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Abstract—We designed plasmonic lenses and analyzed their
chromatic aberration using the finite element method (FEM) in
frequency domain with perfectly matched layers (PML). Plas-
monic lenses permit subwavelength focusing of light in the visible
and in the near infrared. The focal distance of these devices
depends on the wavelength operation due to the dispersive char-
acteristics of the lens structures and the refractive index of their
constituent materials. With a uniform incident wave normal to
the lens surface, focusing of light by surface plasmon polariton
(SPPs) through a plasmonic lens is obtained in the axial direction.
The design of three plasmonic lenses in Silver (Ag), Gold (Au) and
Copper (Cu) films at two central operation wavelengths of 650
nm and 810 nm, in both, cylindrical and rectangular geometries
were considered and the chromatic aberration of the lenses were
analyzed by monitoring the peak position of the electromagnetic
(EM) field when the wavelength changes from 625 nm to 675 nm
and from 785 nm to 835 nm..

Index Terms—Chromatic aberration, finite element method, nu-
merical analysis, plasmonic lenses, surface plasmon polaritons.

I. INTRODUCTION

LASMONIC lenses are devices that permit the focusing

of light in the visible and near infrared in sub wavelength
regions [1]-[3]. At optical frequencies, these structures can be
implemented by alternating nanocapacitors and nanoinductors
that can be built using dielectric and plasmonic nanostructures,
respectively [5]-[7]. Optical lenses are excellent candidates for
coupling light between two optical devices such as sources and
waveguides or fiber and nanowaveguides. Silver (Ag), Gold
(Au) and Copper (Cu) are the most prominent materials that can
be used for lenses fabrication. Since metals are very dispersive
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materials which exhibit very different values of complex refrac-
tive index depending on the operating wavelength, the lens char-
acteristics, such its chromatic aberration and full-width at half
maximum (FWHM), should be analyzed for polychromatic il-
lumination operation.

In this article, we designed plasmonic lenses and numerically
analyzed the chromatic aberration of these structures made of
three different materials: Ag, Au, and Cu. The chromatic aber-
ration of plasmonic lenses is the result of the combination of
the lens structure dispersion and the material dispersion due to
the wavelength dependence of the refractive index of the con-
stituent material. In subwavelength imaging, chromatic aberra-
tion can be seen as fringes of color around the image. We con-
sider the design principle on plasmonic lenses for rectangular
coordinates introduced in [1], [2] and adapted to cylindrical co-
ordinates [11], [12]. Light focusing is achieved by constructing
a carefully designed phase front retardation for the plasmonic
lenses. The control of the phase front profile is achieved through
phase retardation caused by the width and position of individual
cylindrical apertures in the lens. The simulations were carried
out using an efficient two dimensional finite element method
(2D-FEM) in frequency domain in rectangular [9], [10] and
in cylindrical [11], [12] coordinates. After we calculated the
field distribution in these structures we obtained the maximum
field position (z.ax) of the focused light which depends on
the operating wavelength due the chromatic aberration. In the
simulation, to analyze the chromatic aberration we are taking
into account both, the lens structure dispersion and the material
dispersion.

The lenses analyzed consist of several concentric cylindrical
nano-apertures in metallic films as shown in Fig. 1. The normal
incident light propagates along the cylindrical nano-plasmonic
lenses and by a judicious choice of the nanoslit widths the phase
shift can be controlled to produce a constructive interference
of light at a focal distance f [1], [2]. We also analyzed rectan-
gular lenses that consist of parallel slits, which produce a fo-
cused line at the focal distance, using the 2D-FEM in rectan-
gular coordinates.

II. DESIGN OF PLASMONIC LENSES

To numerically simulate the electromagnetic (EM) field in
plasmonic lenses, we considered a general three dimensional
structure with cylindrical symmetry as shown in Fig. 1. This
design consists of several concentric cylindrical nano-apertures
with different widths and radial positions in a metallic film. Due
to the cylindrical symmetry of the structures with respect to the
axial direction, we reduced the computational domain to the -z
plane, from r = (} to the radius of the lens, as shown in Fig. 2.
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Fig. 1. Schematics of a plasmonic lens that consists of concentric cylindrical
nano-apertures in a metallic film.
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Fig. 2. Two dimensional computational scheme for cylindrical and rectangular
simulation of EM waves in plasmonic lenses.

As aresult of the geometry of the lens and the incident EM field,
we assume that there is no variation of the field along the other
transversal coordinate for both the cylindrical formulation, ap-
plied to the cylindrical lens, and the rectangular formulations,
applied to the rectangular lens. The two dimensional (2D) com-
putational scheme of Fig. 2 can be used to simulate plasmonic
lenses in cylindrical and rectangular coordinates [8]-[12]. The
Perfectly Matched Layers (PMLs) are used to simulate open
boundaries and to avoid reflections that are not desirable in the
computational domain.

The propagation constants, 3, which is related to the phase
retardation of PPS propagated in a metal-dielectric-metal
waveguides, can be expressed by the transcendental equation

[11-[3]:
i w\  ea/F = Fem
tanh (\/mj) B 757”\//32——7]2854 M

where kg is the wave vector of the light in free space, w is the
waveguide width, and 4 and ¢, are the relative permittivity
of dielectric and the metal, respectively. The complex nature
of the propagation constant due to the metals operating at op-
tical frequencies has been considered. The values of 3 were
obtained by using an iterative process for surface plasmon po-
lariton (SPP) propagation in waveguides with variant slit width.
The real and imaginary parts of 3 determine the phase velocity
and the propagation loss of SPPs inside the metallic aperture,
respectively.

The phase change of the light transmitted through the aperture
is expressed as

¢ =RelBd] + 6 2)
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Fig. 3. (a)Phase shift as a function of the width for a metallic waveguide of Ag
with d = 500 nm calculated using (2). (b) Phase shift necessary at the output
wave as a function of the radial position calculated using (4).

where 6 represents the multiple light refection between the en-
trance and exit interfaces and it can be calculated from the fol-
lowing equation:

ko — 3" 254d
§=arg [1 - 2
a8 [ (]{70 + ﬁ ¢ (3)

Equations (1) and (2) indicate that the phase change depends
on the lens depth, the width of the apertures, the wavelength
and the complex permittivity of the metal. Previous numerical
results [1]-[3] showed that only the real part of 3d represents a
dominating contribution for the phase change. Therefore, ¢ can
be approximated by Re(3d), and its value can be controlled by
varying  and d independently, which correspond to different
lengths and widths respectively. The propagation constant was
computed using (1), with d = 500 nm, and the metal Ag was
used with a relative permittivity €, = —17.0234 + j1.1518 at
the wavelength 650 nm [12] and ¢4 = 1 for air. Fig. 3(a) shows
the geometric dependence of the phase change as a function
of the slits width w, between 10 nm and 100 nm, calculated
using (2).

The principle of operation of the lens consist in introducing a
phase shift on the incident wave at the output of the cylindrical
array of rings by a proper choice of the parameters of the fol-
lowing equation,
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Fig. 4. Distribution of cylindrical slit width of air as a function of the radial po-
sition on the designed plasmonic lens calculated using (2) and (4). The metallic
film used was Ag at the wavelength 650 nm and the film thickness was d =
500 1.

TABLE I
RELATIVE PERMITTIVITY VALUES OF SILVER, COPPER AND GOLD AT 650 NM
AND 810 NM.
Material 650 nm 810 nm
Silver -17.0234 + 1.1518i, -28.7992 + 1.5375i
Gold -9.7814 + 1.0492i -27.2964 + 1.9144i
Copper -13.2049 + 1.5646i -26.1920 +2.7027i

where 7 is an integer number, f is the focal distance measured
from the output of the lens, 7 is the radial distance, and A is the
incident wavelength. The phase change necessary at the output
of the lens as a function of the radial position 1 to focus the light
at f = 600 nm is calculated using (4) and shown in Fig. 3(b).

Using (2) and (4), we calculate the slit width as a function
of the radial position r between 0 um and 2 ym for Ag at the
wavelength of 650 nm and it is shown in Fig. 4. The freedom to
determine the position and width of the slits were the design pa-
rameters. Metallic regions with width smaller than 24 nm should
be avoided to prevent the occurrence of SPP crosstalk between
adjacent apertures.

The relative permittivity values at the wavelengths 650 nm
and 810 nm used in the plasmonic lens design for the materials
that we considered are shown in Table I. The relative permit-
tivity values for these materials at the other wavelength that we
investigated are obtained using equations given in [8].

III. METHOD OF ANALYSIS

In order to calculate the field distribution of plasmonic
lenses, we use the frequency domain 2D-FEM in both rect-
angular [9], [10] and cylindrical [11], [12] formulations for
the lens that consists of rectangular slits and cylindrical slits,
respectively. This numerical technique is, within certain limits
of applicability, reliable and accurate, particularly for non
continuous structures. To reduce the computational domain we
used the Perfectly Matched Layers (PML) in the simulations.
In this section we briefly outline the method for cylindrical
coordinates to model cylindrical slits [11], [12]. The method
used for rectangular coordinates to model rectangular slits is
analogous and can be found in [9], [10].
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Wave propagation in plasmonic lenses, such as in Fig. 1, is
described by the Helmholtz type equation in cylindrical coordi-

nates
s 09 Ly 9 (
' s or * 9z b

s, O ,
r Or
where p = 1, q = e(y,2), ¢ = ¢, is the scalar field, and
£(y, #) is the relative permittivity. The parameter s,., s, and s,
are related to PMLs adapted for cylindrical coordinates [11],
[12].

Applying the Galerkin procedure to (1), the following matrix
equation is obtained

[Al{e} = =20 [B]{#inc} (6)

where [A] is the resulting assembled global matrix given by

s, 0
s Oz

) +ko’qsp =0 (5)
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where /3 is the effective propagation constant of the waveguide,
{inc} is the incident field and [B] is the resulting matrix of
the one dimensional (1D) FEM applied in the incidence plane,
which is given by

Bl= 3 [ o= () (Nyar ®)

2D numerical integrations have been used to calculate the fun-
damental matrixes in order to model complex problems with
curved shaped geometries.

IV. CHROMATIC ABERRATION ANALYSYS

To analyze the chromatic aberration, the plasmonic lenses
have been designed at the operation wavelengths of 650 nm and
810 nm, and made of the following materials: Ag, Au, and Cu.
The incident light is a uniform plane wave normal to the lens
surface. The structures analyzed consist of plasmonic lenses
with cylindrical slits and plasmonic lenses with rectangular slits,
for which we used the same computational mesh of the geom-
etry given in Fig. 2 with the cylindrical and the rectangular co-
ordinates, respectively. Transverse magnetic (TM) mode waves
were used in the rectangular formulation because the excitation
requirements of the SPPs.

First, we considered three lenses designed to operate at the
incident wavelength 650 nm for metallic materials of Ag, Au,
and Cu. The computational domain was 0 pm < z < 4.5 pm
and 0 pm < r < 2.5 pm divided in 37240 elements (74761
points), where the PMLs are the outer 0.5 jzm regions. The depth
d was equal to 500 nm for all lenses, they were located from
# = 0.7 ym to » = 1.2 ym, and their focal distances were
designed to be f = 0.6 pum. At this wavelength the relative
permittivities €,, were —17.023441.1518i, —9.7814+41.04921,
and, —13.2049+1.5646i for Ag, Au, and Cu, respectively, based
on [8]. The incidence plane is placed at = = 0.6 ym and the
EM field intensities distribution of the simulation results using
the FEM for these simulations are shown in Fig. 5: (a) Ag, (b)
Au, and (c) Cu. The peak position (%, ) at the focus spot were
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Fig. 5. EM field intensities of the simulation results using FEM for cylindrical plasmonic lenses at the wavelength 650 nm comprised of (a) Ag, (b) Au, and (c)
Cu. The plane wave source was located at z = (.6 pm and the plasmonic lenses are located fromz = 0.7 um toz = 1.2 um.
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Fig. 6. Position (zmax ) at the location with the highest EM field intensity produced by the plasmonic lenses comprised of Ag, Au, and Cu as a function of the
wavelength form 625 nm to 675 nm for (a) cylindrical lens and (b) rectangular lens.

calculated and their values are z = 1.9823 pym, » = 2.2175 ym,
and z = 2.145 pm for Ag, Au, and Cu, respectively. These
values are consistent with the focal distance designed. Since
the lenses end is at z = 1.2 pm and the focal distance was
chosen as being f = 0.6 pm, the focal distances should start
atz = 1.8 pm. The results are in agreement with the literature
[12], in which a lens made of Ag was considered.

The peak positions of the EM focus spot, or focus line for
the rectangular lens, for incident wavelengths varying from 625
nm to 635 nm were calculated and shown in Fig. 6(a-b). We
updated the value of the permittivity values of the metallic ma-
terials at each wavelength [8]. In Fig. 6(a) and (b) we observed
that the focal position (#,,,x) decreases by 200 nm when the
wavelength increases from 625 nm to 675 nm. It is worth noting
that, for this wavelength range, z.,,x decreases monotonically
with the wavelength, and that Ag has the smallest focal distance
Zmax Case in both cylindrical and rectangular lenses. We also ob-
served that the rectangular lenses have the focal distance zu,«
significantly large when compared to the cylindrical lenses for
the three metallic materials that we investigated.

We also designed nanoslit lenses to operate near the wave-
length of 810 nm for Ag, Au, and Cu. At this wavelength the
relative permittivities &, used were of —28.7992 4 1.5375i,
—27.2964 + 1.91441, and, —26.1920 + 2.7027i for Ag, Au, and
Cu, respectively [8]. All the other computational parameters are
the same of the previous simulation example. The field inten-
sities of the simulation results using the FEM for these sim-
ulations are shown in the Fig. 7: (a) Ag, (b) Au, and (c) Cu.
The position (zmax) of highest EM field intensity were z =
1.9525 pm, z = 1.9375 pym, and z = 1.96 pum for Ag, Au,
and Cu, respectively.

The positions with the highest EM field intensity as a function
of the incident wavelength form 785 nm to 835 nm were calcu-
lated and the results are shown in Fig. 8(a-b) for cylindrical and
rectangular lenses, respectively. We observe that, when the op-
eration wavelength values increase from 785 nm to 835 nm, the
Zmax values oscillate around the mean value for cylindrical for-
mulation and monotonically decrease in the range of 60 nm in
the rectangular counterpart. For the cylindrical lenses, the z,,,x
values of the Cu lens is larger than the Ag lens and the 7%
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Fig. 7. EM field intensities of the simulation results using FEM for cylindrical plasmonic lenses at the wavelength 810 nm comprised of (a) Ag, (b) Au, and (c)
Cu. The plane wave source was located at « = 0.6 i and the plasmonic lenses are located from #z = 0.7 g to » = 1.2 pan.
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Fig. 8. Position (Zmax ) With the highest EM field intensity produced by the plasmonic lenses comprised of Ag, Au, and Cu as a function of the wavelength from

785 nm to 835 nm for (a) cylindrical lens and (b) rectangular lens.

values of the Au are shorter than the Ag lens in all spectral
domain. For the rectangular lenses, the z,,,; values of the Cu
lens are the largest, and Au and Cu lenses present near the same
wavelength dependence of the focal distance.

In all the simulation, the full-width at half maximum
(FWHM) at z,,,,x exhibits a constant value of about 0.47A for
the cylindrical lenses.

We designed cylindrical and rectangular nanoslit plasmonic
lenses and analyzed the chromatic aberration of these lenses op-
erating in the visible and infrared using the 2D-FEM in the fre-
quency domain using cylindrical and rectangular coordinates.
The plasmonic lenses were made of Ag, Au, and Cu at the cen-
tral operation wavelength of 650 nm and 810 nm.

V. CONCLUSIONS

We showed the wavelength dependence of the position (Zmax )
with the highest EM field intensity taking into consideration the

lens geometry and the optical characeristics of the metallic ma-
terials considered. We observed a significant variation of the
wavelength dependence of the position (Zmax ) With the highest

field intensity in the nanoslit lenses that we analyzed along
the propagation direction when the incident light wavelength
changes from 625 nm to 675 nm and from 785 nm to 835 nm.
Therefore, different nanoslit lens designs that minimize this
chromatic aberration have to be investigated if plasmonic lenses
are being considered for coupling between optical devices or
subwavelength imaging. A general procedure for designing a
near-field plate given a desired image is discussed in [5]-[7],
its implementation at optical frequencies can be obtained with
ingenious configuration of nanoinductors, nanocapacitors in
the transverse direction of the plasmonic lens. Several other
plasmonic lens configurations, including metallic photonic
crystals [4], are under analysis and results will be reported in
the future.
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