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The objective of this study is to evaluate the effect of spatial variability of rock elasticity on the tip resis-
tance of drilled shafts using experimental tests, finite element analysis (FEA) and geostatistical principles.
A mathematical and computational model for simulating the multi-dimensional soil-structure interac-
tion is developed using the ADINA FEA program and validated using data obtained from laboratory
and centrifuge tests. Subsequently, the FEA model is used to quantify the spatial variability effect on
the bearing stiffness of the deep foundation. Using geostatistical principles, a relationship is derived
between deterministic and probabilistic end bearing stiffnesses of the rock conditions.
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1. Introduction

Drilled shafts have been generally used as a deep foundation to
carry applied axial loads by side frictional resistance on the cir-
cumference surface along its length, whereas the contribution of
end bearing resistance to the load-carrying capacity of the founda-
tion is considered to be minimal and thus neglected. However, uti-
lizing an underlain rock layer, short but large-diameter drilled
shafts are increasingly being used in practice where a substantial
part of the design axial load is carried by the end bearing of the
shaft [1-3]. In such a short-embedment application of drilled
shafts, the bearing stiffness of the supporting rock controls founda-
tion settlement and thus, the design of serviceability.

One method of computing the elastic settlement of a deep foun-
dation is to use a formulation of the elastic spring equation with an
influence factor to account for the stratum depth of the rock layer,
which is typically assumed to be an elastic homogeneous contin-
uum. In this deterministic approach, the elastic modulus of the
rock is estimated from arithmetic averaging of mass moduli of
the rock samples measured in laboratory tests. As a result,
confidence in the value of an averaged elastic modulus is severely
affected for design purposes by a series of uncertainties such as
inherent heterogeneity of the rock [4] (i.e., random spatial varia-
tion of the elasticity) and statistical error due to small sample sizes.
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Pioneering research was initiated by Fenton and Griffiths [5,6]
who first adopted a geostatistical characterization of soil condi-
tions into the finite element analysis (FEA) of the load-displace-
ment behavior of a shallow foundation. Taking into account for
the spatial variability of elastic moduli, they estimated a represen-
tative elastic modulus of the bearing soil deposits as a geometric
average of random field variables of spatial correlations and, subse-
quently, used it in the settlement analysis of the shallow founda-
tion. However, little work has been done on improving the
deterministic approach to settlement analysis of a deep foundation.
Although the design and construction of a deep foundation has
introduced multi-dimensional finite element analysis to the bridge
engineering industry, the increased attention to design practice
such as Load and Resistance Factor Design (LRFD) has coincided
with a more rigorous design criterion for the heterogeneous condi-
tion of the rock. In addition to the limited boring data available for
modeling purposes, the parameter uncertainty associated with the
degree of spatial variability remains unresolved within a determin-
istic representation of the heterogeneous nature of the rock.

This paper presents a more objective method using experimen-
tal testing and finite element analysis (FEA) to determine the bear-
ing stiffness (i.e., the slope of the load-displacement curve at the
tip) of rock-socketed drilled-shaft foundation subjected to axial
loads in response to the challenge of evaluating heterogeneous
rock conditions in the field. For the development of FEA models
of the deep foundation, centrifuge testing is carried out using scale
models to simulate load-deformation behaviors of prototypes. In
addition, laboratory testing of synthetic rock specimens is


http://dx.doi.org/10.1016/j.compstruc.2011.09.004
mailto:jchun@ce.ufl.edu
http://dx.doi.org/10.1016/j.compstruc.2011.09.004
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

146 J.H. Chung et al./ Computers and Structures 90-91 (2012) 145-152

conducted in order to determine key material properties associated
with rock constitutive models for use in FEA. Subsequently, two-
dimensional axisymmetric FEA models of the prototypes are devel-
oped and calibrated against the centrifuge test results. Capable of
analyzing a three-dimensional load transfer mechanism in the
rock-structure interaction, calibrated FEA models are used to sim-
ulate the spatial heterogeneity of rock and its effects on bearing
stiffness. As a result of a geostatistical representation of the effects,
a simplified, one-dimensional bearing stiffness model of heteroge-
neous rock is developed using a correlation of the degree of spatial
variability and a deterministic stiffness of homogeneous rock.

2. Centrifuge tests

The load-deformation behavior of the prototype rock-socketed
drilled-shaft system is reproduced in a small-scale model testing
where centrifugal forces would induce a similar gravitational field
to which the prototype system is subjected. Two scale models of a
1.6-in. (0.04 m) diameter with lengths of 1.6 in. (0.04 m) and 4.8 in.
(0.12 m) are constructed in a synthetic homogenous rock material
[7], which will be referred to as Model A and Model B, respectively,
throughout the remainder of the paper. Per an angular velocity of
22.5rad/s of the centrifuge with a centrifuge arm of 4.25 ft
(1.3 m), a centrifugal acceleration is approximately 67 times great-
er than the normal 1g (Fig. 1). Thus, the length and force scale fac-
tors are equal to 67 and 672, respectively [8,9]. In the following,
test results are presented with the centrifuge model measurements
multiplied by the scale relation to represent the load-displacement
curves of the prototypes.

Illustrated in Fig. 2a, the load-displacement behaviors of both
the models exhibit a linear trend at the tip up to a maximum dis-
placement of 1 in. (0.0254 m), i.e., a service limit condition defined
in Commentary C10.6.2.6.1 of Section 10 of Foundations of AASH-
TO Bridge Design Specifications [10]. Indicating material yielding
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Fig. 1. Schematic sketch of the centrifuge testing.

along the side interface shown in Fig. 2b, the extrapolated side
resistance of Model A appears to reach a total capacity of side resis-
tance at the applied load of 2644 kips. In contrast, a total side resis-
tance along a longer length of Model B has not been fully mobilized
since the applied load of 4937 kips is carried by both the tip resis-
tance of 1025 kips and the side resistance of 3912 kips. The extrap-
olation of the test results using the scaling relation satisfies the
force equilibrium in both the models.

3. Laboratory tests

The stress—strain and strength characteristics of the synthetic
rock are investigated separately in laboratory material strength
tests according to the American Society for Testing and Materials
(ASTM) Standards [11-13]. The purpose of the laboratory tests is
to evaluate the key material parameters such as cohesion and elas-
tic modulus of the synthetic rock for use in FEA of the prototypes.
Based on the results obtained from a total of five unconfined com-
pression tests on the synthetic rock samples, the secant elastic
modulus and compressive strength of the synthetic rock are aver-
aged to 1728 ksf (82.74 MPa) and 20 ksf (0.96 MPa), respectively.
In addition, three triaxial compression and one direct shear tests
are conducted to construct a Mohr's failure stress envelope
(Fig. 3) where cohesion of 6 ksf (0.29 MPa) is graphically estimated
using a curve fitting by a fourth-order polynominal function.

4. Finite element analysis

Numerical study described herein deals with the development
of a finite element soil-structure interaction analysis model and
subsequent calibration and validation of the FEA model in compar-
ison to the centrifuge test results. For modeling nonlinear soil re-
sponse and soil-structure interaction, the nonlinear implicit/
explicit finite element simulation code ADINA (version 8.5) [14]
is employed.

4.1. Dimensions and boundary conditions

With the scaling relation validated against the centrifuge test
results, two various length-to-diameter ratios (L/D) of L/D =1 and
L/D =3 are considered for the dimensions of the FEA models of a
9-ft (2.74 m) diameter prototype. Using symmetry for the geome-
try and loading conditions, two-dimensional axisymmetric FEA
models are constructed. Shown in Fig. 4a is a FEA model of
L/D =1 where the dimensions of the FEA model are scaled by the
length scale factor of 67 from those of Model A. The boundaries
of the prototype FEA models are meshed by the dimensions of 3
times the shaft diameter (3D) wide and of shaft length (L) plus
3D below the shaft tip. An element size of 0.5ft by 0.5ft
(0.1524 m by 0.1524 m) on the axisymmetry plane is used in the
discretization of a synthetic homogenous limestone rock. The de-
gree of constraint provided by the boundaries of the system is
modeled such that translational motion is allowed to expand along
the boundaries of the system but transversely constrained (Fig. 4a).
Incremental loads up to 2726 kips (12,125 KN) for L/D=1 and
4900 kips (21,794 KN) for L/D = 3 are applied as distributed loads
to the top of the shaft. The system is assumed to be in static equi-
librium prior to any applied external loads. Steel reinforcement is
not considered in the FEA model development.

4.2. Constitutive models for materials

4.2.1. Concrete
In terms of determining a corresponding constitutive model for
concrete, previous studies focusing on field and centrifuge tests of
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the deep foundation subject to axial loads were reviewed [15,16].
In the range of applied axial forces to the serviceability limit, the
material behavior of the concrete shaft is assumed to remain elas-
tic. The maximum uniaxial compressive stress of the centrifuge
tests is estimated to be 18 ksf (0.86 MPa), which is much lower

Normal Stress (o, ksf)

Fig. 3. Mohr’s stress circles and a failure envelope.

Tip Resistance (KN)

SideResistance (KN)

Shear Stress (t, MPa)

147

than a 14-day compressive strength of the mortar that was used
to build the scale models. Based on the review and observation,
it is determined that the modified Hognestad’s stress—strain
relationship [17] would provide a rudimentary approximation of
the elastic material behavior of the normal strength concrete.
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Significant refinement in the accuracy of the proposed concrete
material model is not warranted in the current context because
load-deformation of the rock-socketed drilled shafts primarily in-
volves rock-shaft interaction where material failure of relatively
weaker limestone rock more predominantly occurs along the side
interface. Thus, the modeling of the interface is far more influential
and important.

The key material parameters of the concrete shaft are approxi-
mated using the following assumptions [17]:

o The compressive strength of plain concrete (f) is approximately
5000 psi (34.5 MPa).

e The elastic modulus (E.) is considered for static loading rather
than dynamic rates of loading.

e For normal-weight concrete with a weight density of 145 Ib/
ft3(2323 kef/m?3), the elastic modulus of the concrete (E.) can
be evaluated as E. = 57,000/ (psi) ~ 4730,/ (MPa).

4.2.2. Synthetic rock

The ADINA soil model used in the simulation is a Mohr-Cou-
lomb model that can predict pressure dependent failure for the
rock. With the assumption of normality of a constant plastic flow
to the failure surface, the plastic strain rate vector has a component
in the volumetric (hydrostatic) direction that results in an increase
of mean normal stresses. However, this linear postulate of the fail-
ure envelope can produce much greater shear failure stress (as
minor normal stress (o3) increases) than what was observed in
the laboratory tests. Thus, the effect that increasing normal stress
has on the shear strength of the rock material is to be properly ac-
counted for over a realistic range of maximum normal stresses that
would be developed under the service loading conditions. A tan-
gent slope of the failure envelope (Fig. 3) is estimated at 28° at a
maximum normal stress of 18 ksf (0.86 MPa) that has been esti-
mated at an equivalent tip displacement of 1in. (0.0254 m) in
the centrifuge tests. This tangential slope is used as the angle of
friction (@) of the homogeneous rock. It must be noted that any
prediction of nonlinear failure envelope at higher normal stresses
than identified in Fig. 3 is conjecture due to the confinement
restrictions of the laboratory tests. Pressure dependent failure

mechanisms associated with the nonlinear failure envelope [18]
should be considered to quantitatively determine accurate stress
fields. Nonetheless, the material modeling approach presented
here offers a practical tool calibrated with experimental data for
studying a three-dimensional stress state development within
the influence depth of the rock that undergoes a maximum vertical
displacement of 1 in. (0.0254 m) of the service limit condition. A
summary of the parameters of the rock material model is given
in Table 1.

4.3. Modeling of rock-shaft interface

The rock-socketed drilled-shaft system consists of a shaft struc-
ture formed by excavation of a cylindrical borehole into the lime-
stone rock where reinforcing steel and concrete is cast. When a
shaft is subjected to axial loading, the shaft transfers the load by
a combination of shear stresses developed along the cylindrical
interface between the shaft and rock, and the normal stress devel-
oped at the tip of the shaft. This inelastic load-deformation mode is
often seen as rock material failure along the interface based on the
visual appearance that the shaft takes on after load transfer has oc-
curred. When a shaft is designed to have sufficient axial capacity,
the shaft remains structurally intact and the tip resistance contrib-
utes significant axial stiffness to the overall behavior of the rock-
shaft system even after failure along the interface has occurred.

Considering the physical interface of the system constituents,
the initial approach taken in modeling the interface involved the
use of discrete contact edges of axisymmetric elements in which
the interface represented the physical boundaries between the
shaft and rock. An approximate means of accounting for the shear
failure was attempted through the use of a contact model that

Table 1
Material parameters of the rock FE model.
Material parameter Value
Poisson’s ratio 0.3
Modulus of elasticity 1728 ksf (82.77 MPa)
Angle of friction (@) 28°
Cohesion 6 ksf (0.2874 MPa)
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simulates frictional resistance under Coulomb’s Law of Friction.
During the contact simulations performed using this modeling
technique, the approach was unfortunately found to be problem-
atic. Nonphysical penetration at the corner node of the shaft into
a rock element caused an artificial “gap”, i.e., the rock mesh being
detached from the side of the shaft (Fig. 4b) and producing zero
contact force. This nonphysical penetration is a numerical instabil-
ity that typically is associated with either the use of a coarse finite
element mesh or too large incremental loading steps or a combina-
tion of both [19]. Under certain conditions, elements formulated
using numeric integration can undergo deformation modes in
which strains sampled at the element integration points fail to cap-
ture all of the strain energy associated with the deformation. As a
consequence, energy is numerically (non-physically) dissipated,
and the nonlinear solution process might become unstable
[19,20] leading to unreliable analysis results or termination of
the simulation, i.e., nonconvergence. Problems associated with
nonphysical nodal penetration can often be remedied by using a
high-resolution finite element mesh and small incremental loading
steps. Reduction of numerical instabilities to an acceptable level
(quantified by maintaining the pseudo-energy at less than 1% of to-
tal system energy) and prevention of nodal penetration were tried
by significantly increasing the resolution of the finite element
mesh and using a small loading step, e.g., an increment load of
1 kip (4.45 KN). Even with approximately 40,000 elements of the
rock mesh, nodal penetration was not completely prevented. While
stable solutions might be obtained, the very high-resolution mesh
with such a small loading step was deemed to be impractical from
the standpoint of conducting a parametric study involving numer-
ous, repeated simulations required for the geostatistical realization
of the random field condition. In preliminary analysis, several hun-
dred simulations were found to be necessary for one geostatistical
realization of a heterogeneous rock condition.

An alternative, more numerically efficient solution is achieved
by abandoning the approach of modeling the contact. In the phys-
ical rock-shaft system, the circumference of the shaft is bonded to
the surrounding rock. Approximate numerical modeling of this
bond is accomplished using interface boundary elements
(Fig. 5a). This numerical approach simulates a mathematical link
between two edges together at a common interface. Parts linked
together in this manner may still deform and respond to load, as
may the interface between them, but the edges of the two parts re-
main linked to each other on a point-by-point (or node-by-node)
basis (Fig. 5b). That is, at no point on the interface boundary may
the two tied parts separate from each other, even though the
interface boundary element itself may deform.

In contrast to the contact approach of the previous modeling
technique, this approach leads to a more controlled stress
redistribution of internal stresses as the rock-shaft interface yields,
thus permitting stable solutions to be obtained at coarser levels of
mesh resolution. Determination of the yielding, i.e., shear failure at
the interface, is carried out using a Mohr-Coulomb model with the
elastic—perfectly plastic yield condition such that the angle of fric-

Interface Boundary Element (IBE) Applied nodal loads
along the side of the shaft

Fo s I

o op o ( o ¢©

o
A=A &

Shaft Finite Element Rock Finite Element

Shear deformation
of IBE and Rock FE

(a) Interface boundary element (IBE) (b) Load transfer of IBE

Fig. 5. Modeling of the rock-shaft side interface boundary.

tion (@) is very small, e.g., @ ~ 0. Thus, exceedance of the failure
shear stress that occurs at an integration point in an interface ele-
ment was prevented by limiting a maximum shear stress to the
cohesion value. This yielding mechanism permits experimentally
observed amounts of deformation to be modeled and thus can pro-
duce a better representation of both the shear failure along the
interface and the load transfer to the tip of the shaft.

4.4. Comparison between centrifuge test results and FEA predictions

The tip and side resistances for shafts of L/D =1 and L/D = 3 pre-
dicted by finite element simulations are presented in comparison
to the centrifuge test results (Fig. 6). Fig. 6a is plotted in which
the summation of vertical nodal forces of the finite elements of
the rock at the tip interface is compared to the tip force calculated
using strain data measured at the sampling location immediately
adjacent to the bottom of the centrifuge specimen.

The numerical prediction of the resultant forces at the tip (tip
resistance) is shown in good agreement with the experimental
measurement (Fig. 6a). In contrast, the side resistance exhibits a
yield plateau where friction resistance reaches the limiting strength
(cohesion) of the homogeneous rock (Fig. 6b). This nonlinear trend
is evident in which the centrifuge test data fit within an acceptable
margin of error. Thus, robustness (with increased numerical effi-
ciency) of the present modeling technique, i.e., modeling of the
rock-shaft interface along the embedment lengths, is validated.
Also, since the rock material model has been developed using lab-
oratory test data separate from the centrifuge tests, the agreement
shown in Fig. 6 suggests a degree of validity in the load transfer
mechanism both predicted by finite element simulation and mea-
sured in the centrifuge tests.

4.5. Simulations of heterogeneity

Having developed a bench-mark FEA model of the homoge-
neous rock condition, focus is shifted to the task of determining
whether the presence of the heterogeneity is shown to affect
(based on simulation results) the axial bearing resistance of the
deep foundation and, if so, the extent to which point bearing re-
sponse is altered by the spatial variation of the elastic modulus.
Heterogeneous rock conditions are simulated in a manner to which
the elastic modulus values (E;) randomly vary per each discretized
layer (i) of unit thickness (1 ft) throughout the rock mesh, while
other material properties remain constant. The generation of each
random distribution of the elastic modulus values is performed
using the LU-decomposition method with a spherical covariance
model for the Gaussian field reported in a previous study by the
coauthors [21]. This skewed distribution of the spatial variability
closely fits the lognormal distribution with statistics such as mean
(ug), coefficient of variation (CVg) and vertical correlation length
(ay) [7]. Physical meanings of these descriptive statistics are the
location of the center of the distribution of the elastic modulus
data, the degree of spread of the data set, and a vertical distance
between two sampling layers where a distinct spatial structure
of clusters of similar modulus values can be found, respectively.

Since the degree of the data spread of the elastic modulus can
significantly vary from one boring site to another [7,21], lower
and upper bounds of CV ranging from 0.2 to 0.6 with a selection
of three various a,’s of 5, 10, and 15 ft are used to bound a field
condition. Particularly, the selected range of CV¢ is evaluated using
limestone rock samples collected from the load test sites of
Apalachicola and Fuller Warren Bridges located in north Florida
[7]. To ensure that the predicted mean of bearing stiffness (i.e.,
the slope of the load-displacement curve) converges to the true
mean, one-thousand random distributions are simulated per each
combination of CVg and a,. The required number of simulations is
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Fig. 6. Comparison of FEA with centrifuge test results.

determined to achieve a realistic representation of the field condi-
tion through geostatistical realization where the variance of the
mean values collected from numerical simulations approaches
zero.

Fig. 7 shows a comparison of the bearing stiffness between the
homogeneous rock condition and the cases of the heterogeneous
rock condition. The bearing stiffness represents the arithmetic
mean of the slopes of all the load-displacement curves obtained
from the 1000 simulations per each combination of various CV('s
with a constant a, of 5 ft (1.524 m). Both the simulation results
of L/ID=1 (left column) and L/D =3 (right column) indicate that
higher degrees of the variation (greater CVg) cause a more rock
“softening” effect on the tip response when compared to the
homogeneous rock condition. The resultant bearing resistance de-
creases proportionally as CVg increases.

In contrast, no difference in the predictions of the mean stiff-
ness is found with respect to the variation of a, for all the cases
of CVg ranging from 0.2 to 0.6. Basically, the load-displacement
curves of the other two cases of a, (10 ft and 15 ft) are identical
to those of Fig. 7 and thus, are not repeated. This is based on no
influence of these three spatial correlation lengths on the bearing
stiffness being found in Fig. 8. Within the influence depth of 2D
(=18 ft) [22-24], the reciprocal of the arithmetic mean of the reci-
procal of a harmonic average of E; with CVg=0.2 remains essen-
tially constant regardless of the variation of a, ranging from 5 ft
(1.524 m) to 15 ft (4.572 m). Thus, the arithmetic mean stiffness
of a heterogeneous rock is found to be insensitive to the degree
of randomness but sensitive to the degree of the data spread of E;.

5. Quantification of spatial variability effects

Based on the finding of the spatial variability, a correlation be-
tween the homogeneous and heterogeneous rock systems is de-
rived for the prediction of the bearing stiffness. Linear regression
analyses reveal that R? values of the bearing stiffness for both
the homogeneous rock condition and each set of random distribu-
tion of E; of the heterogeneous condition are very close to the unity.
Thus, a tip displacement with respect to a random distribution of E;
is expressed proportionally to that of homogeneous rock

oy = 2eebe M

where &y, is a predicted tip displacement by a harmonic average of
E;, dqer Tepresents a deterministic displacement calculated using a
constant elastic modulus (ug) of the homogeneous rock, and Ej, rep-
resents a harmonic average of E; of layer i from beneath the tip to an
influence depth (H), which can be written as [25,26]

1 1 /Mdz 1&1
B H) Fi NXE 2

where N represents the number of sub-layers. Recall that a single
geostatistical realization in this study consists of one thousand sce-
narios of the random distribution of E;. In order to numerically pre-
dict a meaningful tip displacement of the heterogeneous rock
condition, the spatial variability is modeled by, not just a set of ran-
dom variation, but the geostatistical realization. Thus, the true mean
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Fig. 7. Comparison of the bearing stiffness with respect to various CVg at a, =5 ft.
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Fig. 8. Variation of the reciprocal of the arithmetic mean of 1/E, with influence
depths (H).

of all the harmonic means obtained from the realization should be
used in Eq. (1), instead. Using a mathematical formulation given by
Klammler et al. [21], the true mean of the harmonic means of the
random distribution of E; is written as

1+o-CV;

3
14 CV? 3

Hen = Ug

where pig, is the true mean of the harmonic mean moduli and o is a
variance reduction factor that is applied to the harmonic averaging
if pgp fluctuates as a, varies [26]. As noted in Fig. 8, the mean of 1/Ej,

over the influence depth of 2D remains unchanged by the variation
of a,. Thus, the variance factor drop out. As a result, Eq. (3) becomes
1 2
g, = I (1 + CVE) 4)
Where y, , represents the true mean of the reciprocal of the har-

monic averages (E). Replacing 1/E, by p, , in Eq. (1) and combin-
ing Eqgs. (1) and (4) yields

Psp = daer (1 + CV) (5)

where sy, is the true mean of the harmonic mean displacements.
Therefore, an effective bearing stiffness of the heterogeneous rock
(Ke) can be expressed

Kdet

= det (6)

K
T Ao

which quantifies the proportionality found in the finite element
analysis results of Fig. 7. Considering that zero variability, i.e.,
CVg =0, is improbable in field conditions, the effective stiffness
should always be less than the deterministic counterpart (Kget),
depending on the degree of spatial variability.

6. Conclusion

The influence of spatial variability on rock elasticity is quanti-
fied using the probability parameter of uncertainty. A systematic
approach of investigating the spatial variability using experiments
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and FEA is demonstrated as a viable method for improving the de-
sign reliability of a deep foundation. Trade-off between modeling
the system response at a reasonably detailed level and a desired
computational efficiency as a design tool can be made in a practical
application of finite element analysis in solving complex multi-
dimensional soil-structure interaction problems. As a result, the
present computational model—computationally efficient in its
treatment of rock-shaft boundary interfaces—has been developed
and validated against centrifuge test results.

The bearing stiffness of heterogeneous rock is determined by a
correlation of the degree of spatial variability and a deterministic
stiffness of homogeneous rock. The mean of the bearing stiffness
of heterogeneous rock varies significantly with the degree of the
elastic modulus data spread over the influence depth of 2D. On
the other hand, whether the spatial structure of clusters of a sim-
ilar value of the elastic modulus is distinct is not a contributing fac-
tor to the variation of the bearing stiffness.

Eq. (6) represents a solution for difficulties associated with the
uncertainty involved in deep foundation design. With the proposed
tip variance model, a side-resistance variance model could be
developed by introducing another random variable of cohesion
into the geostatistical realization. Although the development of
bearing resistance appears to be independent of the load-displace-
ment behavior of a rock-shaft interface subject to the service loads,
variance of cohesion should be investigated to determine a total
variance of the shaft resistance. If the effects of variance of cohe-
sion are found to be independent of the variance of the elastic
modulus, then the variances of the side and tip resistance can be
summed to estimate a total variance of a deep foundation. Devel-
opment of such models will be a major step toward reliability-
based design practice of geotechnical engineering in fully utilizing
the potential of Load and Resistance Factor Design (LRFD) method-
ology [27].
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