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ABSTRACT

Context. Software Product Lines (SPL) engineering is in-
creasingly being applied to handle variability in industrial
software systems. Problem. The research community has
pointed out a series of benefits which modularity brings
to software composition, a key aspect in SPL engineering.
However, in practice, the reuse in Javascript-based systems
relies on the use of package managers (e.g., npm, jam, bower,
requireJS), but these approaches do not allow the man-
agement of project features. Method. This paper presents
the RIPLE-HC, a strategy aimed at blending compositional
and annotative approaches to implement variability in Ja-
vascript-based systems. Results. We applied the approach
in an industrial environment and conducted an academic
case study with six open-source systems to evaluate its ro-
bustness and scalability. Additionally, we carried a con-
trolled experiment to analyze the impact of the RIPLE-HC
code organization on the feature location maintenance tasks.
Conclusion. The empirical evaluations yielded evidence of
reduced effort in feature location, and positive benefits when
introducing systematic reuse aspects in Javascript-based
systems.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— Object-oriented design methods
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1. INTRODUCTION

Since the early stages to establish the SPL engineering,
several work proposed means to improve source code modu-
larity [2, B, [4]. The research community has tried to demon-
strate modularity as a prominent strategy to mitigate known
preprocessor-based implementation issues, such as the in-
creased occurrence of crosscutting concerns and code obfus-
cation [I2] 22]. Nevertheless, conditional compilation has
been the widely accepted strategy to implement variability
in software systems, despite its proven drawbacks [I5]. How-
ever, both the ease of use and flexibility #ifdef annotations
provide, together with usually available robust tool support,
it is possible to develop variable systems sufficiently shel-
tered from inconsistences, even in large software systems like
the Linux kernel [I9]. Thus, in order to accommodate the
benefits of both compositional and annotative approaches to
implement variability, the so-called hybrid approaches have
emerged [2] [3]. They usually avoid the introduction of new
elements — usually unknown — in the existing programming
languages, which may ease its adoption.

At the same time, the ever increasing use of JavaScript
for the implementation of the large software systems imply
to deal with a higher complexity. Such fact raises many
kinds of challenges, e.g., regarding modularization. There-
fore, in order to cope with such increased complexity, soft-
ware engineers need to resort of external constructs (apart
from language-native ones) to achieve reasonable modular-
ization, such as package managers (e.g., npm, jam, bower),
dependencies managers (e.g., requireJS).

In order to address the new demands of the development
of JavaScript-based software systems, we proposed tool
support for SPL engineering, which allows the introduction
of variability in the implementation and imposes feature-
oriented code organization of such systems. The approach
was first evaluated in the Web domain in conjunction with
an industrial partner [I4]. Hence, in this present investiga-
tion, we elaborate on our preceding proposal to establish the
concept of a hybrid composition strategy for SPL engineer-
ing, named RIPLE-HC. To the best of our knowledge, no
study — apart from our preliminary study [14] — addressed
the systematic reuse from modeling stages to low-level varia-
bility implementation. In addition, the initial tool was ex-
tended to accommodate annotation scattering visualizations
based on gathered evidence of the impact of code organi-
zation in feature location tasks, discussed later on in this
paper.

The contribution of this work is threefold: (3) the detailed
description of the RIPLE-HC approach to manage variabi-
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lity at low-level variability implementation; (i3) evidence of
the support of novel RIPLE-HC constructs on the main-
tainability task of feature location; and (iii) case studiesﬂ to
gather empirical evidence regarding the approach feasibility
and robustness.

The remainder of this paper is organized as follows. Sec-
tion [2] describes the RIPLE-HC hybrid composition solu-
tion. Section [3| discusses the conducted case studies, both
industrial and academic ones. Section[4reports on the plan-
ning, execution and results of the controlled experiment.
Section [5| discusses related work. Finally, Section |§| con-
cludes the paper and pinpoint directions to further investi-
gation.

2. RIPLE-HC: HYBRID JAVASCRIPT SPL
ENGINEERING

The RIPLE-HC implements a strategy to handle variabi-
lity at both feature modeling and code level for JavaScript-
based systems. It encourages the use of the feature-based
code organization and allows the use of preprocessing anno-
tations for handling fine-grained variability.

Along this section we introduce the concepts and methods
underlying the RIPLE-HC strategy. Next, we describe the
main features of the proposed tool, and highlight the role a
hybrid approach plays to improve code modularity.

2.1 Motivation

JavaScript-based systems can be found in different plat-
forms and such programming language is not only used to
implement Web-based systems, e.g., Brackets is a powerful
general purpose text editor implemented in J avaScriptﬂ At
the same time, the complexity of JavaScript-based software
systems is increasing and a significant amount of complexity
comes from handling the dynamic behavior of their features,
which sometimes depend on the presence or absence of an-
other feature.

This ever increasing complexity scenario satisfies SPL en-
gineering key characteristics, as it may provides JavaScript-
based systems with the opportunity to move from a custom
software development approach to build a set of products
and assembling reusable modules, in a systematic and coor-
dinated fashion. Unless the business goals establish a lim-
ited audience for the developed systems, SPL engineering
can be considered as a suitable strategy to cope with the
large amount of system variations and complexity [11].

Research effort concerning the introduction of SPL engi-
neering in the Web systems domain can be found elsewhere
[6] [16], 24]. However, they are mostly concerned with model-
ing domain variability in a high-level abstraction, as a means
to represent the common and variable features. While it can
facilitate the understanding of how products can be com-
posed, in terms of features, it is rather important to manage
variability in both, coarse and fine-grained implementation
levels, given that source code holds important role in es-
tablishing variable behavior. Therefore, we proposed an ap-
proach to handle JavaScript-based systems variability at
code level [I4]. The approach aims to promote the mod-
ular and systematic reuse of artifacts in a feature-oriented
fashion.

'Raw data is available at: |http://goo.gl/8UT5wA
2 Available at: |http://brackets.io/
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Figure 1: RIPLE-HC code organization: blending feature-
based code organization and preprocessing annotations.

2.2 Concept

The RiPLE-HC is the RiSE Product Line Engineering
approach for Hybrid Composition of JavaScript-based sys-
tems. As the name suggests, it is a hybrid approach that
blends compositional and annotative approaches of SPL en-
gineering [1]. The RiPLE-HC explores the modularization
of the compositional approaches and the flexibility to han-
dle feature interactions that annotative approaches enable.
Such a blending allows to manage variability at different lev-
els of the development phase. Besides, while the composition
handles the inclusion or exclusion of an entire functionality
in a product variant (coarse-grained variability), the anno-
tations enables inner-function statements to behave differ-
ently (fine-grained variability), depending on the selection
of a given feature.

Figure [1| shows how the RIPLE-HC employs the concept
of feature-oriented software product lines [I] to organize the
source code. Containment hierarchies organize the features
[5], in which each directory holds elements, thus including
the source code, of a given feature. The containment hier-
archy is a way to modularize the code and ease the compo-
sition implementation. However, in practice, feature inter-
action problems — the behavior of a given feature Foo being
changed due the presence or absence of feature Bar (as Fig.
illustrates) — make it too hard to have no code scattering,
which directly impacts the code organization. The hybrid
composition of the RIPLE-HC makes it possible to handle
feature interaction limitations of pure composition [9] by al-
lowing the use preprocessing annotations. Thus, there may
be eventual preprocessing annotations concerning a given
feature (e.g., Bar) scattered through different folders (e.g.,
Foo). It is worth to notice that our approach does not as-
sume a JavaScript module equal to a single .js file.

Thus, while the composition-based approach handles most
of the work while composing a new product, the annotative
approach adds a preprocessing step preceding the real com-
position. In fact, although preprocessing annotations can be
used anywhere within a module, so that variability manage-
ment can count solely on annotations, the feature-oriented
code organization fosters the inclusion of code mostly be-
longing to a given feature Foo in its particular folder. Con-
versely, annotations should preferably handle fine-grained
variability (e.g., feature interactions handling) to prevent
problems with code obfuscation [12].

2.3 Implementation

The RIPLE—HCﬂ was implemented as a plugin for FEA-
TUREIDE [23], a variability management tool designed to

3 Available at: |https://goo.gl/Ar2cJC
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provide automated support to SPL development. Thus, we
expanded the FEATUREIDE capabilities to integrate pre-
processing annotations with the native composition-based
approach, as a more general approach to enable variabi-
lity management at implementation level. While the former
enables inner-function statements to behave differently, de-
pending on the selection of a given feature, the latter handles
the inclusion or exclusion of an entire function in a product
variant. In this approach, we cope with functional interac-
tions, subsuming interactions that could potentially violate
functional specifications [I].

We next describe how the approach handles coarse and
fine-grained variability. Detailed information on the first
version of the FEATUREIDE plugin can be found in our pre-
ceding work [14].

2.3.1 Coarse-grained Variability

The RIPLE-HC relies on the FEATUREIDE capabilities to
automatically create the containment hierarchy (Fig. , in
which there is a directory to store all the code belonging to
each concrete feature. This is a FEATUREIDE inner concept.
While abstract features are dedicated to group concrete fea-
tures and usually are named with more general terms, the
concrete features are those which actually provide the func-
tionalities’ code. When a new product is to be configured,
the automated product generator picks all files from the di-
rectories associated to all corresponding features and deploys
the product variant in a safe and effective manner.

In the FEATUREIDE, the variability is partially controlled
at implementation level, i.e., if a given file associated to a
feature behaves differently depending on the selection of an
external feature, it replaces the entire file associated to that
feature. In programming languages such as Java, refine-
ment declarations [0 serve as a strategy to handle changes
a feature makes to a program, without changing the core
code, e.g., fields and methods can be added to a class, and
those will be reached in a program variant only if the feature
containing those refinements is selected. However, for pro-
gramming languages which do not enable those declarations,
such as JavaScript, applying such a technique to control
inner-function variability would lead to a large amount of
duplicated code.

In an ideal SPL, where there is a direct, one-to-one map-
ping between a problem domain variation and a variation
point in the solution domain, this strategy would work seam-
lessly. However, we should assume that feature interactions
can also occur at implementation level, and a single feature
can be mapped to multiple code fragments.

2.3.2 Fine-grained Variability

FEATUREIDE allows the representation of constraints be-
tween features, controlled by the configuration view. In such
a view, a configuration either enables or disables the selec-
tion of a given feature, according to the constraints asso-
ciated to it. The RIPLE-HC rely on such control for the
composition and adds its own support to handle such de-
pendencies with low-level annotations.

Let us consider an SPL project called algorithms. js (Fig.
2), which has a root feature Algorithms, representing the
domain under analysis, a set of mandatory features including
a concrete feature called Knapsack and an abstract feature
called Queue. PriorityQueue and SingleQueue are alter-
native children of Queue. Therefore, one and only one of
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Legend:

Mandatory
Optional

>ae

Knapsack .
Alternative

O
Abstract
Concrete

SingleQueue PriorityQueue

l

Figure 2: algorithms.js SPL sample feature model.

them can be included, if their parent feature is included in
a configuration.

Let feature Knapsack has a containment hierarchy which
holds a number of items, which should behave differently
depending on the Queue’s sub-feature selection. Listing
illustrates how the RIPLE-HC deals with the use of prepro-
cessor directives (annotative approach) to manage variabi-
lity at implementation level.

The directives in the source code delimit blocks of program
that are compiled only if a specified condition is true. They
may be employed to generate different product variants by
assembling the code fragments in cases where more than
one product configuration includes the same JavaScript file,
but a given function behaves differently depending on the
feature selection. The main reason is that composition rules
for augmenting functions with new properties in JavaScript
is not always safe [§]. In addition, this strategy may reduce
the maintenance effort, as the business rules from a single
function will be self-contained in a single file.

In the algorithms.js SPL example, after binding the
variants, the variable queue declaration statement will be
set differently, depending on the selection of either feature
PriorityQueue or SingleQueue. This shows how RIPLE-
HC might anticipate program-level customization of core
assets for a custom product to an earlier phase in the devel-
opment cycle. Besides, it controls and manages variability
at both model and implementation levels to handle product
enhancements.

function knapsack(items) {

var queue;
//#ifdef PriorityQueue

queue = new PriorityQueue();
//#elif SingleQueue

queue = new SingleQueue();
//#endif

b

Listing 1: Excerpt code from the Knapsack.js (feature
Knapsack).

2.4 Inherited Characteristics

We built the RIPLE-HC upon influences of previous hy-
brid approaches, namely FEATUREC++ [3] and FEATURE-
Housk [2], which unintentionally allow the use of annota-
tions together with composition. In fact, compositional and
annotative approaches pushed the state-the-art and prac-
tice, respectively, to another level. While the former has
grown significantly and as a consequence has gathered much
attention by researchers [I], the latter is one of the most
used approaches in the implementation of SPL in industry.



Table[Ilenumerates benefits and drawbacks of the RIPLE-
HC. Each table item has a mark indicating whether the
RIPLE-HC inherited the characteristics of those approaches
completely (+), partially (+/-), or ignored them (—). It is
not proven that hybrid approaches inherit all valuable char-
acteristics from compositional and annotative approaches.
Kistner and Apel [12] advocated that although it does not
automatically dissolve all disadvantages of either approach,
some benefits from both still holds after the blending.

Additionally, from Table[T] it can be seen that the RIPLE-
HC resorts from better modularization (separation of con-
cerns — Figure to provide better handling of feature inter-
actions (Listing [I). Some sort of scattering should not be
seen as a design flaw when kept under a defined threshold
[18]. Thus, although the scattering code traceability and
the maintenance of the variability may be affected by the
scattering introduced by the conditional compilation, the
provided tool support minimizes such effect.

Benefits and limitations of compositional approa-
ches: The compositional approaches implement features in
distinct modules (i.e., it aims to eliminate the code tan-
gling). The benefits of using them include: (i) modulariza-
tion — they compose selected modules to bind a product of
the line; (41) traceability — it is straightforward the location
of the code implementing each feature of the feature model;
and (i11) language support for variability — the languages are
designed in a disciplined and well-defined way being aware
of variability. As the drawbacks, they entail (i) feature in-
teractions handling — although there are significant gains in
terms of modularization, handling feature interactions is still
a challenge in compositional approaches; (i) coarse granu-
larity — which is too restrictive for implementing variability,
especially in the occurrence of feature interactions; and (iii)
difficult adoption, which is usually for the introduction of
new language concepts and raised complexity of the SPL
implementation [12].

Benefits and limitations of annotative approaches:
The benefits of using an annotative approach include: (7) the
simple programming model — code is annotated and removed;
(i3) the fine granularity — arbitrary code fragments can be

Table 1: RIPLE-HC inherited characteristics from compo-
sitional and annotative approaches.

Compositional Approaches

X Drawbacks

(4) Coarse granularity
(=) Poor feature interactions handling
(+/-) Difficult adoption

v Benefits

(+/-) Modularization
(+/-) Traceability
(+/-) Disciplined variability support

Annotative Approaches
X Drawbacks

(+/-) Code obfuscation
(+/-) Separation of concerns

v Benefits

(+) Simple programming model

(4) Fine granularity

(+) Ease to use

(4) Strong feature interactions handling

marked; (i4i) the variability despite the feature interactions
— they are able to handle the interaction between dependent
features. On the other hand, as the drawbacks they entail (i)
the separation of concerns — the modularity and traceability
are likely the biggest problems with preprocessors; and (%)
the code obfuscation — the use of preprocessors at a fine
granularity with nesting can make difficult to read and follow
the control flow of the code [12].

3. CASE STUDIES

This section discusses the case studies conducted to as-
sess the feasibility of the RIPLE-HC approach, carried out
in industry and academic settings. These are discussed in

sections and respectively.

3.1 An Industrial Case Study

The first case study was held in industry. Together with
an industry partnel’} we developed the project called MDC
Learning Objects. It consists of a family of Web-based
systems, in the domain of learning objects. Learning objects
are generally understood to be digital entities deliverable
over the Internet [7]. Learning objects aim at stimulating
learners’ knowledge formation and retention.

The project comprises a set of 42 features. The core fea-
tures have, together, around 3.7 KLOC, including 11 vari-
ation points. For this particular case study we considered
three different products, fully functional, generated from the
core asset base. In order to maintain the confidentiality of
the information, the products will be referred to as APP1,
APP2, and APP3. Table [2| shows code metrics extracted
from each productﬂ such as lines of code (LOC), number
of files, number of functions, number of declarative state-
ments (DS) — naming a variable, a constant, a procedure, or
specifying a data type —, and executable statements (ES) —
initiating actions.

Our partner reported gains in development time, what
might result in order of magnitude cost reductions in next
products’ releases. For instance, we observed a reduction
in the development time employed in APP3 — 720 engineer-
hours for APP1, whereas 122 for APP3 — although it is larger
in size than preceding ones (Table . As the core platform
had already been well-established, the time demanded was
mainly dedicated to build the product-specific parts. Fur-
ther detailed information about this case study is available
in our preceding work [14].

3.2 Academic Case Studies

Six open-source systems were manually transformed into
SPL by using the RIPLE-HC approach. These systems were
selected from qualitas.js corpus JavaScript systems dataset
[2I]. The transformed projects range from small to large

“http://www.reconcavotecnologia.org.br/
®Used tool: http://www.scitools.com/download/

Table 2: Products metrics generated from the SPL.

LOC Files Functions DS ES
Core 3,778 47 421 796 2,003
APP1 5,568 62 510 972 3,243
APP2 5,188 61 518 964 3,039
APP3 6,520 63 514 978 4,027

DS: Declarative Statements, ES: Executable Statements.
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Table 3: Target systems characterization metrics.

System(v) LOC # Modules # Features(CT) # Directives # Files Build(s) Domain
algorithms.js (0.20) 1,594 29 28 (6) 6 4 11.89 miscelaneous
jasmine (2.0.0) 2,956 48 4 (-) 14 4 3.52 testing
floraJs (1.0.0) 3,325 26 18 (-) 16 2 4.27 stmulation
video.js (4.6.1) 7,939 38 13 (-) 29 10 7.03 video player
TimelineJS (2.25.0) 18,237 89 15 (-) 75 6 9.98 web library
brackets (0.41) 122,971 403 13 (1) 107 19 42.27 text editor

v: version; CT: Number of cross-tree constraints; Directives: Number of annotated blocks processed; Files: Number of
files with annotated blocks; Build: Average of time to build; s: seconds.

systems. Table[3]shows descriptive metrics reproduced from
the qualitas.js — such as (i) lines of code (LOC) and (i)
number of modules of each system — and the metrics ex-
tracted from the SPL versions of the systems, such as, (i)
the number of features and cross-tree constraints, (iv) the
number of annotated blocks processed; (v) the number of
files with annotated blocks; (vi) the average time of build
(measured in seconds). We executed a full product build
with all the features selected 10 times to compute the av-
erage of time needed. Table [3| also describes the amount of
time each iteration took (column Build).

3.2.1 Granularity

The RIPLE-HC enables developers to adjust the gran-
ularity of the variability by annotating the corresponding
scattered variability. Thus, at least two main levels of gran-
ularity could be experienced: modules dedicated to a given
feature processed by composition, and the scattered feature
code by pre-processing the conditional compilation annota-
tions.

3.2.2  Trade-offs

The RIPLE-HC slightly modified how the JavaScript
projects should be structured. In comparison with the cur-
rent state-of-the-practice, instead of using an ad-hoc organi-
zation (i.e., there is no standard followed by all the projects),
the RIPLE-HC requires a more systematic way to organize
the source code, regarding the features. Regardless of the
notable differences in the code organization, there was no
additional effort for feature code location in maintenance
tasks.

3.2.3  Scalability

In order to investigate scalability issues, we included in
the analysis both small and large-sized JavaScript projects.
The qualitas.js dataset was built with the most popular
repositories from GitHub. We faced difficulties to extract
SPL from the brackets project with nested annotated blocks,
which is the second biggest project in the corpus. However,
when the nested blocks were left aside, the build occurred
in around 40 seconds. Table [3] shows both measures, num-
ber of features and number of existing annotated blocks, may
impact on the time to build as both yield more I/0 oper-
ations. For instance, algorithms.js took more time than
the remaining systems smaller than brackets. Addition-
ally, the build time gets larger as the number of annotated
blocks increases. The case studies showed that the RIPLE-
HC can provide support to handle most of the JavaScript
projects, since the case studies successfully accomplished are
representative of the corpus, given that about 75% of them
are smaller than 4,85 KLOC in size, and 50% of them are
smaller than 1,3 KLOC.

3.2.4 Lessons Learned

While extracting the product lines from the target sys-
tems, we did not experience any issues apart from those
regarding the build of the products from systems with an-
notated nested blocks. In addition, we realized that some
systems lack any systematic source code organization, which
means that most modules are placed in the same folder. In
fact, as soon as the systems increase in size and/or complex-
ity some folder organization is used, accordingly to the mod-
ules’ functionalities, which recalls to the feature-oriented
way to arrange the code. Although such a characteristic
was not statistically checked, the way the code is organized
may be an indicator that the demanded effort to migrate a
set of single systems to a SPL with RIPLE-HC.

3.2.5 Threats to Validity

It is worth mentioning that these case studies were not
designed to draw quantitative conclusions based on descrip-
tive statistics, for instance, regarding the scalability of the
tool support. On the other hand, the case studies can show
the feasibility and applicability of the method and a proper
support. They also served to gather insights about open
rooms for improvement in the tool. This could be particu-
larly observed in how the tool could improve nested anno-
tated blocks. Nevertheless, the selection of the case stud-
ies systems may pose a threat to the validity of this study.
Hence, we included systems of different domains.

4. CONTROLLED EXPERIMENT

We planned and carried out a controlled experiment with
Software Engineering students to gather evidence on the
maintenance effort demanded by the RIPLE-HC feature-
based code organization in comparison to the current state-
of-the-practice of JavaScript code organization. This sec-
tion presents each phase of the experiment, as well as it
discusses the results of this empirical evaluation.

4.1 Methodology

The goal of this empirical study was to compare the im-
pact of two approaches to organize the source code in feature
location from the point of view of novice developers, regard-
ing response time and correctness: the ad-hoc approach,
i.e., tacit knowledge of the software engineers, hereinafter
referred to as Standard — with no systematic way to orga-
nize the code — and the RIPLE-HC — with a feature-oriented
code organization. Therefore, we pursue the answers to the
following research questions:

RQ1: Does the code organization based on the RIPLE-HC
approach reduce the time required for feature code lo-
cation in maintenance tasks?



RQ2: Does the code organization based on the RIPLE-HC
approach improve the correctness of feature code loca-
tion in maintenance tasks?

Each question embraces a couple hypotheses, which this
empirical study pursues confirmation. Table 4] describe the
null (Ho) and alternative (H1) hypotheses. In the former,
the observation is that RIPLE-HC (R) code organization
approach does not affect the time needed (Ho1) to locate a
feature, i.e., Standard (S) yields better results. The same
rule applies to fi-score calculations (Hoz2), explained next.

Table 4: Hypotheses tested in the controlled experiment.

Null hypotheses Alternative hypotheses

Hor  p(Times) > p(Timer) Hii
Hoz  p(Fls) > p(Flgr) Hip

uw(Times) < p(Timer)
u(Fls) < u(F1g)

4.1.1 Metrics

To measure the performance of the subjects, and to test
the hypotheses, we leveraged four metrics: response time,
precision, recall, and fi-score. The response time relates
to the effort spent by the subject to accomplish each task,
precision relates to correctness and it indicates how much
the student correctly assigned a piece of code to the feature
of a given task. The recall also relates to correctness and
indicates how much from the source code that belongs to a
given feature the student managed to find in a given task.
Finally, fi-score is an harmonic mean of precision and recall
and it subsumes the results achieved by the subjects with
regarding the perspectives of both metrics.

Precision and recall were obtained by employing the code
shadowing technique [I0]. The answers were either correct
or wrong, based on an oracle built by one of the authors,
and reviewed by the other ones. Despite the hard work on
manually shadowing the code, the use of such a technique
contributes to improve the reliability of the measurement
procedure, as it avoids double judgment in similar cases for
different subjects. Regarding the fi-score, it depends only
on the precision and recall values. The time values were
measured in seconds, by using the PROPHET tool [20].

4.1.2  Subjects

Nineteen senior undergraduate students enrolled in a Soft-
ware Engineering course acted as subjects. We designed a
form to gather background information regarding their pro-
gramming experience. Although the target systems were
written in JavaScript, we also included questions about pro-
gramming experience in other languages. The design fol-
lowed the guidelines from Siegmund et al. [20], in which
authors observed that programmers holding skills in varying
programming languages can yield better results in program
comprehension tasks.

4.1.3 Tasks

We considered two open-source JavaScript systems: al-
gorithms. js and video. js. Table[3|characterizes them and
they were chosen because they belong to different domains
and have different sizes. We designed 21 static feature lo-
cation tasks, i.e., without counting on a running system to
perform. Locating feature code for maintenance purposes is
a typical task for a developer — which helps developers be-
came aware of the system codebase — and perhaps it is one of

Ly & features
v & FeatureA
<empty folder>
Vv & FeatureB
¥ Bcom.example
amodule.js
V¥ @ FeatureC
othermodule. js :
anothermodule. js !

| Y& src
i othermodule. js
anothermodule. js
v bbcom.example
amodule.js

Figure 3: Code organization examples.

the most time-consuming maintenance activities. Although
it is not representative of the entire effort a maintenance
request demands, it can surely present helpful insights on
which direction the RIPLE-HC support should follows, as
well as developers who decide for a different approach during
their project development.

In the tasks, the subjects had to find the code of both,
modular (when the feature is implemented in a single file or
in set of files placed together) and scattered (when the code
of a single feature is spread over several source files) features.
Then, the codebase was organized following both approa-
ches. Figure [3]illustrates how each observed approach, na-
mely Standard (A) and RIPLE-HC (B). Next, the subjects
were asked to find the code implementing a given feature of
the target system, and fill in a text field with the names of
the files containing the code of the given feature.

Table [f] shows some data about the features used in the
experiment. For each target system, there is column that
identifies the task, the feature addressed, its type, its size
(LOC), and its scattering degree (SD). As scattering degree,
we consider the number of files containing source code of
the feature. Features are then defined as either modular, if
SD =1, or scattered, otherwise.

4.1.4 Experiment Design and Variables

The experiment design consisted of “one factor (code orga-
nization) with two treatments (Standard and RIPLE-HC)”.
The experiment comprised two rounds, in which all sub-
jects could use each tool. In round #1 (R1), the students
were randomly assigned to control (n=11) and experimen-
tal (n=8) groups. The Group A addressed the system using
Standard, and the Group B with RIPLE-HC. In round #2
(R2), the groups were then exchanged, so that the control
group became the experimental group and the other way
round. From the planned 21 tasks, 11 were addressed in R1
and 10 in R2. Each task involved only one feature of the
target system. Table [5| shows each of them.

Three groups of variables were considered in this exper-
iment: independent, dependent, and confounding variables.
The first one comprised the approaches used in this study,
namely Standard and RiPLE-HC. The second group con-
sidered the time — as a measure of effort — and the cor-
rectness — as a measure of effectiveness. The latter encom-
passed different variables that may affect the task analysis,
as follows: the level of modularity, each round, the tar-
get systems, and the size of each system. By level of
modularity we mean the nature of the feature (modular or
scattered); the rounds stand for the order in which a par-
ticipant addressed the system with a given approach; target
system stands for the familiarity of the participants with
them (it might be the case that subjects are familiar with
algorithms. js but not with video. js); and, finally, the size



Table 5: Features characterization.

algorithms. js video. js
Task Feature Type Size (LOC) SD Task Feature Type Size (LOC) SD
Task 1~ KarpRabin Modular 57 1 Task 1 AutoSetup Scattered 35 2
Task 2 BellmanFord Modular 43 1 Task 2 FullScreen Scattered 173 7
Task 3 PriorityQueue Scattered 34 2 Task 3 PlaybackRate Scattered 88 3
Task 4 Fibonacci Modular 28 1 Task 4 Mute Scattered 59 5
Task 5 BinarySearch Modular 13 1 Task 5 WebKit Modular 11 1
Task 6 Dijkstra Modular 33 1 Task 6 01ldWebKit Modular 11 1
Task 7  Heap Scattered 73 3 Task 7 Mozilla Scattered 19 2
Task 8 InsertionSort Modular 16 1 Task 8 Microsoft Modular 10 1
Task 9 MergeSort Modular 24 1 Task 9 BigPlayButton Scattered 13 3
Task 10  Stack Scattered 13 2 Task 10  LoadingSpinner  Scattered 23 3
Task 11  CountingSort Modular 35 1 - - - - -
LOC: Lines of Code; SD: Scattering Degree.
of the system stands for the extent to which the difference (a) Round 1
in the target systems influenced the analysis of the source 700
code. a0 algorithms.js
. Z 500
4.2 Execution 2’
. . . . .. E 400
This section describes the subjects characterization and s BRIiPLE-HC B Standard
the preparation for the experiment execution. §’3°°
Subjects Characterization. The answers suggested g 20
that ~ 32% of the students had previous industry experi- 100 ' - ' - T . E
ence. All of them had been enrolled in the university for at 0
least three years. Before joining the experiment, they had oL T2 T3 o4 TOSTOS TO7 TO8 TO9 T T
taken at least five programming courses.
Their programming experience have been evaluated in a (b) Round 2
5-point likert scale (1 to 5, in which 1 is the lowest value 300
and 5 is the highest one) with a questionnaire adapted from 250 video.js
Siegmund et al. |20], and the results are described next. =
o . @ 200
Mor.e than 70% of the participants .ranked the.mselves as 4 £ BRIPLEHC B Standard
or higher experience in C programming; regarding Java pro- s 150
gramming, over 60% of them reported as being experienced F oo
programmers; and a small set of about 33% had previous <
experience in JavaScript programming. 0 ‘ . ‘ .
Preparation. In the experiment, the training section 0
TO1 T02 TO03 T04 TO5 T06 T07 TO8 T09 T10

took about 60 minutes. It consisted of establishing a com-
mon vocabulary, explanations on the environment where
they had to report the results, and the forms to fill out.
Next, both rounds were performed. RI took about 70 min-
utes and R2 took about 50 minutes. The confounding vari-
ables may explain the observed difference in execution time
between the rounds.

4.3 Results and Discussion

In this section, we present and discuss raw data, and the
impact of both approaches on the dependent variables time
and correctness. While the former produces evidence on the
cost of maintenance tasks, the latter produces evidence on
whether developers may or may not benefit from using the
RIPLE-HC over Standard.

We started the analysis by applying the Shapiro- Wilk test
to verify the normality of each sample, namely Time and
Fi_score in both, R1 and R2. Results pointed out normality
in the samples generated in R1, concerning to time values
for both treatments (RIPLE-HC and Standard). Besides,
we carried out a data transformation on the values from R2,
by applying a logarithmic function to adjust the statisti-
cal differences found. Then, we carried out the hypothesis
testing, by applying the independent T-Test to assess Time
(R1), and the non-parametric Mann-Whitney U test was
used for Time (R2) and Fi_score (in both RI1 and R2).

Figure 4: Average time spent in each task.

4.3.1 Execution Time

Figure[d]shows the average time spent in each task, in sec-
onds. We may observe similar results between tasks carried
out by the control and experimental groups. In both, the
earlier tasks demanded more time to produce the results.
The lack of familiarity with the tools may explain those val-
ues. As the subjects gained confidence on the source code,
the time spent decreased. Indeed, the similarity in time
spent refutes the arguments in favor of the harmfulness of
the code scattering. To a certain extent, the scattered code
produced by using the RIPLE-HC approach did not demand
extra effort.

Although both target systems are small, there is a signif-
icant size difference between them. However, such a differ-
ence does not affect the effort to locate the features. Sub-
jects spent less time analyzing the second system — Figure
than the preceding one — Figure The lower values
in R2 can be a result of the likely maturation effect, given
that subjects were already familiar with the activity.

Most subjects spent less time on average to perform fea-



Table 6: Mann-Whitney U Test of hypothesis for Time
spent.

Round 1 Round 2
Approach Mean Rank p-value Mean Rank p-value
RIPLE-HC 137.48 .539%* 9.30 36
Standard 171.05 .542** 11.70 ’

*: Equal variances assumed; **: Equal variances not assumed.

Table 7: Mann-Whitney U Test results for Fi_score.

Round 1 Round 2
Approach Mean Rank p-value Mean Rank p-value
RIPLE-HC 13.27 20 10.80 82
Standard 9.73 10.20

ture location when the target system was organized with
the RIPLE-HC. RQ1 is primarily interested in analyzing
whether the RIPLE-HC approach reduces the time needed
to locate features. The hypothesis test was performed in
both rounds by considering the average time spent by the
subjects in each task. Table |§| shows that the subjects that
used the RIPLE-HC spent less time to perform their tasks.
The significant difference on the mean values is due to the
mentioned data transformation. However, with a p-value
higher than .05, it is impossible to refute the null hypothe-
sis (Ho1) in any rounds.

4.3.2 Correctness

The results indicate that both approaches produced sim-
ilar impact on feature location for modular and scattered
features. In most cases in R1, the Fi_score of both approa-
ches were higher than 50%. (Figure . However, both
approaches had worse results in R2 (Figure E Although
the RIPLE-HC does not excel Standard results in tasks T01,
T03, and TO04, the results were good in all the other tasks.
Subjects inspecting source code organized with the RIPLE-
HC yielded slightly better results when compared to the
Standard approach. In fact, in R1, while the median of
RIPLE-HC was around 0.8, in the Standard approach was
around 0.6. In R2, the difference was around 20%. We be-
lieve that subjects might have been affected by the novelty
on how the code is organized in the RIPLE-HC prior to the
training section of the experiment. Such an impact might
explain the perceived reductions in gains concerning to the
source code organization.

Regarding the analysis of correctness, as RQ2 stands out,
the hypothesis testing considered the average of the Fi_score
of the subjects in every task. Table [7] shows the observed
results. The subjects who used the RIPLE-HC approach
got better results in both rounds. However, we see that p-
value is greater that .05 in both rounds, thus, we cannot
refute null hypothesis (Hoz2) in any of them.

4.4 Threats to Validity

In this section, we discuss potential threats to the validity
of this empirical study. We believe that presenting such
detailed information may contribute to further research and
replications of this study [25], which may be built upon the
results presented herein. Next, we detail the main threats
according to external, internal, construct, and conclusion
validity.

(a) Round 1
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Figure 5: Average fi-score in each task.

External validity: We identified some threats that may
limit the ability to generalize the results. For example, the
study was carried out in an in-vitro setting, which means
a sample selected pseudo-randomly. In addition, most the
subjects were characterized as inexperienced with industry
projects, which poses a threat to the study. We attempted
to mitigate such a threat by characterizing and reporting
the environmental settings of the experiment, since it is un-
feasible to reproduce a realistic environment.

Internal validity: There are possible threats that may hap-
pen without the researcher’s knowledge affecting individu-
als from different perspectives, such as (i) the maturation
and learning effects, (%) the testing repetition since several
tasks were carried out, and (%ii) the experiment instrumen-
tation. These threats were mitigated by choosing different
features for each task, as well as by randomizing the se-
quence of task’s execution to omit possible relationships.
Finally, the only artifacts used were the source code which
subjects were already familiar with, and the feature models
and the PROPHET tool, explained in the training session.

Construct Validity: Confounding constructs may affect
the findings. For instance, the presence or the absence of
knowledge about a particular programming language may
not explain the causes of failures in the feature location
tasks. In fact, the differences may depend on the subjects’
experience, which was controlled with the characterization
form, to ensure that subjects had substantial experience to
accomplish the tasks.

Conclusion Validity: We observed from the results a likely
low statistical power, which concerns to the power of used
tests to reveal a true pattern in the data. Employing well-
known measures mitigated such a threat. Another observed
threat is the fishing for a specific result, which we mitigated
by relying the analysis only on the gathered data. There
is a threat on the reliability of treatment implementation,
when subjects are treated differently, which was minimized



by avoiding communication with the subjects and leaving
time for discussion of the experiment between the training
and the experiment sessions. Finally, the random hetero-
geneity of subjects, which was measured by the characteri-
zation form and presented, but no additional actions were
taken to control it since the experiment took place in the
context of an academic course.

5. RELATED WORK

There is a number of tools available to foster modular-
ity in JavaScript-based systems, namely, package managers
(e.gl, npm, jam, bower, etc.), dependencies managers (e.g.,
requireJS), among others. However, these approaches do
not allow the project features management based on fea-
ture model or product composition. In fact, our approach
does not exclude or intends to substitute such tools, but to
improve the reuse in such systems. There are some inves-
tigations we deem as related to ours. They are discussed
next.

Kistner and Apel [12] presented an initial discussion on
the hybrid approaches. They managed to show an eventual
path to combine advantages, increase flexibility for the de-
veloper, and ease the adoption of a hybrid approach. Later
on, Apel et al. [2] introduced a language independent ap-
proach based on superimposition, called FEATUREHOUSE,
which unintentionally allowed hybrid composition of C/C++
systems. They built a number of systems in different lan-
guages and conducted their discussion regarding the chal-
lenges addressed in the constructions of their approach. The
RIPLE-HC was developed after discarding such initiative
as viable to an extension aiming to our partner’s system
domain.

Prehofer [17] treated the feature interaction issue with
lifters. A lifter defines a modular means to implement the
feature interaction. Liu et al. [I3] proposes refactoring in
legacy applications through derivatives, extending the lifter
notion, to produce a feature-oriented refactoring of object-
oriented systems.

We also found some studies dealing with the composi-
tion of Web systems, by using strategies such as XML-
based, feature-oriented programming, and a mix of FOSD
and model-driven development. They are discussed next.
All the following studies [6] 16}, 24] proposed strategies to
handle Web-based SPLs to a certain extent. Nevertheless,
they also focus rather on modeling aspects. By contrast, in
this present investigation we considered a lower level of ab-
straction, while proposing a strategy to cope with variability
at the implementation level. None of these studies deal with
feature-based composition nor presented empirical evidence
of such. Therefore, to the best of our knowledge, there is a
lack of empirical evidence on the impact of hybrid composi-
tion software development and on the maintenance tasks in
JavaScript-based systems.

6. CONCLUDING REMARKS

This paper presented the RIPLE-HC, a hybrid approach
for SPL composition that introduces systematic reuse to Ja-
vaScript-based systems. In order to evaluate the proposed
approach, we carried out two case studies, which considered
both academy and industry standpoints and an empirical in-
vestigation comprised of a controlled experiment. The aca-
demic case studies serve to reinforce prior evidence from the

Web-based case study in an industrial setting, whereas the
controlled experiment produced new evidence on the bene-
fits of systematic code organization.

Case studies observations. The case studies showed
that the RIPLE-HC can handle real-world systems from
small to large-sized projects, as well as systems from dif-
ferent domains. As expected from the literature, the time
needed for building a new variant seems to be associated
with the number of features defined and the number of exist-
ing annotated blocks. Scalability problems were faced with
nested blocks, as such, they are not recommended in the cur-
rent stage of the prototype implementation. Additionally,
we observe that even with no systematic way to structure
the code, as soon as the systems increase in size, the project
structure tends to assume characteristics of feature-oriented
organization, which may indicate that larger projects might
benefit from this novel approach. Moreover, the industrial
case study showed the possibility to reduce costs of develop-
ment as early as in the third product, which required only
17% of the engineer-hours of the first product.

Experiment results. In all the four scenarios defined for
the experiment (Rounds 1 and 2 regarding both hypotheses:
time to complete the task — 2 scenarios — and correctness of
the answers — 2 scenarios), the mean of the results of the sub-
jects indicated slightly better result in favor of our approach.
However, the data points did not allow us to statistically re-
fute the null hypotheses. Therefore, it is not possible to
generalize that developers addressing feature location tasks
in the current state-of-the-practice of code organization take
longer, neither that they make more errors than those ad-
dressing the code structured with the proposed approach. In
addition, the feedback of the participants suggested that (%)
the RIPLE-HC provides better code organization regarding
the systems functionalities; (i) the composition can ease the
product development for different platforms; and (%ii) that
their unfamiliarity with the approach may have hindered
better results, which should be further investigated.

Future Work. We plan to implement a set of improve-
ments in the RIPLE-HC tool support, such as the filtering
the scattering graphs. We also plan to improve the tool sup-
port to better handle nested annotated blocks. Additional
case studies to better investigate the synergy of the hybrid
composition with the dynamic nature of JavaScript, such
as global scope, function redefinition, weakly typing, as well
as the usage of different current available frameworks like
angular and react are possible directions to further inves-
tigation. Furthermore, we plan to replicate the controlled
experiment, using more experienced subjects and different
types of tasks, so as to compare the results and identify op-
portunities to improve the proposed RIPLE-HC approach.
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