
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2013; 43:305–332
Published online 26 February 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2113

Mastering crosscutting architectural decisions
with aspects

Claudio Sant’Anna1,*,†, Alessandro Garcia2, Thais Batista3 and Awais Rashid4

1Federal University of Bahia, Computer Science Department, Brazil
2Pontifical Catholic University of Rio Janeiro, Informatics Department, Brazil

3Federal University of Rio Grande do Norte, Computer Science Department, Brazil
4Lancaster University, Computing Department – InfoLab21, UK

SUMMARY

When reflecting upon driving system requirements such as security and availability, software architects
often face decisions that have a broadly scoped impact on the software architecture. These decisions are
the core of the architecting process because they typically have implications intertwined in a multitude of
architectural elements and across multiple views. Without a modular representation and management of
those crucial choices, architects cannot properly communicate, assess and reason about their crosscutting
effects. The result is a number of architectural breakdowns, such as misinformed architectural evaluation,
time-consuming trade-off analysis and unmanageable traceability. This paper presents an architectural
documentation approach in which aspects are exploited as a natural way to capture widely-scoped design
decisions in a modular fashion. The approach consists of a simple high-level notation to describe crosscut-
ting decisions, and a supplementary language that allows architects to formally define how such architectural
decisions affect the final architectural decomposition according to different views. On the basis of two
case studies, we have systematically assessed to what extent our approach: (i) supports the description
of heterogeneous forms of crosscutting architecture decisions, (ii) improves the support for architecture
modularity analysis, and (iii) enhances upstream and downstream traceability of crosscutting architectural
decisions. Copyright © 2012 John Wiley & Sons, Ltd.

Received 19 February 2011; Revised 6 January 2012; Accepted 10 January 2012

KEY WORDS: architectural decisions; modularity; aspect-oriented software development; early aspects

1. INTRODUCTION

Explicit representations of software architectures and associated design decisions are fundamental
to tame the growing complexity of software systems [1, 2]. Architects strive to develop evolvable
and reusable architectural decisions especially for systems in volatile business domains such as
banking, telecommunications and mobile applications. To be reusable and evolvable, the specifi-
cation of architecturally relevant design choices must be modular. This serves a twofold purpose.
If the specification of architectural decisions is modular one can reason in isolation about their
rationale and implications to the final design decomposition. This is termed modular reasoning [3]
about architectural decisions. At the same time, the various choices need to relate to each other
in a systematic and coherent fashion to realize the intended architecture. Effective representation
and specification of such relationships makes it possible to reason about the multiple architectural
decisions as a whole — using the modular reasoning outcomes as a basis. We refer to this global
reasoning as compositional reasoning [4] about architecturally-relevant choices.

*Correspondence to: Claudio Sant’Anna, Computer Science Department, Federal University of Bahia, Brazil.
†E-mail: santanna@dcc.ufba.br

Copyright © 2012 John Wiley & Sons, Ltd.

306 C. SANT’ANNA ET AL.

In fact, existing software architecture description approaches are already geared towards sup-
porting such modular and compositional reasoning. For instance, the ‘4 C 1’ view model [5]
separates an architecture into logical, process, physical and development views, derived from the
various stakeholders’ perspectives. This makes it possible for an architect to modularly reason about
each of the views. A fifth view, the scenario or use case view, shows how elements in the other
views work together thus supporting compositional reasoning. In addition, architectural styles and
patterns [6] are based on the recognition of the effectiveness of specific organizational principles
and structures. This helps one to undertake compositional reasoning about the elements deployed
using a particular architectural pattern or style. However, it is well known that only describing
final architectural decompositions are not sufficient to support time-effective evolution and well-
informed reuse of software architecture [2]. In fact, several authors (e.g. [2, 7]) motivate the need
for explicit documentation to support conveying of change, implications, rationale, options and
facilitating traceability.

Architectural decisions and their rationale encompass critical structural and behavioural implica-
tions for the various architectural elements and the architecture we wish to reason about. Making
such decisions explicit is critical to enable designers to trace which requirements and emerging
architectural concerns influenced the definition of the coarse-grained modularity units and their rela-
tionships. Even though it is important to document architectural decisions in a systematic fashion,
it is not a trivial task to modularly describe them with existing notations [2, 7, 8]. The experience of
others [8, 9] and our own [10–12] show that it is particularly challenging to capture architecturally-
relevant choices exerting a broadly scoped impact on the architecture. The problem is that the
decisions are typically associated with day-to-day software design concerns, such as security, error
handling, availability, and performance. Unfortunately, both modular and compositional reasoning
are not fully supported by existing techniques to describe design decisions with such a global design
impact [2, 7, 8].

Take, for instance, the ‘4C1’ view of a software architecture that addresses several broadly scoped
properties, such as availability. When attempting to understand the availability-specific architec-
tural decisions and their implications, an architect needs to reason across the various views, that
is the logical, process, physical and development views. This is because those availability deci-
sions are likely to relate to multiple elements across those views. This is particularly challenging as
availability-specific architectural decisions often lead to the addition of new elements within a view.
Because these implications associated with a single architectural concern (availability, in this case)
are scattered and tangled across various architecture elements (Figure 1(a)) and views themselves,
it is difficult to undertake modular reasoning about particular decisions. Compositional reasoning is
even more challenging as one needs to understand the combined implications of various architec-
tural decisions spanning a multitude of elements across logical, process, physical and development
views. This implies that, in addition to systematic documentation of a decision, it is important to
capture the additional structure it introduces into the various elements in the views.

In this context, this paper presents an architecture documentation approach to providing such
modular and compositional reasoning support, which is based on the use of aspect-oriented com-
position mechanisms [13, 14]. Figure 1 provides a pictorial representation of our proposal to
separately record crosscutting choices. Our documentation technique exploits the notion of aspects
(Figure 1(b)) to modularize and compose crosscutting architecture decisions that would other-
wise be interspersed with other relevant decisions’ descriptions (Figure 1(a)). The colored dots
in Figure 1(b) represent well-defined points in the architecture representation (or join points)
related to crosscutting decisions associated with specific concerns — for example, availability,
security and performance — now modularized into single aspects. Our technique consists of a
simple template to define crosscutting decisions as aspects. The template specifications modularly
describe the broadly influencing concerns that otherwise would be scattered and tangled over the
architecture description and its multiple views. The template is general and agnostic to different
architectural representations.

Such aspectual templates are supplemented with a language that allows architects to formally
describe how such architectural decisions affect the final architectural decomposition according
to different views. This formal description supports architects to undertake modular reasoning

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 307

Aspectual Description of Crosscutting
Architectural Choices

(a) Widely-scoped architectural concerns involve decisions which are
intermingled through the architectural decomposition

(b) Aspect-oriented description allow modular and compositional reasoning
about crosscutting architectural decisions

Figure 1. Supporting improved modularity and composition of crosscutting architectural decisions (a) with
an aspect-oriented documentation approach (b).

about decisions’ implications, such as the evaluation of its effects on the system modularity both
through early design stages and system maintenance steps. More importantly, by systematically
exposing the semantics of a decision’s compositional relationship with architectural elements, we
can support an architect to undertake compositional reasoning about the combined implications of
various architectural decisions. In this paper, we also perform a multidimensional assessment of
the proposed aspect-oriented architecture documentation technique based on two case studies from
different application domains. We evaluate to what extent the use of aspect-oriented composition
mechanisms improves or not the ability of software architects on the: (i) explicit modulariza-
tion of widely-scoped architecture decisions, (ii) better-informed analysis of architecture alterna-
tives in terms of relevant modularity attributes, and (iii) upstream and downstream traceability of
crosscutting architecture concerns.

This paper is organized as follows. Section 2 discusses the importance of exploring the notion
of aspects to document broadly scoped architectural decisions and uses a running case study
to illustrate the crosscutting nature of decisions associated with recurring architectural concerns.
Section 3 describes a general-purpose template that we propose to explicitly communicate crosscut-
ting architectural decisions. Section 3.2 focuses on the composition of such architectural decisions.
Section 4 presents the evaluation of the proposed template in the light of a second case study.
Section 5 discusses the benefits and drawbacks of aspectizing architectural decisions. It also dis-
cusses related work. Section 6 presents future trends in this context, and Section 7 presents our
final remarks.

2. CROSSCUTTING ARCHITECTURAL DECISIONS

Software is no longer engineered using a rigid separation of development stages. With the increasing
adoption of iterative and agile methodologies, gone are the times when a strict separation between

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

308 C. SANT’ANNA ET AL.

requirements engineering, architecture, design, implementation and evolution was perceived as good
practice. Key architectural decisions may be taken as early as requirements engineering. Section 2.1
discusses the influence of broadly scoped concerns derived from requirements specifications on
early design decisions. Examples of such crosscutting architectural decisions are illustrated through
a case study. Section 2.2 discusses typical design impairments caused by the lack of modular and
compositional reasoning for such crosscutting decisions.

2.1. From requirements to architecture: the running case study

Broadly scoped concerns, whether functional or nonfunctional, for example availability, security,
performance, informational retrieval, etc., identified during requirements engineering have impor-
tant architectural implications. Aspect-oriented requirements engineering techniques [15] make it
possible to systematically identify, modularize, represent, and compose such broadly scoped con-
cerns [16]. Such techniques, therefore, make it possible to modularly reason about such concerns and
undertake compositional analysis for early identification of trade-offs among them. These broadly
scoped concerns and their interferences provide early insights into the various architectural decisions
facing an architect.

Although the explicit handling and representation of architectural decisions are of paramount
importance, they are not trivial tasks. Many decisions associated with relevant architectural con-
cerns are crosscutting by their very nature and, as a result, they need to be treated as such. They
cut through the primary modularities of the architecture description, which is often consisted of one
or more views. An architectural concern can affect several elements in an architecture description,
such as components and their interfaces, relationships, processes, and also the decisions associated
with other concerns.

To illustrate these problems, we rely on examples taken from the architecture of a context-
sensitive tour guide system. This application was developed at Lancaster University to support
visitors in configuring their own tours around the historical and cultural attractions in the city [17].
Using a handheld device, the visitors can retrieve information about the various attractions and
obtain route guidance from their current location to the site of their choice. The system also sup-
ports generation of custom tours based on the preferences of a particular user and includes access
to hotel, restaurant and theatre reservation services. The system has already undergone a systematic
analysis of various crosscutting features [18] based on which the software architecture was subse-
quently derived. In the following, we discuss the crosscutting nature of architectural decisions in
such context-sensitive tour guide system.

Figure 2 shows a partial description of the software architecture for this application based on a
component-and-connector view [9] and on additional views from the ‘4C 1’ view model [5]. The
upper left depicts a structural diagram with the component-and-connector view. The visitors use
a Navigator to navigate through a tour, to create a customized tour, and to update information
about the navigation preferences. The Navigator component contacts the Information Retrieval
component to recover information from the system. The Navigator also contacts the ExternalSer-
vices component to connect the visitor to external services. The LocationManager provides the
identification of the current location of a visitor. This identification is used by the Information-
Retrieval component that provides tourist information according to his/her current location. The
TouristInfoManager allows the tourist centre to update information in the system.

In this structural perspective of the tour guide architecture, it is also clear that the decisions
with respect to the availability requirement affect several points of the architecture specification.
Although availability-specific choices are somewhat localized in the Replication Manager com-
ponent, they largely impact on the definition of several interfaces and components, which do not
have the primary purpose of addressing availability issues. Availability-related decisions crosscut
multiple components, including InformationRetrieval, LocationManager, and TouristInfo-
Manager. Because availability support requires the replication of critical components and the
replica consistency management, specific components and interfaces need to be created and added
to those affected components. The crosscutting phenomenon also involves other concerns, such as
security and performance.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 309

Figure 2. Tangling and scattering in an architecture description.

The crosscutting manifestation leads to two major problems at the architectural level, the so-
called scattering and tangling. Architectural scattering is the manifestation of architectural decisions,
which belong to one specific concern, in several architectural units encapsulating architectural deci-
sions referred to other architectural concerns. For example, the replication-related interfaces are
scattered over multiple architectural components, such as LocationManager, InformationRe-
trieval and TouristInfoManager components (upper left of Figure 2). Architectural tangling is
the mix of multiple concerns together in the same architectural elements. For instance, tangling
is evident in the InformationRetrieval component because it is realizing an availability-related
interface in addition to its primary functionality of providing information.

2.2. Early design impairments

As previously mentioned, there are some architectural concerns that bring deeper problems to the
software architects; they can even crosscut other architectural views in addition to the structural
view, as it is the case for the availability concern. The availability-specific decisions are scattered
and tangled within elements of other concerns over the four architectural views. Availability requires
not only the inclusion of components, interfaces, and connectors (component-and-connector view),
but also the definition of two separate threads to manage both replication and consistency (process
view), the conception of the management layer together with other supplementary managers (devel-
opment view), and the distribution of replication elements through different servers (physical view).

Traditional architectural approaches such as 4C 1 view model [5], the architecture tradeoff anal-
ysis method (ATAM) [19], tactics [20, 21], and architectural styles or patterns [6] have different

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

310 C. SANT’ANNA ET AL.

complementary purposes. However, they are not aimed at supporting the separate handling of cross-
cutting architectural decisions as exemplified in Figure 2. It brings in turn a number of substantial
pitfalls, such as the following.

2.2.1. Hindering of modular and compositional reasoning. Tangling and scattering of decisions
hinder both modular and compositional reasoning at the architectural stage. The architects are
unable to reason about an architectural concern while looking only at its description, including
its core decisions and structural and behavioural implications. Hence, its analysis inevitably forces
architects to consider all the architectural artefacts in an ad hoc manner. For example, the architects
treating the availability and security concerns in Figure 2 need to consult the definitions and deci-
sions associated with all other architectural concerns across all the different views, leading to an
expanded or global reasoning rather than a modular reasoning.

2.2.2. Losing essential information. Many of the concerns in the requirements specification entail
crosscutting architectural decisions. The mapping of those concerns to the respective decisions is
awkward because the developers do not have proper ways to easily check whether and how the
requirements are met in the software architecture. With traditional approaches, software archi-
tects are not able to locally express the structural and behavioural, physical, and developmental
implications of a given architectural decision in several architectural elements and views. The
result is that important information is irrecoverable just because of the lack of support for prop-
erly specifying them. Not only the final choices can be lost, but also the crosscutting rationale
and competing options the architects considered. Traceability also becomes unmanageable. For
example, the association of availability-specific requirements with their architectural implications
(Figure 2) is cumbersome and far from being trivial. This obstacle makes it difficult to assess
the goodness of the software architecture even in the presence of a well-informed requirements
engineering process.

2.2.3. Inaccuracy on architecture modularity analysis. Current architecture analysis methods are
not able to quantify the interplay of key architecture concerns and architecture modularity proper-
ties [11, 12]. For instance, existing architecture metrics fail to inform that security-related decisions
have a wide impact on several component interfaces and architectural coupling [22]. The underlying
problem is that such measurement approaches cannot rely on artefacts that identify the architectural
elements related to each concern, thereby causing a number of false negatives and false positives in
architecture assessment processes [12].

2.2.4. Decreasing evolvability. Architecture degeneration is becoming very common in an age
where software systems are always changing. Architecture artefacts are often key deliverables in
the evolution process. As a consequence, the architects have additional work to answer recurring
questions: What happens if we decide to change security-related components of our system? Has
this decision been affected by which architectural concerns? Because a complex architecture proba-
bly reflects thousands of crosscutting decisions, finding the answers for these questions is naturally
time consuming, especially when the original architects are no longer available.

2.2.5. Reducing reuse possibilities. Tangling and scattering are two of the main anti-reuse factors
in the software lifecycle. The lack of a clear separation of concerns generates undesirable burdens
on architectural reuse. For example, software architects may want to recycle, or at least remember,
a comprehensive list of decisions and the rationale associated with an architectural concern in pos-
terior projects. It would be certainly beneficial to empower software architects to reuse successful
crosscutting architectural choices from previous projects.

3. CAPTURING ARCHITECTURAL DECISIONS AS ASPECTS

In light of the aforementioned problems, we conjecture that crosscutting architectural decisions
should be handled as separate architectural aspects. The idea is to have proper abstractions to enable

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 311

their representation as first-class elements, and also provide the means to facilitate their further
composition. Aspects were originally conceived to address crosscutting concerns at the program-
ming level [14]. It is then natural to believe that the key for capturing crosscutting architectural
decisions is exploiting some aspect-oriented concepts [13] at the architectural level.

3.1. Aspectual templates

Architectural aspects are units of modularity to capture the decisions associated with broadly scoped
concerns, letting the architects represent all the implications in a single place. We represent archi-
tectural aspects as templates, called aspectual templates. Figures 3 and 4 show aspectual templates
with essential information to capture crosscutting decisions: (i) name of the architectural aspect; (ii)
architectural decisions, such as the inclusion of components, interfaces, relationships, processes,
and so forth, which were made with the sole purpose of contemplating issues related to the archi-
tectural aspect; (iii) composition rules to describe how the crosscutting decisions with respect to
this architectural aspect affects other architectural elements and alternatively other aspects; and (iv)
a reasoning section that captures the rationale behind those decisions. The architectural elements
placed in the second compartment of an aspectual template should be grouped by the architectural
views used in the original architectural description, for instance, component-and-connector view,
process view, physical and so forth (see Figures 3 and 4).

The crosscutting decisions affect several architecture elements, which are named architectural
joint points. An architectural joint point is an element of interest in the architecture description
through which two or more architectural decisions may be composed. Examples of join points are:
a component, an interface, a process, an architectural aspect, or even an architectural decision.
Architectural composition rules support the composition specification and enable compositional

Aspect: Availability

Component-and-connector view

Replication
Manager

replicate

make
Consistent TIM_Replica

syncsec

LM_Replica

syncsec

IR_Replica

syncsec

syncpri

Process view Physical view Development view
Replication Manager
process

Replica Controller
task

Consistency Controller
task Replication Manager

process

Replication
Manager
Module

Composition Rules
componentSet = InformationRetrieval, LocationManager, TouristInfoManager.
replicaQuantity = 1
replicaSet = replicate(componentSet, replicaQuantity)
makeConsistent(replicaSet, componentSet)

Reasoning
ReplicationManager is in charge of replicating the critical components through the replicate interface in
order to increase the availability of their provided services. N-Version programming is the software
replication technique chosen due its implementation simplicity. Consistency is achieved through the
interface makeConsistent, which synchronizes the replica results with the primary component results;
thus the unification of the results also allows for other client components viewing the pairs of primary and
backup elements as a single component.
Each Replica component must provide a syncsec interface to collaborate with the primary component
(that contains the syncpri interface) before the result of the component services are delivered to the
client.
The ReplicationManager process is decomposed into two processes, ReplicaController and
ConsistencyController, in order to decouple these two tasks.
The ReplicationManager process is instantiated in the main-server and in each of the cell-servers.

Figure 3. Modularizing and composing architectural aspects: availability.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

312 C. SANT’ANNA ET AL.

Aspect: Security

Component-and-connector view Process view Physical view Development view

Security
Manager decrypt

crypt

auth

Security Manager
process Security Manager

process

Security
Manager
Module

Composition Rules
controlAutentication(InformationRetrival, before)
crypt(Navigator.get_info, before)
decrypt(Navigator.get_info, after)
decrypt(InformationRetrieval.provide_info, before)
crypt(InformationRetrieval.provide_info, after)

ReasoningSecurityManager is responsible for encrypting and decrypting information using the crypt and
decrypt interfaces. It affects the get_info service of the Navigator component. The parameters of get_info
are encrypted. The encrypted solicitation is sent to the InformationRetrieval. This component decrypts the
data to identify the solicitation, processes it, and encrypts the desired information before sending them
back to the get_info service. Then, the final step is to decrypt the returned information. The
SecurityManager component is also responsible for control the authentication of user that want to access
the InformationRetrival component. It affects the provide_info service of the InformationRetrival
component. It validates the login and password of the user trying to retrieve information. The
SecurityManager process is instantiated in the end-user computer and in each of the cell-servers.

Aspect: Performance

Component-and-connector view Process view Physical view Development view

Performance
Manager

checkRespTime
Performance Manager
process Performance Manager

process

Performance
Manager
Module

Composition Rules
monitoredServices = navigate, ext_service, get_info.
checkRespTime(monitoredServices, during)
constrain(Availability.replicaQuantity <=2)

Reasoning
PerformanceManager is responsible for encapsulating a timer and monitoring through checkRespTime
the response time of critical services of Navigator. Performance also imposes an important upper bound
in the number of replicas (replicaQuantity) defined in the Availability aspect. The PerformanceManager
process is instantiated in the end-user computer.

Figure 4. Architectural aspects: security and performance.

reasoning. They are a means of referring to collections of architectural join points and describing
some architectural decisions to be applied at those join points.

Figures 3 and 4 show how to use the notion of architectural aspects to support the modular
description of the availability, security and performance concerns in our running example. All the
availability-specific decisions are clearly captured in the first template, including the creation of
a ReplicationManager and system replicas, and the definition of two processes for controlling
the system replicas and their global consistency. The rationale behind the availability decisions
are reported in the reasoning section of the template. The reasons are related to structural and
behavioural decisions and the composition decisions. In a similar way, the security-related and
performance-related decisions are respectively isolated in the 1st and 2nd templates of Figure 4.

As a result, the template-based specification is a cohesive manner to describe those broadly influ-
encing concerns that otherwise would be scattered and tangled over the architecture description
and its multiple views. Notice that this approach is general and agnostic to different architectural
representations that the software developers are relying on, whether graphical or textual, such as
ADLs (architectural description languages), UML-based or XML-based notations. Our assumption
here is that architectural representations define graphical or textual elements to represent software
entities, such as components and processes, and the composition between them. Aspectual tem-
plates do not impose any restriction on what type of elements can be used to fill them. The software
architect can, therefore, work with any architectural representation. The software architect can also
use the templates in conjunction with any set of architectural views, and any existing notations for
reflective design, where design rationale is extensively recorded [7]. In fact, the template can be used

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 313

to describe all kinds of architectural decisions and rationale, including assumptions, constraints,
positions, arguments, status, and the like.

3.2. Composing architectural decisions

Properly documenting the composition of architecture decisions is critical because architects make
them in complex environments. The architects can use a high-level composition language to facil-
itate the registration and communication of broadly scoped choices and enhance compositional
reasoning. Figures 3 and 4 show how to work with a high-level language to describe those
choices as architectural composition rules. The naming of the composition rules is intuitive as
it actually captures the architectural operation associated with the crosscutting decisions. The
composition rules are domain dependent to provide a friendly description of the decisions. They
are formalised by their translation to domain-agnostic low-level rules, called as mapping rules
(Sections 3.2.1 and 3.2.2).

For example, the third composition rule in the first template (Figure 3), named replicate, cap-
tures the fact that a list of architectural components should be replicated because of availability
purposes. Auxiliary declarations can be made to facilitate the quantification process, such as the
use of componentSet and replicaSet. The first rule uses componentSet to quantify the architectural
join points affected by the replicate decision. Those points are critical components to be duplicated
with different implementation versions, namely InformationRetrieval, LocationManager, and
TouristInfo Manager. The rule makeConsistent abstracts the process of including architectural
elements to address the consistency of the primary components and their replicas.

To facilitate the composition of architectural decisions, the rules can pick out different types
of architectural join points, such as interfaces or even rules defined in other architectural aspects.
Figure 4 shows the crypt and decrypt decisions in the security aspect affect interfaces of Naviga-
tor and InformationRetrieval. Some behavioural information can also be part of the composition
rules. For instance, the specification of the security aspect also includes ‘when’ the crypt and decrypt
decisions should actuate over specific architectural elements, that is ‘before’ and ‘after’ requests of
services of Navigator and InformationRetrieval.

The third rule of the performance aspect, named constraint, influences an availability rule that
specifies the number of replicas. This rule represents a recurring scenario faced by software archi-
tects: several aspectual decisions affect each other. The aspectual templates promote composition
interfaces that allow for the architect to make explicit the relationships and mutual influences of
broadly scoped concerns, which are not easily captured in traditional architectural views. In fact,
this architectural constraint involving performance and availability components was not explicitly
represented by any of the views in Figure 2. Note that this feature allows that aspectual templates
make explicit references to other aspectual templates. This follows an asymmetric aspect-oriented
approach, which is similar to some aspect-oriented programming models, such as AspectJ, whose
aspects are also allowed to make references to other aspects. This is an important feature because
concerns influence other concerns. However, as already well understood by the aspect-oriented soft-
ware development (AOSD) community, the architects should use this feature carefully, because it
introduces coupling between aspectual templates. In fact, aspectual templates supporting tools must
control the dependence between templates. The tools, for instance, should inform if an aspectual
template is referenced by other aspectual templates. We could have opted for a symmetric approach
where aspect interactions would be registered in a separated part of the architecture description.
However, symmetric approaches have disadvantages as well. For instance, maintaining the specifi-
cation of the concerns separated from their composition specification tends to be hard. It is often the
case that the composition specification cannot be reasoned about if the architect does not read the
affected concern specifications.

3.2.1. Mapping rules. As previously mentioned, architectural aspects can influence decisions made
in several views. The architect may want now to review together the crosscutting decisions and the
architectural views with the rest of the project team and the project stakeholders. Hence, once the
architectural aspects have been defined, the actual effect of the decisions in the multiple views may

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

314 C. SANT’ANNA ET AL.

need to be specified and analyzed. The next alternative step then would be to use underlying mech-
anisms to support the mapping of aspectual decisions in terms of elements of the other architectural
views. Those mechanisms can rely on a language with mapping rules that simply translate the aspec-
tual decisions in terms of the corresponding elements in the architectural views. Figure 5 shows how
those mapping rules could be applied for mapping availability, security and performance decisions
to elements of a component-and-connector view. A similar mapping process could be carried out
for the other architectural views.

The mapping rules consist of a small set of reusable primitives that can be easily translated to
elements of different architectural views and also a quantification mechanism over architectural ele-
ments. The Backus-Naur Form (BNF) description of the mapping rules is presented in Figure 6.
The process of designing the set of mapping rules and producing its grammar follow two different
and complementary threads: (i) we analysed different architectural description languages and some
well-known traditional configuration languages such as those by Magee et al. [42, 43] and some
of their constructs (create, add) to compose a configuration inspired us to define equivalent map-
ping rules; (ii) we conducted an analysis of some case studies, to identify their needs in terms of
composition rules, and we defined new rules. On the basis of our findings from the two threads, we
composed the final set of rules. Finally, we applied our rules in the two case studies presented in
this paper, which have different needs in terms of architectural operations associated with crosscut-
ting decisions. Our rules were enough to meet all the compositional needs of the different elements
involved in these case studies.

The BNF assumes that no whitespace is necessary for proper interpretation of the rule. The item
<element-name> is to be substituted with an architecture element’s name declared in any view of
the architecture description. The item <role-name> is to be substituted with a role’s name specified
by an architectural style. The item <value> is to be substituted with a number. The entries archi-
tectural_elem and plural_architectural_elem should be defined according the abstractions encom-
passed by the used architecture description approach. In the case of the component-and-connector
view of the tour guide system, these two entries are defined as follows:

� architectural_elem ::D ‘component’ j ‘interface’ j ‘constraint’
� plural_architectural_elem ::D ‘components’ j ‘interfaces’ j ‘constraints’

The description of each mapping rule and the graphical representation of their effects are depicted
as follows. Table I shows a summary of the foundational set of mapping rules.

Figure 5. Mapping architectural aspects to architectural views: effects of architectural aspects in the
component-and-connector view.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 315

rules ::= {rule}

rule ::= primitive | forall_statement | assignment_statement

primitive ::= create_ primitive | add_ primitive | modify_ primitive | remove_ primitive |
split_ primitive | unify_ primitive | connect_ primitive |
disconnect_ primitive | play_ primitive

add_primitive ::= “Add” architectural_elem <elem-name>[“=” <value>] “to”
<elem-name> “;”

modify_ primitive ::= “Modify” architectural_elem <elem-name> “=” <value> |
<elem-name> <elem-type> “to” <elem-type> “;”

remove_ primitive :: = “Remove” architectural_elem <elem-name> “from”
<elem-name> “;”

split_ primitive ::= “Split” architectural_elem <elem-name> “into”
<elem-name> “,” <elem-name> {“,” <elem-name>} “;”

unify_primitive ::= “Unify” plural_architectural_elem <elem-name> “,” <elem-name>

{“,” <elem-name>} “into” <elem-name> “;”

connect_ primitive ::= “Connect” <elem-name> “to” <elem-name> “;”

disconnect_ primitive ::= “Disconnect” <elem-name> “from” <elem-name> “;”

play_primitive ::= “Play” <elem-name> “, role” <role-name> “;”

forall_statement ::= “Forall” variable “in” architecture_element_set rule_list “end”

assignment_statement ::= architecture_element_set “=” (all_statement | <elem-name>) {“,”
(all_statement | <elem-name>)} “;”

all_statement ::= “All” plural_architectural_elem “in” (variable | <element-name>)

variable ::= A..Z {A..Z | 0..9}

architecture_element_set ::= a..z {a..z | A..Z | 0..9}

Figure 6. BNF description of the mapping rules.

Table I. Summary of the mapping rules.

MAPPING RULE DESCRIPTION

Add <architectural_elem> introduces an architectural element with name
<elem_name1 [Dvalue]> to <elem_name1>, optionally set its value, to other
<elem_name2> architectural element with name <elem_name2>

Modify [
<architectural_elem> changes an architectural element by setting a new value to
<elem_name1 D value] j <elem_name1> or modifying its type from <elem_type1> to
[<elem_type1 to <elem_type2>
<elem_type2>]

Remove
<architectural_elem> removes an architectural element with name
<elem_name1> from < <elem_name1> from other architectural element
elem_name2> <elem_name2>

Split <architectural_elem > separates an architectural element with name
<elem_name> into <elem_name> into two or more elements defined in
<elem_name_list> <elem_name_list>

Unify <architectural_elem> groups two or more architectural elements defined in
<elem_name_list> into <elem_name_list> in the architectural element
<elem_name> <elem_name>

Connect <elem_name1> to defines a relationship between the elements
<elem_name2> <elem_name1> and <elem_name2>

Disconnect <elem_name1> removes a relationship between the elements
from <elem_name2> <elem_name1> and <elem_name2>

Play <elem_name>, role adds the responsibility denoted by the role <role_name> to
<role_name> the architectural element <elem_name>

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

316 C. SANT’ANNA ET AL.

Add inserts an architectural element into another element. The value of the inserted architec-
tural element is an optional argument. For instance, in the second occurrence of the Add rule for
the Availability concern in Figure 5, the syncpri interface is inserted into component C. Com-
posite elements, such as composite components, can be defined using this operator. For instance,
Add component TIM_Europe to TouristInfo Manager transforms TouristInfoManager in
a composite component that contains TIM_Europe, as illustrated in Figure 7.

Connect describes which elements are associated with each other. For example, it supports the
description of how components’ interfaces are bound. Specifically it describes the interconnection
between operations of two different components. For instance, in Figure 5 syncpri interface of
the Information_Retrieval component are connected to syncsec interface of the IR_Replica
component. ADLs usually provide similar interconnection operations such as bind or connect.

Disconnect removes an association between two elements. For example, Disconnect Informa-
tionRetrieval.syncpri from IR_Replica.syncsec, removes the connection between the syncpri
interface of InformationRetrieval and syncsec of IR_Replica.

Play assigns a new role to an architectural element. The role is specified by a previously defined
architectural style that contains architectural element types and properties. The assignment of a
role to an element implies that such an element receives all the syntactic and semantic prop-
erties of the original style. For instance, an exception_handling style may define two elements
types: Exception_Handler and Exception_Propagator. Both define properties and interfaces. Excep-
tion_handler contains the handler interface and the Exception_Propagator contains the propag
interface. In Figure 18 this style is instantiated using a sequence of Play rules. For instance, to the
Distribution_Manager component is assigned the role of an Exception_Propagator and the role
of an Exception_Handler is assigned to GUI_Elements. Figure 8 shows the effect of this rule to
the Distribution_Manager component. Now it plays the role of Exception_Propagator and con-
tains properties, exceptions and interfaces originally described to Exception_Propagator. The dotted
rectangle is used to represent that the internal element is playing the role of the external one.

Split segregates the functionalities of an element in two or more elements. It disconnects all ports
of the original element. Each new element inherits the properties of the original architectural element
if no explicit parameter is specified. Otherwise, each element inherits only the specified proper-
ties. For instance, a security architectural concern represented by a SecurityManager component
with some cryptograph and authentication operations can be split into two smaller components —
CryptographManager and AuthenticationManager — each one with a specific responsibil-
ity. The interfaces of each one are specified as a parameter of the element. Figure 9 illustrates
the Split component SecurityManager into CryptographManager(crypt, decrypt) and
Authentication Manager(auth).

Figure 7. Add mapping rule example.

Figure 8. Play mapping rule example.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 317

Security
Manager

Cryptograph
Manager

Authentication
Manager

crypt

decryptauth

crypt
decrypt auth

Split
into Cryptograph

and Authentication

Figure 9. Split mapping rule example.

Unify allows the definition of a new element from other elements. The elements that are unified do
not exist anymore. For instance, Unify component CryptographManager, Authentication-
Manager into SecurityManager creates a component SecurityManager that combines the
features of CryptographManager and AuthenticationManager, as illustrated in Figure 10.

Modify changes an architectural element by setting a new value to it or changes the type of
an element. For instance, Modify constraint replicaQuantity D 1 sets a new value (1) to
the replicaQuantity constraint. To change the type of an element from Tourist InfoManager
to TouristInfoManager Europe the following rule is used: Modify Tourist InfoManager to
TouristInfoManagerEurope. Figure 11 represents the effect of this rule:

Remove removes an architectural element from other architectural element. For example,
Figure 12 represents the rule remove component TIM_Europe from TouristInfo Manager.

3.2.2. Evolving architectural decisions. In an evolutionary environment, it is challenging to
document architectural changes through the architecture views in a way architects can easily
understand [7]. The architect wants to clearly identify the architectural decisions that represent key
changes associated to a concern without having to wade through the architecture views just to find a
few key items that have changed. The mapping rules previously described can be used to document
architectural decisions associated to the evolution of an architecture. With the use of these mapping
rules, the architect can document changes made to architectural elements of the architecture because
of changes in the concern captured by the template. Figure 13 illustrates the use of the Split rule to

Unify
Cryptograph and

Authentication
Into Security

Security
Manager

Cryptograph
Manager

Authentication
Manager

crypt

decrypt auth

crypt

decrypt
auth

Figure 10. Unify mapping rule example.

Modify
TouristInfoManager
To
TouristInfoManagerEurope

Tourist
InfoManager

Europe

Tourist
InfoManager

Figure 11. Modify mapping rule example.

Remove
TIM_Europe

TIM_Europe

TouristInfoManager

Tourist
InfoManager

Figure 12. Remove mapping rule example.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

318 C. SANT’ANNA ET AL.

Aspect: Security

Component-and-connector view Process view

Cryptograph
Manager decrypt

crypt

Authentication
Manager auth

Cryptograph Manager
process

Authentication Manager
process

Composition Rules
decompose(SecurityManager into CryptographManager, AuthenticationManager)
controlAuthentication(InformationRetrival. before)
crypt(Navigator.get_info, before)
decrypt(Navigator.get_info, after)
decrypt(InformationRetrieval.provide_info, before)
crypt(InformationRetrieval.provide_info, after)

Reasoning
The SecurityManager (previous version of the architecture) has been decomposed into the
CryptographManager and AuthenticationManager in order to allow these services to run in distinct
processes. CryptographManager is responsible for encrypting and decrypting information using the crypt
and decrypt interfaces. It affects the get_info service of the Navigator component. The parameters of
get_info are encrypted. The encrypted solicitation is sent to the InformationRetrieval. This component
decrypts the data to identify the solicitation, processes it, and encrypts the desired information before
sending them back to the get_info service. Then, the final step is to decrypt the returned information. The
AuthenticationManager component is also responsible for control the authentication of user that want to
access the InformationRetrival component. It affects the provide_info service of the InformationRetrival
component. It validates login and password of the user trying to retrieve information.

Mapping Rules
Split component SecurityManager into CryptographManager(crypt, decrypt) and
AuthenticationManager(auth);
Connect AuthenticationManager.auth to InformationRetrival.provide_info [before];
Connect CryptographManager.crypt to Navigator.get_info [before];
Connect CryptographManager.decrypt to Navigator.get_info [after];
Connect CryptographManager.decrypt to InformationRetrieval.provide_info [before];
Connect CryptographManager.crypt to InformationRetrieval.provide_info [after];

Figure 13. Security aspectual template: evolving the architecture.

document an evolution scenario that involves the security concern of the Tourist Guide architecture.
The other mapping rules work similarly to the Split rule to document evolution scenarios.

In the example of Figure 13, the architects decided to run the cryptograph and authentica-
tion services in two distinct processes. Therefore, in the new version of the architecture, the
SecurityManager component is decomposed in two components: CryptographManager
and AuthenticationManager. The new Security aspectual template (Figure 13) documents
the architectural decisions related to this change and its implications. The template shows
the two new components, CryptographManager and AuthenticationManager, and no
longer shows the SecurityManager component. An additional composition rule is included
to indicate that the SecurityManager component was decomposed into two other compo-
nents. The reasoning section of the template was updated to describe now the responsibil-
ities of the CryptographManager and AuthenticationManager components and explic-
itly register the reason for decomposing the SecurityManager component into these two
new components. Finally, the mapping rules section of the template includes now the
Split rule:

Split component SecurityManager into CryptographManager(crypt, decrypt) and
AuthenticationManager(auth).

4. CASE STUDY

To carry out an evaluation of the notion of architectural aspects, we undertook a second case study
where we have used the proposed templates in the context of a system with an architecture blueprint
largely different from the context-sensitive tour guide system (Section 2.1). We assessed the appli-
cability of the aspectual templates and mapping rules while documenting the architectural decisions
of a system called Health Watcher (HW) [23]. It supports the registration and management of
complaints to the health public system, and several stakeholders are involved, including citizens,

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 319

administrators, health agents, and so forth. On the basis of this case study, Section 4.1 discusses
the usefulness of our approach for supporting concern-centric quantitative assessment of software
architecture.

We have selected the Health Watcher system for several reasons. First, it is a real Web-based
information system deployed in 2000 by the Public Health System in Recife, a city located in the
north of Brazil [23]. After its initial deployment, a number of versions have been released in the last
years. Second, this system has served as a kind of benchmark for the assessment of contemporary
modularization techniques, such as AOSD [11, 12, 16, 23–26]. Third, modularity-driven require-
ments, such as reusability and maintainability, have been settled as one of the key priorities in the
solution design. Figure 14 illustrates a graphical representation of the component-and-connector
view of the HW architecture description based on UML 2.0 notation. The HW architecture follows
the combination of the client–server style with a layered style [27]. Six main architectural concerns
were considered in the HW system and they are described in Table II.

Figure 14 also shows how the architectural concerns are scattered and tangled over the
architectural elements of the Health Watcher system. The gray boxes placed over or near a com-
ponent or interface indicate that that element is related to the concerns the boxes represent. For
instance, the box with the letter P on the superior left corner of the Transaction_Control compo-
nent means that this component is part of the persistence concern. Similarly, the ‘P’ box near the
UseTransactionControl required interface (in the Business_Rules component) indicates that
this interface is related to the persistence component. The architects decided that the UseTrans-
actionControl interface is related to the persistence concern because its only role is to require

GUI_ELEMENTS

DISTRIBUTION_
MANAGER

ManageDistributedInfo InitConnection

BUSINESS_RULES

DATA_MANAGER

PersistenceMechanism

TransactionControl

CONCURRENCY_
CONTROL

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

ConcurrencyControl

Distribution

GUI

Business

Persistence

Concurrency

G

D

B

P

C

P

C

G

D

B

C

P

Address
Repository

TRANSACTION_
CONTROL

P P

Exception HandlingE

P

PPPPPPP

D

E

E E E E E E E E

E E E E E E E E

P
E

P
E

E

E

E

P
D

E
ConnectionDistributedInfoServices

InfoServices

ManageInfo

UseTransaction
Control

InitPersistenceMechanism

UseConcurrencyControl

C
o

n
ce

rn
s

Manage
Complaint

Manage
Disease

Manage
Symptom

Manage
Employee Manage

HealthUnit

Manage
Speciality

Manage
Address

Legend:

Figure 14. Health watcher architecture.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

320 C. SANT’ANNA ET AL.

Table II. Health watcher architectural concerns.

Concern Description

GUI The GUI_Elements component provides a Web interface for the system

Distribution The Distribution_Manager component externalizes the system
services at the server side and support their distribution to the clients

Business The Business_Rules component defines the business elements and rules

Persistence The Data_Manager and Transaction_Control components address
the persistency concern by storing the information manipulated
by the system and providing transaction control.

Concurrency The Concurrency_Control component provides control for avoiding
inconsistency in the information manipulated by the system

Exception Exceptional events raised and handled by the components support
Handling forward error recovery.

the transaction control service, which is a persistence related service. A box near an interface
also indicates that there is at least one operation in that interface that is related to that concern
or raises or receive an exception related to that concern. For instance, there are three boxes near the
DistributedInfoServices interface (in the Business_Rules component) because it contains at
least: (i) one operation that raises exceptions (‘E’ box), (ii) one operation that raises persistence-
specific exceptions (‘P’ box), and (iii) one operation that raises distribution-specific exceptions
(‘D’ box). Similarly the ManageDistributedInfo is also related to error handling, persistence
and distribution concerns, but instead of raising exceptions, it receives exceptions raised by the
DistributedInfoServices interface.

As shown in Figure 14, the architectural decisions related to some of the concerns of interest in
the HW system affect several points in the architecture. As stated before, this phenomenon hinders
the modular reasoning about these architectural concerns. Figure 14 only shows the component-
and-connector architectural view; however, the same problem also occurs in others views, such as
the module view and physical view. In this way, we use the notion of architectural aspects to support
the modular description of the concerns in HW architecture. Figures 15 and 16 present the aspectual
templates for the persistence and exception handling concerns, respectively. All the persistence-
specific decisions are captured in the template shown in Figure 15, including: (i) the creation of
the Data_Manager component and its connection with the Business_Rules component; (ii) the
creation of the Transaction_Control component; (iii) the creation of the InitPersistenceMech-
anism and UseTransactionControl interface in the Business_Rules component and their
connection with the Transaction_Control component; and (iv) the creation of two persistence-
specific exceptions (Transaction Exception and RepositoryException) and their assignment to
the operations that raise or receive them. The rationale behind the persistence decisions are reported
in the reasoning section of the template.

Figure 17 shows the mapping of the persistence architectural aspect (Figure 15) to the component-
and-connector view by means of the mapping rules (Table I). The persist (Business_Maganer)
high-level composition rule (Figure 15) means that the information manipulated by the
Business_Rules component should be persisted. It is translated into a number of Connect map-
ping rules (lines 04–10), which represent the connection between the provided interfaces of the
Data_Manager component to the required interfaces of the Business_Rules component. The
controlTransaction (Business_Rules) rule captures the fact that the Business_Rules compo-
nent should control the transaction while persisting the information it manipulates. This high-level
rule is translated into two pairs of Add and Connect mapping rules. The first one (lines 13–14)
represents the creation of the initPersistenceMechanism interface in the Business_Rules
component and the connection of this interface to the PersistenceMechanism interface of the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 321

Aspect: Persistence
Component-and-connector view

Components

DATA_MANAGER

PersistenceMechanism

TransactionControl

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

Address
Repository

TRANSACTION_
CONTROL

Interfaces

InitPersistence
Mechanism

UseTransaction
Control

Exceptions

TransactionException
RepositoryException

Composition Rules

persist(Business_Rules);
controlTransaction(Business_Rules);

interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, RepositoryException);

interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,
ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,
ManageDistributedInfo;

receiveException(interfaceSet, RepositoryException);

interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, TransactionException);

interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;
receiveException(interfaceSet, TransactionException);

Reasoning

Data_Manager and Transaction_Control comprise the persistence services of the system. Data_Manager
provide services, such as insert, update and search, for handling with persistent information manipulated
by the system. This component depends on a specific persistence platform. Transaction_Control provides
services to allow the transaction control for persisting information. These services – begin transaction,
commit transaction and rollback transaction – are provided by the TransactionControl interface. This
component is also in charge of the persistence services initialization via the PersistenceMechanism
interface.

The initPersistenceMechanism is a required interface used to request the initialization of the persistence
services. In the Health Watcher architecture it is realized by the Business_Rules component. Similarly,
the UseTransactionControl interface requires transaction control services and is also realized by the
Business_Component.

TransactionException and RepositoryException are persistence-related exceptional events raised by the
Transaction_Control and Data_Manager components, respectively. They are received by the components
that call the services of these components.

Figure 15. Aspectual template for the persistence architectural concern.

Transaction_Control component. The second pair of rules (lines 15–16) represents the creation
of the UseTransactionControl interface in the Business_Rules component and the connection of
this interface to the TransactionControl interface of the Transaction_Control component.

The following composition rules in Figure 15 are regarding the persistence-specific excep-
tional events raised or received by a number of interfaces. The raiseException(interfaceSet,
RepositoryException) high-level rule (Figure 15) specifies which interfaces raise the
RepositoryException exception: (i) all the provided interfaces in Data_Manager (ii) Info
Services in Business_Rules, and (iii) DistributedInfoServices in Distribution_Manager.
The Data_Manager component raises the exception, and the Business_Rules and
Distribution_Manager components propagate that exception. This rule is mapped to two
loop blocks of mapping rules which add the RepositoryException to every operation in the
aforementioned interfaces (lines 19–23). In a similar way, the receiveException(interfaceSet,

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

322 C. SANT’ANNA ET AL.

Aspect: Exception Handling
Component-and-connector view

Components

GUI_ELEMENTS DISTRIBUTION_
MANAGER

BUSINESS_RULES

Exceptions

TransactionException
RepositoryException
CommunicationException

Composition Rules

handleExceptions(GUI_Elements);
propagateExceptions(Distribution_Manager);
propagateExceptions(Business_Rules);

interfaceSet = DistributedInfoServices;
raiseException(interfaceSet, CommunicationException);

interfaceSet = ManageDistributedInfo;
receiveException(interfaceSet, CommunicationException);

interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, RepositoryException);

interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,
ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,
ManageDistributedInfo;

receiveException(interfaceSet, RepositoryException);

interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, TransactionException);

interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;
receiveException(interfaceSet, TransactionException);

Reasoning

RepositoryException is raised by Data_Manager when an error occurs while retrieving or storing data in
the database. Business_Rules receives this exception and propagates it to Distribution_Manager, which
propagates it to GUI_Elements. GUI_Elements handle this exception by presenting an error message to
the user. TransactionException is raised by Transaction_Control when an error occurs while executing a
transaction service, such as begin transaction, commit transaction, or rollback transaction. Similarly to
RepositoryException, TransactionException is propagated until GUI_Elements, which eventually shows
an error message to the user.

CommunicationException is raised by Distribution_Manager when an error related to remote
communication occurs. This exception is received by GUI_Elements, which show an error message to
the user. This exception comes from the alternative flow “A communication problem occurs” specified in
almost all use cases in the requirement specification.

Figure 16. Aspectual template for the exception handling architectural concern.

RepositoryException) high-level rule specifies which interfaces receive the Repository
Exception exception. It is translated to mapping rules that add the RepositoryException
to (i) specific required interfaces in the Business_Rules component, (ii) ManageInfo in
Distribution_Manager, and (iii) ManageDistributedInfo in GUI_Elements (lines 26–30).
Likewise, the TransactionException is added to the interfaces that raise or receive it
(lines 32–42). Note that adding an exception to a provided interface means that the interface raises
the exception. On the other hand, adding an exception to a required interface means that the interface
receives the exception from a provided interface connected to it.

All the decisions related to exception handling are captured in the template shown in
Figure 16, including: (i) the creation of exceptions, such as TransactionException, Repository
Exception, and CommunicationException; (ii) the attachment of the exceptions to the
interfaces that raise or receive them; (ii) the fact that GUI_Elements handles exceptions;
and (iv) the fact that Distribution_Manager and Business_Rules propagate exceptions.
Figure 18 shows the mapping of the exception handling architectural aspect (Figure 16) to the
component-and-connector view by means of the mapping rules (Section 3.2.1). The mapping

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 323

01 // These mapping rules a related to the …
02
03 //… “persist(Business_Rules)” composition rule
04 Connect Data_Manager.DiseaseRepository to Business_Rules.ManageDisease;
05 Connect Data_Manager.SymptomRepository to Business_Rules.ManageSymptom;
06 Connect Data_Manager.EmployeeRepository to Business_Rules.ManageEmployee;
07 Connect Data_Manager.HealthUnitRepository to Business_Rules.ManageHealthUnit;
08 Connect Data_Manager.SpecialityRepository to Business_Rules.ManageSpeciality;
09 Connect Data_Manager.ComplaintRepository to Business_Rules.ManageComplaint;
10 Connect Data_Manager.AddressRepository to Business_Rules.ManageAddress;
11
12 //… “controlTransaction(Business_Rules)” composition rule
13 Add interface initPersistenceMechanism to Business_Rules;
14 Connect Transaction_Control.PersistenceMechanism to Business_Rules.initPersistenceMechanism;
15 Add interface UseTransactionControl to Business_Rules;
16 Connect Transaction_Control.TransactionControl to Business_Rules.UseTransactionControl;
17
18 //… “raiseException(interfaceSet, RepositoryException)” composition rule
19 interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;
20 Forall I in interfaceSet
21 operationSet = All operations in I;
22 Forall O in operationSet
23 Add exception RepositoryException to O;
24
25 //… “receiveException(interfaceSet, RepositoryException)” composition rule
26 interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,

ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,
ManageDistributedInfo;

27 Forall I in interfaceSet
28 operationSet = All operations in I;
29 Forall O in opeartionSet
30 Add exception RepositoryException to O;
31
32 //... “raiseException(TransactionControl, TransactionException)” composition rule
33 interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;
34 Forall I in interfaceSet
35 operationSet = All operations in I;
36 Forall O in operationSet
37 Add exception TransactionException to O;
38
39 //… “receiveException(UseTransactionControl, TransactionException)” composition rule
40 interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;
41 Forall I in interfaceSet
40 operationSet = All operations in I;
41 Forall O in operationSet
42 Add exception TransactionException to O;

Figure 17. Mapping the persistence architectural aspect to the component-and-connector view.

rules related to RepositoryException and TransactionException are omitted because they
are identical to the ones shown for the persistence architectural aspect (Figure 17). The handle
Exceptions(GUI_Elements) high-level composition rule (Figure 16) means that the
GUI_Elements component handles the exceptions it receives. It is translated into the
Play mapping rule (line 04), which indicates that GUI_Elements plays the role of
exception handler. The propagateExceptions(Distribution_Manager) and propagate-
Exceptions(Business_Rules) mean that Distribution_Manager and Business_Rules,
respectively, propagate the exceptions they receive. Each of them is also translated to the Play map-
ping rule (lines 07–10), which specifies that they play the role of exception propagator. The next
composition rules in the template (Figure 16) determine which interfaces raise or receive excep-
tions. As previously explained for the persistence architectural aspect, these composition rules are
translated to blocks of the Add mapping rule (from line 17 on).

4.1. Concern-driven modularity analysis

Although typical architecture modularity problems are related to the inadequate modularization of
concerns, most of the current quantitative assessment approaches do not explicitly consider con-
cern as a measurement abstraction. A number of architecture quantitative assessment methods are
targeted at guiding decisions related to modularity, without calibrating the measurement outcomes
to the driving architectural concerns. A number of case studies have pointed out that detection of
certain concern-related design flaws can be observed in early design stages [23–25].

One of the reasons for this limitation of current architecture measurement approaches was the
lack of a systematic support for mapping and documenting of architectural concerns. As previously
shown, the aspectual template approach provides a means for documenting the concerns in architec-
ture description, that is registering the architecture elements related to each considered architectural

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

324 C. SANT’ANNA ET AL.

01 // These mapping rules a related to the …
02
03 “… handleExceptions(GUI_Elements)” composition rule
04 Play GUI_Elements, role Exception Handler
05
06 “… propagateExceptions(Distribution_Manager)” composition rule
07 Play Distribution_Manager, role Exception Propagator
08
09 “… propagateExceptions(Business_Rules)” composition rule
10 Play Business_Rules, role Exception Propagator
11
12 “… raiseException(interfaceSet, CommunicationException)” composition rule
13 operationSet = All operations in DistributedInfoServices;
14 Forall O in operationSet
15 Add exception CommunicationException to O;
16
17 “… receiveException(interfaceSet, CommunicationException)” composition rule
18 operationSet = All operations in ManageDistributedInfo;
19 Forall O in operationSet
20 Add exception CommunicationException to O;
21 …
22 …

Figure 18. Mapping the exception handling architectural aspect to the component-and-connector view.

Table III. Suite of concern-driven architectural metrics.

Attribute Metric Definition

Concern Concern Diffusion over It counts the number of architectural components
Diffusion Architectural Components (CDAC) which contributes to the realization of a

certain concern.
Concern Diffusion over It counts the number of interfaces which contributes
Architectural Interfaces (CDAI) to the realization of a certain concern.

Concern Diffusion over It counts the number of operations which contributes
Architectural Operations (CDAO) to the realization of a certain concern.

Dependence Component-level Interlacing Between It counts the number of other concerns with which
Between Concerns (CIBC) the assessed concerns share at least a component.
Architectural Interface-level Interlacing Between It counts the number of other concerns with which
Concerns Concerns (IIBC) the assessed concerns share at least an interface.

Operation-level Overlapping It counts the number of other concerns with which
Between Concerns (OOBC) the assessed concerns share at least an operation.

Component Lack of Concern-based It counts the number of concerns addressed by the
Cohesion Cohesion (LCC) assessed component.

concern in the system. Therefore, this approach allows the definition and application of metrics that
are based on the concern abstraction. In this context, we defined an initial suite of concern-driven
architecture metrics [22] and applied them in the HW architecture [22], to evaluate their usefulness
on analysing architecture modularity. We also use the same set of metrics in other studies [38].

Our metrics suite mainly relies on evaluating the modularization of architectural concerns. There-
fore, it includes metrics for quantifying separation of concerns and their interactions. For instance,
it quantifies the diffusion of a concern realization within architecture specification elements, such as
components and interfaces. Our concern-oriented metrics focus on the evaluation of software archi-
tecture representations, such as UML-based or ADL specifications, and are computed based on the
documentation of aspectual templates. Table III presents a summary of the architecture metrics suite
with a brief definition for each of the metrics and their association with distinct modularity attributes
they measure. To calculate the metrics values, we rely on the aspectual templates for identifying the
architectural elements related to a concern.

We undertook a case study to illustrate how aspectual templates can be used in a measurement
framework to help architects quickly summarize and evaluate the merits of architectural alterna-
tives. In this case study we compared the concern modularization in two alternatives of the Health
Watcher architecture (herein referred to as first and second alternatives). The first alternative is
the architecture obtained from the Java version of Health Watcher. The second alternative is the
architecture obtained from the AspectJ version of Health Watcher. The architecture description of
both alternatives is based on UML diagrams. The second alternative, in particular, uses a UML

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 325

extension to describe component-and-connector views of aspect-oriented software. It is important
to highlight that we applied aspectual templates to the architecture description of both alternatives.
Having the aspectual templates, we were able to compute the concern-driven architectural metrics
(Table III). Note that the purpose of this section is not discussing the differences between the alterna-
tives in details, but showing that aspectual templates make it possible for architects and architecture
reviewers to reason about architectures in ways that have previously been difficult to perform.

Table IV presents the results obtained with the application of the concern diffusion and depen-
dence between concerns metrics (Table III) on both alternatives. The metrics results are shown
per concern (first column). The results for the first and second architectural alternatives are shown
side-by-side for each metric and concern. The detailed discussion of the results and architecture
alternatives is out of the scope of this paper. The results for the concern diffusion metrics (CDAC,
CDAI and CDAO) show that the persistence and exception handling concerns are spread over more
architecture elements in the first solution. The outcomes also show that the second alternative elim-
inates the dependence between concerns at the component level. Note, for instance, that, in the first
alternative, the business concern is interlaced with two concerns at the component level (CIBC met-
ric). The dependence related to interface-level interlacing is also lower in the second solution. For
instance, the persistence concern is interlaced with 4 other concerns at the interface level in the first
alternative, against only one concern in the second one (IIBC metric). Finally, the results regarding
the metric for operation-level overlapping show that the second alternative for the Health Watcher
architecture was not able to improve this kind of dependence.

We developed a tool, called Concern-Oriented Measurement Tool (COMET), which automates
the application of the concern-driven metrics aforementioned [39]. This tool partially supports the
notion of aspectual template. COMET allows the architect to import the architecture specification
of a system from an XML file or define the architecture directly in the tool. Having the archi-
tecture imported or defined, the architect can specify the architectural elements related to each
architecturally-relevant concern. COMET includes a module that allows the architect to specify and
manage the list of concerns in the architecture. It also allows the architect to assign each architectural
element to the concern being realized by it. In addition, the architect can view all the architecture
elements related to a concern in a single place, as is done by the aspectual template mechanism.
For now, COMET only supports the notion of mapping rules, more specifically the Add mapping
rule: each architectural element assigned to a concern represents an element added to the architec-
ture because of the realization of the concern. We are working on extending COMET to support all
the features of an aspectual template, such as composition rules, reasoning documentation and the
complete set of mapping rules.

5. DISCUSSION

This section discusses the benefits and drawbacks (Section 5.1) of modularly capturing crosscut-
ting decisions using our approach described in Sections 3 and 4. This discussion is based on our
extensive experience in both building aspect-oriented software architectures for different applica-
tion domains [28–34], and defining and assessing aspect-oriented abstractions to the architectural
stage [28, 35, 36].

5.1. Advantages and drawbacks

In the beginning, we identified numerous problems in conventional architecture-centric develop-
ment approaches. By aspectizing crosscutting architectural decisions, we were able to address those
issues and bring additional benefits. First, our documentation approach seems to enhance modu-
lar and compositional reasoning of architectural decisions. With aspectual templates architects can
reason about the otherwise crosscutting concerns in isolated and combined manners. In fact, the
template sections describing the reasoning and the composition rules are more than just simple
decisions — they also communicate the compositional rationale, and from where the architectural
decisions came from. Suppose, for instance, that an architect wants to work out all the operations
that raise or receive persistence-specific exceptions in the Health Watcher architecture. Without

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

326 C. SANT’ANNA ET AL.

Ta
bl

e
IV

.
H

ea
lth

w
at

ch
er

:c
on

ce
rn

di
ff

us
io

n
an

d
de

pe
nd

en
ce

be
tw

ee
n

co
nc

er
ns

m
ea

su
re

s.

C
D

A
C

C
D

A
I

C
D

A
O

C
IB

C
II

B
C

O
O

B
C

C
on

ce
rn

s
Fi

rs
t

Se
co

nd
Fi

rs
t

Se
co

nd
Fi

rs
t

Se
co

nd
Fi

rs
t

Se
co

nd
Fi

rs
t

Se
co

nd
Fi

rs
t

Se
co

nd
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.
al

te
rn

.

G
U

I
1

1
2

2
14

14
0

0
3

0
0

0
D

is
tr

ib
ut

io
n

2
1

5
1

51
16

0
0

3
1

1
1

B
us

in
es

s
1

1
8

9
57

57
2

0
2

0
0

0
P

er
si

st
en

ce
5

2
22

9
15

4
45

2
0

4
1

1
1

C
on

cu
rr

en
cy

2
1

2
2

4
4

2
0

0
0

0
0

E
xc

ep
ti

on
H

an
dl

in
g

5
2

24
8

15
6

52
0

0
3

2
2

2

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 327

the support of the persistence architectural aspect, global reasoning [3] is required to discover the
complete set of interfaces, in the sense that the architect has to examine all the operations in all
interfaces of all architectural components. With the support of the persistence architectural aspect,
only modular reasoning is necessary, because the architect has only to examine the persistence tem-
plate (Figure 15). Looking into the composition rules it is straightforward to identify the interfaces
whose operations comprises persistence-specific exceptions: the set of interfaces are specified just
before each raiseException or receiveException rule.

‘Architectural aspectization’ also lets you trace decisions back to concerns in requirements (such
as, availability, performance, and security). The exception handling aspectual template (Figure 16),
for instance, explicitly mentions that the CommunicationException comes from a specific alter-
native flow entry in the use case description of the Health Watcher system. This is an example on
how aspectual templates enhance upstream traceability. With respect to downstream traceability,
‘architectural aspectization’ also improves the identification of candidates to design and implemen-
tation aspects, linking them with their counterparts in the design and implementation artefacts. The
composition rules inform the design team that those architectural elements might be potentially
modularized as design and implementation aspects. In fact, based on the analysis of the crosscutting
impact of the persistence and exception handling concerns, the Health Watcher system implemen-
tation was reengineered to modularise the transaction manager control and the exception handling
concern with AspectJ [37] aspects [23].

In architectural evolution processes, the aspectual templates let architects by and large know the
effects the previous design decisions had in the evolving system. Without such an explicit handling
of architectural choices, the evolution process would likely lead to the violation of relevant crosscut-
ting assumptions and influences that were not properly documented just because there was no proper
support for their expression. Consider an evolution scenario in which the Health Watcher system has
to be changed to support the management of historical information about the people who interact
with the system making complaints or asking information about the health services. This category
of user is called the citizen in the system requirement specification. In this context, two new inter-
faces — CitizenRepository and ManageCitizen — have to be included in the Data_Manager
and Business_Rules component, respectively (Figure 14). Also, new operations related to the new
service have to be included in the InfoServices, ManageInfo, DistributedInfoServices and
ManageDistributedInfo interfaces. At this point, the architect must discover what exceptions
must be raised or received by the new operations, or more generally, discover the existing structure
of exception handling. Without the exception handling architectural aspect (Figure 16), this requires
global reasoning, because the architect has to check the exceptions raised or received by a number of
existing operations in different interfaces of four components: Data_Manager, Business_Rules,
Distribution_Manager and GUI_Elements (Figure 14). With the support of the persistence
architectural aspect (Figure 16), only modular reasoning is required, because just checking the
template the architect can discover the complete structure of exception handling, and, as conse-
quence, find out that: (i) RepositoryException must be handled by all included operations; (ii)
TransactionException must be handled by the operations inserted in InfoServices, Manage-
Info, DistributedInfoServices and ManageDistributedInfo interfaces; and (iii) Communi-
cation Exception must be handled by DistributedInfoServices and ManageDistributedInfo
interfaces.

An aspect-oriented approach enriches the knowledge embedded in architectural models. We
explicitly model the implications of broadly scoped properties, in the same way we model compo-
nents, interfaces, processes, or a design space of possible architectural solutions. This externalizes
architectural knowledge present in a development team or organization, and is the basis for reuse.
With the support of the architectural template the knowledge about Security is explicitly expressed
and include all the information about it. This modular representation of the security concern also
allows the reuse of this concern in other composition. For instance, to reuse the security concern
of Figure 4 in the Health Watcher system the architect has to adapt the composition rules to the
new scenario and to adjust the reasoning description. Without the template, the security concern
would be scattered and tangled over the context-sensitive tourist guide and it cannot be reused in
other systems.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

328 C. SANT’ANNA ET AL.

We believe that the effort required to grasp the proposed templates is not a major bottleneck
because they use the concern-specific terminology to describe the effects of the architectural deci-
sions. Anybody can read the templates and respective composition rules in Figures 3 and 4, and
understand how the team developed them. The architects do not need to change the way that they
work while expressing architectural aspects. The aspectual templates can be seen as a complemen-
tary architectural view in addition to the views commonly used by the architects. For instance,
no additional effort or extra technical ability is required from the architect to specify an architec-
tural aspect for the Performance concern of the Tourist Guide architecture (Figure 2). In addition,
because the template provides a localized abstraction, it facilitates the specification of the architec-
tural decisions and also the composition rules and reasoning. Without the template, the specification
of the composition between the Performance architectural aspect and navigate, ext_service, and
get_info methods would be spread in different places: navigator and information_retrieval
components. It is important to highlight that the idea is that the architect should not work directly
with low-level mapping rules for most of the activities. He or she should mainly work with high-
level composition rules and with tools, such as COMET (Section 4.1), that support the generation
and maintenance of mapping rules.

The challenge of reasoning about architectural decisions stems also from understanding how the
decisions related to a concern interact with the decisions related to other concerns. One of the
limitations of architectural aspects is that an aspectual template deals with a single concern at a time
and does not systematically document its concern interactions with other concerns. However, the
analysis of the mapping rules generated from all templates allows the detection of architecture ele-
ments that are impacted shared by more than one concern architectural aspect. We can say that these
elements represent architectural decisions shared by concerns. For instance, shared architecture ele-
ments represent a kind of concern interaction. In the Health Watcher architecture, for example,
persistence and exception handling concerns interact with each other, because the system handles
two persistence-specific exceptional events: repositoryException and transactionException.
These two exceptions appear in the mapping of both Persistence and Exception Handling architec-
tural aspects (Figures 17 and 18, respectively). If either concern is removed from the architecture
specification, both exceptions have to be removed. In the future we plan to extend the aspectual
template to systematic document interaction among concerns.

6. FUTURE DIRECTIONS AND RELATED WORK

Nowadays companies rely on architectural design reviews as critical points. Architects recognize the
importance of making explicit assumptions [1] and tradeoffs within the architectural design space.
However, the management of broadly scoped architectural concerns is still made in an idiosyncratic
fashion, with limited support for their modular and compositional reasoning. Research on software
architecture will certainly have to face this problem, and the marriage of architecture design and
aspect orientation might potentially play a key role to address this challenge at different levels.
Section 6.1 discusses future trends related to this marriage and Section 6.2 presents work already
done within the area of software architecture that is related to architectural aspects.

6.1. Future directions

The crosscutting nature of architectural decisions can manifest in several ways. As a result,
architectural aspects require proper mechanisms and notations to identify, represent and com-
pose them. There are some modelling approaches to exclusively support the explicit description
of architectural aspects at the logical view [28, 35, 36, 40]. To the best of our knowledge, there
is no work in the literature that provides modularity mechanisms to capture crosscutting deci-
sions in multiple architectural views, as we have presented in this paper. However, our proposal
does not tackle all the possible architectural views being used in a single architecture. Because the
architecture of a system is represented by general and domain-relevant views, each providing a dis-
tinct perspective of the system, the crosscutting concerns must be also modularly represented in the
multiview scenario.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 329

Because the architecture of a system are represented by several views, each providing a distinct
perspective of the system, the crosscutting concerns must be also modularly represented in the mul-
tiview scenario. There is no research work that copes with an aspect-oriented architectural view and
the provision of multiview ‘weavers’, which automate their composition [36]. Such a view would
simplify the architecting process and give a better picture of the system’s overall structure. In addi-
tion, there is a need for the development of methodologies and tools to bridge the gap between the
decisions specification and architecture descriptions based on ADLs. How to represent the architec-
tural decisions at the ADL level is still a major challenge to software engineers. Although recently
various proposals [28, 40] that integrate aspect-orientation and ADLs have emerged, they do not
cope with abstractions and mechanisms to represent crosscutting architectural choices. Some works
extend the component-connector specifications with new elements to represent architectural aspects
and composition rules as first-class elements.

It is almost always cost-effective to assess the crosscutting design choices as early as possible
in the life cycle. Thus, to foster the benefits of more modular software architectures, we also need
architecture design analysis methods and tools to evaluate if the architecture reflects a proper modu-
larization and composition of architectural aspects. Traditional methods for architecture assessment,
such as ATAM [19], can be extended to deal with those issues. Tekinerdogan [41] provides a first
step in that direction by defining an ATAM extension to support the identification of candidates for
architectural aspects.

6.2. Related work

The architectural perspectives approach [8] is closely related to our work in the sense that it also
considers crosscutting concerns at software architecture specification. Architectural perspectives
provide a framework for structuring about how to design systems to achieve a particular quality
attribute. An architectural perspective attempts at providing advice relating to the cross view con-
cerns of a particular quality attribute, such as security. It includes activities, checklists, tactics and
guidelines to guide the process of ensuring that a system exhibits a particular set of closely related
quality properties that require consideration across a number of the system’s architectural views.
However, the use of a perspective does not explicitly record the architectural decisions. Therefore,
the aspectual templates that we propose in this work can be complementarily used to record the
architectural decisions (and their rationale) made as a result of applying a perspective. Moreover,
architectural perspectives are only about concerns related to quality attributes, whereas architectural
aspects can include other kinds of concerns, such persistence.

Architectural tactics [20, 21] are also related to our work. An architectural tactic is a character-
ization of architectural decisions that are used to achieve a desired quality attribute response. For
instance, Break the dependency chain is a key modifiability tactic that prescribes inserting an inter-
mediary between the publisher and consumer of data and service to prevent propagation of change.
The decisions associated to an architectural tactic can impact different parts (and views) of a sys-
tem architecture specification. Nevertheless, likewise architectural perspectives, the architectural
tactics approach does not provide a support for recording the derived architectural decisions and for
mapping the decisions to a language that express the compositional relationship among the archi-
tectural elements. In fact, architectural perspectives (mentioned before) embrace and extend tactics
by providing advice relating to what the architect should know, do and be aware of, and the specific
solution advice provided by an architectural tactic [8]. An architectural perspective can include a set
of architectural tactics.

More recently, Bass et al. [9] claimed that the design decisions derived from an architectural
tactic can be viewed as an architectural aspect. In other words, each use of a tactic can be con-
sidered as an architectural aspect, where the join points are the places in the architecture where it
was applied. They defined architectural join points as well-defined points in the specification of the
software architecture. Architectural point cuts are means of referring to collections of architectural
join points. An architectural advice is a specification of transformations to perform at architectural
join points. Architectural aspects are architectural views consisting of architectural point cuts and
architectural advices. This definition is based on the AspectJ programming language [37] terms.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

330 C. SANT’ANNA ET AL.

Nonetheless, they do not define a systematic way for describing an architectural aspect. Besides,
this approach is also restricted to concerns related to quality attributes. The architectural templates
and the associated mapping rules that allow the translation of the decisions to different archi-
tectural views go beyond the use of architectural tactics to guide the identification of candidate
architectural aspects.

Pinto and Fuentes [44] proposed an XML-based aspect-oriented ADL called AO-ADL. The
structural organization of AO-ADL is based on the fact that the main difference of architectural
crosscutting and noncrosscutting concerns is in the role they play in a particular composition bind-
ing and not in the internal behaviour itself. Therefore, AO-ADL does not include a new element to
model aspects. Components in AO-ADL model either crosscutting or non-crosscutting behaviour.
This is called a symmetric approach. Thus, a component is considered an aspect when it participates
in an aspectual interaction. In this context, another contribution of AO-ADL is the extension of the
semantic of conventional connectors to represent the crosscutting effect of ‘aspectual’ components.
This means that AO-ADL connectors provide support to describe not only typical communication
as in traditional ADLs, but also crosscutting influence among components. AO-ADL, similarly to
other aspect-oriented ADLs, only provides mechanisms to represent the component-and-connector
view of an architecture. It is not able to describe the influence of architectural concerns on
different views.

7. CONCLUSIONS

Architectural decisions are in the heart of the software development process because they provide
the bridge between the problem space and the solution space. The promotion of modular and compo-
sitional reasoning about architectural decisions is essential to help software developers to understand
if they have an architecture compatible with their requirements. It is also a critical success factor
for further system design and implementation. However, the broadly scoped nature of early design
choices imposes a number of problems to software engineers. In fact, architectural crosscutting
concerns are even more challenging than implementation crosscutting concerns. While the latter
typically impacts a single artefact (source code) often based on a single programming language,
crosscutting concerns at the architectural level impacts a multitude of views with heterogeneous rep-
resentations. Using only conventional approaches architects often get in trouble because important
influences are scattered and tangled in the architectural views.

We proposed an aspect-oriented approach for documenting crosscutting high-level design deci-
sions and supporting modular and compositional reasoning about them. We defined an abstraction
called architectural aspect. An architectural aspect is represented by a template that captures the
architectural decisions related to a broadly scoped concern, which otherwise would be scattered
and tangled over the architecture description and its multiple views. We evaluated the usefulness of
architectural aspects in the light of two case studies from different application domains. On the basis
of these cases studies, we conclude that the proposed technique is promising to improve the modular
and compositional reasoning of architectural crosscutting choices, and, as a consequence, enhance
architecture evolvability, modularity assessment and promote knowledge reuse. We have developed
a tool called COMET (Section 4.1), which provides automated support for the essential elements of
our aspectual templates. We also plan to undertake other case studies to investigate whether and how
the aspectual templates need to be extended for explicitly documenting issues related to interactions
between crosscutting architectural decisions. However, this open research question is not limited to
our work. In fact, this is the next challenge to be addressed by most of the existing aspect-oriented
languages, whether targeted either at the architectural or implementation stage.

On the basis of our experience, AOSD techniques can certainly help organizations to improve
their state of practice of software architecture. They support software architects with enhanced mod-
ular and compositional reasoning, which are imperative throughout all the software development
phases. They also complement existing architecture-centric development approaches, both upstream
and downstream. Upstream, aspect-oriented abstractions provide a natural way to modularize and

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

MASTERING CROSSCUTTING ARCHITECTURAL DECISIONS WITH ASPECTS 331

compose decisions that are directly influenced by broadly scoped concerns coming from the require-
ments. At the same time, downstream, explicit representation of architectural aspects facilitates the
satisfaction of top-level crosscutting decisions at the detailed design and implementation stages.

ACKNOWLEDGEMENTS

This work was partially supported by European Commission Grant IST-2-004349: European Network of
Excellence on AOSD (AOSD-Europe). Claudio is also supported by CNPq: National Institute of Science and
Technology for Software Engineering (grant 573964/2008-4) and Universal Project (grant 480374/2009-0);
and CAPES: PROCAD-NF (grant 720/2010) . Alessandro is supported by FAPERJ: distinguished scientist
(grant E-26/102.211/2009) and DANSis project (grant E-26/111.152/2011); CNPq: productivity scholar-
ship (grant 305526/2009-0) and Universal Project (grants 483882/2009-7, 483699/2009-8, 485348/2011-0);
CAPES: international collaboration scheme (grant 5688-09), PROCAD-NF (grant 720/2010); and PUC-Rio
(productivity grant). Thais is supported by CNPq: productivity scholarship (grant 307269/2010-8) and PDI
(grant 560266/2010-3).

REFERENCES

1. Lago P, van Vliet H. Explicit assumptions enrich architectural models. Proceedings of the 27th International
Conference on Software Engineering (ICSE’05), 2005; 206–214.

2. Louridas P, Loucopoulos P. A generic model for reflective design. ACM (TOSEM) 2000; 9(2):199–237.
3. Kiczales G, Mezini M. Aspect-oriented programming and modular reasoning. Proceedings of the 27th International

Conference on Software Engineering (ICSE’05), 2005; 49–58.
4. Rashid A, Moreira A. Domain models are not aspect free. Proceedings of MoDELS/UML, Springer Lecture Notes in

Computer Science, 4199, 2006; 155–169.
5. Kruchten P. Architectural blueprints – The “4C 1” view model of software architecture. IEEE Software November,

1995; 12(6):42–50.
6. Shaw M, Garlan D. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, Inc.: Upper Saddle

River, NJ, USA, 1996.
7. Tyree J, Akerman A. Architecture decisions: Demystifying architecture. IEEE Software 2005; 22(2):19–27.
8. Woods E, Rozanski N. Using architectural perspectives. In Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture (WICSA ’05) - Volume 00 (November 06 – 10, 2005). IEEE Computer Society, Washington,
DC, 2005; 25–35.

9. Bass L, Klein M, Northrop L. Identifying aspects using architectural reasoning. Workshop on Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design, AOSD’04, 2004; 50–56.

10. Molesini A, Garcia A, Chavez C, Batista T. On the quantitative analysis of architecture stability in aspectual decom-
positions. Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture (WICSA’08), Vancouver,
BC, Canada, 2008; 29–38.

11. Greenwood P, Bartolomei T, Figueiredo E, Dosea M, Garcia A, Cacho N, Sant’Anna C, Soares S, Borba P, Kulesza
U, Rashid A. On the impact of aspectual decompositions on design stability: An empirical study. Proceedings of the
21st European Conference on Object-Oriented Programming (ECOOP.07), Berlin, Germany, 2007; 176–200.

12. Sant’Anna C, Figueiredo E, Garcia A, Lucena C. On the modularity of software architectures: A concern-driven
measurement framework. Proceedings of the 1st European Conference on Software Architecture, Madrid, Spain,
September 24-26, 2007; 207–224.

13. Filman R, et al. Aspect-Oriented Software Development. Addison-Wesley: Boston, MA, 2004.
14. Kiczales G, et al. Aspect-oriented programming. In Proceedings of the 11th European Conference on Object-

Oriented Programming (ECOOP’97), 1997; 220–242.
15. Rashid A, Moreira A, Araújo J. Modularization and composition of aspectual requirements. Proceedings of the 2nd

International Conference on Aspect-Oriented Software Development (AOSD’03), 2003; 11–20.
16. Sampaio A, Greenwood P, Garcia A, Rashid A. A comparative study of aspect-oriented requirements engineering

approaches. Proceedings of the International Symposium on Empirical Software Engineering and Measurement,
ESEM.07, Madrid, Spain, 2007; 166–175.

17. Davies N, et al. Using and determining location in a context-sensitive tour guide. IEEE Computer 2001; 34(8):35–41.
18. Moreira A, Rashid A, Araujo J. Multi-dimensional separation of concerns in requirements engineering. International

Conference on Requirements Engineering (RE), IEEE Computer Society, 2005; 285–296.
19. Clements P, Kazman R, Klein M. Evaluating Software Architectures: Methods and Case Studies. Addison-Wesley

Professional: Boston, MA, 2002.
20. Bachmann F, Bass L, Klein M. Deriving Architectural Tactics: A step towards methodical architectural design

(CMU/SEI-2003-TR-004). Software Engineering Institute, Carnegie Mellon University: Pittsburgh, PA, 2003.
21. Bass L, Clements P, Kazman R. Software Architecture in Practice, (2nd edn). Addison Wesley: Boston, MA, 2003.
22. Sant’Anna C, Figueiredo E, Garcia A, Lucena C. On the modularity assessment of software architectures: Do my

architectural concerns count? Proceedings of the International Workshop on Aspects in Architecture Descriptions

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

332 C. SANT’ANNA ET AL.

(AARCH.07), International Conference on Aspect-Oriented Software Development (AOSD’07), Vancouver, Canada,
2007.

23. Soares S, et al. Implementing distribution and persistence aspects with aspectJ. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’02), 2002; 174–190.

24. Filho F, Garcia A, Rubira C. Extracting error handling to aspects: A cookbook. Proceedings of the 23rd International
Conference on Software Maintenance (ICSM’07), Paris, France, 2007; 134–143.

25. Kulesza U, Sant’Anna C, Garcia A, Coelho R, Staa A, Lucena C. Quantifying the effects of aspect-oriented program-
ming: A maintenance study. Proceedings of the 22nd International Conference on Software Maintenance (ICSM’06),
Philadelphia, USA, 2006; 223–233.

26. Silva L, et al. On the symbiosis of aspect-oriented requirements and architectural descriptions. 10th Workshop on
Early Aspects - Aspect-Oriented Requirements Engineering and Architecture Design, International Conference on
Aspect-Oriented Software Development (AOSD’07), Vancouver, Canada, 2007; 75–93.

27. Buschmann F, et al. Pattern-Oriented Software Architecture: A system of Patterns. John Wiley: New York,
NY, 1996.

28. Batista T, Chavez C, Garcia A, Sant’Anna C, Kulesza U, Rashid A, Filho F. Reflections on architectural connec-
tion: Seven issues on aspects and ADLs. Proceedings of the International Workshop on Early aspects at ICSE’06,
Shanghai, China, 2006; 3–10.

29. Cacho N, Sant’Anna C, Garcia A, Batista T, Lucena C. Composing design patterns: A scalability study of aspect-
oriented programming. Proceedings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD’06), Bonn, Germany, 2006; 109–121.

30. Garcia A, et al. Modularizing design patterns with aspects: A quantitative study. Proceedings of the 4th International
Conference on Aspect-Oriented Software Development (AOSD’05), Chicago, USA, 2005; 3–14.

31. Kulesza U, Alves V, Garcia A, Lucena C, Borba P. Improving extensibility of object-oriented frameworks with AOP.
Proceedings of the 9th International Conference on Software Reuse (ICSR’06), Springer, LNCS, Torino, Italy, 2006;
231–245.

32. Rashid A, Chitchyan R. Persistence as an aspect. Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD’03), USA, 2003; 120–129.

33. Filho F, Rubira C, Ferreira R, Garcia A. Aspectizing exception handling: a quantitative study. In Advanced Topics in
Exception Handling Techniques, LNCS 4119, Springer, 2006; 255–274.

34. Figueiredo E, Silva B, Sant’Anna C, Garcia A, Whittle J, Nunes D. Crosscutting patterns and design stability:
An exploratory analysis. Proceedings of the 17th IEEE International Conference on Program Comprehension,
Vancouver, May 2009; 138–147.

35. Krechetov I, Tekinerdogan B, Garcia A, Chavez C, Kulesza U. Towards an integrated aspect-oriented modeling
approach for software architecture design. 8th Workshop on Aspect-Oriented Modelling (AOM.06), International
Conference on Aspect-Oriented Software Development (AOSD’06), Bonn, Germany, 2006.

36. Chitchyan R, Rashid A, Sawyer P, Garcia A, Pinto M, Tekinerdogan B, Clarke SJ. A survey of analysis and design
approaches. AOSD-Europe Report D11, 2005.

37. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W. An overview of aspectJ. In Proceedings of the
15th European Conference on Object-Oriented Programming (ECOOP’01), Springer-Verlag, 2001; 327–355.

38. Sant’Anna C, et al. On the quantitative assessment of modular multi-agent system architectures. NetObjectDays
(MASSA), 2006.

39. Sant’Anna C. On the modularity of aspect-oriented design: A concern-driven measurement approach. PhD Thesis,
Computer Science Department, PUC-Rio, Brazil, April 2008.

40. Cuesta C, et al. Architectural aspects of architectural aspects. 2nd European Workshop on Software Architecture
(EWSA), LNCS 3527, 2005; 247–262.

41. Tekinerdogan B. ASAAM: Aspectual software architecture analysis method. In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA’04), Norway, 2004; 5–14.

42. Magee J, Dulay N, Eisenbach S, Kramer J. Specifying distributed software architectures. Proceedings of the 5th
European Software Engineering Conference (ESEC’95), LNCS 989, Sitges, Spain, 1995; 137–153.

43. Magee J, Kramer J. Dynamic structure in software architectures. SIGSOFT ’96 Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering. ACM New York, NY, USA, 1996; 3–14.

44. Pinto M, Fuentes L. AO-ADL: An ADL for describing aspect-oriented architectures. Early Aspect Workshop at
AOSD’07, 2007; 94–114.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:305–332
DOI: 10.1002/spe

