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We consider the massive vector N-component ð�’4ÞD theory defined on a Euclidean space with a

toroidal topology. Using recently developed methods to perform a compactification of a d-dimensional

subspace at finite chemical potential, we treat jointly the effects of temperature and spatial boundaries,

setting forth grounds for an analysis of spontaneous symmetry restoration driven by temperature and

spatial boundaries, as a function of the chemical potential. We restrict ourselves to d ¼ 2, which

corresponds to the heated system confined between two parallel planes (separation L) in dimensions

D ¼ 3 and D ¼ 4. We present results, in the large-N limit, which exhibit how finite size and chemical

potential affect spontaneous symmetry restoration.
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I. INTRODUCTION

We investigate spontaneous symmetry restoration in-
duced by both temperature and spatial boundaries. In par-
ticular, we are interested in studying the influence of a finite
chemical potential in the context of finite-size effects. We
shall focus on theN-component vector’4 model within the
large-N approximation for scalar fields. The symmetry
restoration is carried out by starting from the two-particle
irreducible (2PI) formalism [1,2] in the Hartree–Fock ap-
proximation, which sums up all contributions coming from
daisy and superdaisy diagrams. We need then to implement
the 2PI formalism in a space with compactified dimensions
at large N, which allows us to obtain nonperturbative
corrections to the coupling constant. For the sake of sim-
plicity, we study the particular case of finite temperature
and one compactified spatial coordinate. We can then,
starting from the broken symmetry region, show the behav-
ior of the renormalized mass for different values of the
temperature, compactified spatial dimension, and chemical
potential.

Field theories defined on spaces with some, or all, of its
dimensions compactified is of interest in several branches
of theoretical physics. For a Euclidean D-dimensional
space, this means that its topology is of the type �d

D ¼
ðS1Þd � RD�d, or its counterpart with the Minkowski sig-
nature, with 1 � d � D, d being the number of compacti-
fied dimensions. Each of these compactified dimensions
has the topology of a circle S1. We refer to �d

D as a toroidal

topology. These theories are often associated to extra spa-
tial dimensions, as in particle physics, where theories

defined on toroidal spaces with extra spatial dimensions
are employed, for instance, as a way to investigate the
electroweak transition and baryogenesis [3–8]. Also,
recent works involving the idea of extra spatial dimensions
have been performed in low-energy physics [9,10].
On the other side, in many cases, one is concerned with

theories defined on a space with a compactified subspace.
A very important development of this kind, which has its
roots in the late 1950s, is the systematic approach to
quantum field theory at finite temperature, as proposed in
Refs. [11–14]. An analogous formalism can be constructed
for compactified spatial coordinates, in a D-dimensional
Euclidean space. This is an idea advanced for instance in
Ref. [15]. In this case, as it is stressed in Ref. [16], the
compactification of spatial coordinates can describe sys-
tems confined to limited regions of space, which are inter-
preted as representing samples of material in the forms of
films, wires, or grains. In the general case of quantum field
theories in toroidal topologies, that is, with compactifica-
tion of the time coordinate and of spatial dimensions,
mathematical bases to deal with this situation on general
grounds are consolidated in recent developments [17,18].
This provides a general framework for the results from
previous works where systems at finite temperature and/or
compactified spatial dimensions were considered, both for
bosonic systems, as, for instance, in Refs. [19–22] and for
fermionic ones [23–27].
The paper is organized as follows. In Sec. II, symmetry

restoration is investigated along the lines of Ref. [2], which
establishes a formula for the renormalized mass. This
formula is then rewritten to take into account the compac-
tification of the imaginary time and one of the spatial
dimensions, considering the dependence with the chemical
potential. We can then study the behavior of the renormal-
ized mass starting from the broken symmetry region. In
Sec. III, corrections to the coupling constant, due to
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compactification as well as the presence of a chemical
potential, are discussed. In Sec. IV, we collect the results
from the previous sections, and, specializing to spacetime
dimensions D ¼ 3 and 4, we fully determine the behavior
of the critical temperature as a function of the size of the
system and the chemical potential. We also present, in the
same section, our conclusions and final remarks.

II. SYMMETRY RESTORATION
IN ATOROIDAL SPACE

We consider the model described by the Lagrangian
density

L ¼ 1

2
@�’a@

�’a þ 1

2
m2’a’a þ u

4!
ð’a’aÞ2; (1)

in EuclideanD-dimensional spacetime, wherem and u are,
respectively, the zero-temperature mass and the coupling
constant in the absence of boundaries and at zero chemical
potential. Also, in Eq. (1), ’a are scalar fields, the sum
over repeated indices is carried out from a ¼ 1 to N and
� ¼ 1 to D. We consider the large-N regime, such that
limN!1;u!0ðNuÞ ¼ �, with � fixed. To simplify the nota-

tion, we drop out the a indices, summation over them being
understood in field products. In order to approach symme-
try restoration for this model, we first follow the 2PI
formalism developed in Refs. [1,2]. In this case, one finds
a stationary condition for the effective action in the
Hartree–Fock approximation which translates itself into a
gap equation,

G�1ðx; yÞ ¼ D�1ðx; yÞ þ u

2
Gðx; xÞ�4ðx� yÞ; (2)

where the Fourier-transformed propagators, DðkÞ and
GðkÞ, are given by

DðkÞ ¼ 1

k2 þm2 þ u
2�

2
; GðkÞ ¼ 1

k2 þM2
: (3)

Here, � ¼ h0j’j0i is the expectation value of the quantum
field ’, andM is a momentum-independent effective mass.

In the 2PI formalism, the gap equation corresponds to
the stationary condition, and, as such, the effective mass
depends on � and conveys all daisy and superdaisy graphs
contributing to GðkÞ [1,2]. Nevertheless, in order to inves-
tigate symmetry restoration, we can take instead a particu-
lar constant value M in the spontaneously broken phase.
Renormalization of the mass m and of the coupling con-
stant u can be performed along lines similar to those in
Refs. [2,28], leading to the equation

M2 ¼ �m2
R þ uR

2
�2 þ uR

2
GðMÞ; (4)

where m2
R and uR are, respectively, the squared renor-

malized mass and the renormalized coupling constant,
both at zero temperature and zero chemical potential,

in the absence of boundaries, and GðMÞ is the finite part
of the integral Gðx; xÞ ¼ ð1=ð2�ÞDÞR dDkGðkÞ, which will
be calculated using dimensional and zeta-function regu-
larization techniques. Notice also the minus sign of the m2

R

term, which is the same choice made in Refs. [2,28] to
ensure spontaneous symmetry breaking. Therefore, Eq. (4)
will be our starting point. It gives the value of the renor-
malized mass at the broken-symmetry phase and can be
rewritten as

�m2ð�Þ ¼ M2 � uR
2

Z dDk

ð2�ÞD
1

k2 þM2
; (5)

where the effective renormalized mass �m2ð�Þ ¼ �m2
R þ

ðuR=2Þ�2 has been introduced. In the sequel, we will
obtain the generalization of the above equation in such a
way as to include the toroidal topology as well as the
chemical potential, but first, we notice that restoration of
the symmetry will occur at the set of points in the toroidal
space where �m2 is null.
We now proceed to generalize Eq. (5) to a theory

defined on a space with a toroidal topology. In
the general case, the system is in thermal equilibrium
with a reservoir at temperature ��1 and confined to
a (d� 1)-dimensional spatial rectangular box of sides
Lj, j ¼ 2; 3; . . . ; d. We use Cartesian coordinates r ¼
ðx1; . . . ; xd; zÞ, where z is a (D� d)-dimensional vector,
with corresponding momentum k ¼ ðk1; . . . ; kd;qÞ, q
being a (D� d)-dimensional vector in momentum
space. Then, the Feynman rules should be modified
according to Refs. [16–18]

Z dk�
2�

! 1

�

X1
n�¼�1

; k� ! 2n��

�
� i�;

Z dki
2�

! 1

Li

Xþ1

ni¼�1
; ki ! 2ni�

Li

; i ¼ 2; 3; . . . ; d;

(6)

where � corresponds to imaginary time and � is the
chemical potential. We consider the simpler situation of
the system at temperature ��1 and one compactified
spatial coordinate (x2) with a compactification length
L2 � L. In this case, using Eq. (6), we can perform a
suitable generalization of the procedure in Ref. [2],
to take into account finite-size, thermal, and boundary
effects in Eq. (5). The integral over the D-dimensional
momentum in Eq. (5) becomes a double sum over
n� and n2 � nx together with a (D� 2)-dimensional
momentum integral. Then, following steps similar as in
Ref. [19] and using dimensional regularization to per-
form the integral [29], the renormalized (�, L, �)-
dependent mass in the large-N limit can be written in
the form
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�m2ðT; L;�Þ ¼ M2 � uRM
D�2

2

�ðD�2Þ=2

4�2

�ðs� D�2
2 Þ

�ðsÞ
ffiffiffiffiffiffiffiffiffiffi
a�ax

p X1
n�;nx¼�1

�
a�

�
n� � i�

2�
�

�
2 þ axn

2
x þ c2

�ðD�2Þ=2�s
��������s¼1

; (7)

where we have changed variables in the integral, ki=2�M ! qi, and introduced the dimensionless quantities a� ¼
ðM�Þ�2, ax ¼ ðMLÞ�2, and c ¼ ð2�Þ�1. The double sum in Eq. (7) is recognized as one of the inhomogeneous
Epstein–Hurwitz zeta functions, Zc2

2 ðs� D�2
2 ; a�:ax; b�; bxÞ, which has an analytical extension to the whole complex s

plane [30,31]; in general, for j ¼ 1, 2,

Zc2

2 ð�; fajg; fbjgÞ ¼
�jcj2�2��ð�� 1Þ

�ð�Þ ffiffiffiffiffiffiffiffiffiffi
a1a2

p þ 4��jcj1��

�ð�Þ ffiffiffiffiffiffiffiffiffiffi
a1a2

p
2
4X2

j¼1

X1
nj¼1

cosð2�njbjÞ
�
njffiffiffiffiffi
aj

p
�
��1

K��1

�
2�cnjffiffiffiffiffi

aj
p

�

þ 2
X1

n1;n2¼1

cosð2�n1b1Þ cosð2�n2b2Þ
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
a1

þ n22
a2

s 1
A��1

K��1

0
@2�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
a1

þ n22
a2

s 1
A
3
5: (8)

For us, a1 ¼ a�, a2¼ax, b1¼b�¼i��=2�, b2 ¼ bx ¼ 0,
c ¼ 1=2�, and � ¼ s� ðD� 2Þ=2. Replacing Eq. (8) into
Eq. (7), the thermal and boundary corrected mass is ob-
tained in terms of the original variables,�, L,�, and of the
fixed renormalized zero-temperature coupling constant in
the absence of boundaries,

�R ¼ lim
N!1;uR!0

ðNuRÞ:

However, the first term in Eq. (8) implies that the first
term in the corrected mass is proportional to �ð1�D=2Þ,
which is divergent for even dimensions D � 2 [19].
This term is suppressed by a minimal subtraction, leading
to a finite effective renormalized mass; for the sake of
uniformity, this polar term is also subtracted for odd di-
mensions, where no singularity exists, corresponding to a
finite renormalization.

In dimension D, the renormalized zero-temperature
coupling constant in the absence of boundaries �R has

dimension ofmass4�D; accordingly, we introduce a dimen-
sionless coupling constant �0

R ¼ �RM
D�4. Also, we define

the dimensionless reduced temperature t, reduced chemical
potential !, and the reduced inverse length of the system
	, in such a way that we have for any dimension D the set
of dimensionless parameters defined by

�0
R ¼ �RM

D�4; t ¼ T=M;

	 ¼ L�1=M; ! ¼ �=M:
(9)

We then can obtain, after subtraction of the polar term,
which does not depend on �, L, and�, the corrected mass,
�m2ðD;�; L;�Þ. This implies that the condition for sym-
metry restoration, �m2ðD;�; L;�Þ ¼ 0, can be written in
terms of the above dimensionless parameters, replacing �0

R

by the corrected coupling constant �0
RðD;�; L;�Þ [this is

precisely defined in the next section, Eq. (15)], in such a
way that the critical equation reads

1� �0
RðD;�; L;�Þ
ð2�ÞD=2

2
4X1

n¼1

cosh

�
!n

t

��
t

n

�D
2�1

KD
2�1

�
n

t

�
þX1

l¼1

�
	

l

�D
2�1

KD
2�1

�
l

	

�

þ 2
X1
n;l¼1

cosh

�
!n

t

�0B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

t2
þ l2

	2

q
1
CA

D
2�1

KD
2�1

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

t2
þ l2

	2

s 1
A
3
5 ¼ 0: (10)

III. CORRECTIONS TO THE
COUPLING CONSTANT

In this section, we follow the reasoning made in
Ref. [21], appropriately modified to incorporate the ef-
fects from the chemical potential. We consider the zero-
external-momenta four-point function, which is the basic
object for our definition of the renormalized coupling
constant. At leading order in 1=N, it is given by the sum
of all chains of one-loop diagrams with four external legs,
which leads to the expression (we consistently define
u0R ¼ uRM

D�4) [32]

�ð4Þ
D ð0; �; L;�Þ ¼ u0R

1þ Nu0R�ðD;�; L;�Þ ; (11)

where the dimensionless one-loop diagram is given by

�ðD;�; L;�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
a�ax

p
16�4

X1
n�;nx¼�1

In�nxðsÞ
��������s¼2

; (12)

where

In�nxðsÞ ¼
Z dD�2q

½q2 þ a�ðn� � i�
2��Þ2 þ axn

2
x þ c2�s : (13)
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Then, proceeding along lines similar to those leading to
Eq. (10), we write �ðD;�; L;�Þ in the form

�ðD;�; L;�Þ ¼ HðDÞ þ 1

ð2�ÞD=2
RðD;�; L;�Þ;

where RðD;�; L;�Þ is given by

RðD;�; L;�Þ

¼ X1
n¼1

cosh

�
!n

t

��
t

n

�D
2�2

KD
2�2

�
n

t

�

þX1
l¼1

�
	

l

�D
2�2

KD
2�2

�
l

	

�
þ 2

X1
n;l¼1

cosh

�
!n

t

�

�
0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2

t2
þ l2

	2

q
1
A

D
2�2

KD
2�2

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2

t2
þ l2

	2

s 1
A (14)

and HðDÞ / �ð2� D
2Þ is a polar piece coming from the

first term in the analytic extension of the zeta function
in Eq. (8). Notice that from the general properties of
Bessel functions, the above equations are meaningful for
a reduced chemical potential satisfying the condition
0 � !< 1. This is the allowed range of! in Eqs. (10) and
(14). We see that for even dimensions D � 4, HðDÞ is
divergent, due to the pole of the gamma function.
Accordingly, this term must be subtracted to give the
renormalized single bubble function �RðD;�; L;�Þ. We

get, simply, �RðD;�; L;�Þ ¼ ½1=ð2�ÞD=2Þ�RðD;�; L;�Þ.
As mentioned before, the term HðDÞ is also subtracted
in the case of odd dimensions D, where no poles are
present, corresponding to a finite renormalization.
Using properties of the Bessel functions, we see that,
for any dimension D and finite values of the chemical
potential �, RðD;�; L;�Þ satisfies the conditions
lim�;L!1RðD;�; L;�Þ ¼ 0, lim�;L!0RðD;�; L;�Þ ! 1,

and RðD;�; L;�Þ> 0 for finite � and for any values of
D, �, and L. Under these conditions, we define the dimen-
sionless �-, L-, and �-dependent renormalized coupling
constant �0

RðD;�; L;�Þ at the leading order in 1=N as

�0
RðD;�; L;�Þ � N�ð4Þ

D ð0; �; L;�Þ, which, from Eq. (11),
after subtraction of the polar term HðDÞ in �ðD;�; L;�Þ,
leads to

�0
RðD;�; L;�Þ ¼ �0

R

1þ �0
R½1=ð2�ÞD=2�RðD;�; L;�Þ : (15)

In the next section, we will investigate the restoration of
symmetry, taking into account thermal, boundary, and
finite chemical potential corrections to the coupling con-
stant as presented above.

IV. BOUNDARYAND CHEMICAL POTENTIAL
EFFECTS ON THE SYMMETRY RESTORATION:
COMMENTS AND CONCLUDING REMARKS

In the general situation, Eq. (10) does not allow an
algebraic solution. For numerical evaluations, we fix the
value �0

R ¼ 0:50 and take several values of the dimension-
less parameters t, 	, and !. We present and comment on
the results concurrently for dimensions D ¼ 3 and D ¼ 4,
since the behavior of the system is qualitatively the same,
apart from numerical details, in both cases.
In Figs. 1 and 2, we exhibit the critical temperature as a

function of the reduced inverse size of the system for
different values of the chemical potential, for D ¼ 3 and
D ¼ 4, respectively. We see from them that the behavior of
the critical temperature is different, by changing the values
of the chemical potential, for small and large values of 	
(large and small sizes of the system, respectively). An
interesting aspect, explicitly shown in Figs. 1 and 2, is
the existence of a particular size of the system, L0, corre-
sponding to the reduced inverse size 	0, where the critical
temperature vanishes. This particular value 	0 is indepen-
dent of the chemical potential for both D ¼ 3 and D ¼ 4.
This is emphasized in the lower plots of Figs. 1 and 2 which

FIG. 1. Reduced critical temperature as a function of the
reduced inverse size of the system for dimension D ¼ 3 (upper
plot). We fix �0

R ¼ 0:5 and take the chemical potential values
! ¼ 0:1 (full line), 0.3 (dashed line), and 0.4 (dotted line). The
symmetry-breaking regions are in the ‘‘inner’’ side of each
curve. The lower plot is a ‘‘zoom’’ enhancing the region of the
characteristic size of the system, corresponding to 	 � 69:96.
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show in detail the domain around the characteristic value
	 ¼ 	0. For the value of the reduced coupling constant, we
take (�0

R ¼ 0:50), and we find 	0 � 69:96 for D ¼ 3 and
	0 � 7:78 for D ¼ 4.

Although these results were a priori unexpected, it is
possible to notice that the above value of the characteristic
reduced inverse size, 	0, for bothD ¼ 3 andD ¼ 4, can be
obtained directly from Eq. (10) by solving it for t ¼ 0, such
that all dependency coming from the chemical potential
drops out. Therefore, at tc ¼ 0, the symmetry restoration is
induced exclusively as a size effect, implemented by
imposing spatial periodic boundary conditions, and the
chemical potential does not intervene in the value of the
critical size of the system to sustain the condensed phase.
Essentially what happens is that for zero critical tempera-
ture, the finite-size behavior of the physical system collap-
ses to the one corresponding to a zero chemical potential,
as is the case for a Bose-Einstein distribution.

We also see from Figs. 1 and 2 that, for each value of
!, there is a limiting smallest size of the system, Lminð!Þ,
corresponding to a largest reduced inverse size 	maxð!Þ,
such that 	maxð!Þ> 	0, over which the transition ceases to
exist.

Moreover, we can see clearly from Figs. 1 and 2 that, by
effect of the spatial boundaries, 	0 is the border between
two regions: 	< 	0 and 	0 <	< 	max, with different
behaviors. In the first region, the critical temperature is
uniquely defined in terms of the size of the system and of
the chemical potential: For each pair ð	;!Þ, there is only
one critical temperature, while in the second region, two
values of tc may exist for the same values of! and	. In the
region 	0 < 	< 	max, there are for each value of ! two

possible critical temperatures, say, tð1Þc and tð2Þc , with tð2Þc >

tð1Þc , associated, respectively, to the lower and the upper
branches of the critical curve. This means that, in this
region, we have two possible transitions. For D ¼ 3, we

take, from inspection of Fig. 1, t ¼ tð1Þc ¼ 1:93, t ¼ tð2Þc ¼
6:89, and an intermediate temperature, tð1Þc < t < tð2Þc , t ¼
4:80. For these temperatures, we plot in Fig. 3 curves of the
effective potential of the system, given by Uð�;L;�Þ ¼
1
2m

2ð�;L;�Þ’2 þ 1
24�

0
Rð�;L;�Þ’4 (we define the quan-

tity ’ by taking ’2 ¼ ’a’a), for fixed values of the
reduced chemical potential, ! ¼ 0:30 and of the reduced
inverse size of the system, 	 ¼ 100. These plots confirm

that two of the temperatures, t ¼ tð1Þc ¼ 1:93 (full line) and

t ¼ tð2Þc ¼ 6:89 (dashed line), are critical temperatures cor-
responding, respectively, to the lower and upper branches

of the critical curve; the intermediate temperature, tð1Þc <

t < tð2Þc , t ¼ 4:80 (dotted line), corresponds to the system in
the symmetry-broken region. A similar kind of ‘‘doubling’’
occurs for large sizes (but not for L ! 1) of the system. In
this case, two different sizes of the system with the same
chemical potential may correspond to the same critical
temperature. In the region 	< 	0, the critical temperature

FIG. 2. Reduced critical temperature as a function of the
reduced inverse size of the system for dimension D ¼ 4
(upper plot). We fix the (dimensionless) coupling constant �R ¼
0:5 and take the chemical potential values ! ¼ 0:0 (full line),
! ¼ 0:5 (dashed line), and ! ¼ 0:9 (dotted line). The
symmetry-breaking regions are on the inner side of each curve.
The lower plot shows in detail the critical temperature in the
region around the characteristic size of the system.

FIG. 3. Curves for the effective potential U ¼ 1
2m

2’2 þ
1
24�

0
R’

4, for fixed values of the reduced chemical potential,

! ¼ 0:30 and of the reduced inverse size of the system,
	 ¼ 100 for D ¼ 3; ’ and U are measured in units of M

1
2 and

M3, respectively. We take three values of the reduced tempera-

ture, two of them being critical temperatures, tð1Þc ¼ 1:93 (full

line) and tð2Þc ¼ 6:89 (dashed line), and an intermediate one,
t ¼ 4:80 (dotted line), in the symmetry-broken region.
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grows for increasing chemical potential for fixed 	 and
also for the system in unlimited space (L ! 1). In this
case, we may find the bulk reduced critical temperature
tbulkc ð�Þ taking the limit 	 ! 0 in Eq. (10).

As an overall conclusion, the results suggest that finite-
size effects with finite chemical potential are relevant and
greatly change the critical curves with respect to the ones
for the system in bulk form. In particular, these actors lead
to the appearance of a doubling of critical parameters,
which, up to our knowledge, is not a trivially expected
behavior. This behavior is to be contrasted with what
happens with the system in bulk form, where there is

always a unique critical temperature, which grows with
increasing chemical potential. We also show the existence
of a characteristic size of the system, which determines the
existence, for each value of the chemical potential, of a
minimal size sustaining the broken phase. This character-
istic size, obtained from Eq. (10), is the same for all values
of the chemical potential.
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