a monotonically decreasing function in CVR, F is minimized by
maximizing CVR to CVRw as

CVRw ¼
ffiffiffiffiffiffiffiffiffiffi
aqfkw

p
Rnw

CVqAf qbm ð21Þ

where aqfkw is obtained by maximizing Eq. (17) as a function of ah.
This is best done numerically for different parameter combinations
of foundation type, nbe and L=av. Knowing from Fig. 3 that aqf in
Eq. (17) may be well approximated by ka0, where k is primarily
a function of ah=D and, hence, r (not so much of L=av), an equation
of the form

aqfkw �
�
A þ B

nbe

�
a0 ð22Þ

is sought to approximate aqfkw. For Ds 5 3D and with maximum
errors in CVRw of approximately 1% on the unconservative and 5%
on the conservative side, respective values of the coefficientsA andB
for each foundation type indicated in the index are obtained by trial
and error fitting to exact numerical results as: As 5 0:17, Bs 5 0:98;
AD1 5 0:30, BD1 5 0:90; AT1 5 0:10, BT1 5 0:90; AT2 5 0:21,
BT2 5 0:95; and AQ 5 0:18, BQ 5 0:97. Hereby it may be consis-
tently observed that the worst case scenarios for each individual
foundation type occur for maximum values of ah where r is still zero
or small (Fig. 5), that is, where spatial averaging on Af is limited and
correlation to data in the footprint is equal or close to zero. Results of
ðA1B=nbeÞ1=2 of different foundation types are graphically illustrated
in Fig. 6 (solid line) together with a previous solution for no center
boring from Klammler et al. (2010b) for comparison (dashed line).
Finally, the worst case scenario of Eq. (22) is independent ofD, which
contributes to maintaining the design process as simple as possible.

Other Sources of Uncertainty

In the previously mentioned equations, q is assumed to be an error-
free measurement of the local unit side friction. Clearly, this is an
assumption of ideal conditions, and an investigation of the effect of
random (uncorrelated) measurement errors of variance s2

ɛ at the
sample scale is warranted. The latter should manifest as a nugget
component (zero correlation range) in the variogram of q andmay be
accounted for by substituting Cbð0Þ in Eq. (14) by Cbð0Þ1s2

ɛb
(Kitanidis 1997). s2

ɛb is hereby the measurement error variance after
vertical upscaling to the boring scale, and it is equal to s2

ɛ=ns, with
nsamp being an average number of samples per boring. Solving the
modified system of equations, it is found that Eqs. (15)e(19) remain
valid if modified parameters rɛ and a0ɛ , defined as

rɛ ¼ r
1 þ e

ð23Þ

a0ɛ ¼ a0ð1 þ eÞ ð24Þ

Fig. 5. Normalized covariance r5Cbf ð0Þ=Cbð0Þ between center
boring and foundation as a function of normalized horizontal correlation
range ah=D for normalized shaft length L=av . 1 (continuous),
L=av 5 0 (dotted), and different shaft configurations ðDs 5 3DÞ

Fig. 6. Performance ðaqfkw=a0Þ1=2 5 ðA1B=nbeÞ1=2 of different shaft
configurations from Eq. (22) as a function of the effective number of
borings nbe, assumingworst case scenario for unknown ah with CVɛ 5 0
and presence of a center boring; dashed line for comparison from
Klammler et al. (2010b) without a center boring
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are used instead of r and a0. Parameter e results as the ratio between
the variance components of measurement error and spatial vari-
ability at the boring scale

e ¼ s2
ɛb

Cbð0Þ ¼ s2
ɛ

nsampa0s2
q
¼ CV2

ɛ

nsampa0CV2
q

ð25Þ

with CVɛ 5sɛ=qbm. Eqs. (20) and (21) remain valid as a worst case
scenario if a0ɛ is used instead of a0 in Eq. (22). Approximation
constants A and B are optimized for s2

ɛ 5 0 and remain accurate for
e# 0:3with nbe$ 3.Also, CVq in Eqs. (19) and (21) has to be used as
the coefficient of variation of spatial variability only (i.e., without
measurement error). This means that if the coefficient of variation of
collected q samples (including measurement error) is CVqɛ, then
CVq 5 ðCV2

qɛ2CV2
ɛÞ1=2. Furthermore, s2

ɛ . 0 does not affect the
previouslymentioned outcomes, where it is assumed that r is zero and
nbe is very large, such that aqfk 5aqf in Eq. (17) (i.e., independent of
r and a0). Finally, CVR from Eqs. (19) and (21) accounting for
measurement error and spatial variability may be extended to a total
foundation resistance uncertainty CVRtot 5 ðCV2

R 1 CV2
workÞ1=2,

where CVwork is an independent compound workmanship uncertainty
(e.g., randomness in shaft geometries, slurry handling), which is as-
sumed to manifest at the foundation scale (as opposed to CV2

ɛ at the
sample scale).

Discussion of Results

The results developed are valid for both single and multiple shaft
foundations with unknown or known foundation locations. In the
latter case, nearby data may be considered to decrease resistance
prediction uncertainty through spatial correlation (conditioning),
where particular results given are for borehole data at the center of
a foundation’s footprint. Eqs. (16) and (17) are general in the sense
that they encompass all of these scenarios and correctly collapse to
the solution of Eqs. (6) and (8) for nbe� 1 and no data conditioning.
However, explicit results for this particular scenario, as summarized
in Fig. 3, are still valuable as input for the more general formulation,
because it provides the parameter aqf for Eq. (17).

Unknown Location of Foundation or no Nearby Data for
Conditioning

In Fig. 3, the expected general tendency may be confirmed that the
variance reduction monotonically increases as both L=av and D=ah
grow, that is, as the degree of spatial averaging increases. In the same
way, increasing the number ns of shafts in a foundation lowers
resistance uncertainty. However, a direct comparison between
different shaft configurations is not straightforward, because equal
values of L and D lead to different values of Af and, hence, nominal
resistances for each case. In other words, different types of foun-
dations are typically designed with different shaft dimensions. An
exception to this is the triple shaft configurations T1 (row) and T2
(triangle), which perform identical for D=ah $ 0:5 (no correlation
between individual shafts), and where T1 slightly outperforms T2
for 0 , D=ah , 0:5 because of the larger horizontal spreading of
shafts in T1. Under the common practical situation of unknown
horizontal correlation range ah, Fig. 3 indicates that a respective
worst case scenario exists by adoptingD=ah 5 0, which reduces all
foundation types to the same line shaft approximation of Klammler
et al. (2010a, b). Finally, independent of the foundation type, shaft
diameter, and correlation ranges, a general conclusionmay be drawn
from Fig. 3 that vertical averaging may be very efficiently explored

up to L=av � 4 (steep portions of curves), while for L=av . 4 the
benefits of increasing shaft length on uncertainty reduction (in
absolute terms) become small.

Borehole Data at the Center of a Foundation Footprint

As reflected by Eqs. (17) or (22), this general conclusion about the
efficiency of vertical averaging remains valid in the presence of
a center boring in the footprint of a single or multiple shaft foun-
dation. Moreover, a center boring has the benefit of leading to
considerably more favorable worst case scenarios for unknown ah.
This is reflected by Fig. 6, where continuous graphs correspond to
results from Eq. (22) and the dashed line represents ð111=nbeÞ1=2,
as derived in Klammler et al. (2010b) for an unknown foundation
location (i.e., no center boring). This remains true even if no actual
data conditioning between the center boring and the foundation
exists (i.e., r 5 0, such as considered for unknown foundation lo-
cation), which is because of the mere fact that data were collected
inside the foundation footprint and used in Eq. (16). Fig. 6 dem-
onstrates that for a given number of borings nbe, the benefit of
a center borings is a 50% reduction in CVR. Provided a center boring
is available, Fig. 6 also illustrates the performance of different shaft
configurations in terms of resistance uncertainty. As previously
mentioned, for each configuration, but assuming equal L=av [i.e.,
constant a0 in Eq. (22)], some observations may be made. In-
dependent of nbe, the configuration T1 (triple row) performs clearly
best among all foundation types considered. T1 is followed by S
(single), Q (quadruple), and T2 (triple triangle), which show similar
behaviors, and finally D1 (double). The perhaps unexpectedly good
performance of T1may be attributed to the fact that the center boring
falls exactly into the footprint of the center shaft, which reduces
uncertainty substantially. In other words, data conditioning starts at
lower ah (compare Fig. 5) when horizontal averaging is still more
effective as well. Eqs. (23) and (24) indicate that random mea-
surement errors in q samples cause an effective reduction of cor-
relation between the center boring and foundation, as well as an
effective decrease in variance reduction over the borings. In com-
bination with an uncertainty component at the foundation scale
because of workmanship, this leads to increased values of aqfk and
aqfkw.

Statistical Stationarity and Number of Borings

In all previously mentioned material, it is assumed that a site is
statistically homogeneous, that is, the random function q is sta-
tionary (constant mean and variance). This implies that variogram
sill and correlation ranges are defined, which is a necessary re-
quirement for application of theMultiple Shaft Foundations without
Nearby Data section. Hence, smooth spatial trends and dis-
continuities in statistical properties of q in the vertical or horizontal
direction have to be removed prior to geostatistical treatment. In the
same way as discussed in Klammler et al. (2010a) for single shafts,
this may be achieved through detrending and subdivision of a site
into homogeneous subzones (e.g., vertically into layers or hori-
zontally into areas). In this respect, it is interesting to observe from
Fig. 6 that prediction uncertainty may be efficiently reduced up to
nbe � 4 (steep portions of graphs), while for nbe . 4 the benefit of
additional borings on uncertainty reduction decreases. This fact is
favorable for sites, which require horizontal division into subzones
for separate geostatistical treatment, such that the nbe, for each
subzone, becomes smaller. Moreover, in the presence of smooth
horizontal trends over a site, nbe may be limited, without signifi-
cantly inflating uncertainty, to a small number of nearest borings,
which are used for design of a foundation (moving window
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approach; Journel and Rossi 1989). This may avoid introducing and
making crucial decisions about the presence and shape of de-
terministic horizontal trend functions.

Example Problem

To demonstrate the application of the results presented, the case
study of Klammler et al. (2010a) is extended by considering a tri-
angle (T2) foundation with L5 9 m, D5 0:4 m, and the presence
or not of a center boring for a reliability of b5 3. A total of 136 local
rock strength (cohesion)measurements from six borings is available,
where qbm 5 2:28 MPa with CVq 5 0:50. These data are obtained
using q5 ðquqtÞ1=2=2, and, although further validation is recom-
mended, a preliminary resistance bias factorlR 5 1:06 is adopted for
this prediction method [based on a comparison with load test data in
FDOT (2003)]. A spherical covariance function is adopted with
correlation ranges av 5 1:5 m and ah 5 4:5 m for 80% of s2

q, plus
av 5‘ and ah 5 4:5 m for the remaining 20% (i.e., 20% of the
variability in q is only contained in the horizontal direction—random
areal trend). For the purpose of illustrating the present approach, the
six borings are assumed spatially uncorrelated among each other
such that neb 5 6.

Unknown Location of Foundation or No Nearby Data for
Conditioning

In a first design step with an unknown foundation location or before
obtaining data from a center boring,Rn 5Afqbm 5 77:31 MN, where
Af 5 33 0:43p3 95 33:91 m2. Assuming that ah and, conse-
quently,D=ah 5 0:4=4:55 0:09 are known, Fig. 3 immediately gives
a variance reduction factor for the first variogram component with
L=av 5 9=1:55 6 of aqf 1 5 0:312 and for the second variogram
component with L=av 5 9=‘5 0 of aqf2 5 0:842. Applying a result
of Klammler et al. (2010a), aqf 1 and aqf 2 may be combined to
a total variance reduction factor by taking the weighted average
aqf 5 0:8aqf 1 1 0:2aqf 2 5 0:22, such that CVR 5 0:221=2 3 0:55
0:23 andF5 0:63 from Eq. (10) (FRn 5 48:71 MN). In case ah is
not reliably known, the same chart of Fig. 3 gives worst case values
of a01 5 0:352 and a02 5 1 by using D=ah 5 0. By the same rela-
tionships previously listed, this leads toa0 5 0:30, CVR 5 0:27, and
a reduced F5 0:56 ðFRn 5 43:29 MNÞ. These results are very
similar to those obtained for a single shaft inKlammler et al. (2010a),
which may be attributed to the reduced shaft diameter for the triple
configuration to achieve equal Rn.

Borehole Data at the Center of a Foundation Footprint

In a more advanced stage of the design process, data from a center
boring at a foundation location may be available. Assuming that
ah=D5 11:25 is known and that the mean local strength ob-
served in the center boring is qb1 5 1:70 MPa, respective values of
r1 5 0:87 (continuous line for L=av 5 6. 1) and r2 5 0:77 (dashed
line for L=av 5 0) are obtained from Fig. 5, which may be com-
bined by the same process of variance weighted averaging to
a total value of r5 0:8r1 1 0:2r2 5 0:85. Eqs. (16) and (18) then
give f pf 5 0:853 1:701 0:153 2:285 1:79 MPa and Rn 5
33:913 1:795 60:70 MN. Furthermore, Eq. (17) may be eval-
uated with all parameters known, as previously stated, as a1=2

qfk 5
½0:30ð0:152=620:852Þ10:22�1=2 5 0:07. Eq. (19) then gives
CVR 5 0:073 0:5=ð12 0:253 0:85Þ5 0:044, which translates
into F5 0:97 by Eq. (10), such that FRn 5 58:88 MN. This is
significantly larger than the previously obtained 48.71 MN in the
absence of a center boring and with known ah 5 4:5 m, even

though Rn is 25% smaller. If it is further assumed that the sampled
data of q contained a measurement error of CVɛ 5 0:25 (reliable
quantification of this prediction method specific value is left for
future investigation), one obtains CVq 5 ð0:5220:252Þ1=2 5 0:43,
nsamp 5 136=6� 23, e5 0:252=ð233 0:303 0:432Þ5 0:05, a0ɛ 5
0:30ð11 0:05Þ5 0:32, rɛ 5 0:85=ð11 0:05Þ5 0:81, f pf 5 0:813
1:701 0:193 2:285 1:81 MPa,Rn 5 1:813 33:915 61:38 MN,
a
1=2
qfk 5 ½0:32ð0:192=620:812Þ1 0:22�1=2 5 0:11, CVR 5 0:113

0:43=ð12 0:253 0:81Þ5 0:059, F5 0:95, and FRn 5 58:31MN.
This is not very much smaller than 58.88 MN for CVɛ 5 0, which is
because of the fact that independent measurement errors possess
a larger tendency to cancel each other out (more effective variance
reduction) than the spatially correlated variability in q. Furthermore,
Rn slightly increased because of less weighting of qb1 versus qbm for
finding f pf . Finally, if additional errors because ofworkmanship of an
assumed CVwork 5 0:1 are considered (i.e., workmanship is likely to
affect nominal foundation resistance by less than approximately
10%; reliable quantification of this value is again left for future in-
vestigation), thenCVRtot 5 ð0:059210:12Þ1=2 5 0:12,F5 0:84, and
FRn 5 51:56 MN.

WorstCaseScenarios in thePresenceofaCenterBoring

Here the scenario of a center boring is considered, where
CVɛ 5CVwork 5 0 is assumed for a better illustration of effects of
spatial variability. With ah unknown, Fig. 7 graphically represents
results of the design variables (with Af qbm normalized to unity) as
a function of ah=D. Four different values of qb1=qbm are used,
reflecting the results previously listed for qb1=qbm 5 0:75 and
ah=D5 4:5=0:45 11:25. Most interesting to notice are the minima
inFRn (thick continuous lines), which can be explored in design as
worst case scenarios for unknown ah. For qb1=qbm close to or larger
than 1, these minima are mainly conditioned by minima in F
(i.e., prediction uncertainty) and consistently occur near the point
where correlation between center boring and foundation starts. In
contrast, for qb1=qbm significantly smaller than 1, the minima may
occur for very large values of ah=D, thus being conditioned by small
values of Rn without significant prediction uncertainty ðCVR � 0Þ.
In the previously considered case of qb1=qbm 5 0:75, for example,
a worst case value of FRn 5 0:73Af qbm 5 56:44 MN is obtained
being only slightly smaller than 58.88 MN for known ah 5 4:5 m.
As evident from Fig. 7, the potential increase in FRn because of
a known ah becomes larger as qb1=qbm grows. Considering only
worst case scenarios, however, benefits in FRn because of larger
qb1=qbm (i.e., stronger ground at the foundation location) are not very
significant in the present case. An improvement upon the minima in
FRn of Fig. 7 can be possible by explicitly taking into account the
spatial correlation structures between all borings (i.e., improving on
the conservative assumption that two nearby borings are fully
correlated) and by allowing for correlation between more than
a single boring with the foundation. However, this would quickly
lead to an increased computational complexity, because an ordinary
kriging systemhas to be solved for every value of ah=D instead of the
simplified Eqs. (16) and (17). Even evaluation of worst case sce-
narios, as in Fig. 7, based on Eqs. (16) and (17), may soon become
a tedious task without computational aid, and even more conser-
vative worst case scenarios are indicated inside the charts based on
the approximate Eqs. (20)e(22). For the example problem with
qb1=qbm 5 0:75, this results in Rnw 5 0:75Af qbm 5 57:99 MN,
aqfkw 5 ð0:211 0:95=6Þ3 0:305 0:11, CVRw 5 0:111=2 3 0:5=
0:755 0:22, Fw 5 0:65, and FwRnw 5 37:69 MN, which presents
a relatively large decrease in admissible load with respect to 56.44
MN, based on simultaneous minimization of the productFRn rather
than of each factor separately. However, as illustrated by Fig. 7, this
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conservative difference decreases quickly as qb1=qbm approaches or
exceeds unity. This indicates that an additional mathematical effort
to directly minimize the product FRn may be quite compensating,
especially for qb1=qbm , 1.

Summary

LRFD aims at rationally accounting for uncertainties in the design
process to meet prescribed target probabilities of failure. For this
purpose, the influence of spatially variable soil/rock strength (co-
hesion at zero confining pressure) on axial resistance and uncertainty
due to side friction of single and multiple shaft foundations is ana-
lyzed. According to practice in Florida limestone (FDOT 2011),
contributions of end-bearing resistance are neglected. Based on
a geostatistical approach, resistance uncertainties are evaluated in
a spatial upscaling and ordinary kriging framework. For the scenario
of a center boring inside the footprint of a foundation, a general
solution is presented, which accounts for the total amount of borings
at a site (i.e., limited data), possible correlation between a center
boring and the foundation, random measurement errors, as well as
uncertainties because of workmanship. For the common situation
of unknown horizontal correlation range, two conservative ways
of assessing worst case scenarios are defined. One minimizes the
product FRn and requires a larger computational effort, the other
minimizes F and Rn separately, which simplifies calculations, but
may substantially increase conservativism.Worst case scenarios are
seen to be independent of shaft diameter, and an example problem is
presented to illustrate the process and some of its mechanisms. The
approach aims at directly meeting prescribed probabilities of failure
(reliabilities) of whole foundations rather than single objects of
a foundation. An interesting observation is that the uncertainty
reduction because of additional data becomes quite small for more
than approximately four borings. This indicates that a so-called

moving window approach may be appropriate, where only a few
nearest borings to a foundation are considered for design. Crucial
decisions about presence and shape of possible horizontal trends
may, thus, be avoided. In analogy to Klammler et al. (2010a), results
of the present work may also be directly extended to different spatial
covariance functions than the spherical one (e.g., exponential) and to
situations of nested variogram structures (see example problem) and
vertical layering in ground properties.
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Notations

The following symbols are used in this paper:
A, B 5 constants for approximation of aqfkw;
Af 5 lateral surface area of all shafts in a foundation;
As 5 lateral surface area of one shaft;
ah 5 horizontal correlation range;
av 5 vertical correlation range;
Cb 5 spatial covariance function of qb (boring scale);
Cbf 5 spatial covariance between the foundation and

nearby boring;
Cq 5 spatial covariance function of q (point scale);

Fig. 7. Exact (graphs) and approximate (text) worst case scenarios for example problem with CVɛ 5 0 and different values of qb1=qbm
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Cs 5 spatial covariance function of fs (shaft scale);
C9

q
5 normalized spatial covariance function of q (point

scale);
C9

s
5 normalized spatial covariance function of fs (shaft

scale);
CVQ 5 coefficient of variation of the design load;

CVQD 5 coefficient of variation of the dead load;
CVQL 5 coefficient of variation of the live load;
CVq 5 coefficient of variation of q (only spatial variability

without measurement error);
CVR 5 coefficient of variation of foundation resistance;

CVRtot 5 coefficient of variation of foundation resistance
including construction workmanship uncertainty;

CVRw 5 CVR under worst case scenario for unknown ah;
CVwork 5 coefficient of variation of construction

workmanship uncertainty (acting at the foundation
scale);

CVɛ 5 coefficient of variation of measurement error in q;
CVqɛ 5 coefficient of variation of measured q (including

spatial variability and measurement error);
D 5 shaft diameter;
Ds 5 fundamental shaft center separation distance

(e.g., 3D);
dA 5 infinitesimal areal element for integration over

shaft surfaces;
e 5 ratio between variances of measurement error and

spatial variability in q at the boring scale;
ff 5 unit side friction at the foundation scale;
f pf 5 estimate of ff ;
fs 5 unit side friction at the shaft scale;
h 5 spatial separation vector (lag distance);
hh 5 horizontal lag distance;
hiso 5 normalized isotropic lag distance;
hs 5 lag distance between shaft centers;
hv 5 vertical lag distance;
i 5 index variable;
L 5 shaft length;
nb 5 number of borings at the site;
nbe 5 effective number of uncorrelated borings at

the site;
ns 5 number of shafts in the foundation;

nsamp 5 average number of samples per boring;
n1 5 number of borings from the preliminary site

investigation;
n2 5 number of borings at the potential foundation

locations;
QD=QL 5 dead-to-live load ratio;

q 5 measured unit side friction at the point scale
(strength or cohesion at zero confining pressure);

qbðiÞ 5 mean unit side friction at the boring scale
(in ith boring);

qbm 5 mean unit side friction over all nbe borings;
qt 5 split tension strength;
qu 5 unconfined compression strength;
R 5 random foundation resistance;
Rn 5 nominal foundation resistance (mean of R);
Rnw 5 Rn under worst case scenario of unknown ah;

r 5 normalized covariance between nearby boring and
foundation;

rɛ 5 effective value of r when considering measurement
error in q;

wi;j 5 ordinary kriging weights;
x 5 coordinate vector;
xf 5 foundation location;
xi;j 5 boring locations;
aqf 5 variance reduction factor between q (point scale)

and ff (foundation scale);
aqfk 5 variance reduction factor between q (point scale)

and the estimation error of ff (foundation scale)
in the presence of a nearby boring using kriging
weights;

aqfkw 5 variance reduction factor aqfk under the worst case
scenario for unknown ah;

aqs 5 variance reduction factor between q (point scale)
and fs (shaft scale);

asf 5 variance reduction factor between fs (shaft scale)
and ff (foundation scale);

a0 5 variance reduction factor between q (point scale)
and qb (boring scale/vertical line);

a0ɛ 5 effective value of a0 when considering
measurement error in q;

b 5 LRFD reliability index;
gD 5 dead-load factor;
gL 5 live-load factor;
lR 5 resistance bias factor;

lQD 5 dead-load bias factor;
lQL 5 live-load bias factor;
m 5 Lagrangian operator;
mf 5 mean of ff ;
ms 5 mean of fs;
mq 5 mean of q;
r 5 recovery;

s2
f 5 variance of ff (foundation scale);

s2
fk 5 estimation error variance of ff if there is a boring

near the foundation and when using kriging weights;
s2
q 5 variance of q (point scale);
s2
s 5 variance of fs (shaft scale);

s2
ɛ 5 variance of measurement error in q (point scale);

s2
ɛb 5 variance of measurement error after upscaling to qb

(boring scale);
F 5 LRFD resistance factor; and
Fw 5 F under worst case scenario for unknown ah.
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