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Abstract – We present an extension of the deformation method applied to self-dual solutions
of generalized Abelian Higgs-Chern-Simons models. Starting from a model defined by a potential
V (|φ|) and a non-canonical kinetic term ω(|φ|)|Dµφ|2 whose analytical domain-wall solutions are
known, we show that this method allows to obtain infinitely many new analytic solutions of new
models defined by other functions Ṽ and ω̃. We present some examples of deformation functions
leading to new families of models and their associated analytic solutions.

Copyright c© EPLA, 2013

Introduction. – Topological defects play an important
role in several areas of modern theoretical physics, such
as high-energy physics [1], cosmology [2] and condensed-
matter physics [3]. Such defects emerge as classical solu-
tions of nonlinear field theories which possess degenerated
vacua. Typical examples are domain walls described by
kink solutions of the φ4 model, Ginzburg-Landau vortices
and monopoles.
Usually, domain walls are solutions connecting two

distinct vacua of scalar field theories in one-space dimen-
sion, or in their embedding in higher dimensions, while
vortices emerge as solutions of models that couple charged
matter fields with gauge fields living in a (at least)
3-dimensional space-time, and monopoles in four space-
time dimensions.
In a (2+1)-dimensional space-time, minimal coupling

between charged matter and gauge fields can be imple-
mented by the Chern-Simons (CS) action. Although
the CS field cannot be conceived as a free field, its
coupling with matter fields imposes constraints in the
dynamics which have very relevant consequences, both
in classical and quantum theories, with either relativistic
or non-relativistic kinetics. In the non-relativistic (NR)
framework, particles coupled through the CS field carry
both electric charge and magnetic flux, and possess frac-
tional statistics [4]. Additionally, the NR scalar CS model

constitutes a seminal example of a Galilean-invariant
gauge-field theory [5]. Also, for a critical strength of
a quartic self-interaction of the scalar field, which
restores the scale invariance [6], this model provides a
field-theoretical description of the Aharonov-Bohm (AB)
scattering [7]; considering the Lorentz covariant field
theory, relativistic corrections to the AB scattering have
been obtained [8].
Self-dual soliton solutions have been found in the

relativistic, U(1)-invariant, Abelian, Higgs-Chern-Simons
(HCS) gauge theory where the symmetry-breaking poten-
tial of the Higgs field is U(ϕ)∼ |ϕ|2(|ϕ|2− v2)2 [9]; vortex
and domain-wall solutions have been also obtained [10].
This model was generalized by considering a non-canonical
kinetic term for the complex scalar field, W(|ϕ|)|Dµϕ|2,
providing self-dual vortex [11] and domain-wall [12] solu-
tions. Models with non-canonical kinetic terms (k -fields)
find also applications in strong-interaction physics [13]
and in cosmology [14].
Due to the nonlinearity, there is no general integration

method to solve analytically the equations of motion of
nonlinear field theories; only for a small set of models,
solutions of the equations of motion can be directly deter-
mined. However, for scalar fields in (1+1)-dimensions,
starting from a nonlinear model with known solutions,
infinitely many new models and their corresponding static
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solutions can be found using the deformation method [15].
This method works as follows. Choosing a deforma-
tion function f(φ), the model defined by the deformed

potential Ṽ (φ) = V [(f(φ))]/[f ′(φ)]2, where f
′
means the

derivative of f , possesses static solutions given by φ̃(x) =
f−1(φ(x)), where φ(x) is a solution of the static equa-
tion of motion of the original model with potential V (φ).
This procedure has been applied to generate defect solu-
tions of many models having polynomial interactions [16]
and new families of sine-Gordon and multi-sine-Gordon
models [17]. Also, an orbit-based extension of this method
has been applied to models involving two interacting scalar
fields [18].
The purpose of this letter is to extend the deformation

method to gauge field models considering specifically
the Abelian HCS theory, focusing particularly on the
Jackiw-Lee-Weinberg (JLK) domain-wall solution [10].
Firstly, we present the generalized Abelian HCS models
and write down the first-order equations obeyed by the
Bogomol’nyi-Prasad-Sommerfeld (BPS) [19] domain-wall
solutions. Then, the deformation method is extended to
domain-wall solutions of generalized Abelian HCS models
and some examples are given, illustrating the power of
the procedure in generating new models with their static
solutions. Finally, some remarks are made.

BPS domain walls in the generalized Abelian
HCS model. – We consider the generalized (2+1)-
dimensional Abelian HCS model defined by the
Lagrangian density [11]

LS =W(|ϕ|)|Dµϕ|2−U(|ϕ|)+ κ
4
εαβγAαFβγ , (1)

where ϕ is the complex Higgs field, Dµ = ∂µ+ ieAµ is
the covariant derivative and Fµν = ∂µAν − ∂νAµ is the
field strength tensor of the gauge potential Aµ. The self-
interaction potential, U(|ϕ|), is assumed to implement a
symmetry-breaking mechanism and the non-canonicity of
the kinetic term is engendered by the function W(|ϕ|);
taking W ≡ 1, one recovers the standard Abelian HCS
model. Note that, in the CS term, εαβγ is the fully
antisymmetric tensor and the electric and the magnetic
CS fields are E i =F i0 =−∂0Ai−∇iA0 and B= �∇× �A=
∂2A1− ∂1A2, respectively.
It is convenient to work with dimensionless quanti-

ties. In (2+1) dimensions, the scalar field ϕ has mass
dimension equal to 1/2, the same that we take for the
gauge field; this choice ensures that the mass dimension
of Aα agrees with the one obtained if a Maxwell term
were added to LS . It follows that the electric charge e
and the CS parameter κ have mass dimensions equal
to 1/2 and 1, respectively, so that e2/κ is dimension-
less. We can get an additional simplification if we absorb
the parameters e and κ by redefining space-time coordi-
nates and fields. Thus, with M being a mass scale of the
model, we define x̄µ =Me2xµ/κ, φ=

√
κϕ/
√
Me, Aµ =

κAµ/Me, V = κ2U/M3e4 and ω= e2W/κ; the dimension-
less Lagrangian density is then given by L= κ2LS/M3e4

and the action becomes S = κ
e2

∫
d3x̄L. To simplify the

notation, we remove the bar over the space-time coordi-
nates and use, from now on, only dimensionless quantities.
Variation of the action leads to the equations of motion

ωDµD
µφ+ ∂µωD

µφ− |Dµφ|2 ∂ω
∂φ∗
+
∂V

∂φ∗
= 0, (2)

1

2
εαβγFβγ =−Jα, (3)

where the current density, Jα = (ρ,�j ), is given by

Jα = iω [φ(Dαφ)∗−φ∗Dαφ] . (4)

The time component of eq. (3) states that the magnetic
field is equal to the planar electric-charge density, B = ρ,
which is the CS Gauss law. Also, for static field configu-
rations, we find

B = ρ= 2A0|φ|2ω(|φ|), Ea = εabjb, (5)

which shows that the electric-current density is perpen-
dicular to the electric field.
The energy-momentum tensor is given by

Tµν = ω [Dµφ (Dνφ)
∗+Dνφ (Dµφ)∗]

− gµν
[
ω|Dαφ|2−V (|φ|)

]
(6)

from which we obtain the energy density, ε= T00, and the
pressure components, P1 = T11 and P2 = T22.
We are interested in static domain-wall solutions.

Firstly, note that the complex phase of the scalar field
φ can be suppressed by a suitable gauge transformation.
Then, fixing the Coulomb gauge, we can search for
solutions of the form [10,12]

φ= h(x), Aµ = (A0(x), A1 = 0, A2 =A(x)), (7)

where h(x) and A(x) are real functions and x denotes the
x1-coordinate. This ansatz corresponds to domain walls
(actually lines in the plane) parallel to the x2-axis.
In this case, the static equations of motion reduce to

[2ωh′]′ = 2hω(A2−A20)+
dV

dh
, (8)

A′0 =−2ωh2A, (9)

and the Gauss law

A′ =−2ωh2A0, (10)

where the prime denotes derivation with respect to x.
From eqs. (9) and (10) we infer that A0A

′
0 =AA

′
, so

that time and space components of the gauge field are
constrained by

A20 =A
2−C, (11)

where C is a real constant. Also, consistency with eq. (8)
imposes a relation between the function ω(h) and the
potential V (h) expressed as

d

dh

[√
V/ω

h

]
=−2ωh. (12)
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Now, the stability condition P1 =P2 = 0 leads to the
first-order equations [20]

h′ =±hA, (13)

A′ =−2ωh2A0, (14)

with
V = h2ωA20. (15)

For h� 0 and A� 0, the sign + (−) in eq. (13) corresponds
to the kink (anti-kink) like solution for the Higgs field, h(+)

(h(−)). Note that the first-order equations (13) and (14)
solve the equations of motion (2) and (3).
The static solutions are physically characterized by their

charge and energy. Now, returning to eq. (6), for non-
negative V (h) and ω(h), the energy of static solutions can
be rewritten under the form

E =

∫ ∞
−∞
dxT00

=

∫ ∞
−∞
dx (V +ωh′+2ωh2A20+Cωh

2)

=

∫ ∞
−∞
dx

[(√
V ±√ωhA20

)2
+
(√
ωh′±√ωhA)2

+
(√
−A0A′±

√
2ωhA0

)2 ]
+

∫ ∞
−∞
dx
(
2
√
ωV hA0± 2ωhh′A

±2
√
−2ωA0A′hA0+A0A′− 2ωh2A20

)
, (16)

which is minimized if eqs. (13), (14), and (15) are obeyed,
resulting in (for C = 0)

E =

∫ ∞
−∞
dx (4V ) =

∣∣(A2(−∞)−A2(+∞))∣∣ . (17)

In this case A20 =A
2, so the system of first-order equations

decouples and is solved simply by (13) with

A(h) =−2
∫
ωh dh+ c, (18)

where c is an integration constant suitable to the boundary
conditions required for the gauge field. And, from (5)
and (6), the electric charge, Q, and Noether charge, P ,
are given by

Q=

∫ ∞
−∞
dxρ(x) =A(−∞)−A(+∞), (19)

P =

∫ ∞
−∞
dxT02 =

1

2

[
A2(−∞)−A2(+∞)] , (20)

and both are conserved due to the U(1) symmetry
and the translational invariance along the x2-direction,
respectively.
This shows that, for h in a range such that ω(h)� 0

and V (h)� 0, the BPS solutions of the first-order equa-
tions (13) and (14) (together with (15)), indeed corre-
spond to solutions of minimum energy and their energy

Fig. 1: (Colour on-line) The potential (21) as a function of the
Higgs field.

Fig. 2: (Colour on-line) The Higgs field (solid line) and the
gauge field (dashed line), (h(+)(x), A(−)(x)) from eq. (23) on
the left, and (h(−)(x), A(+)(x)) from eq. (24) on the right.

and charge can be calculated knowing only the asymp-
totic behavior of the gauge field. Correspondingly, the
Higgs field, for both kink and anti-kink solutions, connects
two consecutive vacua of the potential, while a lump-like
solution starts and terminates on the same vacuum when
x→±∞.
Standard self-dual domain walls. The simplest

Abelian HCS model that supports self-dual domain-wall
solutions is the JLW model [10], which is defined by the
Lagrangian (1) with canonical kinetic term (ω= 1) and
the (dimensionless) symmetry-breaking potential

V (h) = h2(1−h2)2, (21)

plotted in fig. 1. In this case, the use of eq. (18) (with
c= 1) provides the result

A= 1−h2, (22)

which, substituting in (13), gives the pair of solutions

h(+)(x) = 1/
√
1+ e−2x , A(−)(x) = 1/(1+ e2x), (23)

and

h(−)(x) = 1/
√
1+ e2x , A(+)(x) = 1/(1+ e−2x), (24)

which are displayed in fig. 2. We see that the scalar
field, in both cases, interpolates between the symmetric
and the asymmetric vacua. Figure 3 shows the energy
and electric-charge densities for both wall solutions. We
find that the spatial distribution of the electric charge
is symmetric around the origin, while for the energy the
axis of symmetry is displaced from the origin. And from
eqs. (17), (19) and (20), for the solutions (h(+), A(−))
and (h(−), A(+)), we have the charges Q= 1, P = 1/2,
and Q=−1, P =−1/2, respectively, and the same energy,
E = 1.
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Fig. 3: (Colour on-line) Energy density of the solutions
(h(+)(x), A(−)(x)) (dashed line) and (h(−)(x), A(+)(x)) (dash-
dotted line), and module of electric-charge density for both
solutions (solid line).

The deformation method. – Let us now develop
the deformation method for generalized Abelian HCS
models following the spirit of the procedure introduced
for scalar fields [15]. As we shall show, by deforming
simultaneously the Higgs and the CS fields, we are able
to construct many new generalized HCS models and their
static analytic domain-wall solutions. The original and the
deformed models are mapped into each other through the
deformation function.
Denote by φ̃(x) and Ã(x) new fields whose dynamics is

governed by the (dimensionless) Lagrangian density

L̃= ω̃(|φ̃|)|Dµφ̃|2− Ṽ (|φ̃|)+ 14εαβγÃαF̃βγ , (25)

where Ṽ (|φ̃|) and ω̃(|φ̃|) are new functions specifying this
model. As we did before, we assume that the self-dual BPS
domain-wall solutions of this model take the form

φ̃= h̃(x), Ãµ =
(
Ã0(x), Ã1 = 0, Ã2 = Ã(x)

)
, (26)

and satisfy the first-order equations of motion

h̃′ =±h̃Ã, (27)

Ã′ =−2ω̃h̃2Ã0, (28)

where h̃′ ≡ dh̃/dx and Ã′ ≡ dÃ/dx, with the constraints
Ṽ = h2ω̃Ã20 and Ã

2
0 = Ã

2.
Now, introduce the deformation function f such that

the Higgs fields of the two models are mapped into each
other, h= f(h̃), which is assumed to be invertible (in a
prescribed domain of definition) and differentiable. Also,
consider that the deformed CS-gauge field is obtained from
A by the prescription

Ã(h̃) =
f(h̃)A[h→ f(h̃)]

h̃f
h̃

, (29)

where f
h̃
=df/dh̃. Then, it follows from eqs. (27) and (28),

using eq. (29), that the model defined by the Lagrangian
density (25), with the deformed function ω̃ and the

deformed potential Ṽ given by

ω̃(h̃) =
1

2

Ãh̃

h̃
, Ṽ (h̃) = h̃2Ã2 ω̃(h̃), (30)

Fig. 4: (Colour on-line) The potential (33) (top panel) and the
corresponding function w (bottom panel), as a function of the
Higgs field.

where Ãh̃ =dÃ/dh̃, possesses static BPS solutions

h̃(x) = f−1[h(x)], Ã(x) = Ã(f−1[h(x)]), (31)

where h(x) is a static solution of the original model (1).
It should be noted that all the considerations and rela-

tions presented before, relative to energy and conserved
charges, are held unchanged for the deformed system.
In the following, taking as the starting point the JLW
domain-wall solutions, we consider some illustrative exam-
ples of the method.

Example I. Firstly, we consider the pair of deforma-
tion functions

f(h̃)(±) = (±)1− h̃
2

1+ h̃2
, (32)

which, using eqs. (22) and (29), gives Ã(±)(h̃) = f(h̃)(±);
and, from eq. (30), it follows that

ω̃=
2

(1+ h̃2)2
, Ṽ =

2h̃2(1− h̃2)2
(1+ h̃2)4

. (33)

These functions, plotted in fig. 4, define the generalized
Abelian HCS model employed in ref. [12]. Note that
the three vacua at h̃= 0, 1,+∞ establish two walls, one
between h̃= 0 and h̃= 1, and the other between h̃= 1 and
h̃=+∞. From the inverse of the deformation function (32)
and eqs. (23) and (24), for the range 0� h̃� 1, we obtain
the solutions

h̃(+)(x) =
√
1+ e−2x− e−x, Ã(−)(x) = 1/

√
1+ e2x,

(34)

h̃(−)(x) = 1/
√
1+2e2x, Ã(+)(x) = 1/(1+ e−2x), (35)

while for h̃� 1 we have

h̃(+)(x) =
√
1+2e2x, Ã(+)(x) = 1/(1+ e−2x), (36)
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Fig. 5: (Colour on-line) The Higgs field (solid line) and the

gauge field (dashed line), (h̃(+)(x), Ã(−)(x)) from eq. (34) on
the left, and (h̃(−)(x), Ã(+)(x)) from eq. (35) on the right, for
0� h̃� 1.

Fig. 6: (Colour on-line) The fields (h̃(+)(x), Ã(+)(x)), eq. (36)

(solid line), and (h̃(−)(x), Ã(−)(x)), eq. (37) (dashed line), for
h̃� 1.

Fig. 7: (Colour on-line) Module of electric charge for solutions
A(−)(x) (dashed line) and A(+)(x) (dash-dotted line), and
energy density (solid line) for both walls.

h̃(−)(x) =
√
1+ e−2x+ e−x, Ã(−)(x) = 1/(

√
1+ e2x).

(37)

In figs. 5 and 6 we display these domain-wall solutions. The
walls for 0� h̃� 1 and h̃� 1 have the same gauge fields,
but with the asymptotic value for x=±∞ changed. Then,
for both ranges the walls have the same energy, E = 1,
and charges Q= 1 and P = 1/2, for Ã(−), and Q=−1
and P =−1/2, for Ã(+). This makes to have attractive
or repulsive force between the two walls possible.
In fig. 7, we display the energy and charge densities

for the two walls. The comparison with the walls of
the JLW model shows that, notwithstanding the walls
have the same charges and energy, the JLW walls have
symmetric spatial distributions of energy and charge,
while here only the distribution of energy is symmetric
and all the corresponding distributions are more spread
out. The model defined by eqs. (33), which was obtained
by deforming the JLW model, was studied in ref. [12] but
only the solution satisfying 0� h̃� 1 was considered.
Let us note that (32) is a particular case of the defor-

mation function f(h̃) = cos[α arctan(h̃)], corresponding to

α= 2; from that function a new family of models can be
generated for α integer.

Example II. As a second example, consider the set of
deformation functions [16]

fα(h̃) = cos[α arccos(h̃)] = Tα(h̃), (38)

where the integer α> 2 and Tα are the Chebyshew poly-
nomials of first kind. Using this deformation in eq. (29)
and taking into account eq. (22), we have the gauge field

Ãα(h̃) = (1− h̃2)1/2 sin[2α arccos(h̃)]/2αh̃
= (1− h̃2)U2α−1(h̃)/2αh̃, (39)

where Uσ are the Chebyshew polynomials of second kind.
Explicitly, for α= 2, 3, eq. (39) reads

Ã2(h̃) = (1− h̃2)(2h̃2− 1), (40)

Ã3(h̃) = (1− h̃2)(1− 2h̃2)(3− 4h̃2)/3. (41)

In this case, from eqs. (30) and (38), we have a family of
models defined by the function ω̃α(h̃) and the potential

Ṽα(h̃) written in polynomial form as

ω̃α(h̃) = | (2αh̃ T2α(h̃)+U2α−1(h̃))/4αh̃3|, (42)

Ṽα(h̃) = (1− h̃2)2 U22α−1(h̃) ω̃α(h̃)/4α2. (43)

Then, each value of the parameter α specifies a model of
this family. In particular, for α= 2, 3 we have

ω̃2(h̃) = 3− 4h̃2, (44)

Ṽ2(h̃) = h̃
2(1− h̃2)2(1− 2h̃2)2 ω̃2(h̃), (45)

ω̃3(h̃) = (19− 64h̃2+48h̃4)/3, (46)

Ṽ3(h̃) = h
2(1− h̃2)2(1− 2h̃2)2(3− 4h̃2)2 ω̃3(h̃)/9. (47)

For these models, from the inverse of the deformation
function (38), we obtain the static Higgs field solutions as

h̃(±)(x) = cos([arccos(h(±)(x))+ (m− 1)π]/α), (48)

where h(±)(x) are given by eqs. (23) and (24), and m
is an integer, which generates distinct solutions only for
m= 0, . . . , α− 1.
Let us examine the model for α= 2, defined by eqs. (44)

and (45), and displayed in fig. 8. We see that the potential
is positive only for h̃�

√
3/2. Then, there are two kinds

of static solutions for the Higgs field, one pair kink/anti-
kink–like solution between 0� h̃� 1/

√
2, and a lump-like

solution between 1/
√
2� h̃�

√
3/2. In ref. [21] a model

that presents a charged lump-like solution was considered.
Here, the lump-like solution presents vanishing charges
and energy, hence we examine only the wall for 0� h̃�
1/
√
2. In fig. 9, we display the Higgs field (48) and the

gauge field (40) solutions. These walls have the same total
energy and charges of the walls of the standard JLW
model, but with different spacial distribution of the energy
and charge densities, as shown in fig. 10.
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Fig. 8: (Colour on-line) The potential (45) (top panel) and the
function w (44) (bottom panel), as a function of h̃.

Fig. 9: (Colour on-line) The Higgs field (48) form= 0 and α= 2
(solid line) and the gauge field (40) (dashed line), for h̃(+)(x)

and Ã(−)(x), on the left, and for h̃(−)(x) and Ã(+)(x), on the
right.

Fig. 10: (Colour on-line) The energy density (on the left)
and the module of charge density (on the right), for solution
A(−)(x) (solid line), and for A(+)(x) (dashed line).

Conclusion. – The examples presented above illus-
trate how the deformation method may be used to gener-
ate many new generalized Abelian HCS models and their
analytic defect solutions. This is achieved without any
need to directly solve the nonlinear equations of motion of
the new models. The method also allows the construction
of new defect solutions controlling important features of
them such as height, width or topological character. Such
results are of direct interest to applications of domain walls
in several contexts, such as high-energy or condensed-
matter physics.
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