
FOCUS: RELEASE ENGINEERING

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E MARCH/APRIL 2015 | IEEE SOFTWARE 89

FOCUS: RELEASE ENGINEERING

Rapid Releases
and Patch
Backouts
A Software
Analytics Approach

Rodrigo Souza and Christina Chavez, Federal University of Bahia

Roberto A. Bittencourt, State University of Feira de Santana

// To investigate the results of Mozilla’s adoption of rapid
releases, researchers analyzed Firefox commits and bug
reports and talked to Firefox’s developers. The results
show that developers are backing out broken patches
earlier, rendering the release process more stable. //

RELEASE ENGINEERING deals
with decisions that impact the daily
lives of developers, testers, and us-
ers and thus contribute to a prod-
uct’s success. Although gut feeling
is important in such decisions, it’s
increasingly important to leverage
existing data, such as bug reports,
source code changes, code reviews,
and test results, both to support
decisions and to help evaluate cur-
rent practices. The exploration of

software engineering data to obtain
insightful information is called soft-
ware analytics.1

In 2011, the Mozilla Founda-
tion fundamentally changed its re-
lease process, moving from tradi-
tional 12- to 18-month releases to
rapid, six-week releases. The moti-
vation was the need to deliver new
features earlier to users, keeping
pace with the evolution of Web stan-
dards, the competition among Web

browsers, and the emergence of mo-
bile platforms.

Researchers have used software
analytics to study the impact of
Mozilla’s adoption of rapid releases
(see the sidebar). Those studies fo-
cused on changes from the view-
point of users, plug-in developers,
and quality engineers. Here, we fo-
cus on how rapid releases affect code
integration, which is essential for the
timely release of new versions.

In particular, we analyze how the
backout rate evolved during Mozilla’s
process change. A backout reverts a
patch that was committed to a source
code repository, either because it
broke the build or, generally, because
some problem was found in the patch.
Backout implies rework because it re-
quires writing, reviewing, and testing
a new patch. A high backout rate in-
dicates an unstable process.

Code Integration
at Mozilla
Over the last five years, development
at Mozilla in general, and Firefox
in particular, has intensely applied
code review and automated testing
at multiple levels, such as unit test-
ing and user interface testing. This
process has been supported by tools
such as Bugzilla, a bug-tracking sys-
tem, and Mercurial, a distributed
version control system. Here we de-
scribe the process before 2011 and
the changes that occurred after. Be-
cause we analyze only the period
between 2009 and 2013, we ignore
specifics of the process before 2009
and after 2013.

Before 2011: Traditional Releases
Before March 2011, Firefox develop-
ment followed a traditional release
schedule. Features for the upcoming
version were developed along with
bug fixes and minor updates for the

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

current stable release. Major features
would be delivered to users only with
the release of a major version, which
occurred when planned features were
implemented and tested. In practice,
a new major version took from 12 to
18 months to be released.2

Figure 1 summarizes bug fixing
at Mozilla at that time. A developer
first proposed a source code change
as a patch on Bugzilla. That devel-
oper then requested a code review
from another developer, who ap-
proved or rejected the patch. In the
latter case, a new patch was written
and reviewed. Once the patch was
approved, the developer committed
it to the code repository.

All developers with commit access
committed to and pulled changes
from the Mozilla central reposi-
tory, often abbreviated m-c. Nightly
builds were created from m-c so that
developers, testers, and other stake-
holders could test the most recent
changes. Automated tests ran during
the build process.

The central repository had to
be fairly stable because it was the
starting point for developing new
features and bug fixes. If the code
in m-c failed to compile or broke
major features, it prevented test-
ing of new changes. In this case,
the developer had to back out the
offending commit to stabilize the
repository or even fix it right away
with another commit. In some
cases, the repository was closed to
prevent further changes while sta-
bilization occurred.

To prevent m-c from breaking
frequently, developers could, be-
sides running tests in their develop-
ment machines, submit their patches
to the Try server before committing
them. The Try server checked out a
copy of m-c, applied the patch, built
the code, and ran automated tests.
Because building all the platforms
and running all the tests might take
hours, developers could choose to
build a subset of the platforms and
run a subset of the tests.

When developers were confident
about their patches, they committed
them to m-c. They had to wait for the
next build cycle and watch the build
to ensure the changes didn’t break the
build or cause test failures. If a prob-
lem happened, they had to back out
the bug. So, developers were recom-
mended to commit only if they were
available for the next four hours.3

Once the change was in m-c and
tests passed, the corresponding bug
report was updated with the status
Resolved and resolution Fixed. If
further tests detected a problem, the
commit was backed out, and the bug
report status changed to Reopened
so that it could be resolved again.

2011–2013: Rapid Releases
In March 2011, Mozilla started the
six-week release cycles, beginning
with the development of Firefox 5. In
this cycle, though, Mozilla was still
stabilizing the process. Only in June
did it create integration reposito-
ries, such as Mozilla inbound (m-i).

PREVIOUS STUDIES
OF RAPID RELEASES AT MOZILLA

Researchers have been studying the impact of Mozilla’s move
to rapid releases under multiple perspectives. Although the
advantages of releasing features earlier are clear, Christian
Plewnia and his colleagues showed that, in the first years of
the change, Firefox’s reputation was harmed.1 Some reasons
include users being prompted to update the software more
often and plug-in developers fearing that new releases would
break the API. Since then, Firefox has regained its reputa-
tion by implementing silent updates and introducing extended
support releases.

Regarding the impact on the development itself, Mika
Mäntylä and his colleagues showed that Mozilla had to hire
more testers and narrow the testing’s scope because rapid
releases didn’t leave enough time to run all manual tests at

every release.2 This approach seems to be paying off. The
number of postrelease bugs hasn’t changed significantly af-
ter Mozilla moved to rapid releases, as Foutse Khomh and his
colleagues showed.3

References
1. C. Plewnia, A. Dyck, and H. Lichter, “On the Influence of Release En-

gineering on Software Reputation,” presented at 2nd Int’l Workshop
Release Eng., 2014; http://releng.polymtl.ca/RELENG2014/html
/proceedings/releng2014_submission__3.pdf.

2. M. Mäntylä et al., “On Rapid Releases and Software Testing,” Proc.
29th IEEE Int’l Conf. Software Maintenance (ICSM 13), 2013, pp.
20–29.

3. F. Khomh et al., “Do Faster Releases Improve Software Quality? An
Empirical Case Study of Mozilla Firefox,” Proc. 9th IEEE Working Conf.
Mining Software Repositories (MSR 12), 2012, pp. 179–188.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

MARCH/APRIL 2015 | IEEE SOFTWARE 91

Thereafter, patches were commit-
ted to m-i, tested on m-i, and then
merged once a day with m-c. Patches
that broke m-i were backed out be-
fore merging.

Instead of each developer watch-
ing the build and backing out his
or her own commits, build engi-
neers took turns as sheriffs who
performed this job. Breaking the
build on m-i was less of a problem
because sheriffs backed out trouble-
some patches before merging the
code into m-c, making it more sta-
ble. Sheriffs also changed the bug
report status to Resolved, with res-
olution Fixed, after they tested and
merged the patches.

Software Analytics
Approach
To investigate how the backout rate
changed when Firefox transitioned

to rapid releases, we collected, trans-
formed, and analyzed publicly available
data produced by Mozilla engineers.

The Data
We used two primary information
sources: commit logs and bug reports.
We extracted the logs from m-c using
the command hg log. A Mozilla engi-
neer made the bug reports available
as an SQL database dump.

We also obtained release dates
from Mozilla’s wiki. We analyzed
the development of versions 3.6 and
4.0, both developed under tradi-
tional release cycles, and versions
5 through 27, developed under six-
week cycles. The development of ver-
sions 3.6 to 27 amounted to more
than four years of data (see Figure 2).

We split the data into three peri-
ods: traditional releases, transitional
rapid releases, and rapid releases

with integration repositories. The
development of version 5 was iso-
lated in the transition period because
it was atypical: the release cycle was
longer, and integration repositories
didn’t exist then. We mapped each
bug report to a release according to
the date of its fi rst bug fi x commit.

Mapping Commits to Bug Reports
We classifi ed commits as bug fi xes
or backouts and mapped them to
the bugs they fi xed or reverted. To
this end, we relied on conventions
developers use when writing com-
mit messages.

Bug fi xes. Bug fi x commits start with
the word “bug” followed by a fi ve-
to six-digit number uniquely identi-
fying the bug. An example is, “Bug
939080 - Allow support-fi les in man-
ifests to exist in parent paths; r=ted.”

Attach patch
to bug report

Review
patch

Commit
patch

Backout
commit

Early backout: (1) and (2)
Late backout: (3)

1
Build and
run tests 2

Change bug
resolution
to Fixed

3

Rapid releases
(transition)

Traditional releases

22 Mar. 2011 21 June 201130 June 2009Release dates

Versions

17 Sept. 2013

Rapid releases with integration repositories

4.0 5
3.63.5

6 7 8 9 10
11

12
13

14
15

16
17

18 20
19 21

22
23

24

FIGURE 1. Mozilla’s bug-fi xing process between 2009 and 2013.

FIGURE 2. Firefox’s release history for the periods being studied. The development of version 5 was isolated in the transition period
because it was atypical: the release cycle was longer and integration repositories didn’t exist then.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Backouts. Backout commits contain
the expression “back out” or a varia-
tion, such as “backout,” “backs out,”
“backed out,” or “backing out,” fol-
lowed by a 7- to 12-digit hexadeci-
mal number referring to the bug fix
commit being backed out, or the
number of the bug whose fix it backs
out, or both. An example is, “Back
out 7273dbeaeb88 (bug 157846) for
mochitest and reftest bustage.”

Early and Late Backouts
We classified a backout as early if
it occurred before the resolution of
its bug report changed to Fixed. We
classified the backout as late if it oc-
curred after that. In practical terms,
an early backout occurs when a
commit breaks its first build, usually
because it either prevented the code
from compiling or made automated
tests fail. If a problem is discov-
ered only afterward, a late backout

is performed. A bug fix can even be
backed out more than once, both
early and late.

Data Analysis
After collecting the data, mapping
commits to bug reports, and clas-
sifying backouts, we determined
whether each bug was ever backed
out and, if so, whether the backout
was early or late. We computed the
backout rate as the ratio of the num-
ber of bug reports associated with
at least one backout commit to the
number of bugs associated with at
least one bug fix commit.

First, we plotted monthly back-
out rates. Then, we computed back-
out-related metrics for the three pe-
riods. We applied statistical tests
(such as Fisher’s exact test and the
Wilcoxon signed-rank test) to eval-
uate whether the differences were
statistically significant. Finally, we

contacted Firefox engineers, using
the firefox-dev mailing list. We re-
ported our numbers and asked them
to explain the results according to
their experience.

The Results
Here we report on the evolution of
backout rate and other metrics, ex-
plain why they changed over time,
and analyze how they affected
Firefox developers and users.

The Numbers
Table 1 shows the metrics for the
three periods. First, the number of
bug fixes per day almost doubled un-
der rapid releases. This increase is
highly correlated with a growth in
the number of regular committers.
So, we can infer that the developer
workload didn’t change significantly
over the period. As a Mozilla engi-
neer stated,

TA
B

L
E

 1 Metrics per release model.

Metric

Release model

Traditional Transitional rapid Rapid with integration

No. of bug fixes 11,220 1,893 30,085

No. of days 631 90 892

Avg. no. of bug fixes per day 17.8 21.1 33.7

No. of committers* 45.5 64.6 92.7

No. of fixes backed out 702 173 2,831

Fixes backed out (%) 6.3 9.1 9.4

Avg. no. of bugs backed out per day 1.1 1.9 3.2

Early backout rate (%) 3.5 5.1 8.3

Late backout rate (%) 3.1 4.9 1.5

Fixes backed out early (%)† 56.7 55.5 87.7

Median time-to-backout (hrs.) 5.7 12.6 4.2

* Each month, we counted the number of developers with at least five commits; we then averaged this number across the months in each period.

† The proportion of backed-out bug fixes that were backed out early.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

MARCH/APRIL 2015 | IEEE SOFTWARE 93

A developer can only do so much
work; growth is mostly adding
developers nowadays, not the indi-
vidual doing more.

The numbers also show that back-
out was a relevant problem. Under
rapid releases, 9.4 percent of all bugs
that were fi xed eventually got backed
out, an average of 3.2 bugs daily.

Figure 3 shows that the overall
backout rate increased under rapid
releases. A few Mozilla engineers
pointed out that the backout rate
might have been underestimated un-
der traditional releases because the
backout culture became more preva-
lent after the introduction of sheriff-
managed integration repositories.
Before that, developers usually fi xed
a broken commit by recommitting,
without explicitly backing out the
fi rst commit:

Where bugs might have had broken
patches land and gotten fi xed
in-tree, our current process and
tree sheriffs will back-out obvious
failures until the bugs get fi xed
before landing.

[With inbound and sheriffs,] we
do not end up fi xing the issues
with follow-up after follow-up fi x
but rather have them backed out
right away.

To better understand the back-
outs’ impact, we broke them down
into early and late backouts. Figure 4
shows that, although the early-back-
out rate grew, the late-backout rate
dropped signifi cantly after the intro-
duction of integration repositories.

Table 1 reinforces that a shift oc-
curred toward earlier problem de-
tection. Among all backouts, the
proportion of early backouts in-
creased from 57 to 88 percent. The

time-to-backout (the time for an in-
appropriate bug fi x to be reverted)
also dropped after the adoption of
rapid releases.

What Does It All Mean?
What do the backout trends reveal
about changes in Firefox’s process
and context? Eight Mozilla engi-
neers offered explanations.

A larger code base and more prod-
ucts. Some engineers explained the
increase in the overall backout rate
by suggesting that because the code
base grew over time, code confl icts
became more likely. The number of
supported platforms also increased
because Firefox must support both

new platforms, such as Windows 8,
and older ones, such as Windows XP.
Also, new products emerged, such as
Firefox for Android and Firefox OS,
that share code with the desktop Web
browser. As one engineer explained,

We have a lot more stuff that can
break, on more platforms, as well
as more tests—these days we don’t
have everyone working on just
Firefox. Code landing for B2G
[the Firefox OS] can break Fennec
[Firefox for Android], for example,
and B2G devs don’t build and test
on Fennec locally. Those kinds of
changes will be caught and backed
out when they hit the trees [code re-
positories], not found beforehand.

2010 2011 2012 2013

0.12

Year

Ov
er

al
l b

ac
ko

ut
 ra

te
0.10

0.08

0.06

0.04

0.02

0

FIGURE 3. The overall backout rate over time. The dashed vertical lines represent
important events. The left one is the start of the fi rst rapid-release cycle; the right one
is the introduction of integration repositories. The overall backout rate increased under
rapid releases.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

The evolution of testing tools. The in-
creasing early-backout rate and de-
creasing late-backout rate were due
partly to the evolution of the auto-
mated testing toolset. According to
Mozilla engineers, the emergence of
better testing tools promoted earlier
detection of problems and improved
even detection of problems that would
have otherwise gone unnoticed, such
as hard-to-detect memory leaks:

Our automated testing has im-
proved considerably since [release]
3.5. A number of memory-leak-
fi nding tools have been integrated

into our test environments that are
improving our early catch rate.

Integration repositories and backout
culture. The increasing early-back-
out rate was also due to the sheriff-
managed integration repositories
and their effect on how developers
test their code. Before 2011, be-
cause developers pushed changes
directly to m-c, the changes had
to be thoroughly tested to avoid
breaking the builds or introducing
bugs. From 2011 to 2013, develop-
ers committed to integration repos-
itories, and the sheriff backed out

problematic patches before merg-
ing changes to m-c, thus keeping
it stable, as we mentioned before.
So, developers were encouraged to
commit to m-i after having per-
formed less testing. As someone
stated in Mozilla’s wiki,

But breaking it [the integra-
tion repository] rarely is ok. …
Never breaking the tree means
you’re running too many tests
before landing [committing to the
repository].4

Two Mozilla engineers reinforced
this view:

In the “old days,” you were ex-
pected to have built, tested, done
a Try build, etc. before the patch
landed.

The backout aggressiveness was
even explicitly mentioned when we
switched.

So What?
To understand what the changes in
backout rates mean to Firefox devel-
opers and users, we fi rst have to un-
derstand the impact of early and late
backouts.

The impact on developers. Every
backout induces rework by re-
quiring development of a new, im-
proved patch. However, in Mozil-
la’s case, the increase of early
backouts didn’t seem to cause over-
head. Instead, it refl ected a cultural
change toward committing patches
before testing them comprehen-
sively, therefore reducing the ef-
fort required to test patches. Such
change was possible only because
broken patches no longer reached
m-c. Sheriffs also ensured that
patches that break the build were

Early backout
Late backout

2010 2011 2012 2013
Year

Ba
ck

ou
t r

at
e

0.10

0.08

0.06

0.04

0.02

0

FIGURE 4. The early-backout and late-backout rates over time. The dashed vertical
lines represent important events. The left one is the start of the fi rst rapid-release cycle;
the right one is the introduction of integration repositories. Although the early-backout
rate grew, the late-backout rate dropped signifi cantly after the introduction of integration
repositories.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

MARCH/APRIL 2015 | IEEE SOFTWARE 95

backed out as soon as possible, re-
ducing the time in which the repos-
itory must be closed:

I’d say amount of time spent testing
patches before landing, and amount
of time wasted with trees closed
due to bustage [a broken build],
were reduced.

Although all backouts induce
rework, late backouts are severer.
First, the longer a fi x takes to be
backed out, the more time develop-
ers spend trying to remember the
context and set up their environ-
ments to create an improved patch.
Also, problems that aren’t resolved
early might end up in a release. So,
users might have to wait another re-
lease cycle to receive the defi nitive
bug fi x. Finally, with integration
repositories, inappropriate com-
mits that weren’t backed out early
ended up in m-c, on which develop-
ers based their work. By the time
the commit was backed out, many
other commits might have depended
on it.

So, from the shift toward ear-
lier backouts, we can infer that the
sheriff- managed integration branches
reduced the effort required to inte-
grate bug fi xes.

The impact on users. Although
Mozilla’s move to rapid releases
was a success from the release-
engineering perspective, it upset
users because of frequent update
notifi cations and broken plug-in
compatibility. As the then chair of
Mozilla Foundation summarized on
his blog post,

We focused well on being able to
deliver user and developer benefi ts
on a much faster pace. But we
didn’t focus so effectively on mak-

ing sure all aspects of the product
and ecosystem were ready.5

However, backouts had no effect
on users’ perception of quality. This
is because, after being committed to
m-c, all bug fi xes went through two
other repositories, aurora and beta,
where more tests occurred during
two release cycles before they were
released to the general public. So,
only very late backouts affected us-
ers, and these were rare under both
traditional and rapid releases. As a
Mozilla engineer stated,

I think our development process
gives us a margin of safety to detect
regressions well before the code
actually reaches the hands of users.

As the user base of each reposi-
tory grows gradually, we have an
effective way to detect unexpected
problems well in advance.

A s we mentioned before,
Mozilla took two concrete
measures that helped keep

the process stable while letting it
move faster: improving automated
testing tools and using integration
repositories. You can use these two
measures to improve any project.
However, the overhead incurred in
implementing them is more justifi -
able under rapid releases because
in that context it’s important to
keep the source code stable as of-
ten as possible. For example, having

RODRIGO SOUZA is a PhD student in the Federal University of
Bahia’s Department of Computer Science. His research interests
include empirical software engineering, release engineering,
software evolution, and mining software repositories. Souza re-
ceived an MSc in computer science from the Federal University
of Campina Grande. Contact him at rodrigo@dcc.ufba.br.

CHRISTINA CHAVEZ is a professor in the Federal University
of Bahia’s Department of Computer Science. Her research
interests include software design and evolution, and software
engineering education. Chavez received a PhD in computer
science from the Pontifi cal Catholic University of Rio de Janeiro.
She’s a member of ACM and IEEE. Contact her at fl ach@ufba.br.

ROBERTO A. BITTENCOURT is an assistant professor
of computer engineering at the State University of Feira de
Santana. His research interests include software evolution and
design, computing education, and computer-supported coop-
erative work. Bittencourt received a PhD in computer science
from the Federal University of Campina Grande. Contact him at
roberto@uefs.br.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing
professionals and is the leading provider of technical information in the field.
MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and
opportunities to serve (all activities are led by volunteer members). Membership is
open to all IEEE members, affiliate society members, and others interested in the
computer field.

COMPUTER SOCIETY WEBSITE: www.computer.org
Next Board Meeting: 1–5 June 2015, Atlanta, GA, USA

EXECUTIVE COMMITTEE
President: Thomas M. Conte
President-Elect: Roger U. Fujii; Past President: Dejan S. Milojicic; Secretary:
Cecilia Metra; Treasurer, 2nd VP: David S. Ebert; 1st VP, Member & Geographic
Activities: Elizabeth L. Burd; VP, Publications: Jean-Luc Gaudiot; VP, Professional
& Educational Activities: Charlene (Chuck) Walrad; VP, Standards Activities: Don
Wright; VP, Technical & Conference Activities: Phillip A. Laplante; 2015–2016
IEEE Director & Delegate Division VIII: John W. Walz; 2014–2015 IEEE Director &
Delegate Division V: Susan K. (Kathy) Land; 2015 IEEE Director-Elect & Delegate
Division V: Harold Javid

BOARD OF GOVERNORS
Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel, Diomidis Spinellis,
Phillip A. Laplante, Jean-Luc Gaudiot, Stefano Zanero
Term Expriring 2016: David A. Bader, Pierre Bourque, Dennis J. Frailey, Jill I.
Gostin, Atsuhiro Goto, Rob Reilly, Christina M. Schober
Term Expiring 2017: David Lomet, Ming C. Lin, Gregory T. Byrd, Alfredo Benso,
Forrest Shull, Fabrizio Lombardi, Hausi A. Muller

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Director, Governance & Associate Executive
Director: Anne Marie Kelly; Director, Finance & Accounting: John G. Miller;
Director, Information Technology Services: Ray Kahn; Director, Membership: Eric
Berkowitz; Director, Products & Services: Evan M. Butterfield; Director, Sales &
Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614 • Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720
Phone: +1 714 821 8380 • Email: help@computer.org
Membership & Publication Orders
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo 107-
0062, Japan • Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 • Email: tokyo.ofc@
computer.org

IEEE BOARD OF DIRECTORS
President & CEO: Howard E. Michel; President-Elect: Barry L. Shoop; Past
President: J. Roberto de Marca; Director & Secretary: Parviz Famouri; Director
& Treasurer: Jerry Hudgins; Director & President, IEEE-USA: James A. Jefferies;
Director & President, Standards Association: Bruce P. Kraemer; Director & VP,
Educational Activities: Saurabh Sinha; Director & VP, Membership and Geographic
Activities: Wai-Choong Wong; Director & VP, Publication Services and Products:
Sheila Hemami; Director & VP, Technical Activities: Vincenzo Piuri; Director &
Delegate Division V: Susan K. (Kathy) Land; Director & Delegate Division VIII:
John W. Walz

revised 27 Jan. 2015

frequently stable code is important
when Mozilla must deliver a “chem-
spill” release—one that fixes critical
security issues and thus should reach
users as soon as possible.

Our analysis uncovered previ-
ously unknown information about
the evolution of early and late back-
outs in Firefox and therefore helped
evaluate the impact of the adoption
of rapid releases by Mozilla. In the
future, such analysis could be inte-
grated into an analytics tool con-
stantly updated with backout rates
and other metrics. Release engineers
would have easier access to up-to-
date information about the process,
letting them evaluate the impact of
yet-to-be-made decisions.

Acknowledgments
We thank all the Mozilla engineers who
provided feedback on the results.

References
1. D. Zhang et al., “Software Analytics in

Practice,” IEEE Software, vol. 30, no. 5,
2013, pp. 30–37.

2. “Releases,” MozillaWiki, Mozilla, 2014;
https://wiki.mozilla.org/Releases.

3. “Committing Rules and Responsibilities,”
Mozilla, 2014; https://developer.mozilla
.org/en-US/docs/Mozilla/Developer_guide
/Committing_Rules_and_Responsibilities.

4. “Tree Rules/Integration,” Mozilla, 2014;
https://wiki.mozilla.org/Tree_Rules
/Integration.

5. M. Baker, “Rapid Release Follow-Up,”
blog, 3 Oct. 2011; http://blog
.lizardwrangler.com/?p=2996.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
