
Multi-Frame Adaptive Non-Rigid Registration for Markerless Augmented Reality

Antonio C. S. Souza∗

Federal University of Bahia, Brazil
Federal Institute of Bahia, Brazil

Márcio C. F. Macedo†

Federal University of Bahia, Brazil
Antônio L. Apolinário Jr.‡

Federal University of Bahia, Brazil

Abstract

Augmented Reality is a technology in which the user’s view of a
real scene is augmented with virtual information. To provide real-
time performance, the major of its applications only support rigid
interaction with the fiducial marker (i.e. marker-based augmented
reality) or the part of the real scene being used as a natural marker
(i.e. markerless augmented reality). In this context, when the natu-
ral marker consists of a deformable object (e.g. face, body, hand), it
is desirable for the application to support non-rigid interactions be-
tween the user and the marker. In this paper we present an adaptive
non-rigid surface registration algorithm for markerless augmented
reality. It is applied in a multi-frame manner to achieve fast perfor-
mance. Likewise, it takes advantage from the power of the graphics
processing unit to improve application’s performance. Based on
multi-frame adaptivity, we show that the markerless tracking runs
almost in real-time, improving the accuracy of the tracking when
compared to the rigid-only solution.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.7 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric algo-
rithms, languages and systems; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities;

Keywords: Non-Rigid Registration, Adaptive Algorithms, Aug-
mented Reality.

1 Introduction

Augmented Reality (AR) is a technology in which an additional
virtual information augments a real scene. Accurate tracking and
real-time performance are two of the most important technical chal-
lenges of AR applications.

In depth-based AR, tracking is performed by registering two sur-
faces captured from the real scene. Surface registration can be clas-
sified into two major types: rigid and non-rigid (i.e. deformable).
Rigid registration assumes that the surfaces to be aligned have the
same shape and are related by a rigid transformation. On the other
hand, non-rigid registration does not assume that the surfaces have
the same shape, relating them by multiple rigid transformations dis-
tributed along the surface, or in its joints, for articulated structures
[Tam et al. 2013].

In general, AR applications can be divided in two groups: marker-
based or markerless. Marker-based AR uses a fiducial marker as
∗e-mail:antoniocarlos@ifba.edu.br
†e-mail:marciocfmacedo@gmail.com
‡e-mail:apolinario@dcc.ufba.br

a point of reference in the field of view to help the system to es-
timate the camera pose. Markerless AR (MAR) uses a part of the
real scene as a natural marker. By using it as a point of reference
for tracking, one can expect non-rigid motion of the marker if it
consists of a deformable object (e.g. face, body, hand). In scenarios
such as on-patient craniofacial medical data visualization [Lee et al.
2012; Macedo et al. 2014], it is specially important for a MAR envi-
ronment to provide support for non-rigid tracking, which adds one
level of interactivity for the user and improves the robustness of the
tracking algorithm for rigid and non-rigid patient interactions. The
main issue related to this support is that AR requires real-time in-
teractivity and most of the current state-of-the-art works in the field
of non-rigid surface registration do not provide such performance.

Despite the real-time techniques which rely on strong priors about
a specific scenario (e.g. [Weise et al. 2011; Bouaziz et al. 2013;
Li et al. 2013] for face, [Chen et al. 2012] for body), a few meth-
ods have been proposed for fast generic non-rigid registration (e.g.
[Sumner et al. 2007; Nutti et al. 2014]). Their common character-
istic is the way they represent the deformation for a given surface:
using a deformation graph. Each node of this graph has a 3D affine
transformation which allows source surface to be deformed to a tar-
get surface. Deformation is modelled in terms of an energy function
and, by using a non-linear optimization algorithm, energy is mini-
mized and the best affine transformation for each node of the graph
can be found.

In this paper we present a multi-frame adaptive non-rigid surface
registration algorithm for a MAR environment. It is proposed in
the context of a medical application for on-patient craniofacial data
visualization to allow support for patient’s non-rigid interaction.
Therefore, the focus of our approach is non-rigid facial registration.
For each new frame, the current surface captured by a depth sensor
is rigidly aligned to a previous one represented by a 3D reference
model being generated. When rigid tracking fails, non-rigid reg-
istration is employed to allow current camera pose prediction and
deformation estimation between frames. In this case, the final re-
sult is used to update the 3D reference model. Deformation space is
represented by a graph built on the source surface. To achieve fast
performance, we have chosen to use a 3-level adaptive approach in
which:

1. The graph is dynamically subdivided according to an energy
function that models the deformation between source and tar-
get surfaces;

2. An adaptive algorithm is employed to select, for each itera-
tion, which points on the source surface will be used as con-
straints to guide the non-rigid registration;

3. A multi-frame adaptive approach is used to apply the non-
rigid registration only when the rigid registration fails. There-
fore, this solution can be applied in an AR environment in
real-time.

Moreover, all algorithms (i.e. non-rigid registration and MAR en-
vironment) are implemented in parallel by using the graphics pro-
cessing unit (GPU).

The paper is organized as follows. Section 2 provides a brief re-
view on the recent related works of non-rigid surface registration.

Section 3 introduces an overview of the full pipeline. Section 4
presents the MAR environment proposed in this work. Section 5
presents the non-rigid surface registration algorithm, describes its
GPU implementation and how it can be integrated with the MAR
environment. Section 6 discusses the experimental results. The pa-
per concludes in Section 7, with a summary and discussion of future
work.

2 Related Work

Non-Rigid Surface Registration: Non-rigid surface registra-
tion has been driven by different approaches in recent years. In
this section, we present the relevant works that are most closely re-
lated to our approach. For a more detailed discussion of rigid and
non-rigid surface registration, the reader should refer to [Tam et al.
2013].

One of the first works in the field of fast non-rigid registration ap-
plied to Computer Graphics is the Embedded Deformation (ED),
a real-time deformation algorithm for object manipulation and cre-
ation of 3D animation [Sumner et al. 2007]. The goal of this tech-
nique is to allow an user intuitive surface editing while preserving
the surface’s features. The deformation in their approach is repre-
sented by a graph. Each node of this graph is associated with an
affine transformation that influences the deformation to the nearby
space. The great advantage of this approach is that it can be applied
to a wide range of objects, articulated or not.

Although its main goal is the user object manipulation, the algo-
rithm proposed by Sumner et al. also can be seen as a non-rigid
registration algorithm in which the source and target surfaces are
the objects before and after user manipulation. In this sense, many
other works have used or improved this approach to the specific
problem of non-rigid surface registration.

Li et al. adapted Sumner’s algorithm to the registration of partial
range scans acquired from a 3D scanner [Li et al. 2008]. They aug-
mented the ED algorithm with a rigid registration and designed an
energy function to penalize unreliable correspondences. An exten-
sion of [Li et al. 2008] was proposed in [Li et al. 2009], where
an algorithm for high-quality template-based non-rigid surface reg-
istration and reconstruction using dynamic graph refinement and
multi-frame stabilization was presented.

A method for temporally coherent completion of surfaces captured
from real-time dynamic performances is presented in [Li et al.
2012]. They extended the non-rigid registration proposed in [Li
et al. 2009] by adding texture constraints for the optimization. Dou
et al. [Dou et al. 2013] proposed an algorithm to track dynamic ob-
jects acquired from real-time commodity depth cameras such as the
Microsoft Kinect Sensor. Basically, they have extended the Kinect-
Fusion algorithm [Newcombe et al. 2011] to deal with non-rigid
registration. Its non-rigid registration algorithm is based on the ED
algorithm, however color consistency and dense point cloud align-
ment were added to the original energy function.

All these approaches achieve high accuracy, however need execu-
tion time in the order of minutes to register two point clouds. Dif-
ferent from these approaches, the KinEtre has adapted the ED al-
gorithm to deal with incomplete meshes and to align the skeleton
of a user in movement [Chen et al. 2012]. The ED algorithm was
implemented almost entirely on the GPU and it runs in 30 frames
per second (FPS), as it was constrained to align only the skeleton
of the user.

By assuming that there is a temporal coherence between the source
and target objects, rigid registration can be solved before the non-
rigid alignment. To do so, Iterative Closest Point (ICP) algorithm

[Rusinkiewicz and Levoy 2001] is used. Thus, instead of compris-
ing the global rigid transformation into the unknowns of the ED al-
gorithm, we deal only with the node’s affine transformations as un-
knowns to be estimated, saving memory space and computational
time for the optimization step. Moreover, our algorithm focuses
only on the non-rigid registration and does not deal with recon-
struction or texture constraints. Finally, our algorithm runs in ≈ 60
milliseconds and it is applied in a multi-frame manner to achieve
real-time performance in an augmented reality application.

Markerless Augmented Reality: Despite the recent advances
in the field of virtual reality based on real-time non-rigid user inter-
action [Weise et al. 2011; Chen et al. 2012; Bouaziz et al. 2013; Li
et al. 2013], in depth-based AR, from the best of the our knowledge,
only one work has been proposed for markerless augmented reality
with support to non-rigid tracking.

Nutti and colleagues proposed an application for real-time tumor
tracking based on a depth sensor [Nutti et al. 2014]. They adapted
the technique proposed in [Li et al. 2009] by using multi-threading
and axis-angle rotation-based deformation representation and a Fi-
nite Element Method simulation on the patient’s body. As result,
they could interactively track the tumor position on the patient.
Their system uses reprojection for physician visual guidance to ad-
just the posture of the patient under radiation therapy. While this
application provides high accuracy to track the tumor, it runs only
in 10 FPS and the visual guidance (i.e. reprojection) is updated in
5 FPS. Therefore, the method proposed in this paper is one of the
first for markerless augmented reality based on interactive non-rigid
registration.

3 Pipeline Overview

An overview of our entire pipeline can be seen in Figure 1. It re-
quires only an RGB-D sensor (e.g. Kinect) and a computer with
GPU. The main goal of the proposed pipeline is to support non-
rigid tracking in a MAR environment. First, the natural marker
must be segmented from the real scene and reconstructed in real-
time. Next, current depth frame (Dt) captured by RGB-D sensor
and previous depth frame (Ds) represented by 3D reference model
are used for tracking. As long as the deformation of target object
increases, the chances for rigid tracking to fail increase as well. To
minimize this possibility, the reference model should be updated
with the deformation of the target object.

After marker segmentation, and by considering that the background
scene is already segmented in the depth maps, the 2D bounding box
that contains both source and target objects in Ds and Dt is used to
discard from the memory every position outside the xy-axis of the
bounding box.

Afterwards, non-rigid registration algorithm builds a deformation
graph (G) on the source surface (Ps) to allow its deformation to
the target surface (Pt) iteratively. Each node in G has a 3D affine
rigid transformation (i.e. a 3D rotation matrix R and a 3D transla-
tion vector t) which influences the deformation to the nearby space.
Current deformation between Ps and Pt is modelled in terms of an
energy function and a non-linear optimization algorithm is applied
to minimize this energy based on the affine transformations of G.
To reduce computational cost of the non-linear solver, a sub-sample
of Ps is selected as constraint to be used during optimization. Next,
the algorithm iteratively refines G according to the energy function
measured previously. This refinement is based on a quadtree. The
registration is stopped when the residual error between deformed
Ps and Pt is sufficient low. To achieve a good performance, the full
pipeline runs entirely on GPU and non-rigid registration algorithm
is applied in a multi-frame manner only when rigid tracking fails.

RGB-D Sensor

Live Stream Object Segmentation

TSDF
3D Reference Model

Source Depth Map

Target Depth Map

Cropped Source
Depth Map

Cropped Target
Depth Map

Source Surface

Target Surface

Non-Rigid
Registration

Deformed Source Surface

Non-Rigid Tracking

3D Reference Model Reconstruction

Figure 1: Overview of the proposed approach from 3D reference model reconstruction to final non-rigid aligned surface.

4 Markerless Augmented Reality

The MAR environment used in this work is based on the one pro-
posed in [Macedo et al. 2014] for on-patient medical data visual-
ization. However, we are only interested on the markerless track-
ing algorithm. To track an object without markers, a 3D reference
model of the object must be generated. To do that, the object must
be detected and segmented from the scene either by using color,
depth or both information. This process can be done by using an
appropriate classifier or semi-automatically by the user. Once the
object is detected on the scene, the region that contains the object is
fixed. Then, the object is constrained to be turned in this region. By
denoising the depth map using a bilateral filter [Tomasi and Man-
duchi 1998] and by converting the filtered depth map into a vertex
and normal map, the KinectFusion algorithm is used to reconstruct
the 3D reference model in real-time [Izadi et al. 2011]. The Kinect-
Fusion is an algorithm that integrates raw depth data captured from
an RGB-D sensor into a 3D grid to produce a high-quality 3D re-
construction of the object/scene of interest. The grid stores for each
voxel the distance to the closest surface (i.e. TSDF - Truncated
Signed Distance Function) and a weight that indicates uncertainty
of the surface measurement. These volumetric representation and
integration are based on the VRIP algorithm [Curless and Levoy
1996]. The 3D reconstructed model is extracted by detecting zero-
crossings on the grid through a ray caster.

This algorithm allows accurate markerless tracking without error
accumulation, as the high-quality 3D reference model is used as
basis for tracking. In a naive implementation, non-rigid tracking
support can be added by applying a non-rigid surface registration
algorithm to align the 3D reference model and the current depth
frame captured. One way to improve the accuracy of this solution
is updating the 3D reference model after the non-rigid registration,
as will be shown in Section 5.3.

5 Non-Rigid Surface Registration

Matching
of Points

Building of
Quadtree

Weighting
the Influence

of Nodes

Selection of
Constraints

Error
Minimization

Updating the
source object

Source SurfaceTarget Surface

Deformed Source Surface

Error > threshold

Error ≤ threshold

Adapting
Quadtree

Figure 2: Overview of the non-rigid registration algorithm.

In this section we describe the non-rigid surface registration algo-
rithm and how it can be integrated with the MAR environment pre-
sented in the previous section. An overview of the proposed ap-
proach can be seen in Figure 2.

5.1 Deformation Model

The proposed algorithm consists of the following stages:

• Matching of points: After the bounding box segmentation,
the source (Ps) and target (Pt) points are associated. As it is
assumed that the surfaces are aligned rigidly, it is ensured that
the objects are relatively near from each other. Therefore, it is
used the projective data association to match the points;

• Selection of nodes: It is computed a deformation graph G
from Ps. Different from previous approaches, this stage runs
on a GPU in a quadtree-based algorithm;

• Weighting the influence of nodes: The influence of the k-
nearest nodes for each Ps is computed;

• Selection of constraints: The points from Ps in which the
residual deformation error will be measured are selected adap-
tively;

• Error minimization: The affine transformation A = [R|t],
where R is a 3×3 rotation matrix and t is a 3D translation vec-
tor, is estimated for each node by a non-linear Gauss-Newton
solver using the constraints selected previously;

• Updating the source object: The affine transformations com-
puted in the previous step are applied on Ps and the algorithm
is reiterated to the second step until the maximum number of
iterations is reached or if the error is stabilized.

All these stages take advantage from the parallelism provided by
the GPU as it will be described in the Section 5.2.

First, the corresponding points between Ps and Pt are associated
by using the projective data association. In this association, each
point ps ∈ Ps is transformed into camera coordinate space and
perspective projected into image coordinates. The corresponding
points are that on the same image coordinates.

After the matching of points, the nodes of G are selected. A
quadtree is built on GPU to perform the selection of nodes. The
influence of a node j with respect to a vertex p can be defined by:

p
′

=

k∑
j=1

wj(p)[Rj(p− gj) + gj + tj] (1)

where k represents the k-nearest nodes of p and wj is a weight that
measures the influence of each node to the point. The weight wj

can be computed by:

wj(p) = (1− ||p− gj ||/distmax)2 (2)

and then normalized to sum to one. distmax is the distance to the
k + 1-nearest node with respect to p. From the Equation 2, it is
guaranteed that the nearest nodes will have more influence in the
deformation of p. Also, as the nodes are points of Ps, they are
deformed by other nodes of G.

To compute the best affine transformations that align Ps to Pt, we
must:

1. Select the constraints (i.e. points from Ps that will be used
during the optimization phase);

2. Convert the affine rotations from Euler to the quaternion rep-
resentation;

3. Compute the energy function Etot that models the constraints
to guide the proper registration of the objects;

4. Use a non-linear solver to minimize Etot;

Source Surface
Target Surface

Initial Error Constraints

max

0

Figure 3: Constraint selection based on the initial non-rigid error
between source and target surfaces.

Instead of using the full dense point cloud as constraint for the op-
timization or asking the user to perform this task of constraint se-
lection, we use an adaptive algorithm that performs the selection of
constraints based on the residual error previously measured. Given
a region on the source surface, the higher the error, the higher the
number of points selected as constraints for the optimization, as can
be seen in Figure 3.

In the first iteration, where the residual error still was not measured,
an uniform sampling is used to select the constraints. To do that, a
n × n mask, with step n, is scanned through the 2D projection of
Ps at the xy coordinates. The point at the center of this mask is
selected to be a constraint if it exists in Ps (i.e. it is not in a hole).
From empirical tests, n = 4 produced the best results.

In the remaining iterations, we use the same n×n mask to perform
a scan on the 2D projection of Ps and its residual error Etot. First,
the algorithm evaluates the average residual error at the n×n region
being scanned. Based on the average error Eavg and a pre-defined
threshold thc, the number of points selected at that region will be
defined. In this case, we have three situations:

• Eavg > thc, all the n2 points are selected;

• Eavg >= thc/2 and Eavg <= thc, n points uniformly dis-
tributed over the mask are selected;

• Eavg < thc/2, only the point at the center of the mask is
selected;

Therefore, we select more constraints in the regions where the de-
formation is high and must be minimized, but we still consider the
regions where the deformation is small or none, by selecting a small
number of constraints to represent them. From empirical tests, thc

equals to the half of the averaged root mean squared error measured
for the dataset produced the best results.

Next, we need to convert the affine rotations from Euler to quaterion
representation. The motivation is related to our non-linear solver,
that operates faster with quaternions (3 unknowns) than the Euler-
form rotation matrix (9 unknowns).

To compute Etot, Sumner et al. proposed 3 energy functions -
Erot, Ereg, Econ [Sumner et al. 2007]:

• Energy function for rotation (Erot): In order for a 3 × 3
rotation matrix to represent a rotation in SO(3), it must satisfy
six conditions: each of its three columns must be unit length,
and all columns must be orthogonal to one another [Grassia
1998]. The squared deviation of these conditions is given by
the function Rot(R):

Rot(R) = (c1 · c2)2 + (c1 · c3)2 + (c2 · c3)2 +

(c1 · c1 − 1)2 + (c2 · c2 − 1)2 +

(c3 · c3 − 1)2 (3)

where c1, c2 and c3 are the column vectors of a given rotation
matrix.

The term Erot is defined by the sum of the rotation error over
all affine transformations of G:

Erot =

m∑
j=1

Rot(Rj) (4)

• Energy function for regularization (Ereg): In order to ap-
ply a deformation sufficiently smooth, we must ensure that the
affine transformations of adjacent nodes in G must be consis-
tent. Ereg is the sum of the squared distances between each
node’s transformation applied to its neighbors and the actual
transformed neighbor positions:

Ereg =

m∑
j=1

∑
k∈N(j)

||Rj(gk−gj)+gj+tj−(gk−tk)||22 (5)

where Nj consists of all nodes connected with the node j.

• Energy function for constraints (Econ): This energy func-
tion deals directly with Ps and Pt. It measures how distant
they are from each other. Econ is the sum of the Euclidean
distances between the deformed source points and its corre-
spondents on the target object:

Econ =

n∑
i=1

||p
′
i − qi||22 (6)

q is the target point correspondent to pi, p
′
i is pi after defor-

mation (Equation 1). n is the total of points in Ps.

The total energy function Etot is defined by the following equation:

Etot = wrotErot + wregEreg + wconEcon (7)

with wrot = 1, wreg = 10 and wcon = 100 as suggested in
[Sumner et al. 2007].

Once with Etot, we must solve the optimization step to obtain the
affine transformations that align Ps to Pt. To achieve this goal we
use the Gauss-Newton solver [Madsen et al. 2004]. Our objective is
to solve the normal equation JtJ∆ = Jtr. We compute the resid-
ual r, that consists in the computation of Etot for each coordinate x,
y and z of each constraint and the Jacobian J , that is the first-partial

derivative of Etot for each one of the parameters. ∆ represents the
unknown parameters that we want to find to minimize Etot. To
compute J efficiently we compute only the partial derivative for the
parameters that affect the constraint in which the derivation is being
computed. Once with J and r, we reduce the normal equation to the
linear system A∆ = −b and compute the products A = JtJ and
b = Jtr. After solving the linear equation, we add ∆ to the array
of parameters (i.e. quaternions + translation vectors) and reiterate
the optimization algorithm until the maximum number of iterations
or if the error is stabilized (does not change more than 5%).

After the optimization step, the Equation 1 can be applied for every
point in Ps. Afterwards, we reiterate the algorithm to the selection
of nodes until the maximum number of iterations is reached (we use
3 iterations) or if the error is stabilized in the optimization step.

5.2 GPU Processing

This subsection describes the adaptations performed on the defor-
mation model in order to achieve best performance using the paral-
lelism provided by the GPU.

For the matching of points, each GPU thread transforms a point Ps

into image coordinate and associates it with the point Pt at the same
image coordinate.

To select the nodes, we use an algorithm in GPU that does the node
selection based on the 2D parametrization of G. As the nodes of
G are also points in Ps, we can convert them from world to image
coordinates by using the same process used to reproject Ps into
Ds. As discussed before, Ps can be an object with holes distributed
along the surface. In this case, the selection of nodes only based on
the 2D space may cause the nodes to be selected in regions where
there is no depth data. To solve this problem, we take advantage
from what we call virtual nodes to represent the space where there
is no depth data. Virtual nodes favor the expansion of the quadtree
in regions where naturally we have depth data, however in the node
position not. It is worthy to mention that virtual nodes do not have
affine transformation, they are just leaves of the quadtree that can
be refined to generate real leaf nodes if necessary. Therefore, we
restrict the use of virtual nodes in the first 2 levels of the quadtree.

To build the quadtree, four additional GPU buffers are required:

1. A buffer to store whether in a given position exists a node in
G;

2. A buffer to store the level for each node in G;

3. A buffer to store whether in a given position G has children
(is a parent node);

4. A buffer to store whether in a given position exists a virtual
node in G;

The algorithm can be divided in two steps: the building of the
quadtree and the adaptive refinement/collapse of nodes in G.

We build the quadtree in the first iteration of our algorithm. The
GPU kernel that will select the nodes is called iteratively. We iterate
from the first level to the level required by the user to build the
quadtree. Each GPU thread, in parallel, is uniformly assigned to a
position on the 2D parametrization of Ps to select a node. In the
first level, if the point assigned to the GPU thread is visible, then,
it will be a new node in G. In the opposite case, it can be a new
virtual node. Therefore, we allow the quadtree to be refined even
in regions where there are just a few points. On the next levels, if
the node is selected, the GPU thread removes the parent node from
G, being it a real or virtual node, and inserts it into a parent list,
indicating that it has already been expanded.

For collapsing of nodes, the GPU kernel is iteratively called from
the last to the first level of the quadtree in order to collapse the
nodes in a bottom-up fashion. Each GPU thread, in parallel, is
assigned to a node in G. Then, the GPU thread checks if the node
has children and if it is at the current level that is being iterated. If
the thread passes from these conditions, given a region C around
the 2D position of the node, it computes the average of the energy
function Econ for each ps ∈ C. If the average error is below a
certain threshold, the children nodes in C must be collapsed. To
collapse the nodes, a thread checks if exists child nodes and they
are leaf nodes. In this case, they are collapsed and the region C is
represented by the old parent node.

For refinement of nodes, the GPU kernel is iteratively called from
the first to the last non-empty level of the quadtree in order to refine
the nodes in a top-down fashion. Each GPU thread, in parallel,
is assigned to a node in G. Then, the GPU thread computes the
average error around a region C, as defined before. If the average
is above a certain threshold, the node must be refined. After the
refinement (i.e. creation of 4 new child nodes), the GPU thread
removes the parent node from G and inserts it into a parent list,
indicating that it has already been expanded.

As-rigid-as-possibe Expression

Cheeks Inflated

Smile

Kiss

Figure 4: Neutral and deformed reference models based on user’s
facial expression.

To compute the weights efficiently in GPU, we create an array that
contains only the nodes selected. The direct access to this array
prevents us from checking explicitly on the surface whether a point
is also a node. Then, each GPU thread computes the influence for a
specific node in G.

To store the affine transformations that will be estimated, we create
two arrays: one array to store 6 parameters (i.e. 3 from quaternion
and 3 for translation) for each node, and another array that is a
hash relating a node in G to where are its parameters in the first
array. We compute the array and the hash elements using atomic
operations on the GPU.

In the optimization step, r and J are computed in parallel. A and
b are computed by using the matrix-matrix and matrix-vector mul-
tiplication from CUBLAS1 library. The linear system is solved by
using a GPU implementation of the LLT decomposition proposed in
[Henry 2009] together with a linear solver Strsm from the CUBLAS
library.

1http://docs.nvidia.com/cublas/index.html

5.3 Integration into the MAR Environment

To add support for non-rigid tracking, one solution is to apply it
whenever the rigid tracking fails, enhancing the robustness of the
MAR environment. However, to apply non-rigid tracking for ev-
ery frame has a computational cost which does not make it suitable
for real-time applications. Therefore, if rigid tracking keeps fail-
ing consecutively, non-rigid tracking will be used more frequently,
reducing user interactivity.

To solve this problem, we take advantage from the volumetric rep-
resentation of KinectFusion algorithm to update the 3D reference
model in real-time based on the current deformation measured.
When the rigid tracking fails (i.e. error measured is above a certain
threshold), non-rigid registration is applied and the 3D reference
model deformed surface is sent to KinectFusion’s grid with a high
weight. 3D reference model is updated in the grid representation
by the TSDF computation and then the grid is ray casted to gener-
ate a new source surface for the next iteration. High weight is used
for fast adaptation of the previously stored 3D reference model into
the new deformed one. As consequence, by deforming the 3D ref-
erence model, non-rigid tracking converges faster and with higher
accuracy in the next iterations than the rigid-only solution (i.e. in
which only rigid tracking is applied and KinectFusion’s volume is
not updated).

6 Results and Discussion

In this section we describe the experimental setup used and anal-
yse performance and accuracy of the proposed environment. For
all tests, we ran our algorithm on an Intel(R) Core(TM) i3-3220
CPU @3.30GHZ, 4GB RAM, NVIDIA GeForce GTS 450. We
have implemented the algorithms in GPU by using the NVIDIA
CUDA2 architecture [Kirk and Hwu 2010]. We used the open
source C++ implementation of KinectFusion released by the PCL
project [Rusu and Cousins 2011]. 3D reference model was recon-
structed with the KinectFusion using a grid with volume size of
70cm× 70cm× 140cm and resolution of 5123.

We have tested the approach in a scenario where the user’s head is
the natural marker. To detect it from the scene, we have used the
Viola-Jones face detector [Viola and Jones 2004] on the color map
captured by the Kinect sensor. For rigid tracking, we have used the
ICP algorithm because it is the only depth-based tracking algorithm
which has a variant with real-time performance, therefore, being
suitable for augmented reality applications. For non-rigid interac-
tions, we asked the user to perform three different facial expressions
after 3D reconstruction: inflate his cheeks, smile and simulate a
”kiss” expression, shown in Figure 4.

In all tests we have used k = 4 (i.e. the number of nodes which influ-
ences each point on the source surface, Equation 1), three iterations
of the optimization and three levels of the quadtree to limit the com-
putational cost of the non-rigid registration, while achieving good
accuracy. Econ was used as a measure for refinement/collapse of
nodes. Although Li and colleagues [Li et al. 2009] suggested the
use of Ereg for this measurement, our tests show that we do not
have accuracy lost by using Econ instead of Ereg .

As explained in the previous section, we need to update the 3D
reference model to minimize the use of the non-rigid registration
algorithm. To accomplish that, one solution is to re-send the 3D
deformed reference model into the grid with high weight. As ex-
plained in Section 4, the KinectFusion algorithm integrates raw
depth data into a grid based on TSDF computation and a weight
which indicates uncertainty. The higher the weight, the faster the

2http://www.nvidia.com/cuda

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

2

2.5

3

Non-Rigid Adaptive Tracking

Rigid Tracking

Threshold

Frame

E
rr

or
(m

m
)

Figure 5: Cheeks tracking error measured for both rigid and rigid + non-rigid solutions.

Rigid Tracking Error

Non-Rigid Tracking Error

Frame 8 Frame 20 Frame 50 Frame 80 Frame 101 Frame 143

10mm

0mm

Figure 6: Color-coded cheeks tracking error measured for both rigid and non-rigid solutions.

3D reference model shape is updated based on the current measure-
ment. Therefore, to accommodate the current deformation and to
stabilize the tracking faster, a high weight must be used to update
the 3D reference model. We have tested the influence of such updat-
ing on the tracking accuracy. This test can be seen in Table 1. While
weight 1 does not result in fast update on 3D reference model shape,
stabilization in terms of accuracy is achieved with weight between
8 and 16. We have used weight 8 for all the other tests performed
in this section because it provides more stable results than weight
16 (vide standard deviation measurements in Table 1).

User Deformation Cheeks Smile Kiss
TSDF Weight A SD A SD A SD

1 2.4 0.15 2.23 0.19 1.90 0.17
2 2.2 0.14 2.09 0.16 1.83 0.16
4 2 0.1 2.03 0.14 1.81 0.16
8 1.9 0.1 1.99 0.12 1.75 0.15
16 1.9 0.1 1.99 0.13 1.75 0.16

Table 1: Average accuracy (A, given in mm) and Standard Devi-
ation (SD, given in mm) results according to the weight used to
update the 3D reference model.

From tests conducted on the three cases mentioned at the begin-
ning of this section, we estimated an average accuracy of 1.5mm
for rigid tracking during 3D rigid reference model reconstruction,
which is performed at 30 frames per second (FPS). On average,
non-rigid tracking requires 60ms per frame. The step which takes
most time to be completed for every frame is the non-linear opti-

mization, which demands 45ms per frame.

As can be seen in Table 2, when non-rigid user interaction is
present, the average accuracy decreases for rigid tracking. We have
tested different scenarios for non-rigid registration in order to eval-
uate the best multi-frame strategy to balance accuracy and perfor-
mance. While skipping a specific number of frames (i.e. NR4,
NR8) is a good strategy, to apply it for almost every frame reduces
the performance while being, sometimes, unnecessary (i.e. NR1,
NR2). Likewise, to apply it between a large number of frames (i.e.
NR16, NR32, NR64) improves slightly average tracking accuracy
while application’s performance keeps almost the same when com-
pared to the rigid solution. However, if high deformation occurs
in-between these frames, the tracking will fail (i.e. error measured
will be above a pre-defined threshold used to detect rigid track-
ing failure). To apply the non-rigid registration whenever the rigid
tracking fails (i.e. NRAdaptive) is the best idea in order to solve
every deformation which occurs between frames, while maintain-
ing good accuracy (below 2mm) and real-time performance (above
20 FPS). It is worthy to mention that, in this case, the algorithm is
not applied almost for every frame as the 3D reference model is up-
dated based on the present deformation, reducing the chances for
rigid tracking fail in the next iterations. As can be seen in the plots
of the Figures 5, 7 and 9, the algorithm is applied 21 times (≈ for
every 8 frames) for cheeks deformation, 66 times (≈ for every 2,5
frames) for smile deformation and 16 times (≈ for every 10 frames)
for kiss deformation.

When the 3D reference model is continuously updated for a case
in which there is a small region of deformation, it will become in-

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

2

2.5

3

Error below threshold

Non-Rigid Adaptive Tracking

Rigid Tracking

Threshold

Frame

E
rr

or
(m

m
)

Figure 7: Smile tracking error measured for both rigid and rigid + non-rigid solutions.

Rigid Tracking Error

Non-Rigid Tracking Error

Frame 14 Frame 22 Frame 50 Frame 94 Frame 134 Frame 154

10mm

0mm

Figure 8: Color-coded smile tracking error measured for both rigid and non-rigid solutions.

User Deformation Cheeks Smile Kiss
Tracking/Measurement Avg. Std. Dev. Perf. Avg. Std. Dev. Perf. Avg. Std. Dev. Perf.

Rigid 3 0.34 30 2.72 0.33 30 2.18 0.15 30
NR64 2.63 0.2 30 2.66 0.29 30 2.1 0.16 29
NR32 2.5 0.16 28 2.53 0.25 28 1.99 0.18 27
NR16 2.48 0.17 26 2.42 0.25 27 1.9 0.14 26
NR8 2.11 0.21 22 2.17 0.21 24 1.75 0.2 24

NRAdaptive 1.9 0.1 20 1.99 0.12 20 1.75 0.15 27
NR4 1.87 0.17 18 2.11 0.15 21 1.67 0.14 20
NR2 1.73 0.15 14 1.99 0.13 15 1.75 0.14 15
NR1 1.7 0.19 10 1.96 0.28 10 1.92 0.14 10

Table 2: Average accuracy (Avg., given in mm), Standard Deviation (Std. Dev., given in mm) and Performance (Perf., given in FPS) results
for each one of the tracking algorithms tested in presence of specific user deformation. NRn: Non-Rigid Registration applied for every n
frames (independent of rigid tracking fail); NRAdaptive: Non-Rigid Registration applied whenever the rigid algorithm fails.

creasingly smooth for each frame. In this case, this solution may be
not the most accurate, as the 3D reference model will lose informa-
tion in regions where there is no deformation. In Table 2, we can
see this scenario from the tests conducted on the ”kiss” expression,
where non-rigid registration applied for every 1 or 2 frames does
not produced the best results. This issue can be solved by using the
adaptive approach.

Tracking error evolution can be seen in Figures 5, 7 and 9. When
there is sufficient non-rigid user interaction, error grows consider-
ably and the non-rigid solution minimizes it. 3D reference model is
updated to stabilize the tracking based on the current deformation.
Non-rigid registration and 3D reference model updating are done

only when the deformation changes in intensity (i.e. error above
the threshold, shown as a dashed line) and the rigid tracking fail.
When using rigid tracking only, the error grows and stabilizes. This
behaviour is motivated by the use of the face as deformable object,
which has a limit in terms of deformation. With other objects, the
error could grow even more without achieving stabilization.

A test to analyse the best threshold to detect rigid tracking fails was
performed and the results can be seen in Table 3. As mentioned be-
fore, rigid tracking has average accuracy of 1.5mm. Therefore, by
using this value as threshold, the algorithm applies non-rigid track-
ing for almost every new frame. On the opposite case, by using
threshold of 3mm, the algorithm uses almost rigid tracking only.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
1.5

2

2.5

Error below threshold

Non-Rigid Adaptive Tracking

Rigid Tracking

Threshold

Frame

E
rr

or
(m

m
)

Figure 9: Kiss tracking error measured for both rigid and rigid + non-rigid solutions.

Rigid Tracking Error

Non-Rigid Tracking Error

Frame 18 Frame 44 Frame 82 Frame 106 Frame 134 Frame 150

10mm

0mm

Figure 10: Color-coded kiss tracking error measured for both rigid and non-rigid solutions.

User Deformation Cheeks Smile Kiss
Threshold/Measurement Avg. Std. Dev. Perf. Avg. Std. Dev. Perf. Avg. Std. Dev. Perf.

3 2.8 0.21 28 2.62 0.33 30 2.18 0.15 30
2.5 2.3 0.15 21 2.28 0.36 26 2.15 0.16 30
2 1.9 0.1 20 1.99 0.12 20 1.75 0.15 27

1.5 1.8 0.19 12 1.96 0.28 10 1.92 0.14 10

Table 3: Average accuracy (Avg., given in mm), Standard Deviation (Std. Dev., given in mm) and Performance (Perf., given in FPS) results
for each one of the thresholds used to detect rigid tracking fail.

The best threshold is 2mm, which provides fast and accurate track-
ing.

In terms of visual quality and accuracy, from Figures 6, 8 and 10, it
is visible that the algorithm captures the main deformation present
on the deformed expressions through the sequence of frames, im-
proving accuracy in regions where only rigid registration cannot
solve the tracking. In this sense, our main contribution is that the
non-rigid registration algorithm runs near real-time, allowing its ap-
plication for an augmented reality environment.

7 Conclusion and Future Work

We have presented a marker-free augmented reality approach with
support to fast non-rigid surface registration. Fast non-rigid track-
ing is performed by an adaptive technique inspired by the Embed-
ded Deformation algorithm. The main goal of the proposed algo-
rithm is to improve tracking robustness for augmented reality appli-
cations, such as those for on-patient craniofacial data visualization.

Therefore, tests were realized using user’s face as natural marker
and user’s facial expressions as non-rigid interactions. From the
tests conducted, we have shown that the non-rigid registration, ap-
plied in a multi-frame manner, is capable to run in real-time. More-
over, it improves the tracking accuracy of the augmented reality
environment when compared to the rigid-only solution.

For future work, we intend to evaluate the performance of the pro-
posed approach in both GPU and multi-threaded in CPU, which has
already proven to be efficient in this context [Nutti et al. 2014]. In
this sense, we must investigate how the processing could be bal-
anced between these two processing units. Further tests must be
done in order to evaluate the performance of the non-rigid regis-
tration algorithm in objects with more degrees-of-freedom than hu-
man’s head.

Acknowledgements

We are grateful to Thibaut Weise for making his dataset available on
the web. We are also grateful to the PCL project for providing the
open-source implementation of the KinectFusion algorithm. This
research is financially supported by FAPESB and CAPES.

References

BOUAZIZ, S., WANG, Y., AND PAULY, M. 2013. Online modeling
for realtime facial animation. ACM Trans. Graph. 32, 4 (July),
40:1–40:10.

CHEN, J., IZADI, S., AND FITZGIBBON, A. 2012. Kinetre: An-
imating the world with the human body. ACM, New York, NY,
USA, UIST ’12, 435–444.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. ACM, New York,
NY, USA, SIGGRAPH ’96, 303–312.

DOU, M., FUCHS, H., AND FRAHM, J.-M. 2013. Scanning and
tracking dynamic objects with commodity depth cameras. IEEE
Computer Society, ISMAR ’13.

GRASSIA, F. S. 1998. Practical parameterization of rotations using
the exponential map. J. Graph. Tools 3, 3 (Mar.), 29–48.

HENRY, S. 2009. Parallelizing cholesky’s decomposition algo-
rithm. INRIA Bourdeaux Technical Report.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREE-
MAN, D., DAVISON, A., AND FITZGIBBON, A. 2011. Kinect-
fusion: real-time 3d reconstruction and interaction using a mov-
ing depth camera. ACM, USA, UIST ’11, 559–568.

KIRK, D. B., AND HWU, W.-M. W. 2010. Programming Mas-
sively Parallel Processors: A Hands-on Approach, 1st ed. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA.

LEE, J.-D., HUANG, C.-H., HUANG, T.-C., HSIEH, H.-Y., AND
LEE, S.-T. 2012. Medical augment reality using a markerless
registration framework. Expert Syst. Appl. 39, 5, 5286–5294.

LI, H., SUMNER, R. W., AND PAULY, M. 2008. Global corre-
spondence optimization for non-rigid registration of depth scans.
Computer Graphics Forum (Proc. SGP’08) 27, 5 (July).

LI, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust
single-view geometry and motion reconstruction. ACM Trans-
actions on Graphics (Proceedings SIGGRAPH Asia 2009) 28, 5
(December).

LI, H., LUO, L., VLASIC, D., PEERS, P., POPOVIĆ, J., PAULY,
M., AND RUSINKIEWICZ, S. 2012. Temporally coherent com-
pletion of dynamic shapes. ACM Transactions on Graphics 31,
1 (January).

LI, H., YU, J., YE, Y., AND BREGLER, C. 2013. Realtime fa-
cial animation with on-the-fly correctives. ACM Transactions on
Graphics 32, 4 (July).

MACEDO, M., APOLINARIO, A., SOUZA, A. C., AND GIRALDI,
G. A. 2014. A Semi-Automatic Markerless Augmented Real-
ity Approach for On-Patient Volumetric Medical Data Visualiza-
tion. In SVR.

MADSEN, K., BRUUN, H., AND TINGLEFF, O., 2004. Methods
for non-linear least squares problems.

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D.,
KIM, D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES,
S., AND FITZGIBBON, A. 2011. Kinectfusion: Real-time dense
surface mapping and tracking. IEEE Computer Society, Wash-
ington, DC, USA, ISMAR ’11, 127–136.

NUTTI, B., KRONANDER, A., NILSING, M., MAAD, K., SVENS-
SON, C., AND LI, H. 2014. Depth sensor-based realtime tumor
tracking for accurate radiation therapy. Proc. of Eurographics
2014 Short Papers (April).

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants of
the ICP algorithm. In 3DIM.

RUSU, R., AND COUSINS, S. 2011. 3d is here: Point cloud library
(pcl). In ICRA, 1 –4.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM Trans. Graph. 26, 3
(July).

TAM, G. K. L., CHENG, Z.-Q., LAI, Y.-K., LANGBEIN, F. C.,
LIU, Y., MARSHALL, D., MARTIN, R. R., SUN, X.-F., AND
ROSIN, P. L. 2013. Registration of 3d point clouds and meshes:
A survey from rigid to nonrigid. IEEE Transactions on Visual-
ization and Computer Graphics 19, 7, 1199–1217.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In ICCV, 839 –846.

VIOLA, P., AND JONES, M. J. 2004. Robust real-time face detec-
tion. Int. J. Comput. Vision 57, 2 (May), 137–154.

WEISE, T., BOUAZIZ, S., LI, H., AND PAULY, M. 2011. Real-
time performance-based facial animation. ACM Transactions on
Graphics 30, 4 (July).

