
PHYSICAL REVIEW E 86, 051607 (2012)

Distribution of scaled height in one-dimensional competitive growth profiles
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This work investigates the scaled height distribution, ρ(q), of irregular profiles that are grown based on
two sets of local rules: those of the restricted solid on solid (RSOS) and ballistic deposition (BD) models.
At each time step, these rules are respectively chosen with probability p and r = 1 − p. Large-scale Monte
Carlo simulations indicate that the system behaves differently in three succeeding intervals of values of p:
IB ≈ [0,0.75), IT ≈ (0.75,0.9), and IR ≈ (0.9,1.0]. In IB , the ballistic character prevails: the growth velocity
υ∞ decreases with p in a linear way, and similar behavior is found for �∞(p), the amplitude of the
t1/3-fluctuations, which is measured from the second-order height cumulant. The distribution of scaled height
fluctuations follows the Gaussian orthogonal ensemble (GOE) Tracy-Widom (TW) distribution with resolution
roughly close to 10−4. The skewness and kurtosis of the computed distribution coincide with those for TW
distribution. Similar results are observed in the interval IR , with prevalent RSOS features. In this case, the
skewness become negative. In the transition interval IT , the system goes smoothly from one regime to the
other: the height distribution becomes apparently Gaussian, which motivates us to identify this phenomenon
as a transition from Kardar-Parisi-Zhang (KPZ) behavior to Edwards-Wilkinson (EW) behavior back to KPZ
behavior.
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I. INTRODUCTION

In recent years there have been remarkable and successful
efforts to control, measure, and understand the growth of
disordered surfaces on 1D and 2D substrates using experimen-
tal, analytical, and numerical approaches [1–9]. In addition
to being an intriguing scientific challenge, this problem has
attracted considerable technological interest. Many properties
of specifically devised materials depend on rough surfaces that
are formed under nonequilibrium conditions.

From the theoretical point of view, the investigation of
surface growth has been significantly dominated by successive
analytical and numerical proposals for solving the Kardar-
Parisi-Zhang (KPZ) equation [10],

∂th(x,t) = μ0 + μ�h + λ

2
(∇h)2 + η(x,t), (1)

where μ0 corresponds to a constant driving force and η(x,t)
is white Gaussian noise. This equation contains a nonlinear
term that, despite being simple, accounts for a considerable
number of experimental results that cannot be described by
the linear Edwards-Wilkinson (EW) equation [3,11], which is
recuperated by setting λ = 0 in Eq. (1).

The first efforts toward solving the KPZ equation were
based on a scaling theory that leads to the scaling exponents
associated with the self-affine profiles. For correlated systems
such as this one, the interface width (�) should follow the
Family-Vicsek scaling assumptions [3]:

�(L,t) ∼ tβg(Lt−1/z), (2)

where g is a scale function and β and z = α/β correspond
to the growth and dynamic exponents, respectively, while
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α is the roughness exponent. Furthermore, for length scales
L � L̃ ∼ t1/z, � follows the power law �(L) ∼ Lα and, for
the case in which L 	 L̃, �(t) ∼ tβ .

Research was subsequently directed toward evaluating
the probability density functions (pdf) of the scaled height
fluctuations. The seminal work in this direction was identifying
that an exact pdf solution for the height distribution of the
KPZ solution can be expressed in terms of Tracy-Widom
(TW) distributions [4–6]. For different geometric conditions,
they assume different forms that, in this case, obey the
statistics of the Gaussian orthogonal ensemble (GOE) or
the Gaussian unitary ensemble (GUE). Recent numerical
results [8,9] hint to the universality of the GOE and GUE
distributions in discrete growth models on flat and circular
one-dimensional substrates, respectively. This relationship
supports the experimental results obtained for the growth
of liquid crystals on substrates with initial flat or curved
interfaces [6]. The numerical, experimental, and analytical
results build strong evidences for a robust universality class
of systems far from equilibrium based on evidences that go
beyond the scaling law exponents.

The purpose of this work is to present new results for the
stochastic growth of irregular 1D profiles considering two
different sets of local rules, namely the ballistic deposition
(BD) and the restricted solid-on-solid (RSOS) models. We
identify the conditions where the scaled height fluctuation
distribution of the competitive model belongs to some of
the TW universality classes. We performed careful numerical
simulations that allow, in addition to direct comparison with
the TW distributions, the evaluation of the linear growth rate
velocity (υ∞), the amplitude of the t1/3-fluctuations (�∞),
and the skewness (S) and the kurtosis (K) of the resulting
distributions. For most situations, the resulting profile fits well
into the TW framework. However, we demonstrate that it is
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possible to fine-tune two individual processes that individually
lead to TW distributions in such a way that any fingerprint of
the two nonlinear growth models is removed. In this range,
all the aforementioned measures become typical of the the
linear growth model, which motivates this phenomenon to be
identified as a KPZ-EW-KPZ transition.

The remainder of this work is organized as follows: Sec. II
introduces the competitive growth model based on two sets of
deposition rules. The results are discussed in Sec. III, which
is divided into three subsections: in the first one, we discuss
the numerical procedures used to obtain reliable values of the
growth exponents, υ∞ and �∞. Then, we present a detailed
characterization of the height fluctuation distributions, ρ, in
two intervals (IB and IR), where the characteristic features
are those of the BD and RSOS single models. Finally, the
third subsection is devoted to the analysis of the transition
interval, IT , where the typical features of the linear models
appear. Section IV closes the paper with our concluding
remarks.

II. COMPETITIVE GROWTH MODEL

There are many models that describe the growth processes
of interfaces and surfaces, which are defined by local depo-
sition rules. Such systems have different physical properties
that are reflected in the scaling exponents, in the scaled height
fluctuation distribution, etc. Nevertheless, models with quite
distinct local rules may share intrinsic properties. This is the
case, for instance, of the RSOS and BD models. Despite being
quite different, theoretical considerations of the continuous
limits of these models indicate that both of them are described
by the same Eq. (1) [12], although their values of λ have
opposite signs. For both systems, the reported values for the
roughness and growth exponents agree with the values of
αKPZ = 1/2 and βKPZ = 1/3 [3].

Let us consider a competitive version of the RSOS and
BD models mentioned above. We begin with a square lattice
that has discrete values of x, j ∈ [1,L] and h � 0. At the
initial time t = 0, the lattice is empty. The profile is grown by
vertically dropping mass elements over the different columns,
j , such that, at each discrete value of the time t , the profile
is described by the function h = h(j,t), which identifies
the largest value of h in column j that is occupied by a
mass element. During each deposition event, a particle is
released from a position, (j,h′) j ∈ [1,L],h′ > hmax(t), that
is randomly chosen above the surface, and it falls vertically
onto the growing substrate. Here, hmax(t) represents the largest
value of h that is occupied by a mass element at time t . The
falling particle will follow the RSOS deposition rule with
probability p, and the BD rule with probability r = 1 − p.
For the first case, the falling particle will adhere to site j if the
condition |�h(j,t)| = |h(j,t) − h(j ± 1,t)| � M is satisfied,
where M is the parameter that controls the roughness of the
rough interface. Hereafter, we always consider M = 1.

In the BD case, the released particle falls vertically until
it touches the surface and irreversibly adheres to the first site
that has an occupied nearest neighbor. Therefore, this feature
considers the possibility of lateral growth. The BD model
generates a bulk material that has porosity and a positive

nonlinear parameter, because the growth velocity is greater
than the deposition rate.

III. RESULTS

A. Scaling properties

We performed Monte Carlo simulations with L ∈ [102,106]
considering finite-size effects to define the onset of asymptotic
scaling. Finite-size effects stay at the ground of numerical
discrepancies that are often observed between the obtained
values of the growth exponents and αKPZ or βKPZ. Furthermore,
there is an inherent difficulty in calculating β, which is related
to the lack of a precise criterion to establish the limits of the
growth region [where �(t) ∼ tβ] for each system with size L.
This question becomes of utmost importance for evaluating
the height fluctuation distribution of finite systems because
it is globally associated with a Gaussian function when t

increases beyond the scaling region. Indeed, for t 	 Lz, it
is hypothesized that the distribution of the height fluctuations
becomes time independent and converges to a Gaussian curve
ρ(δh) ∝ exp [−(δh)2/κL], where κ is a nonuniversal constant
[13] and δh = h − 〈h〉.

To clarify the limits of the growth region, we conducted a
detailed analysis of the evaluation of β. Figure 1 presents a
detailed study of the dependence of β on L in the case of p = 0.
We can clearly observe differences between the value of βL and
βKPZ as a consequence of finite-size effects. If we assume that
βL depends on L according to βL = β0(1 − L−γ ), our results
lead to β0 = 0.338 ± 0.003 and γ = 0.250 ± 0.009 when
p = 0 (BD), which is in excellent agreement with previous
numerical results [14,15]. In the inset of the same figure, we
indicate the growth region that was used to calculate βL. To
determine this region, we adopted the following procedure:
(i) identify the interval in which the curve of log10 [�(t)] ×
log10 [t] is apparently linear; (ii) fit the points in this region with
a high-degree polynomial function; (iii) identify the interval
where the derivative of log10 [�(t)] as a function of log10 [t] is
nearly constant; and (iv) evaluate the value of β as the slope
of the best linear fit in the identified interval.

FIG. 1. (Color online) Dependence of βL on L for p = 0. Finite
size effects cause a discrepancy between βL and βKPZ. The solid red
line indicates the ansatz function βL = β0(1 − L−γ ), with best fitting
values β0 = 0.338 ± 0.003 and γ = 0.250 ± 0.009. The inset shows
the derivative of the polynomial function that best fits the numerical
values of log10 [�(t)] as a function of log10 [t] for L = 6 000. It is
used to estimate the growth interval [�(t) ∼ tβ ] for the calculation
of βL.

051607-2



DISTRIBUTION OF SCALED HEIGHT IN ONE- . . . PHYSICAL REVIEW E 86, 051607 (2012)

FIG. 2. (Color online) Dependence of the interface width � with
respect to t using Family-Vicsek scaled variables. 1 + 1 dimensional
KPZ values of α and z are used for the RSOS + BD competitive
model: (a) p = 0.6; (b) p = 0.95. The dashed lines indicate the
KPZ growth exponent βKPZ = 1/3. In the corresponding insets, the
solid red (gray) line indicates the profile after deposition of 100
monolayers.

Before discussing the height fluctuations, it is important to
recall that, for a profile h(j,t) growing on a finite substrate,
the long time limit, 1 � t � Lz [16], obeys the equation

h(j,t) = t

[
υ∞ ±

(
�∞
t2

)1/3

q

]
, (3)

where υ∞ represents the interface growth velocity and �∞
is related to the parameter λ and depends on the growth
model. q represents a time-independent random variable used
for the purpose of comparing our numerical estimates with
the analytical solution for the KPZ equation. The analytical
solution for the KPZ equation is such that the distribution ρ(q)
is a pertinent TW distribution. Therefore, the comparison of
our results with those for the KPZ equation is conducted by
comparing the distribution ρ(q) resulting from the numerical
simulations with the GOE distribution, ρTW(q) = ρ(χ ).

In Fig. 2, we present numerical results for �(t) as a function
of t for p = 0.6 and p = 0.95. In both panels, it is possible to
realize that, by considering Eq. (2) together with the values of
βKPZ and αKPZ, we obtain a data collapse for the results with
different values of L. This collapse is verified for both the
growth region and for the flat part of the curve that represents
the correlated growth. The typical features of the curves shown
in Fig. 1 for p = 0 are also reproduced when we consider the
values of p used in Fig. 2. This result reflects the fact that the
competitive growth model presents the self-affinity described
by the KPZ critical exponents for large intervals of p. The
validity of this result, which was rigorously obtained in the
hydrodynamic limit for both the pure BD (p = 0) and RSOS

(p = 1) models, is preserved when the two processes are
competitive in the intervals IB ≈ [0,0.75) and IR ≈ [0.9,1]. In
the transition interval IT ≈ (0.75,0.90), β deviates from βKPZ.
A previous study of competitive growth models involving the
BD and RSOS rules [17] reported the value of β ≈ 0.27
when p ∼ 0.83, which remains close to that of the linear
model (βEW = 1/4) [3,11]. Our simulations indicate that the
p = 0.83 competitive model becomes even closer to the EW
model. When L = 105, the procedure illustrated in Fig. 1 leads
to β ≈ 0.265.

B. Height distribution: Nonlinear regime

Let us present results that, together with height distribution
fluctuations in the growth region, go beyond the exponent
evaluation and allow for a detailed characterization of the three
intervals: IB , IT , and IR . We first estimate the parameter υ∞,
which is related to λ in Eq. (1). For a rough interface whose
dynamics are governed by the KPZ equation, the average
velocity in a given scale �, not considering the drift velocity
due to external forces, is given by υ = λ/�

∫ �

0 dx
√

1 + (∇h)2.

Assuming (∇h)2 � 1, υ ≈ λ + λ/2�
∫ �

0 dx(∇h)2. If there
is an average slope m = 〈∇h〉 within an interval of length
� of the interface, the result indicates that the velocity
of the interface within that interval is approximately given
by: υ(m) ≈ λ + (λ/2)m2. Thus, υ(m) is the slope-dependent
velocity that should be observed in the coarse-grained scale �.
Then, λ = υ(m = 0) = υ∞ [18,19].

In the insets of Fig. 2, the morphology of the resulting
exposed interface (red line) after the deposition of 100
monolayers is shown. These results clearly indicate that υ∞,
which was determined by the rate of temporal variation of the
mean height of the interface 〈h〉, is a function of p. According
to Eq. (3), we obtain that d〈h〉/dt ≈ υ∞ + ct−2/3, where c

is a constant [18]. In Fig. 3(a), we show the dependence of
the growth velocity υ∞ as a function of the parameter p. The
values for the limit situations, p = 0 and p = 1, are in good
agreement with quite recent results [9]. Our results indicate
that the interface growth velocity monotonically decreases
with p, and we can clearly identify different decreasing
regimes. The first one is characterized by a linear behavior
when p ∈ [0,0.75]. For p ∈ IT , the behavior of υ∞ is more
complex. In fact, the KPZ scaling assumption [Eq. (3)] breaks
down. This result is illustrated in the inset of Fig. 3(a). In this
inset, we can follow the procedure for estimating the velocity
when considering p = 0.6. For p = 0.8, the linear dependence
between d〈h〉/dt and t−2/3 [Eq. (3)] is not valid. This is the
reason why the estimation of υ∞(p = 0.8), which roughly
corresponds to the center of IT , is subject to large fluctuations.
Finally, the values of υ∞ can be computed again for p = 0.9
and 1.0. The decreasing straight line linking these two points
is considerably less tilted than the one that approximates the
discrete points in the interval [0,0.75].

We also evaluate the amplitude of the t1/3 fluctuations from
the second-order height cumulant �2(t) � (�t)2/3〈χ2〉c. For
large values of time, this quantity provides information about
the most likely value and confidence interval for estimating
the parameter �∞, which depends on how 〈χ2〉c is normalized.
We consider 〈χ2〉c as the variance of ρ(χ ) (∼0.63805) [9,20].
Figure 3(b) demonstrates how the parameter �∞ varies with
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FIG. 3. (Color online) (a) The interface growth velocity υ∞(p)
as a function of p for the competitive RSOS + BD model. In the
limit situations, υ∞(p = 0) = 2.142(7) and υ∞(p = 1) = 0.4191(4).
In the inset, the procedure for estimating the velocity d〈h〉/dt for
p = 0.6. For p = 0.8 [solid red (gray) line], Eq. (3) is not valid.
(b) The dependence of the parameter �∞ with respect to p, with a
change in the derivative d�/dp in the interval IT . In the inset, the �∞
estimation procedure for p = 0.6 is presented.

the probability p. We can then observe a similar transition
behavior as that observed for υ∞ when p ∈ IT , an evidence of
an abrupt change in the growth dynamics. In the corresponding
inset, we illustrate the procedure adopted for estimating �∞
for p = 0.6.

Now we analyze several features of the height distributions
that are associated with irregular profiles. With the nth order
cumulants (n = 2, 3, and 4) of the local height, 〈hn〉c,
we determine S = 〈h3〉c/(〈h2〉3/2

c ) and K = 〈h4〉c/(〈h2〉2
c)

[18]. We clearly observe in Fig. 4(a) that, in the growth
region, both quantities are nonzero, which suggests that the
interface fluctuations are not Gaussian. Furthermore, S agree
particularly well with those associated to ρ(χ ) (STW = 0.2935)
[20], except in the case where p = 0.8. With the exception of
this value of p, the values of υ∞(p) and �∞(p) allow for the
calculation of ρ(q), which is the distribution of scaled height
fluctuations, where q ≡ [h − υ∞(p)t]/[�∞(p)t]βKPZ . In this
procedure, we consider the growth interval for each system
according to the conditions 1 � t � Lz.

Figure 4(b) illustrates the behavior of the height fluctuation
distribution. For three distinct values of p within the intervals
IB and IR , the resulting pdf converges to the GOE distribution
(left side). This result is consistent with theoretical results
for the KPZ equation and supports our claims that, in these
two intervals, the competitive model also falls into the same
universality class. In the inset of this figure, we present the nth
order cumulants (〈qn〉c) for the scaled height obtained from our

FIG. 4. (Color online) (a) Amplitude ratios (Skewness and
kurtosis) of the measured height distribution as a function of time
for p = 0.6 and p = 0.9. The skewness and the kurtosis for ρ(χ ),
respectively, STW = 0.2935 and KTW = 0.1652, are indicated by
the dashed and dotted lines [20]. (b) Distribution of scaled height
fluctuation for p = 0.1,0.6, and 0.9. The numerical results are
compared with GOE distribution, indicated by the solid black line.
In the inset, the differences between the cumulants resulting from the
simulations 〈qn〉c and the corresponding GOE TW values 〈χn〉c, for
p = 0.1 and p = 0.6.

simulations together with those for the GOE TW distributions
〈χn〉c. A rapid convergence is observed for p = 0.1 and
p = 0.6.

C. Height distribution: Transition interval

Let us discuss the results of p in the interval IT . Note
that IT is not symmetrically placed within the [0,1] interval,
which indicates that the BD character prevails for a larger
range of p values than that of the RSOS. IT can be divided
into two subintervals, IT ,1 and IT ,2; in the first one, the system
undergoes a KPZ-EW transition, which is reversed in IT ,2.

First, consider the dependence of S with p. In Fig. 5(a),
we observe that when p ∈ IT ,1 ≈ (0.75,0.83), S is positive
but decreases monotonically, departing from STW, until p ∼
0.83, when it becomes ≈0. Similar behavior is observed for
the kurtosis (not shown); it departs from KTW at p ∼ 0.75,
decreases monotonically, and becomes ≈0 at p ∼ 0.83. For
p ∈ IT ,2 ≈ (0.83,0.90), S becomes negative, approaching the
limit −STW as p → 0.9, whereas K → KTW in this same
limit. This result enables a break of the KPZ universality class
to be identified in the whole interval IT . Simultaneously, the
EW universality class is only observed for a single point in
the interval, where it is reasonable to suppose that the growth
phenomenon is essentially linear.

In Fig. 5(b), we show how the asymptotic value of S changes
with p. Such dependence can be well represented by sigmoidal
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FIG. 5. (Color online) (a) Skewness as a function of the time
computed for different probabilities p ∈ IT . The dashed line cor-
respond to the GOE skewness. The arrows highlight the skewness
para p = 0.83 ± ε com ε = 0.005. (b) Skewness as a function of
p. The solid line corresponds to sigmoid function [Eq. (4)], with
the inflexion point at p ≈ 0.83 where the skewness is close to zero.
The arrow locates the system with EW-like features. NL indicates
the nonlinear regime.

curve

S(p) = c1 + c2 − c1

1 + exp [w(p − p0)]
(4)

(obtained R2 = 0.999), where c1 ≈ 0.27, c2 ≈ −0.28, the
inflexion point p0 = 0.8293 coincides with the value pre-
viously identified by the simulation (p ≈ 0.83), and w ≈
37.4 × ln (10).

To provide a complete picture of the resulting distributions
in IT , we illustrate in Fig. 6 the depart from the produced
distribution with respect to the GOE TW curve for some

FIG. 6. (Color online) Scaled height (δh)/� distributions for
p = 0.79,0.83, and 0.87. The solid and dashed lines correspond to
ρ(χ ) with positive and negative skewness, respectively.

values of p in this interval. In this figure, we use the scaled
�ρ(δh/�) function as a function of h → (δh)/� when p =
0.79, 0.83, and 0.87. In addition, for the purpose of providing
a better comparison of the points when p ∈ IT , we also
draw the inverted TW distribution ρ(−χ ). When p = 0.79,
the simulation results show a slight deviation from ρ(χ ) in
the left tail, with larger than expected contributions at larger
values of δh/�, in contrast with a very good agreement in the
right-hand side. This result is in agreement with a positive
S, albeit smaller than STW. For p = 0.83, the simulation
distribution becomes fairly symmetric, with clear deviations
of the asymptotic behavior on both sides of ρ(χ ). Finally, for
p = 0.87, the distribution should be compared with ρ(−χ )
with a negative S. We again identify a fairly good agreement
in the right tail. Nevertheless, the deviations from ρ(χ ) in the
left-hand side results from smaller than expected contributions
at larger values of δh/�. This result explains why S is less
negative than −STW.

IV. CONCLUSIONS

In this work, we conducted large-scale Monte Carlo simu-
lations of a competitive growth model based on two different
sets of local rules, which individually lead to the same KPZ
universality class. The high quality of our results, together with
a careful analysis of the scaling regions, permitted essential
features of the scaled height distributions to be determined. Our
results provide a detailed characterization of the dependence
of the average growth rate υ∞, the fluctuation magnitude �∞,
and the height scaled distribution as a function of p. All of
these parameters present distinct behaviors in three ranges of
p values, which we identified as IB , IT , and IR . The first and
the third ones are well described by GOE ρ(χ ), albeit with
inverted parity. The detailed investigation of the scaled height
distribution in the the transition interval IT identified how
its form changes continuously, which produces changes in the
values of S and K . In particular, we described two mechanisms
that account for the deviation of the produced distribution with
respect to GOE ρ(χ ) when p has just entered and is about to
leave IT .

These results have interesting consequences in constructing
experimental devices, because a choice of p can allow us
to control irregularities (departs from TW distribution) that
can move the TW limits χ → ±∞. Then, by exerting an
adequate control in the surface growth process (for example, by
direct interference) such that the resulting geometry adequately
deviates from the TW distribution in the right asymptotic limit,
it is possible to optimize the final produced electronic current
density. This fact is being systematically investigated in our
group with the purpose of simulating field emitter devices with
irregular surfaces. Such deviations from the asymptotic limits
of TW distributions may even appear in the promising field of
emitter materials (conducting polymers) that are grown on 2D
substrates.

In conclusion, the results of this study provide the possi-
bility to analyze the height distributions of a more realistic
growth composed of competitive models that establish the
limits where the TW distributions can also be observed.
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