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In this supplementary document we provide additional informa-
tion about the visibility functions of both SMSR and RSMSS tech-
niques. This document is not self-contained and is to be understood
as an appendix of the paper.

1 ADDITIONAL DEFINITIONS

For convenience, let us rewrite v(x,y) as a function of three param-
eters v(d¢,don, p): the compressed discontinuity d., the oriented
normalized discontinuity d,,, and the relative coordinates of the
screen-space pixel in the projected light space p. For the parame-
ters d. and p, the description given in the Section 3.1 of the paper
is sufficient for this supplementary document. However, we need to
include more details about d,,.

The parameter d,, stores the oriented and normalized discon-
tinuity for vertical and horizontal axes of the 2-D discontinuity
space. Let us extend the definition given in the paper and denote
don as a four-channel vector which stores the 2-D relative position
of the fragment in the edge discontinuity in the first two components
(don)rs(don)g and the type of the edge discontinuity for both hori-
zontal and vertical axes in the last two components (don)p, (don)a-

The relative position of a fragment in an edge discontinuity lies
in the unit interval (don )¢ € [0, 1], where 0 belongs to the edge dis-
continuity beginning and 1 belongs to the edge discontinuity end.
(don)rg is computed by using the Equation 1 of the paper. In fact,
we compute the oriented normalized discontinuity only for the op-
posite axis of the dominant discontinuity. In this sense, we store
the result of the Equation 1 for (d,y), if the opposite axis is the
horizontal axis, and for (d,,)g otherwise.

An edge discontinuity can be classified into three different types:
positive-negative, dual positive and dual negative. This classifica-
tion is based on the signed distances a; and oy between the frag-
ment and the ends of the edge. As mentioned in the paper, o is
positive to the discontinuity end, and negative to the discontinuity
beginning. On the basis of this assumption, an edge discontinu-
ity is classified as positive-negative if we can measure positive and
negative distances for every fragment inside the edge discontinu-
ity. The dual positive edge discontinuity does not have a beginning
(i.e., a; and oy are positive). Conversely, the dual negative edge
discontinuity does not have end (i.e., ¢&¢; and o are negative). Each
one of these types of edge discontinuity must be handled separately
in the visibility function. We use —1, 0 and 1 to label the dual
negative, positive-negative and dual positive edge discontinuities,
respectively. These values are stored in (dpy)p for the horizontal
axis and (doy, ), for the vertical axis of the edge discontinuity.

To compute d,,,, each edge discontinuity must be traversed in the
opposite axis of the dominant discontinuity axis. For most of the
fragments, the dominant discontinuity is simply d.. However, frag-
ments typically located at the corner of the edge discontinuity have
a discontinuity in both axes. In this case, the dominant direction is
computed considering the discontinuity of the closest shadow map
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samples in the light space. We compute the discontinuities for the
neighbours in the opposite directions of the current discontinuity
and assume their discontinuities as dominant if (dc )., # 0. As we
will see later, our visibility functions handle scenarios with one or
two dominant directions.

2 SMSR VisIBILITY FUNCTION

In this document, we show how SMSR works in 12 different sce-
narios. For the cases not shown here (e.g., d. = 0), we assume
vsMmsR (e, don, p) = 1 by default. In this subsection, we present and
discuss each one of the 12 cases, including:

e An illustration of the scenario, with the shadows (black rect-
angles), the discontinuity directions (arrows) and the revec-
torization effect (red shape);

e A description of the case, including relevant information
about the handling of edge discontinuities;

e A formalization of how vgysr solves aliasing. The terminol-
ogy vsmsR (des don, p)c is merely used to identify the visibility
function for a specific case numbered by the index C.

It is worthy to mention that each one of the following definitions
of the visibility function can be efficiently implemented in a GLSL
shader by the use of step and mix functions.

Case 1: (dop)p = —1 0r (dpp)a = —1

Illustration:

Description:

A dual negative edge discontinuity does not end in a shadowed
fragment. In this case, the edge discontinuity does not consist of a
jagged shadow edge. Therefore, it is not revectorized.

Visibility Function:

VsMsR (de, don, p)1 =1

Case 2: (dop)p =1 0r (dop)g =1
Illustration:

Description:



A dual positive edge discontinuity consists of a shadow edge in
which there are shadowed fragments on both ends of the edge dis-
continuity. To close the shadow boundary, we revectorize all the
edge.

Visibility Function:

vsMSR (de;don, p)2 =0

Case 3: (d.), =0.75or (d;), =0.75
Illustration:

Description:

We can use d, to directly estimate vgysr. In this case, if there
is a discontinuity to the left and right or top and bottom directions,
we close the shadow edge, similarly as done in Case 2.

Visibility Function:

vsMsR (de;don, p)3 =0

Case 4: Dominant (d:), > 0and (d.)g > 0and (don)p =
0 and (dop)q =0 and (d¢), # 0.75 and (d.), # 0.75
Illustration:

Description:

Let us assume the case where the shadow map sample is located
at the corner of the jagged shadow edge and the dominant discon-
tinuity axis of the edge discontinuity is the horizontal axis. In this
case, we set (d¢), = 0 and determine the visibility function.

Visibility Function: Set (d.), = 0, then evaluate vgpsr as fol-
lows:

_ Jvsmsr(de,don, p)11 if (de)r = 0.5,
vousR (dex don: P4 = {VSMSR(dudomp)lZ otherwise.
Case 5: (dc), > Oanddominant (d.); > 0and (don)p =
0 and (don)q =0 and (d;), # 0.75 and (d.)g # 0.75

IMlustration:
Let us assume the case where the shadow map sample is located

Description:
at the corner of the jagged shadow edge and the dominant disconti-
nuity axis of the edge discontinuity is the vertical axis. In this case,
we set (d.), = 0 and determine the visibility function.

Visibility Function: Set (d.), = 0, then evaluate vgysgr as fol-
lows:

VSMSR (d(,-7don,[7)9 if (dc)g =05,

de,don, = .
VsMSR (e don; P)s {VSMSR(dwdonap)lO otherwise.

Case 6: (de)r >  Oand(d.)y =
0.5 and no dominant direction and (doy), = Oand (don)s =
0 and (d.), # 0.75

Illustration:

Description:

In this case, the edge discontinuity has the size of a shadow map
sample and there is a single discontinuity direction in x and y axes.
The relative coordinate py and the oriented normalized discontinu-
ity (don), are used to evaluate vgysR-

Visibility Function:

0 if 1—(don)r < py,

VsMSR (de; don, P)6 = {1 otherwise

Case 7: (de)y > Oand(dc)g =
0.25 and no dominant direction and (dyy), = Oand (don)a =
0 and (d.), # 0.75

Illustration:

Description:

In this case, the edge discontinuity has the size of a shadow map
sample and there is a single discontinuity direction in x and y axes.
The relative coordinate py and the oriented normalized discontinu-
ity (don)r are used to evaluate vgysr-

Visibility Function:

0 if 1= (don)r < 1—py,

vsMmsR (de,don, P)7 = {1 otherwise

Case 8: Dominant (d¢), > 0and dominant (d.), >
0 and (don)p =0 and (dp,)q =0 and (d.), # 0.75 and (dc ), # 0.75
Illustration:

.

Description:




For a fragment located at the intersection of two edge disconti-
nuities, we must evaluate two visibility functions and take the min-
imum value.

Visibility Function:

a— vsmsr (de,don, p)o  if (de)g = 0.5,
vsMsR (de; don, P)10  otherwise.

p— ) VsMsR(desdon, p)11 - if (de)r = 0.5,
vsMmsR (de,don, p)12 otherwise.

VSMSR(dmdomP)S = min(a,b)
Case 9: (dc), =0and (d.)g = 0.5 and (dyn)p = 0 and (don)a

0
Illustration:

Pt I -
Description:

When we have a discontinuity only to the bottom direction, the
revectorization depends on the oriented normalized discontinuity
(don)r and the relative coordinate Dy-

Visibility Function:

0 if 1= py < (don)r,
VSMSR(d07d0n7P)9{l other\:i)se (don)r
Case 10: (de)r

= Oand (dc)g = 0.25and (don)p =
0 and (don)a =0

Illustration:
Description:

When we have a discontinuity only to the top direction, the
revectorization depends on the oriented normalized discontinuity
(don)r and the relative coordinate p.

Visibility Function:

0 if py < (don)r,

VSMSR (dC7 don ) p) 10 = { 1 otherwise

Case 11: (d.),=0.5 and (d.)g =0 and (don)p =0 and (dop)q =
0
Ilustration:

-
il
-~

Description:

When we have a discontinuity only to the left direction, the
revectorization depends on the oriented normalized discontinuity
(don) ¢ and the relative coordinate py.

Visibility Function:

0 if px < (don)g,

vsMsR (de, don; P)11 = {1 otherwise

Case 12:
0 and (don)a =0
Illustration:

(de)y = 0.25and (de)g = Oand (dpn)p =

Description:

When we have a discontinuity only to the right direction, the
revectorization depends on the oriented normalized discontinuity
(don)g and the relative coordinate py.

Visibility Function:

0 if 1= pe < (don)e,
VSMSR(dudon,P)u:{] othervflji);e (don)g

2.1 Tuning

The SMSR technique consists of a set of 12 cases. In the shader,
each one of these cases is tested by the algorithm until one of the
case expressions is true. The default value is used to handle unex-
pected cases. Instead of ordering each one of these cases arbitrarily,
we can take advantage of the frequency of occurrence of the SMSR
cases to prioritize the test of the most frequent cases.

We estimated the average frequency of occurrence for each one
of the SMSR cases shown in this supplementary document, as can
be seen in Figure 1. We have measured this frequency of occur-
rence for three different models used in the paper. Here, we want to
provide a general view of the SMSR cases which are most likely to
be present in shadow mapping.
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Figure 1: Frequency of occurrence (in %) measured for each case
handled by the single-pass SMSR technique. These results were
measured for three different models used in the paper and these
results were obtained for several shadow map resolutions and light
source positions. Error bars indicate standard deviation.

As shown in Figure 1, the scenarios where the discontinuity is
to the left and right or top and bottom directions (Case 3) and the
scenario of intersection between two edge discontinuities (Case 8)



represent, on average, only 2% of the total usage of the SMSR tech-
nique. Nevertheless, these two cases must be handled by the revec-
torization technique to avoid the presence of artifacts in the final
rendering. The occurrence of dual negative (Case 1) and dual pos-
itive (Case 2) edge discontinuities vary considerably according to
the model used. The occurrence of the other cases remains stable
for different models, shadow map resolutions and light source po-
sitions.

On the basis of the Figure 1, we state that an optimized imple-
mentation of the SMSR technique should test Case 3 and Case 8
only after testing all the other SMSR cases. The test order for the
other cases may be implemented arbitrarily or adjusted to a specific
model.

3 RSMSS VISIBILITY FUNCTION

In RSMSS, a special care must be taken to obtain a coherent fil-
tering for the scene. Moreover, the RSMSS technique deals with
entering and exiting discontinuities, which increases the number of
scenarios to be dealt with. In this document, we define vggmss such
that it can handle 31 different scenarios. For the cases not included
here (e.g., d. = 0), we assume vrsmss(de,don, p) = 1 — (dc)p by
default. The terms vrsmss (de,don, P)c and vrsmss-c are used in-
terchangeably only for convenience.

In this subsection, we present and discuss each one of the 31
cases in a similar fashion of the Section 2. The RSMSS technique
can be efficiently implemented in a GLSL shader by the use of step,
mix and clamp functions.

In some cases, the RSMSS technique needs additional informa-
tion about the discontinuity space to compute the visibility function.
Let us define the following additional terms:

e n(d.) is the compressed discontinuity evaluation for a 4-
connected neighbourhood:

n(df) = (dc‘(x - Ovy)vdc(x+ an)vdc(x7y+ 0)7d0(x7y - 0))
, where o is the offset equivalent to one shadow map sample.

e d., is the edge discontinuity break. In other words, it is the
fragment discontinuity measured during the traversal of the
edge discontinuity which indicates that one of the ends of the
edge was found.

® 0y is a two-channel vector which stores, for a given shadow
map sample located in an edge discontinuity, the offset needed

to reach the neighbour shadow map sample in the opposite
axis of the discontinuity direction axis, formally:

0rg = (8(0.5—drg) —1)o
For the discontinuities (d;),¢ = 0.25 or (d¢)r, = 0.5, this vec-
tor lies in the interval 0,4 € [—0,0]. Therefore, we step only

one shadow map sample to reach the neighbour.

Case 1: (doy)p = —1 0r (dopn)a = —1 and (d;), =0

Illustration:
-
4_ .
-

Description:

A dual negative entering edge discontinuity does not end in a
shadowed fragment. In this case, the edge discontinuity does not
consist of a jagged shadow edge. As can be seen in the red rect-
angle, the dual negative entering edge discontinuity does not con-
tribute to the filtering. Then, the filtering takes place for the exiting
edge discontinuity only.

Visibility Function:

vrsmss (de, don, p)1 =1

Case 2: (d;), =0.75 and (d.), = 0.75 and (d;), =0
Illustration:

Description:

If a shadow map sample has an entering discontinuity in all the
four directions, the shadow map sample is closed to enforce the
shadow consistency.

Visibility Function:

vrRsMss (de,don, p)2 =0

Case 3: (d:), =0.75 and (d¢), = 0.75 and (d¢)p =1
Illustration:

. ]

Description:

In the same spirit of the Case 2, if a shadow map sample has
an exiting discontinuity in all the four directions, we make it lit to
enforce the illumination consistency.

Visibility Function:

VrsMmss (desdon, )3 =1

Case 4: (dy,)p, =1and (don)a =1 and (d.), =0.75 and (d;), =
Oand (d.), =0
Illustration:

Description:

If the entering discontinuity is dual positive for the vertical and
horizontal axes and the discontinuity is to the left and right direc-
tions only, different visibility functions may be used according to
the position of the shadow map sample relative to its neighbours.
In the illustration above, there are two shadow map samples which
are situated in this case. However, as can be seen in the final ren-
dering, one sample is filtered by the RSMSS technique, while the
other sample is shadowed. To detect the difference between them,
we check if there is an entering discontinuity on the left and right



directions for the top and bottom neighbours. If the entering discon-
tinuity to the left and right directions persists in these two neigh-
bours, the current shadow map sample is shadowed. Otherwise,
it is filtered. To filter the shadow map sample, we use the hori-
zontal discontinuity of the neighbour shadow map sample in which
de #0.75.

Visibility Function:
0 if (n(dc))p = (n(de))a
and if (n(d;))a = de,
Px+py—1 if(n(de))q #de
and if ((n(dc))q)r = 0.5,
) Py—Dx if (n(dc))a #dr
VRSMSS-4 =

1
Px— Py if (n(dc))p # de
1

I =px—py if (n(de))p # de

Case 5: (don)p =1 and (dop)q =1 and (d;), =0.75 and (d.), #
0and (d:), =0
Illustration:

U o
J a

Description:

Here, we have a complement of the Case 4. If the entering dis-
continuity is dual positive for the vertical and horizontal axes and
the compressed discontinuity is to the left and right and some ver-
tical direction, different visibility functions may be used according
to the position of the shadow map sample relative to its neighbours.
To detect the difference between them, we check if there is an enter-
ing discontinuity on the left and right directions for the neighbour
in the opposite direction of the vertical discontinuity.

Visibility Function:

a=px—(don)g+1

b=2- (don)g—Px

Py otherwise.

. {1 —py if (de)g #0.25,

min(a,b,g) ifdc(x,y+0g) =de
px+py—1 if (de(x,y+0g))r =0.5
and if (d.), = 0.25,

Py — Px if (de(x,y+0g))r =0.25
VRSMSS-5 = and if (d.), = 0.25,
Px— Dy if (de(x,y+0g))r=0.5

and if (d,.), = 0.5,
1—pc—py if (de(x,y4+0g))r =0.25
and if (d.), = 0.5.

Case 6: (dy,), =1 and (dop)q =1 and (d;)g =0.75 and (d.), =
0and (d;), =0
Illustration:

Description:

This is a scenario similar to the one presented in Case 4. The
difference here is that the compressed discontinuity is to the top
and bottom directions only.

Visibility Function:

0 if (n(de))r = (”(dc))g
and if (n(d;)), = dc,
Px+py—1 if(n(d.))g #de
and if ((n(dc))g)e = 0.25
_Jpv=pe o if(nlde))r # de
PRSMSS-6 = and if ((n(d.)),)g = 0.25,
Px =Py if (n(de))g # dc
and if ((n(d;))g)g = 0.5
l—px—py if (n(de))r #d.
and if ((n(dc))r)g =0.5

Case7: (don)p, =1 and (don)a =1 and (d.), =0.75 and (d;), #
Oand (d.), =0
Illustration:

Description:

This is a scenario similar to the one presented in Case 5. The
difference here is that the compressed discontinuity is to the top and
bottom directions and some discontinuity in the horizontal axis.

Visibility Function:

a=py—(don)r+1



b=2—(don)r—py

{1 —py if (de)r #£0.25,
8= .
Dx otherwise.

min(a7b7g) ide(X70r,y) :dL'
px+py—1 if (de(x—o0r,y))g =0.25
and if (d.), =0.5,

Dy — Px if (de.(x—o0,,y))g =0.25
VRSMSS-7 = and if (d;), = 0.25,
Dx — Dy if (de(x—o0,,y))g=0.5

and if (d;) = 0.5,
1—pc—py if(de(x—0r,y))g=0.5
and if (d;), = 0.25

Case 8: (d.), =0.75 and (d;), # 0 and (d;), = 0 and (do)p =
0 and (don)a =0
Illustration:

Description:

For a positive-negative entering edge discontinuity, if we have a
discontinuity to the left and right direction and some discontinuity
in the vertical direction, we must analyze the position of the shadow
map sample in relation to its neighbours to determine the filtering.
In practice, we must traverse the shadow map samples in the oppo-
site direction to the vertical discontinuity direction until we find a

discontinuity break.
Visibility Function:

{1 —py if (de)g #0.25,
8= ’ .
Dy otherwise.

)

_ {g if (dyy), #0.25

2—py—(don)g otherwise.

b [z i (dep), #0.5
1+ py—(don)g otherwise.

- (don)g if (dep)r =0,

de,d, =
VRsMss (desdon: P)s {min(a,h) otherwise.

Case 9: (d.), =0.75 and (d;), = 0 and (d;), = 0 and (don)p =
0and (don)a =0
Illustration:

Description:

For a positive-negative entering edge discontinuity, if we have a
discontinuity only to the left and right directions, we must analyze
the position of the shadow map sample in relation to its neighbours
to compute the filtering. In practice, we traverse the shadow map
samples in top and bottom directions until we find a discontinuity

break for at least one of them.
Visibility Function:

1~ (don)g if (depy(x,y+1))r =0

or (dcb()@y* 1) r=0

VRSMSS.9 = L4 px—(don)g if (dep(x,y+1))r =0
or (dcb(xvy_ 1) r=

Z_Px - (don)g if (dcb(x7y+ 1))f =Y.

or (dep(x,y—1)), =0.25

Case 10: (d.), #0 and (d.)g =0.75 and (d.), =0 and (don)p =
0 and (don)a =0
Illustration:

E I
L L

Description:

This is a scenario similar to the one presented in Case 8. The
difference here is that the discontinuity is to the top and bottom
directions and there is some discontinuity to the left or right direc-
tion. In this case, we traverse the discontinuity space in the oppo-
site direction of the horizontal discontinuity direction until we find
a discontinuity break.

Visibility Function:

_Jpx if (d¢)r #0.25,
§ 1—p, otherwise.

if (dop)g # 0.25

_ )8
a= { 1+ py— (don)r otherwise.



po 18 (dep)g #0.5
2—py—(don)r otherwise.

1- (don)r
min(a,b)

lf (dcb)g = Oa
de,don, =
VrsMss (e, don, P) 10 { otherwise.
Case 11: (d:), =0and (d.)g =0.75 and (d.), =0 and (don)p =
0 and (don)a =0
Illustration:

E B
E R

Description:

This is a scenario similar to the one presented in Case 9. The
difference here is that the discontinuity is to the top and bottom
directions only. In this case, we traverse the discontinuity space at
the top and bottom directions until we find a discontinuity break for
at least one of them.

Visibility Function:

1= (don)r if (dep(x—1,5))g

( Lb(x+]7y) g

lf( cb(x_lzy))g

( (b(x+17y))g 1
2—py—(don)r lf( b(x—1,¥))g =
( cb(x_"lv )g

0
0
1 +py - (don)r 0.25

VRSMSS-11 =

Case 12: (d;), =0.75 and (d;)g # 0 and (d;), = 1
Hlustration:

Frl ..
e A

Description:
This scenario is similar to the Case 8, but now for an exiting

edge discontinuity.
Visibility Function:

. { py if(de)g #0.25,

1 —py, otherwise.

a= — Px if (don)u = 17
(don)g — Dx otherwise.

p—dPx if (don)g = 1,
(don)g+px—1 otherwise.

(don)g if (de(x,y+0g))r =0,
max(g,b) else if (d.(x,y +o0g))r = 0.25,
) max(g,a) else if (dc(x,y+0g))r =0.5,
RSMSS12 73 (4,,), else if (dup)r = 0,
max(g,1 —py) elseif (dgp)r =0.5,
max(g, px) elseif (d.p)r =0.25

Case 13: (dc), =0.75 and (d;)g = 0 and (d.), = 1
Illustration:

Description:

This scenario is similar to the Case 9, but now for an exiting
edge discontinuity.

Visibility Function:
(don)g if (d ) :O.
L= px else if (dgp)r = 0.5
and if (don)q = 1,
(don)g_[?x else if (dLb)r =0.5
VRSMSS-13 = and if (don)a # 1,
Dx elseif (d.p)r = 0.2
and if (don)q = 1,
(don)g +px—1 elseif (dgp)r =0.2
and if (don)a 7é 1

Case 14: (d.), # 0 and (d;)g = 0.75 and (d.), = 1
Illustration:

El
1 4

Description:



This scenario is similar to the Case 10, but now for an exiting
edge discontinuity.
Visibility Function:

{1 —py if (de)r #0.25,
8= .
Dy otherwise.

a— lfpy if (don)b: 17
(don)r— py otherwise.

b= Py if (don)p = 1,
(don)r+py—1 otherwise.

(don)r if (de(x—0r,y)g =0,
max(g,b) else if (de(x —0y,y)g = 0.5,
_ Jmax(g,a) else if (de(x — Or ¥)g = 0.25,
VRSMSS-14 = (don)r else if ( ¢b)
max(g, 1 —py) elseif (dep)g = 0 25,
(

else if (d.p)r = 0.5
Oand (d;)g =0.75 and (d;), = 1

max(g, p»)

Case 15: (d;), =
Illustration:

Description:

This scenario is similar to the Case 11, but now for an exiting
edge discontinuity.
Visibility Function:

(don)r if (dyp)g = 0,
I—py else if (dgp)g = 0.25
and if (don)p =1,
(don)r — Py else if (dep)g = 0.25
VRSMSS-15 = and if (don)p # 1,
Py else if (dgp)g = 0.5
and if (don)b =1,
(don)r+py—1 elseif (dgp)g =0.5
and if (dpp)p # 1

(
Case 16: Dominant (d.), > Oand (d:)g > Oand (dc), =
0 and (d¢), #0.75 and (d;)g # 0.75
Illustration:

Description:

Let us assume the case where the shadow map sample is located
at the corner of the jagged shadow edge and the dominant disconti-
nuity axis of the entering edge discontinuity is the horizontal axis.
In this case, we set (d.)g = 0 and determine the visibility function
according to this new scenario.

Visibility Function: Set (d.); = 0, then evaluate vrgmss as
follows:

VRSMSS (dc:donvp)ZO if (don)b =1,
VRsMSS (des don, )16 = § VRSMSS (de,dons P)21 if (don)a = 1,
VRsMsS (de,don, P)23  otherwise.

Case 17: (d.), > 0and dominant (d;); > Oand (dc), =
0 and (d.), #0.75 and (d.)g # 0.75

Illustration:

Description:

Let us assume the case where the shadow map sample is located
at the corner of the jagged shadow edge and the dominant discon-
tinuity axis of the entering edge discontinuity is the vertical axis.
In this case, we set (d¢)y = 0 and determine the visibility function
according to this new scenario.

Visibility Function: Set (d.), = 0, then evaluate vgrsmss as
follows:

vRsMSS (e, dons P)2o  if (don)p = 1,
VRSMSS (do:d()l’h P) 17 = § VRSMSS (dc, don-, p)21 if (don)a =1 ,
VRsMsS (de;don, p)22  otherwise.

Case 18: (de)r > Oand(d:)g > Oand(d.), =
0 and no dominant direction and (d.), # 0.75 and (d.), # 0.75
Illustration:

o N

Description:

In this case, the entering edge discontinuity has the size of a
shadow map sample and there is a single discontinuity direction in
x and y axes. The relative coordinate py and the oriented normalized
discontinuity (d,y,), are used to evaluate vRgmss-

Visibility Function:

2 - (don)r - py
1+ Py — (don)r

if (d¢)e =0.5,
vRsMSS (desdons )18 = { i Edcgg — 025
C g - . N

Case 19: Dominant (d¢), > 0 and dominant (d.)g >
0 and (d¢), = 0 and (d¢), # 0.75 and (d.)g # 0.75
Illustration:



Description:

For a fragment located at the intersection of two edge disconti-
nuities, we must evaluate two visibility functions and take the min-
imum value.

Visibility Function:
Px if (dun)a =1
and if (d,), = 0.5
1 px if (don)a = 1
. and if (), = 0.25
1 + px— (don)g if (don)a 7é 1
and if (d;), = 0.5
2— (don)g — Px if (dun)a 7é 1
and if (d,), = 0.25
1—py if (don)p =1
and if (d.), =0.5
Dy if (don)p =1
b and if (d.), = 0.25
2_(don)r—17y if (don)h #1
and if (d.), =0.5
1 + py - (dun)r if (don)b 7’é 1
and if (d)g = 0.25

vRsMsS (de,don, p)19 = min(a, b)

Case 20: (dop)p =1 and (dyn)q = 0 and (d;), = 0 and (d.), #
0.75 and (d¢)g # 0.75
Illustration:

1 ..

Description:

For a dual positive entering edge discontinuity only in the hor-
izontal axis, the visibility function can be easily estimated by the
relative coordinate py.

Visibility Function:

L—py if (de)g=0.5,
de,don, p)20 = » s
VRsMss (de: don: P)20 { py  elseif (de)g =025

Case 21: (don)p = 0 and (dpn)s = 1 and (d;), = 0 and (d;), #
0.75 and (d¢)q # 0.75
Illustration:

[ I]

Description:

For a dual positive entering edge discontinuity only in the verti-
cal axis, the visibility function can be easily estimated by the rela-
tive coordinate py.

Visibility Function:

_ ) Dx if (dc)r = 0.5,
vesmss (de,don; )21 = {lpx else if (d,)y — 0.25
Case 22: (d.), = 0and (dc); > Oand (d¢), = 0and (d)g #
0.75
Illustration:

Hl E-

When we have a discontinuity only in the vertical axis, revec-
torization depends on the oriented normalized discontinuity (doy ),
and the relative coordinate py.

Visibility Function:

2—py—(don)r if(dc)g =0.5
% de,don, = Y i § ’
RsMsS (de, don, P)22 {1+py_(don)r if (de)g = 0.25
Case 23: (d.), > Oand (d:)g = Oand (d.), = O and (dc), #
0.75
Illustration:

-
-~
-~

Description:

When we have a discontinuity only in the horizontal axis, revec-
torization depends on the oriented normalized discontinuity (d,,)g
and the relative coordinate py.

Visibility Function:

)14+ px—(don)g if (dc)r =0.5,
VRSMSS (d“don,p)m B {2 —Px— (dnn)g if (dc)r =0.25

Case 24: Dominant (d;), > 0and (dc); > Oand (dc), =
1 and (d.), #0.75 and (d.)g # 0.75
Ilustration:

L L |



Description:

Let us assume the case where there is only one discontinuity for
each axis and the dominant axis of the exiting edge discontinuity is
the horizontal axis. In this case, we set (d¢), = 0 and determine the
visibility function according to this new scenario.

Visibility Function: Set (d.), = 0, then evaluate vrgmss as
follows:

VRsMSS (des dons P)2g  if (don)p = 1,
VRsMSS (de>don, P) 16 = 4 VRsMsS (dedon, )29 if (don)a = 1,
VRsMsS (desdon, )31 otherwise.

Case 25: (d¢)r > 0and dominant (dc), > Oand (dc), =
1 and (d¢), #0.75 and (d.)g # 0.75
Illustration:

ol ol

Description:

Let us assume the case where there is only one discontinuity for
each axis and the dominant axi of the entering edge discontinuity is
the vertical axis. In this case, we set (d;), = 0 and determine the
visibility function according to this new scenario.

Visibility Function: Set (d.), = 0, then evaluate vgsmss as
follows:

VRSMSS(dmdomP)ZS if (don)b =1,
VRSMSS (de> don, P)25 = 4 VRsmss (dedon, )29 if (don)a = 1,
VRsMsS (de,don, P)30  otherwise.

Case  26: (de)r > Oand(d:)g > Oand(dc), =
1 and no dominant direction and (d.), # 0.75 and (d;)g # 0.75
Illustration:

Description:

In this case, the exiting edge discontinuity has the size of a
shadow map sample and there is a single discontinuity in x and y
axes. The relative coordinate p, and the oriented normalized dis-
continuity (dop ), are used to evaluate vrsMmss-

Visibility Function:

(don)r+py—1 if (de)g = 0.5,
d -
VRSMSS (e, don, P)26 {(d(m) p if (de)g = 0.25.

Case 27: Dominant (d¢), > 0 and dominant (d¢)g >
O and (d¢)p = 1 and (d¢), # 0.75 and (d;)g # 0.75
Illustration:

Description:

For a fragment located at the intersection of two exiting edge
discontinuities, we must evaluate two visibility functions and take
the maximum value.

Visibility Function:

1—px if (don)a=1
and if (d;), = 0.5
Px if (d(m)a =1
g and if (d.), = 0.25
(don)g — Dx if (don)a # 1
and if (d¢), =0.5
(don)g +px— 1 if (don)a 7é 1
and if (d;), = 0.25
Py ( on)b =
and if (dL) =
1—py if (don)p =
b and if (dC)g =
(don)r +py—1 if (don)p # 1
and if (dc)g =
(dan)r — Dy if (dnn)b 7& 1
and if (d.), =

vrsMss (de; don, p)27 = max(a,b)

Case 28: (d,n)p = 1 and (dpn)s = 0 and (d;), = 1 and (d;), #
0.75 and (d¢)g #0.75
Illustration:

Description:

For a dual positive exiting edge discontinuity only in the hori-
zontal axis, the visibility function can be easily estimated by the
use of the relative coordinate py.

Visibility Function:

Py if(de)g =025,

vRsMsS (de,don, P)2s = {1 —py otherwise
y :

Case 29: (d,n)p = 0and (dpn)s = 1 and (d;), = 1 and (d;), #
0.75 and (d¢), # 0.75
Illustration:

Description:



For a dual positive exiting edge discontinuity only in the vertical
axis, the visibility function can be easily estimated by the use of the
relative coordinate p,.

Visibility Function:

_Jl=px if (de)r=0.5,
VRsMSS (des don, P)29 = {Px otherwise.
Case 30: (d:), = 0and (d.)g > Oand (d.), = 1 and (d.)g #
0.75
Illustration:

Description:

When we have an exiting discontinuity only in the vertical axis,
revectorization depends on the oriented normalized discontinuity
(don)r and the relative coordinate p.

Visibility Function:

Py+(don)r—1 if (dc)g=0.5,

de,d =
VRsMSsS (de,don, P)30 {(don)r_Py if (de)g = 0.25

Case 31: (d.), > Oand (dc), = Oand (d;), = 1 and (d.), #
0.75
Ilustration:

Description:

When we have an exiting discontinuity only in the vertical axis,
revectorization depends on the oriented normalized discontinuity
(don)g and the relative coordinate py.

Visibility Function:

(don)g —Px if (dc)r =0.5,

de,d =
vRsMss (de, don, P)31 {px+(don)g_1 if (do)y = 0.25

3.1 Tuning

The implementation of the RSMSS technique is similar to the
SMSR technique in the sense that one must test each one of the
RSMSS cases to find the proper visibility function to filter the sil-
houette fragment. In this subsection, we analyze the frequency of
occurrence of the RSMSS cases to prioritize the verification of the
most frequent ones.

An estimated frequency of occurrence for each one of the
RSMSS cases shown in this supplementary document can be seen
in Figure 2.
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Figure 2: Frequency of occurrence (in %) measured for each case
handled by the RSMSS technique. These results were measured for
three different models used in the paper and these results were ob-
tained for several shadow map resolutions and light source positions.
Error bars indicate standard deviation.

As shown in Figure 2, the scenarios where we have discontinuity
to the left and right or to the top and bottom directions (Cases 2 to
15) are rarer to occur. They represent only 1% of the total usage of
the RSMSS technique. The usage of the other RSMSS cases is well
distributed for entering and exiting discontinuities.

As depicted in Figure 2, the RSMSS cases must not be imple-
mented in the order that they were described in Section 3. To imple-
ment the RSMSS technique efficiently in the shader, one must first
branch the cases based on their discontinuity type (i.e., (d¢), =0 or
(d¢)p = 1). Assuming the order presented by Figure 2, this is equiv-
alent to choose between start checking Case 1 ((d.), = 0) or Case
30 ((dc)p = 1). Then, for each one of the discontinuity types, the
next branch must check if the discontinuity is to the left and right
or to the top and bottom (i.e., (d¢), # 0.75 and (d)g # 0.75). For
entering discontinuities, this is equivalent to start checking Case
22 or Case 2. For exiting discontinuities, the same is equivalent
to start checking Case 30 or Case 3. Finally, the cases which lie in
such conditions are checked in the order of frequency of occurrence
shown in Figure 2. Based on this distribution of conditional state-
ments in the shader, we could save 20 — 30% of the computational
time needed by the RSMSS technique.



