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Exact Solution for the Self-Organized Critical Rainfall Model
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This work presents an analytical investigation for a Self-Organized Criticality abelian model that describes basic
properties of rainfall phenomena. The knowledge of the exact solution for the probability that a site topples
when mass is added to any other site of the lattice leads to a large number properties of the model, including
the exponent of the power law that describes presence of the events as function of their magnitude. It is shown
that the model belongs to the same universality class of a first model proposed by Dhar and Ramaswamy (DR).
However, for finite size lattices, it is found that its exponent is larger than that one for the DR model.

I Introduction

Abelian sand pile models (ASM) [1] became quite important
for the understanding of basic properties of Self-Organized
Criticality (SOC) [2, 3]. They satisfy the remarkable prop-
erty that the final state of the model, after subsequent addi-
tion of grains to any two sites, is independent of the order in
which the grains have been added.

The first analyses by Dhar and Ramaswamy [4] con-
sidered a model (DR) based on a critical height criterion
for toppling, i.e., a site becomes unstable and topples when
its amount of mass exceeds a threshold valuemth. In this
model, a site topples to exactlyd distinct neighbors. This is
a directedanddeterministicmodel as, i) the toppling rules
breaks the isotropy of the lattice and avalanches develop
along one direction; and ii) a deterministic rule indicates the
fixed number of grains that each site receives when an unsta-
ble site topples. These two properties impose the condition
that each site topples only once during an avalanche.

Abelian models constitute a special set where analyti-
cal investigation has lead to exact results, what are still rare
subjects in the SOC landscape. More recently, a number
of works have focused on certain variants of abelian mod-
els: they include the random distribution of toppling grains
onto a restricted number of neighboring sites [6-8], and the
complete toppling of all grains from an unstable site [9-11].
The first modification does keep the models in the abelian
class, and an exact solution for the probability distribution
function of events (PDF) has been discussed. The properties
of such models are distinct from those with deterministic
toppling rules. On the other hand, the second modification
breaks the commutativity of the models, that seem to be non-
integrable.

Other SOC models, that were initially proposed based
on the so-called gradient condition for toppling, as the
Bak-Tang-Wiesenfeld (BTW) model [2], also belong to this

class, provided the variables are conveniently re-interpreted.
But, as far as they allow for multiple toppling for a single
avalanche, they are not exactly integrable.

The exact solution for the DR model is based on the
evaluation of the probability distribution functionP (s1; s0).
It measures the probability that a sites1 topples when one
grain is added in a sites0, and takes into account all config-
urations of the lattice which satisfies this requirement. The
knowledge ofP (s1; s0) opens the door to a large number
of properties of the model, including the functionρ(f), that
measures the relative number of avalanchesρ of a given size
as function of the avalanche sizef .

The ASM class includes a much larger number of mod-
els, some of which can be exactly integrable. A model sug-
gested by a very crude description of drop avalanche inside a
2-dimensional cloud, the abelian rainfall model [5], is quite
close to the original DR model. However, it allows for the
presence of holes inside an avalanche cluster, what is found
in the DR models only for dimensiond ≥ 3. Although the
numerical simulations suggest that this model belongs to the
same universality class as thed = 2 DR model, its analytical
solution is still missing. Such solution can clear out whether
the presence of holes inside an avalanche cluster changes or
not the critical behavior of the model. The purpose of this
work is to discuss a full analytical solution forP (s1; s0) of
this model, and to prove that, in the infinite lattice limit,ρ(f)
is indeed described by the same exponent as in the case of
the DR model. We also analyze in which extent, results for
finite sizelattices for the two models differ from each other.

The rest of the work is so organized: in the Section II
we present the model, writing the equations forP in terms
of two sub-lattices; the corresponding solutions are obtained
in the Section III. Section IV discusses the relation between
P andρ, and this function is evaluated with the help of the
three sites probability functionP3. Section V brings results
for finite size lattices, as well as the analytical solution in
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the infinite lattice limit. Section VI closes the work with
concluding remarks.

II The two sub-lattices model formu-
lation

The model for rainfall is defined on aN × M square lat-
tice, whose axes are oriented along horizontal and vertical
(downward) directions [5]. Periodic boundary conditions
are imposed on the horizontal direction. Each sitesi on
the lattice, labeled by the indicesi = (j, k), is intended to
describe a condensation nucleus, around which vapor con-
denses, leading to cloud droplets with liquid water content
measured by the variablemi. When a water ”grain” is ran-
domly added to a sitei, representing the growth of droplet
by mass aggregation due vapor condensation, it topples if

the value formi ≥ mth. This describes the downward mo-
tion when the gravitation surmounts the drag force. It is
followed by collision, coalescence and drop break-up. The
mass of sitei and its neighbors in the lower row are updated
according to the rule:

m(j,k) → m(j,k) −mth,
m(j−1,k+1) → m(j−1,k+1) + w ×mth,

m(j,k+1) → m(j,k+1) + u×mth,
m(j+1,k+1) → m(j+1,k+1) + e×mth,

(2.1)

wherew + u + e = 1.
Let us consider a sitesi and its corresponding

P (si; s0) = P (j, k; s0). Then, as the sitesi receives grains
from its neighbors in the upward direction, we can relate
P (si; s0) with the same functions evaluated at these sites,
i.e.,

c

P (j, k; s0) =
1

mth
[eP (j − 1, k − 1; s0) + uP (j, k − 1; s0) + wP (j + 1, k − 1; s0)] . (2.2)

Now we split the original lattice into two square sub-lattices,A andB, as indicated in Fig. 1. The axes of both sub-lattices
are obtained from the old ones by a rotation ofπ/4 followed by an inversion of the newX axis. In this reference frame, the
sites are re-labeled according to:

(j, k) →
[

k−j
2 , k+j

2

]
A
≡

[
j̃, k̃

]
A

, if j + k is even,

(j, k) →
[

k−j+1
2 , k+j−1

2

]
B
≡

[
j̃, k̃

]
B

, if j + k is odd.
(2.3)

We observe that the row indexk is expressed in terms of the new labels byj̃ + k̃.
The equation (2.3) is rewritten in terms of two probability functionsPA andPB , which are the restrictions ofP to each of

the two sub-lattices:

PA(j, k; s0) = 1
mth

[ePA(j, k − 1; s0) + wPA(j − 1, k; s0) + uPB(j, k − 1; s0)] , if si ∈ A

PB(j, k; s0) = 1
mth

[ePB(j, k − 1; s0) + wPB(j − 1, k; s0) + uPA(j − 1, k; s0)] , if si ∈ B
(2.4)

d

Figure 1. Lattice model with the two sub-lattices site labeling. The
fraction of grains toppling to each site is indicated for one site of
each sub-lattice. The sub-lattices are decoupled ifu = 0.

For the sake of simpler notation, we have let
[
j̃, k̃

]
→ [j, k]

andj + k = t in (2.4) and in all expressions from now on.
If we setu = 0 in (2.4), the equations for the sub-lattices

decouple and become equal to that one used to describe the
DR model in two dimensions. This confirms that the two
models are very close, but the solutions of the equation for
generalu may lead to other type of behavior.

III Solution of the equation for P

A particular solution to (2.4) can be evaluated after a series
of steps. So let us define

PA,B(j, k; s0) = mth pA,B(j, k; s0) (3.1)

and

pZ(j, k; s0) = [2t] ! Zj,k , Zj,k = Aj,k, Bj,k. (3.2)
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In terms of these new functions, the equation (2.4) becomes

c
(
4j2 + 8jk + 4k2 − 2j − 2k

)
Aj,k = eAj,k−1 + wAj−1,k + uBj,k−1 ,(

4j2 + 8jk + 4k2 − 2j − 2k
)
Bj,k = eBj,k−1 + wBj−1,k + uAj−1,k .

(3.3)

Bearing in mind the typical solutions for the DR model, we look for solutions in which the functionsZj,k become separa-
ble, i.e.,

Zj,k = JZ(j)×KZ(k), (3.4)

and use the following ansatz

JA(j) =
A

(2j − β)!
; JB(j) =

B

(2j − ζ)!
; KA(k) =

A

(2k − η)!
; KB(k) =

B

(2k − ξ)!
. (3.5)

d

Inserting (3.4) and (3.5) into (3.3), and imposing that the
coefficients of the different powers ofj andk must be equal
on the different sides of the resulting expressions, we obtain
several relations betweenA,B, β, ζ, η, ξ and the parameters
e, w andu. The evaluation of the complete set of roots to
this equation is a difficult task, as the unknowns are present

in several factorials. However, the following particular so-
lution, valid whene = w = u/2 = 1/mth, has been found
by inspection:

A = B = 1/2; β = η = 0; ζ = −ξ = 1. (3.6)

It leads to the explicit form

c

PA(j, k; s0) =
1

4t+1

(2t)!
(2j)!(2k)!

, PB(j, k; s0) =
1

4t+1

(2t)!
(2j − 1)!(2k + 1)!

(3.7)

As expected, this solution satisfies

∑

j,k; j+k=t≥t0

PA(j, k; s0) +
∑

j,k; j+k=t≥t0

PB(j, k; s0) =
1
4

=
1

mth
, (3.8)

wheret0 = j0 + k0.

d

The probabilitiesP (s1; s0) andP (s2; s0), for s1 6= s2,
are not independent, as there are many configurations that
lead to toppling from boths1 ands2. In the sum ofP (s; s0)
over all sites witht constant, the configurations that lead toq
toppling sites appear exactlyq times. The sums in (3.8) are
equivalent to summing over individual configurations mul-
tiplied by the number of toppling sites. Thus, to the average
number of sites that topple when one grain is added ats0.
As mth = 4, this indicates that the average of one grain
falls from any row to each added grain, and reflects the mass
conservation property of the model.

It is worth pointing out that a general analytical solution,
for any values fore, u andw, may not exist in terms of the
ansatz (3.5), the form of which is too restrictive. However,
solutions for other values of these parameters, though not
expressed in a closed compact form, can indeed be found
[12]. The present solution must capture the essential global
properties of this model, as different choices for the parame-
ters do not change its symmetry properties. This can also be
seen in the results of many different numerical simulations.

IV The distribution of events ρ(f )

As the functionP reflects the constant flux property, it does
not directly measure the sizef of avalanches, that is de-
fined by the number of sites that topple. To obtain the func-
tion ρ(f) we first relatef to the number of rows that an
avalanche reaches. To this purpose, we have to evaluate
N(t; t0), the average number of events in which the rowt
is active, i.e., in which at least one site in the rowt topples
when a grain is added at rowt0. It is easy to observe that
N(t; t0) = N(t − t0; 0), so that we simplify the notation
to N(t), assuming that the grain is added att0 = 0. Thus,
the probabilityp(t) that one avalanche exceeds the rowt is
N(t)/C(t), whereC(t) counts the number of distinct con-
figurations of the lattice until rowt, i.e.,C(t) = m

S(t)
th , with

S(t) = (t + 1)2 indicating the total number of sites that can
be reached by an avalanche. Ifp(t), a decreasing function
of t, is characterized by some exponentα, the average mass
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m(t) that topples fromt must increase withtα, in order to
keep the constant average flux. Then we obtain for the inte-
grated massf(t) ∼ tα+1, so that after inverting this relation
to t ∼ f

1
1+α , we can expresŝp(f) ≡ p(t(f)) ∼ f−

α
1+α .

As p̂(f) expresses the probability that an avalanche exceeds
the total number of sitesf, it is related toρ(f) by

ρ(f) =
dp̂

df
∼ f−

1+2α
1+α ≡ f−τ (4.1)

The behavior of the functionρ(f) depends essentially
on the behavior ofN(t). It can be expressed by

N(t) =
2t+1∑

`=1

nt(`) (4.2)

wherent(`) counts the number of configurations in which`
sites topple in the rowt. The behavior ofnt(`) depends on
the values of the same function fort − 1, so that a general
equation can be written as

nt(`) =
∑

`′
ct−1(`, `′)nt−1(`− `′) (4.3)

Due to the presence of holes in the avalanche clusters, the
form of the coefficientsct(`, `′) for the rainfall model be-
comes very cumbersome as the value oft increases. How-
ever, for the DR model in two dimensions(u = 0 in (2.4)
andmth = 2), ct(`, `′) has the very simple form:

ct(`, `− 1) = ct(`, `)/2 = ct(`, ` + 1) = 2t,

ct(`, `′) = 0, `′ 6= `− 1, `, ` + 1 (4.4)

Such simple form forct(`, `′) is related to the fact that the
avalanches for the DR model in two dimensions have no
holes. Equation (4.3) with the coefficients given by (4.4)
can be numerically integrated, so that the behavior forp(t)
and the value forα is easily obtained.

A possible way to side-step the difficult to evaluate (4.3)
for the present model, is to consider the square average flux
over the constant rowt. It is obtained by summing, over all
lattice configurations until that row, the square of the number
of sites that topple from the rowt for each particular config-
uration. It can also be regarded as the average flux taken
with the help of other distribution that favors those config-
urations with larger number of toppling. In comparison to
the constant flux (eq. (3.8)), this quantity over-weights the
configurations with larger number of toppling sites, so that
it increases witht. Its dependence ont follows the same rule
as form(t), so that it leads to the exponentα.

To evaluate the square flux over a given rowt, we will
consider the three point probability functionP3(s1, s2; s0),
where boths1 ands2 belong to the that row. Of course, we
must haveP (s1; s0) = P3(s1, s1; s0). This function essen-
tially counts the number distinct of configurations until that
row, where boths1 ands2 topple. Following the same ar-
guments to identify (3.8) with the average flux, it is possible
to see that, in the sum

∑
s1,s2

P3(s1, s2; s0), a given config-

uration withq toppling sites appear exactlyq2 times. As a
consequence, this sum equals the square average flux, and
should increase withtα.

The equation forP3(s1, s2; s0), that looks much the
same as (2.4), now depends on two indicesZ andZ ′. For
instance, takingZ = Z ′ = A, we obtain:

c

m2
th × P3,AA(j1, k1, j2, k2) =

e2P3,AA(j1, k1 − 1, j2, k2 − 1) + ewP3,AA(j1, k1 − 1, j2 − 1, k2)+
+euP3,AB(j1, k1 − 1, j2, k2 − 1) + weP3,AA(j1 − 1, k1, j2, k2 − 1)+
+w2P3,AA(j1 − 1, k1, j2 − 1, k2) + wuP3,AB(j1 − 1, k1, j2, k2 − 1)+
+ueP3,BA(j1, k1 − 1, j2, k2 − 1) + uwP3,BA(j1, k1 − 1, j2 − 1, k2)+

+u2P3,BB(j1, k1 − 1, j2, k2 − 1) ,

(4.5)

where we dropped the explicit indication of the sites0 for a simpler notation. The equations corresponding to the three other
possible choices ofZ, Z ′ are very similar to (4.5).

The solution to the equations forP3 can be obtained from the following ansatz:

P3,ZZ′(s1, s2; s0) =
∑

y

F (y − s0)PZ(s1; y)PZ′(s2; y), (4.6)

wherey − s0 must be read as the difference between two vectors, and the sum overy spans all sites on the rowst′ such that
t0 ≤ t′ ≤ t . Inserting (4.6) into (4.5) and the three other equivalent equations, and demanding thatP (s1; s0) = P3(s1, s1; s0),
leads to a set of equations that allows, recurrently, for the evaluation ofF (y) at all different sites.

For the current purpose, however, it is sufficient to evaluate

∑′
s1,s2;t

P3,ZZ′(s1, s2; s0) =
∑′

s1,s2;t

∑
y

F (y − s0)PZ(s1; y)PZ′(s2; y), (4.7)

where the prime indicates that the sums are restricted to the sitess1 ands2 over a given rowt. Then we observe that

∑
y

=
t+t0∑

t′=t0

∑′
y;t′

, (4.8)
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so that (4.7) becomes:

∑′
s1,s2;t

P3,ZZ′(s1, s2; s0) =
t+t0∑

t′=t0

∑′
y;t′

F (y − s0)
∑′

s1,s2;t
PZ(s1; y)PZ′(s2; y) . (4.9)

Noting that the functionPZ(s1; y) depends only on the relative position ofs1 andy, we can re-label all positions in the above
equation, settingt0 = 0, so that (4.9) becomes

∑′
s1,s2;t

P3,ZZ′(s1, s2; s0) =
t∑

t′=0

∑′
y;t′

F (y)
∑′

s1;t−t′
PZ(s1; 0)

∑′
s2;t−t′

PZ′(s2; 0) . (4.10)

DefiningF̂ (t) =
∑′

y;t F (y), and using (3.8) we obtain

∑′
s1,s2;t

P3,ZZ′(s1, s2; s0) =
1

m2
th

t∑

t′=0

F̂ (t) . (4.11)

To evaluateF̂ (t) let us consider a restricted version of (4.7), where the sums are taken fors1 = s2. In this case, (4.10)
becomes

∑′
s1,s1;t

P3,ZZ(s1, s1; s0) =
t∑

t′=0

∑′
y;t′

F (y)
∑′

s1;t−t′
PZ(s1; 0)PZ(s1; 0) =

1
mth

. (4.12)

We define

Q(t) =
∑′

s1;t
PZ(s1; 0)PZ(s1; 0) =

1
m2

th

2t∑

`=0

[
(2t)!

(`)!(2t− `)!

]2

(4.13)

so that (4.12) reduces to
t∑

t′=0

F̂ (t) Q(t− t′) =
1

mth
(4.14)

This is a very compact way of writing the equations forF (t). It allows for a formal solutionF (t) = F (t− 1)− F (0)δ(t)
that can be easily computed, with

δ(t) =

[
Q(t)−

t−1∑

`=1

Q(`)δ(t− `)

]
1

Q(0)
(4.15)

d

V Results

The square flux has been evaluated for several values of
t with the help of (4.11), as shown in a logarithm plot in the
Fig. 2. For the purpose of comparison, we also draw, in this
figure, results for the DR model: the square flux, that has
been evaluated by a similar procedure as described above,
and the functionm(t), that has been evaluated with the help
of eqs. (4.2-4.4). The curves for the DR model are paral-
lel in the limit of large values oft, what confirms that both
the square flux andm(t) depends asymptotically ont with
the same exponentα. However, it is possible to note that the
curve for the rainfall model is somewhat steeper.

For a more accurate analysis we show, in the Fig. 3, local
values for the exponentτ(t) obtained from the square flux
data for both DR and rainfall models. The evaluation of the
correspondingα(t) proceeds via a least square evaluation on
a local window aroundt. The curves were drawn for a win-
dow encompassing 10 points, but the results depends only

very weakly on the window width. We see that the exponent
for the DR model converges to the asymptotic value4/3 ob-
tained by Dhar from the lower side, according to power law
|4/3− t|−1. On the other hand, the exponent for the rainfall
model is always greater than4/3 and decays to this value
with a lower exponent∼ −0.47.

As the crucial difference between the two models lye in
the presence of holes inside an avalanche cluster, the results
show that they cause the rainfall model to have a smaller
probability of larger events in comparison to the DR model,
specially for small lattices. In the thermodynamic limit,
however, the two models belong to the same universality
class.

A confirmation of the above result can be obtained by
exploring the properties of the analytical solution for the
square flux. We see from (4.13) that the contributions to
Q(t) exhibit a sharp maximum at` = t. Thus, we estimate

Q(t) ∼ 1
m2+2t

th

[
(2t)!
t!t!

]2

∆(t) , (5.1)
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where∆(t) indicates the width of the peak around` = t.
Making use of the Stirling approximation, we can easily
show that∆(t) ∼ t1/2, while the square of the bracketed
term' (16πt)−1. Thus we obtain thatQ(t) ∼ t−1/2.

Figure 2. Double logarithmic plot of the square flux for both rain-
fall (dotted) and DR (full) models, and of the quantitym(t) for the
DR model (dashed) as function oft. The curves for the DR model
are parallel, but the slope of the square flux for the rainfall model
is somewhat steeper.

Figure 3. Behavior of the exponentτ for finite size lattices. The
rainfall and DR models share the same exponent only in thet →∞
limit. For finite size lattices the probability of larger events is
smaller for the rainfall model.

An asymptotic behavior forF (t) follows if we approx-
imate the sum in (4.14) by an integral. Assuming that
F (t) ∼ t−α, we must impose that the integral

t∫

0

(t′)−α(t− t′)−1/2dt′ (5.2)

does not depend ont. As this is verified whenα = 1/2,
inserting this value into (4.11) leads finally toα = 1/2,
the asymptotic value obtained from the numerical evalua-
tion and also found for the DR model [4].

VI Conclusions

In this work we presented an analytical investigation of an
abelian SOC model that describes some aspects of rainfall.
This model shares many properties of the abelian DR model,
but as it allows for the presence of holes within an avalanche
cluster, it has some properties of its own.

We were able to obtain an analytical solution for the
probabilityP (s1; s0) that a sites1 topples when one grain
is added in any other sites0 of the lattice. Knowing this
probability function is essential for the derivation of many
other properties of the model. So we could evaluate the ex-
ponentτ that describes the dependence of the statistics of
events as function of event magnitude. Although the value
of τ coincides with that of the DR model in the limit of an
infinite lattice, we have shown that for finite size lattice this
exponent becomes larger than that for the DR model.

The particular solution for the rainfall model described
in this work also opens the probability to analyze the be-
havior of the presence of holes inside an avalanche cluster.
This analysis is currently on the way and will be published
elsewhere.
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