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Abstract
We use a geometrical formalism of Galilean invariance to build various
hydrodynamics models. It consists in embedding the Newtonian spacetime
into a non-Euclidean 4 + 1 space and provides thereby a procedure that
unifies models otherwise apparently unrelated. After expressing the Navier–
Stokes equation within this framework, we show that slight modifications of
its Lagrangian allow us to recover the Chaplygin equation of state as well as
models of superfluids for liquid helium (with both its irrotational and rotational
components). Other fluid equations are also expressed in a covariant form.

PACS numbers: 11.10.Ef, 05.60.Gg, 11.30.−j, 45.20.Jj, 67.40.Pm

1. Introduction

This paper is the continuation of [1] in which we have used a five-dimensional formulation
of Galilean covariance to recover a model for compressible irrotational barotropic fluids with
pressure quadratic in mass density (see [2]). Our approach follows [2–4] in which non-
relativistic classical and quantum fields are utilized with the Galilei invariance as a guide for
constructing many-body theories. The central tool thereupon is the Galilean tensor calculus in
five dimensions, investigated more systematically in [5]. This allows one to treat the Galilean
invariance in a way that looks like the Lorentz transformation; the Lorentz covariance being
most useful in relativistic quantum field theory where it serves as a guiding principle in writing
down action functionals. However, this is not quite the approach followed in [2–4]; the authors
leaving aside the geometrical structure to define as soon as possible the physical 3 +1 spacetime
variables. Here we work a bit further within five dimensions by writing our equations in a
covariant form and only then performing the embedding of the Newtonian spacetime into this
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five-dimensional space. Although not investigated any further here, an interesting step
would be to solve the equations altogether in the five-dimensional space and then define
the embedding.

To our knowledge a manifestly covariant formalism of the Galilean invariance in five
dimensions first appeared in [6]. Then it was shown, among other things, that the Galilean
tensor calculus with a non-singular metric follows naturally as a limit of the Lorentz covariance.
A similar five-dimensional formalism was mentioned in the textbook [7]. It was then
investigated more formally in [8] in the framework of gravitational models where the geometric
structure consists of a five-dimensional Lorentz metric with a covariantly constant vector field
which is spacelike in the Lorentz case and null in the Galilean case. The usual four-dimensional
Newtonian spacetime occurs as the quotient manifold of the orbits of this vector field. As
discussed in section 3 this framework has been used recently in fluid models to explain the
appearance of Galilean, Poincaré and conformal symmetries in the description of membranes
by (2 + 1)-dimensional field theory or, as was shown to be equivalent, irrotational isentropic
fluid motion for specific values of the potential (see [9–17]). An alternative method, similar to
ours, to relate such systems to the Nambu–Goto action of a membrane in higher dimensions
is given in [14]. More fluid models are investigated in [16, 17]. Our purpose is to take
this covariant-like prescription of the Galilean invariance as a guide to construct many-body
theories, as suggested by Takahashi in [2, 3]. Hereafter we recover various models of fluids:
some are well known (Navier–Stokes, nonlinear Schrödinger) whereas some are more exotic
(Takahashi model for liquid helium II, Chaplygin equation of state).

Regarding eventual experimental applications, particularly in condensed matter physics,
we consider the present approach as providing a prescription for building hydrodynamical
models for fluids and superfluids. The latter is interesting, given the recent realizations of
Bose–Einstein condensation in a series of experiments on alkali vapours (rubidium, sodium
and lithium) [18] as well as hydrogen [19], and especially the evidence that these vapours
behave like superfluids [20]. Excitations associated with Bose–Einstein condensation have
been thoroughly studied in relation to 4He and the investigations of collective excitations
therein provide a good test of the various finite-temperature many-body theories of interacting
Bose gases. We will mention such an example in section 4.2. For a review on Bose–Einstein
condensation see [21].

The five-dimensional approach to Galilean covariance used in this paper is based on a
space such that a Galilean boost acts on the extended spacetime represented by a 5-vector

x = (x1, x2, x3, x4, x5) = (x, t, s) (1)

as

x′ = x − Vt

t ′ = t (2)

s′ = s − V · x + 1
2 V2t

with relative velocity V. The dimensions of the components are

[x] = L (length)

[t] = T (time) (3)

[s] = L2

T
.

The scalar product (A|B) = AµBµ ≡ A · B − A4B5 − A5B4 of two 5-vectors A and
B is invariant under the transformations given in equation (2), which suggests basing the
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Galilean tensor calculus on the metric

gµν = gµν =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0


 . (4)

In this paper we refer to this metric as the Galilean metric. The underlying vector space is
clearly a 4 + 1 de Sitter space with metric diag(+ + + − +) since with the change of basis:

y ≡ x y4 ≡ 1√
2
(x4 + x5) y5 ≡ 1√

2
(x4 − x5) (5)

the scalar product of a 5-vector with itself now reads y2 − (y4)2 + (y5)2. Group-theoretically
speaking, the 11-dimensional extended Galilei algebra arises as a subalgebra of the
15-dimensional Poincaré algebra of this 4 + 1 manifold. Obviously the usual ten-dimensional
Poincaré algebra of 3 + 1 spacetime is also a subalgebra of this enlarged Poincaré algebra
[5, 8]. In [14, 16] a similar five-dimensional approach has been used to explain the existence
of typically relativistic symmetries (Poincaré, conformal) in non-relativistic systems such
as the one discussed in section 3. This suggests that a similar occurrence of surprising
symmetries might appear in theories constructed at once within our framework. From the
relation mentioned at the beginning of this paragraph, it is not surprising that this approach is
fruitful in explaining why some Poincaré generators can intervene for non-relativistic theories,
such as the Chaplygin gas model [14].

The introduction of an additional parameter s can be understood classically in terms of
quasi-invariance of the following free particle Lagrangian (see [4, 22]):

Lfree = 1

2
m

(
dx
dt

)2

. (6)

Indeed, if we apply the transformation of equation (2) we get

L′
free = 1

2
m

(
dx′

dt

)2

= 1

2
m

(
d

dt
(x − Vt)

)2

= 1

2
m

(
dx
dt

)2

+
d

dt

(
−mx · V +

1

2
mV2t

)

= Lfree +
df

dt
(7)

where f ≡ −m(x) · V + 1
2mV2t . The Lagrangian can be made invariant by redefining it as

follows:

L ≡ Lfree −m
ds

dt
(8)

as long as s transforms appropriately. Indeed, from the last line of equation (7) we find

L = L′
free −m

(
ds ′

dt

)

= Lfree +
df

dt
−m

(
ds ′

dt

)
. (9)



2012 M de Montigny et al

By taking it equal to equation (8) we get

1

m

df

dt
− ds′

dt
= −ds

dt
(10)

which shows that the extra parameter s must transform as in equation (2).
The quantum version of this argument lies in the fact that the invariance of the Schrödinger

equation for a free particle of mass m,

− 1

2m
∇2ψ(x, t) = i∂tψ(x, t) (11)

cannot be achieved under the simple condition

ψ ′(x′, t ′) = ψ(x, t) (12)

because the transformed quantities then give rise to the equation

− 1

2m
∇2ψ(x, t) = i∂tψ(x, t)− iV · ∇ψ(x, t). (13)

(For the rest of this paper ∂t , ∂x , etc denote the partial derivatives with respect to t, x, etc.) Now
the unwanted last term can be removed by introducing an extra phase into the wavefunction

ψ ′(x′, t ′) = e− i
h̄
m(s−s ′)ψ(x, t) (14)

where s = s(x, t; V). This is the quantum counterpart of equation (8) and it follows from the
relation ψ ∝ e

i
h̄

∫
Ldt . By using equations (2) for x and t, and (12) we find by substitution into

the Schrödinger equation that

∇(m(s ′ − s)) = −mV ∂t (m(s
′ − s)) = 1

2mV2 (15)

so that equation (2) is recovered. As explained in detail in [22], this extra parameter is linked
to the non-trivial central extension of the Galilei group.

The approach used in the following consists in writing the Lagrangian in a covariant form
in five dimensions, and then using the fact that the Newtonian spacetime is embedded in this
space. The specific embedding leaves us with a Galilei-invariant model. More details are
given in [1, 5]. Throughout this paper we shall use the following embedding:

(x, t) ↪→ x = (x1, . . . , x5) ≡
(

x, v4t,
s

v5

)
(16)

of the Newtonian spacetime into the five-dimensional space. The tilde notation (for φ̃, �̃, L̃,
etc) is used for objects defined in five dimensions whereas their non-tilde counterparts denote
the same quantities in Newtonian spacetime. For a real field φ̃ we define

φ̃(x) ≡ φ(x, t) + a0s (17)

where a0 is a dimensionless constant (φ̃, φ and s all have units of L2

T
), whereas for a complex

field ψ̃ we use the definition

ψ̃(x) ≡ eia0sψ(x, t). (18)

Note that the dimensionless argument of the exponential in equation (18) should be ia0s/h̄,
where a0 has units of mass (we work with h̄ ≡ 1). This corresponds to the definitions given in
section 5 of the first article in [14]. Let us also mention that the definitions of the fields given
in equations (17) are in agreement with the equivariance condition given in equation (5.1) of
the first article in [14]:

ξµ∂µψ̃ = iψ̃. (19)
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If one defines thereupon ξµ = (0, 0,−1) and uses equation (16) then equation (19) becomes

−∂sψ̃ = iψ̃ → ψ̃(x) = e−isψ(x, t). (20)

If one understands the field φ̃ as playing the role of a phase for ψ̃ then one obtains equation (17)
with a0 = −1.

The models that we examine hereafter are all obtained with slight modifications of the
Lagrangian

L̃ ∝ �̃p (21)

for some fractional number p and where

�̃ ∝ ∂µφ̃∂
µφ̃ − V (φ̃) (22)

with the embeddings described previously and conditions similar to

v4 = v5 and a0 = −1. (23)

Using the definitions in equations (16), (17), (22) and (23) we find

�̃ → � = 1
2∇φ · ∇φ + ∂tφ − V (φ − s). (24)

We will also discuss briefly the exponential Lagrangian

L̃ ∝ exp �̃ (25)

for a real field.
We will see that some of these models are related to Lagrangians of type (21) involving

complex fields, that is, with �̃ replaced by

�̃ ≡ ∂µψ̃∂
µψ̃

∗ − V (|ψ̃ |). (26)

For the complex fields we use equation (18) to find

�̃ → � = ∇ψ · ∇ψ∗ + ia0
v5

v4
(ψ∗∂tψ − ψ∂tψ

∗)− V (|ψ|) (27)

instead of (24). From (23) this reduces to

�̃ → � = ∇ψ · ∇ψ∗ − i(ψ∗∂tψ − ψ∂tψ
∗)− V (|ψ|). (28)

We will see at the end of section 4.2 that it leads to the nonlinear Schrödinger equation.

2. Navier–Stokes equation

Let us consider the functional Lagrangian dependent on the two real fields ρ̃ and φ̃:

L̃[ρ̃, φ̃] = − 1
2 ρ̃∂µφ̃∂

µφ̃ − V (ρ̃). (29)

The Euler–Lagrange equation for ρ̃ reduces to
1
2∂µφ̃∂

µφ̃ + V ′(ρ̃) = 0 (30)

where V ′(ρ̃) is shorthand notation for the functional derivative δ
δρ̃
V (ρ̃). Now consider the

embedding given by equations (16) and (17) for the spacetime and the field φ̃ as well as

ρ̃(x) ≡ ρ(x, t). (31)

Noting that

∂4φ̃ = 1

v4
∂tφ ∂5φ̃ = a0v5

∂4ρ̃ = 1

v4
∂tρ ∂5ρ̃ = 0

(32)
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we find

∂µφ̃∂
µφ̃ → ∇φ · ∇φ − 2a0

v5

v4
∂tφ. (33)

From equation (23) we obtain the equation
1
2∇φ · ∇φ + ∂tφ = −V ′. (34)

The gradient of this expression gives

(∇φ · ∇)∇φ + ∂t (∇φ) = −∇(V ′) (35)

so that by identifying the field φ as a velocity potential, i.e. v ≡ ∇φ and the right-hand side
as − 1

ρ
∇p (where p is the pressure) we find the Navier–Stokes equation:

∂tv + (v · ∇)v = − 1

ρ
∇p. (36)

The identification of the right-hand side is valid for an isentropic fluid, where the pressure
depends on the density ρ only. Then the force term F = −V ′ can be understood as the
enthalpy and

√
ρV ′′ is the speed of sound.

The equation of motion with respect to the field φ̃ is

∂µ(ρ̃∂
µφ̃) = ∂µρ̃∂

µφ̃ + ρ̃∂µ∂µφ̃ = 0. (37)

With the embedding described above it reduces to the continuity equation

∂tρ + ∇(ρ∇φ) = 0. (38)

The energy–momentum tensor

T µν = gµν L̃ − ∂µφ̃
δL̃

δ(∂νφ̃)
(39)

for the Lagrangian (29) is

T µν = 1
2g

µνρ̃∂αφ̃∂
αφ̃ − gµνV (ρ̃)− ρ̃∂µφ̃∂νφ̃. (40)

In terms of the embedding used earlier (and writing v ≡ v4 = v5) we find

∂µ∂
µφ̃ → ∇2φ (41)

and the components of the energy–momentum tensor are

T jk = 1
2δjkρ∇2φ − ρ∂jφ∂kφ − δjkV (ρ)

T j4 = −vρ∂jφ T j5 = ρ

v
∂jφ∂tφ

(42)
T 44 = −v2ρ T 55 = − ρ

v2
(∂tφ)

2

T 45 = ρ∂tφ − 1
2ρ∇2φ + V (ρ).

Note that with the embedding given above, the Lagrangian in equation (29) becomes

L = −ρ (
∂tφ + 1

2∇φ · ∇φ) − V (ρ). (43)

As discussed in section 2 of [13], such a Lagrangian occurs in various contexts. In addition
to the application to fluid motion we have just discussed, it describes (a) the continuous
version of the free particle motion, where ρ is the density and φ first intervenes as a Lagrange
multiplier which enforces the continuity equation and then can be identified as a velocity
potential (see [23]); (b) the determinant of the induced metric in the Nambu–Goto action for a
closed extended two-dimensional object moving in 3 + 1 Minkowski spacetime as shown first
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by Bordemann and Hoppe [9], therein the variables t and s play the role of light-cone variables;
(c) the Lagrangian of the Schrödinger equation from a hydrodynamical point of view [24].

In relation to the last application (hydrodynamical description of quantum mechanics) let
us consider a Lagrangian of the type of equation (21):

L̃[ψ̃, ψ̃
∗
] = kp�̃

p (44)

where �̃ is given in equation (26), and show how the Navier–Stokes equation can be recovered
for the case p = 1. (Other values of p are discussed in section 4.2.) Then equation (44) reads

L̃[ψ̃, ψ̃
∗
] = k1(∂µψ̃∂

µψ̃
∗ − V (|ψ̃ |)) (45)

and the Euler–Lagrange equation with respect to ψ̃
∗

takes the form

∂µ∂
µψ̃ = − δV

δψ̃
∗ . (46)

If we define the real fields ρ̃ and φ̃ by using the Madelung prescription [14, 24],

ψ̃ ≡ √
ρ̃ eiφ̃ (47)

then we obtain the Lagrangian

L̃[ρ̃, φ̃] = k1

(
ρ̃∂µφ̃∂

µφ̃ +
1

4ρ̃
∂µρ̃∂

µρ̃ − V (
√
ρ̃)

)
(48)

(where the constant k1 again has the units of velocity square) which can be written as

L̃ = k1(ρ̃∂µφ̃∂
µφ̃ + V (ρ̃)) (49)

where

V ≡ 1

4ρ̃
∂µρ̃∂

µρ̃ − V. (50)

Note that equation (49) coincides with (29) up to an arbitrary factor! The equation of motion
with respect to ρ̃ is

∂µφ̃∂
µφ̃ +

1

4ρ̃2 ∂µρ̃∂
µρ̃ − 1

2ρ̃
∂µ∂

µρ̃ − V ′(ρ̃) = 0. (51)

Using the same embedding as usual we find the equation

1

2
∇φ · ∇φ + ∂tφ = 1

2
V ′ +

1

4ρ
∇2ρ − 1

8ρ2
∇ρ · ∇ρ (52)

so that the gradient of the right-hand side is identified with − 1
ρ
∇p in equation (36).

3. Chaplygin gas model

In this section we specialize the potential of the previous section to the Chaplygin gas model.
Originally it was devised to describe the stationary flow in two dimensions of a compressible,
isentropic gas without shock waves (see [25] for more details). It was noted in [9–11]
that the non-relativistic Chaplygin gas model (related to d-branes and partons) also admits
typically relativistic symmetries and, in the non-interacting case, conformal symmetries.
The appearance of such symmetries is reminiscent of the hidden O(4) symmetry of the
hydrogen atom. In particular, the non-relativistic system discussed below admits a field-
dependent diffeomorphism symmetry which coincides with the Poincaré Lie algebra in a
space with one additional dimension [9]. Such models provide a nonlinear representation for
the dynamical Poincaré group. Our interest in this Lagrangian is that this field-dependent
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Poincaré symmetry was linearized by using a projection from a five-dimensional space such
as the one used throughout this paper (see [14]). That different projections lead to either
the non-relativistic Chaplygin model or to the relativistic Born–Infeld theory [14, 15], in our
language, is equivalent to defining embeddings different from (16).

Let us restrict the potential in equation (29) to the expression

V (ρ̃) = λ

ρ̃
λ > 0. (53)

Therefore we start with a Lagrangian with two real fields φ̃ and ρ̃:

L̃[φ̃, ρ̃] = −1

2
ρ̃∂µφ̃∂

µφ̃ − λ

ρ
. (54)

Here we omit the constant k1. This Lagrangian describes the Chaplygin gas model, with
enthalpy V ′ = − λ

ρ̃2 , negative pressure p = − 2λ
ρ̃

and speed of sound
√

2λ
ρ̃

. Initially Chaplygin
introduced this potential in order to have an equation of state that would approximate the
physically relevant adiabatic expressions with V ∝ ργ , γ > 0. This ‘gas model’ was
used to describe some deformable bodies. Nowadays examples of negative pressure include
the cosmological constant exerting negative pressure on the cosmos thereby accelerating
expansion, exchange interactions in atoms and stripe states in the quantum Hall effect. Recent
applications of the Chaplygin gas can be found in [26, 27] and its supersymmetric version has
been worked out by Hassaı̈ne in [28].

Using the embedding in equations (16) and (17) with conditions (23) as well as
equation (31) the Lagrangian (54) reduces to

L ∝ −ρ∂tφ − 1

2
ρ(∇φ)2 − V (ρ) with V = λ

ρ
. (55)

The Euler–Lagrange equation with respect to the field ρ̃ gives

1

2
∂µφ̃∂

µφ̃ +
δ

δρ̃
V (ρ̃) = 1

2
∂µφ̃∂

µφ̃ +
λ

ρ̃2 = 0 (56)

whereas for the field φ̃ it yields

∂µ(ρ̃∂
µφ̃) = ρ̃∂µ∂

µφ̃ + ∂µρ̃∂µφ̃ = 0. (57)

The first equation reduces to the Bernoulli equation:

∂tφ +
1

2
|∇φ|2 = − λ

ρ2
(58)

and the equation of motion for φ leads to the equation of continuity

∂tρ + ∇ · j = 0 (59)

where j = ρ∇φ. More details can be found in [15].

4. Models for superfluidity

At a temperature of 2.18 K liquid helium undergoes a thermodynamic transition and below this
temperature it displays unusual properties one of which is superfluidity. Landau was the first to
develop a quantitative description of the two-fluid aspects of helium II [25, 29]: the superfluid
component is the part of the liquid that remains in the ground state, carries zero entropy and
flows irrotationally, and the normal component, described by quasi-particles, behaves like any
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other viscous liquid. Landau proposed an energy versus momentum spectrum linear for small
values of p:

E = cp (60)

where c is the velocity of sound. This is referred to as phonon-like behaviour. Then the curve
passes through a maximum, falls to a minimum before rising steeply for large values of the
momentum. Near the minimum the spectrum is approximately described by the parabola

E = � +
(p − p0)

2

2µ
(61)

and is associated with rotons of effective mass µ and with � being the minimum energy
required to create a roton at rest.

Some years later Kronig and Thellung suggested another formulation of quantum
hydrodynamics based on a Lagrangian from which equations of motion may be derived and
which allows one to use second quantization of the fields involved [30]. The main drawback of
this model is that it is derived from a velocity potential so that the motion is always irrotational
and therefore cannot describe roton excitations. The situation was rectified a year later by
Thellung [31] and Ziman [32], and its main ingredient was the Clebsch parametrization of
hydrodynamics (section 167 of [33]).

In sections 4.1 and 4.2 we describe models proposed by Takahashi for the irrotational
components of the superfluid. The Lagrangian examined by Thellung and Ziman is discussed
in section 4.3.

4.1. Barotropic irrotational fluid

In [1] we have used the Galilean metric formalism to express in a covariant way the Takahashi
model for compressible irrotational barotropic fluids with pressure proportional to the square
of the mass density. We then treated it like a classical field theory defined by a manifestly
Galilei-covariant Lagrangian for a scalar field φ̃ with a potential proportional to the square of
the kinetic energy term, i.e. (∂µφ̃∂µφ̃)2. Note that a potential depending on the derivatives
also appears in equation (50). The specific Lagrangian is

L̃ = ρ0

8v2
0

(
∂µφ̃∂µφ̃ − 2v2

0

)2
(62)

where ρ0 and v2
0 are constants that guarantee the coherence of units. The various dimensions

are

[L̃] = M

LT 2
(M: mass)

[∂] = 1

L

[ρ0] = M

L3
(63)

[φ̃] = L2

T[
v2

0

] = [∂φ̃∂φ̃] = L2

T 2
.

The field φ̃ is a Galilei scalar which after the embedding is related to a potential for the fluid
velocity.
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From the Lagrangian (62) the equation of motion for the field φ̃ is

∂µ∂
µφ̃ − 1

2v2
0

(∂µ∂
µφ̃)(∂νφ̃∂

νφ̃)− 1

v2
0

(∂µφ̃)(∂νφ̃)(∂µ∂νφ̃) = 0. (64)

The corresponding five-dimensional energy–momentum tensor is

T µν = ρ0g
µν

8v2
0

(
∂αφ̃∂αφ̃ − 2v2

0

)2 − ρ0

2v2
0

∂µφ̃∂νφ̃
(
∂αφ̃∂αφ̃ − 2v2

0

)
(65)

where gµν is the Galilean metric (4). Its components and their physical interpretations are in
[1]. Let us mention that equation (40) of that article makes it clear that the identity (1.1) used
by Greiter et al [34] is automatically satisfied for a Lagrangian like (62). In their paper Greiter
et al investigated the algebraic identity Jk ∝ T0k in effective theories of superconductivity.
Note also the similarity between equation (2.5) of Greiter et al and our equation (24). An
equation similar to (2.13) of Greiter et al will be discussed in section 4.2.

In [1] it was shown that the embedding given in equations (16), (17) with (23) reduces
the Lagrangian of equation (62) to

L = ρ0

2v2
0

(
1

2
∇φ · ∇φ + ∂tφ − v2

0

)2

(66)

and the equation of motion becomes

v2
0∇2φ − ∂2

t φ = ∇2φ
(

1
2∇φ · ∇φ + ∂tφ

)
+ 1

2∇φ · ∇(∇φ · ∇φ) + 2∇(∂tφ) · ∇φ (67)

which is equation (5.40) obtained by Takahashi [2]. Takahashi argued that the scalar field φ
can be seen as a velocity potential of the (collective mode of the) fluid. He also claimed that if
superfluidity is to be understood in terms of the spontaneous symmetry breaking of Galilean
invariance, then this field is the best candidate for playing the role of a Goldstone boson. The
phonon equation would then be replaced by equation (67).

Now let us express two other important equations of [2, 3] in a Galilei-covariant form.
The first one is equation (6.5) of [2] which we now show to be obtained from the following
Lagrangian with a complex field ψ̃ , where we just replaced the derivative by a covariant-like
derivativeD ≡ ∂ + iA:

L̃ ∝ Dµψ̃D
µψ̃

∗ ≡ (∂µψ̃ + iÃµψ̃)(∂µψ̃
∗ − iÃ

µ
ψ̃

∗
) (68)

where Ã is similar to a gauge field defined by

Ãµ = k∂µφ̃ (69)

for a real field φ̃ for which the embedding will be defined as in equation (17). The constant k is
determined below. Using the Euler–Lagrange equation for ψ̃

∗
we find the equation of motion

∂µ∂µψ̃ + i(∂µÃµ)ψ̃ + 2iÃµ∂µψ̃ − Ã
µ
Ãµψ̃ = 0. (70)

With the embedding given by equations (16) and (18), as well as equation (69), where

φ̃(x) ≡ φ(x, t) (71)

then equation (70) reduces to

∇2ψ − 2ia0
v5

v4
∂tψ + ik(∇ · ∇φ)ψ + 2ik∇φ · ∇ψ − 2ik

v5

v4
ia0(∂tφ)ψ − k2(∇φ · ∇φ)ψ = 0.

(72)

Finally we choose v4 = v5, a0 = −m and k = m to get

i∂tψ = m(∂tφ)ψ − 1

2m
(∇ + im∇φ)2 ψ (73)



Lorentz-like covariant equations of non-relativistic fluids 2019

which is equation (6.5) of [2]. As explained by Takahashi [2], the field ψ describes the
excitation of matter measured from the uniformly moving medium.

The second equation that we express here in a covariant form is equation (3.12) of [3].
This equation also involves a complex field ψ̃ as well as a real field φ̃. First let us introduce a
null vector

ũµp ≡
(

up, v4,
1

2v5
u2
p

)
. (74)

Next, introduce the real scalar field φ̃ with the embedding defined in equation (17).
Therefore we can write the scalar product

�̃p = ũµp∂µφ̃ = up · ∇φ + 1
2a0u2

p + ∂tφ (75)

which upon using equation (23) gives

�p = ∂tφ + up · ∇φ − 1
2 u2

p. (76)

Similarly construct

�m = ∂tφ + um · ∇φ − 1
2 u2

m (77)

where ũp replaced with ũm. The subscripts p and m refer to the collective and individual
modes of the fluid, respectively. The model presented below describes the interaction between
the fluid as a whole and its constituents.

Now consider again the vector ũ, but contracted with the derivative of a complex scalar
field ψ̃ :

χm ≡ i

2
ũµm[ψ̃

∗
∂µψ̃ − (∂µψ̃

∗
)ψ̃]

= i

2

(
ψ∗[∂tψ + um · ∇ψ] − [∂tψ∗ + um · ∇ψ∗]ψ + iu2

ma0ψ
∗ψ

)
(78)

where we have defined the embedding as in equations (16) and (18). If we choose a0 = 0,
which suggests that the field ψ is massless, then the last term in χm vanishes:

χm = ψ∗[∂tψ + um · ∇ψ] − [∂tψ
∗ + um · ∇ψ∗]ψ. (79)

Further defining

ηm(x) ≡ αψ∗(x) + α∗ψ(x) (80)

and

ρm(x) ≡ mψ∗(x)ψ(x) (81)

then the Lagrangian (3.12) of [3] takes the form

L = ρ0

2v2
0

(
�p(x)− v2

0

)2
+ ηm(x)�p(x) + ρm(x)(�p(x)−�m(x)) + χm(x) (82)

where χm, ηm and ρm are given by equations (79), (80) and (81), respectively, �p by
equation (76) and �m by (77). As discussed in [3], this is the simplest non-trivial Galilei
invariant Lagrangian that could describe the interaction between the fluid as a whole (with
velocity potential φ) and its constituents, the individual modes being denoted by the complex
field ψ . The term ηm takes into account the mass transmutation between the p- and the
m-modes. The mass density of the p-mode is defined by

ρp(x) ≡ δL
δ�p

= −ρ0

v2
0

�p(x)− ηm(x)− ρm(x) + ρ0 (83)
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and the total mass density is

ρ(x) ≡ ρp(x) + ρm(x) = − δL
δ(∂tφ)

= −ρ0

v2
0

�p(x)− ηm(x) + ρ0. (84)

The velocity field of the p-mode up, determined by ∂L
∂up

= 0, is shown to be irrotational:

up(x) = ∇φ(x). (85)

For the m-mode the velocity um, defined by ∂L
∂up

= 0, is such that

ρm(x)(um(x)− up(x)) = h̄

2i
[ϕ∗(x)∇ϕ(x)− (∇ϕ∗(x))ϕ(x)] (86)

which shows that the right-hand side is the mass current of the m-mode relative to the velocity
of the p-mode.

4.2. Generalized models for non-barotropic fluids

In this section we generalize the Lagrangian of equation (62) by relaxing the barotropic
condition

p ∝ ρ2 (87)

where p is the pressure and ρ its density, as suggested by Takahashi. In section 2 of [3] it is
proposed to replace the condition (87) with

p ∝ ργ γ > 1 (88)

which amounts to choosing the Lagrangian as in equation (21). Another suggestion is to have

p ∝ ρ (89)

which is equivalent to choosing the Lagrangian as in equation (25).
Let us consider �̃ as in equation (22). Then the potential must be independent of φ̃, that

is

�̃ ≡ 1
2∂µφ̃∂

µφ̃ − v2
0 (90)

as in equation (62) otherwise the extra parameter s remains in the equations of motion after
the embedding has been defined. Let us consider first the Lagrangian of equation (21),

L̃[φ̃] = kp�̃
p (91)

where the units of the constant kp are

[kp] = MT p−2L−p−1 (92)

to ensure that L̃ has the correct dimensions. This corresponds to equation (62) with the
particular values

p = 2 and k2 = ρ0

2v2
0

. (93)

By using the Euler–Lagrange equation we find the equation of motion:(
1
2∂µφ̃∂

µφ̃ − v2
0

)
∂ν∂

νφ̃ + (p − 1)∂µνφ̃∂µφ̃∂νφ̃ = 0. (94)

This reduces to equation (64) with conditions (93). With the embedding of equations (16) and
(23) we find from equation (24) that

�̃ → � = 1
2∇φ · ∇φ + ∂tφ − v2

0 (95)
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and from equation (94) we see that equation (67) is generalized to

v2
0∇2φ − (p − 1)∂2

t φ = ∇2φ
(

1
2 ∇φ · ∇φ + ∂tφ

)
+ (p − 1)∇φ · ∇ (

1
2∇φ · ∇φ + 2∂tφ

)
. (96)

Note that for p = 1 this equation is simplified to

v2
0∇2φ = ∇2φ

(
1
2∇φ · ∇φ + ∂tφ

)
. (97)

For p �= 1 the general equation (96) is equivalent to the Takahashi model.
Another suggestion made by Takahashi in [3] is the exponential model, equation (25),

based on the Lagrangian

L̃[φ̃] = k exp

(
�̃

v2
0

)
(98)

where �̃ is given by equation (90). The Euler–Lagrange equation gives

v2
0∂µ∂

µφ̃ + ∂µνφ̃∂
µφ̃∂νφ̃ = 0 (99)

before any embedding has been performed. The embedding in equation (16) together with
(23) leads to the equation

v2
0∇2φ + ∂ttφ + ∇φ · ∇ (

1
2∇φ · ∇φ + 2∂tφ

) = 0. (100)

Now we obtain some equations relevant to superconductivity by considering Lagrangians
of the type given in equation (21) with various choices of the potential V for complex fields,
that is, equation (44) with �̃ given in equation (26):

L̃[ψ̃, ψ̃
∗
] = kp(∂µψ̃∂

µψ̃
∗ − V (|ψ̃ |))p. (101)

Note that when

V (|ψ̃ |) = λ|ψ̃ |2N (102)

then

δV

δψ̃
∗ = Nλψ̃ |ψ̃|2N−2. (103)

By using the Euler–Lagrange equation for ψ∗, we find the equation of motion:

(p − 1)

(
∂µνψ̃∂

µψ̃∂νψ̃
∗

+ ∂µνψ̃
∗
∂µψ̃∂νψ̃ − δV

δψ̃
∂µψ̃∂

µψ̃ − δV

δψ̃
∗ ∂µψ̃

∗
∂µψ̃

)

+ (∂µψ̃∂
µψ̃

∗ − V (|ψ̃|))
(
∂ν∂

νψ̃ +
δV

δψ̃
∗

)
= 0. (104)

This equation with V = v2
0 reduces to

∂µ∂
µψ̃

(
∂νψ̃∂

νψ̃
∗ − v2

0

)
+ (p − 1)(∂µνψ̃∂νψ̃

∗
+ h.c.)∂µψ̃ = 0 (105)

where ‘h.c.’ is the Hermitian conjugate of the first term.
In the following we define the complex field as in equation (18) together with the spacetime

embedding given by equations (16) so that �̃ reduces to equation (27). Let us consider the
power p = 1 so that equation (104) becomes

∂µ∂
µψ̃ − δV

δψ̃
∗ = 0 (106)
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as in equation (46). For the potential given in equation (102) this becomes

∂µ∂
µψ̃ +Nλψ̃ |ψ̃ |2N−2 = 0. (107)

For example, the choice p = 1 and V = λ|ψ̃ |4 corresponds to the model considered in [34].
If we define the real fields ρ̃ and φ̃ using Madelung’s transcription, equation (47), then we
obtain from equation (48):

L̃ = k1

(
ρ̃∂µφ̃∂

µφ̃ +
1

4ρ̃
∂µρ̃∂

µρ̃ − λρ̃2

)
(108)

which is the covariant expression for equation (5) of Liu’s article [34]. For this quartic potential
we have N = 2 and the Lagrangian (101) becomes

L̃[ψ̃, ψ̃
∗
] = k1(∂µψ̃∂

µψ̃
∗ − λ|ψ̃ |4). (109)

Using the embedding in equations (16) and (18) we find the Lagrangian

L = k1(∇ψ · ∇ψ∗ − im(ψ∗∂tψ − ψ∂tψ
∗)− λ|ψ|4). (110)

The corresponding equation (107) is just

∂µ∂
µψ̃ + 2λ|ψ̃ |2ψ̃ = 0. (111)

From the embedding in equations (16) and (18) we find

∇2ψ − 2ia0
v5

v4
∂tψ − 2λ|ψ|2ψ = 0. (112)

With v4 = v5 = v and a0 = −m we obtain the well-known nonlinear Schrödinger equation

i∂tψ = − 1

2m
∇2ψ +

λ

m
|ψ|2ψ. (113)

A similar equation is used in [34].
To conclude this section, let us mention that in [35] a similar non-relativistic Lagrangian

is obtained in a different manner. The author starts with the relativistic four-dimensional
Lorentz-covariant Lagrangian:

L = 1
2∂µχ∂

µχ − 1
2m

2χ2 − 1
4!λχ

4 − 1
2δm

2χ2 (114)

for a real field χ , and introduces the non-relativistic fields ψ and ψ∗ by performing the
substitution

χ ≡ 1√
2m
(e−imtψ + eimtψ∗). (115)

The Lagrangian density obtained thereby is reduced to equation (110).

4.3. Model of non-viscous fluids and liquid helium

Unlike the previous sections the model described here allows rotational motion in the
superfluid. We start with a covariant Lagrangian similar to equation (29) but where we
perform a five-dimensional Clebsch-like transformation of the velocity field

∂φ̃ → ∂φ̃ + α̃∂β̃ (116)

so that

L̃ = − ρ̃

2v2
0

(∂µφ̃ + α̃∂µβ̃)(∂µφ̃ + α̃∂µβ̃)− V (ρ̃) (117)
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where v0 is a constant to ensure the coherence of units. For the four fields involved in
equation (117) we use the embeddings

α̃(x) = α(x, t) β̃(x) = β(x, t) ρ̃(x) = ρ(x, t) (118)

as well as equation (17) for φ̃(x), and equation (16) for spacetime. Note that we shall choose
v4 = v5 as in equation (23) but here we take a0 = +1. Then the Lagrangian of equation (117)
after projection onto the Newtonian spacetime becomes

L = ρ

v2
0

(
∂tφ − 1

2
∇φ · ∇φ + α

(
∂tβ − 1

2
α∇β · ∇β

)
− α∇φ · ∇β

)
− V (ρ). (119)

This may be brought to the form used earlier [31, 32]:

L = ρ

v2
0

(
∂tφ + α∂tβ − 1

2
v2

)
− V (ρ) (120)

where we define the velocity vector as

v ≡ −∇φ − α∇β. (121)

The Euler–Lagrange equation for the field ρ̃ with equation (117) is

1

2v2
0

(∂µφ̃ + α̃∂µβ̃)(∂µφ̃ + α̃∂µβ̃) + V ′(ρ̃) = 0 (122)

and with the embedding described above, it projects to

∂tφ + α∂tβ − 1
2 v2 = −v2

0V
′(ρ) (123)

with v given by equation (121). The equation of motion with respect to the field φ̃ in five
dimensions is similar to a continuity equation

∂µ[ρ̃(∂µφ̃ + 2α̃∂µβ̃)] = 0 (124)

with 5-current Jµ = ρ̃(∂µφ̃ + 2α̃∂µβ̃). In Newtonian spacetime this equation reduces to

∂tρ − ∇ρ · (∇φ + 2α∇β)− ρ(∇2φ + 2∇α · ∇β + ∇2β) = 0. (125)

For the field α̃ the five-dimensional equation is

(∂µφ̃ + α̃∂µβ̃)∂µβ̃ = 0 (126)

and with the same embedding as before, it becomes

∂tβ + v · ∇β = 0 (127)

in Newtonian spacetime. Finally when we calculate the Euler–Lagrange equation for the field
β̃, we obtain

α̃∂µ∂
µφ̃ + ∂µα̃∂µφ̃ + α̃∂µα̃∂µβ̃ + 1

2 α̃
2∂µ∂

µβ̃ = 0 (128)

and its four-dimensional version is

∂tα − α∇2φ − 1
2α

2∇2β + v · ∇α = 0. (129)

Let us now turn to the five-dimensional energy–momentum tensor, equation (39), which
is for the Lagrangian in equation (117):

T µν = ρ̃

2v2
0

[∂µφ̃∂νφ̃ + 2α̃(∂µφ̃∂νβ̃ + ∂µβ̃∂νφ̃) + α̃2∂µβ̃∂νβ̃ − gµν(∂φ̃ + α̃∂β̃)2]. (130)
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The embedding employed in this section implies that

(∂φ̃ + α̃∂β̃)2 → −2∂tφ + ∇φ · ∇φ + 2α∇φ · ∇β − 2α∂tβ + α2∇β · ∇β. (131)

The components of the tensor are

T jk = ρ

2v2
0

[∂jφ∂kφ + 2α(∂jφ∂kβ + ∂kφ∂jβ) + α2∂jβ∂kβ

− δjk(−2∂tφ + ∇φ · ∇φ + 2α∇φ · ∇β − 2α∂tβ + α2∇β · ∇β)]
T j4 = −v5ρ

2v2
0

(∂jφ + 2α∂jβ)

T j5 = − ρ

2v2
0v4

[∂jφ∂tφ + 2α(∂jφ∂tβ + ∂jβ∂tφ) + α2∂jβ∂tβ] (132)

T 44 = ρv5

2v2
0

T 55 = ρ

2v2
0v

2
4

[(∂tφ)2 + 4α∂tφ∂tβ + α2(∂tβ)
2]

T 45 = ρ

2v2
0

[∂tφ + 2α∂tβ − 2∂tφ + ∇φ · ∇φ + 2α∇φ · ∇β − 2α∂tβ + α2∇β · ∇β].

5. Concluding remarks

The general scheme followed in this paper (and emphasized in [2, 3, 15] among others) is
to use the concepts of symmetry and geometry in quantum field theory to establish some
prescription for writing Lagrangians for non-relativistic hydrodynamics. Specifically, the
metric formulation of Galilei invariance has been utilized to express many fluids models in a
covariant form, in much the same way as Lorentz covariance is usually a criterion for building
action functionals for relativistic systems. Let us emphasize again that most Lagrangians
discussed here consist of rather simple modifications of the Galilei-invariant (∂φ)2. After
recovering these models the next step is to use this formalism to propose new Lagrangians.
An obvious example would consist in mixing various expressions discussed here, for instance,
by substituting the Clebsch transformation (116) into Lagrangians of section 4 so as to obtain
the corresponding equations with non-vanishing vorticity. Obviously other invariants could be
considered, such as in higher spin theories. We are currently investigating the Fokker–Planck
equation as a gauge field using the current setting; in particular, a non-Abelian generalization
appears in a natural way.

An important aspect of this metric formalism which needs to be examined is its
quantization. We are currently investigating it for a scalar field. In the present context
this would allow a deeper study of quantum fluids. For instance, one could obtain five-
dimensional versions of the spectrum of energy versus momentum of liquid helium, given in
equations (60) and (61).

As a group-theoretical application, it might be interesting to extend the present technique
to other Lie groups related by contraction, such as the de Sitter and Galilei groups, both
omnipresent in this paper. An argument in favour of such an approach is that the five-
dimensional formalism of Galilean covariance is due to the fact that the Galilei group admits
a non-trivial central charge [4] and the contraction procedure often has exactly this property
of generating Lie algebras with central extension [22].
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diffeomorphisms Proc. Steklov Inst. Math. 226 193 (Preprint hep-th/9809123) (this preprint is based on
lectures delivered at Faddeev Festschrift, Steklov Mathematical Institute)
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[17] Hassaı̈ne M, Horváthy P A and Yera J C 1998 Non-relativistic Maxwell–Chern–Simons vortices Ann. Phys.,
NY 263 276–94

[18] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Observation of a Bose–Einstein
condensation in a dilute atomic vapour Science 269 198–201

Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995
Bose–Einstein condensation in a gas of sodium atoms Phys. Rev. Lett. 75 3969–73

Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Evidence of Bose–Einstein condensation in an atomic
gas with attractive interactions Phys. Rev. Lett. 75 1687–90



2026 M de Montigny et al

[19] Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner O and Greytak T J 1998 Bose–Einstein
condensation of atomic hydrogen Phys. Rev. Lett. 81 3811–4
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[26] Fabris J C, Gonçalves S V B and de Souza P E 2002 Mass power spectrum in a Universe dominated by the

Chaplygin gas Gen. Relat. Grav. 34 2111–26
Benaoum H B 2002 Accelerated universe from modified Chaplygin gas and tachyonic fluid Preprint

hep-th/0205140
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