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Tese de Doutorado

Some contributions to the study of evolution
equations describing pseudospherical surfaces,

and the theory of zero-curvature representations

Luiz Alberto de Oliveira Silva

Salvador-Bahia

07 de Dezembro de 2015



Some contributions to the study of evolution
equations describing pseudospherical surfaces,

and the theory of zero-curvature representations

Luiz Alberto de Oliveira Silva

Tese de Doutorado apresentada ao Colegiado

do Programa de Pós-Graduação em Matemática
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Rocha, Andressa, Roberto, Morro, Anderson, Darlan Oliveira, Darllan Pinto, Ronaldo,
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Resumo

Este trabalho fornece algumas contribuições originais para o estudo geométrico de equações

evolutivas que descrevem superf́ıcies pseudo-esféricas (equações PEs). Por definição, uma equação PE

para funções z = z(x, t) é equivalente às equações de estrutura dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 =

ω1 ∧ ω2 de uma variedade Riemanniana 2-dimensional com curvatura Gaussiana K = −1, com 1-formas

ωi = fi1 dx+ fi2 dt, i = 1, 2, 3, satisfazendo a condição de não-degeneração ω1 ∧ω2 6= 0 e com fij funções

suaves de x, t, z e suas derivadas com respeito a x e t. Usando a noção de representação a curvatura nula

(RCN), pode-se dizer que toda equação PE admite uma RCN a valores em sl (2,R).
A primeira contribuição deste trabalho diz respeito a uma classificação completa e expĺıcita de

equações PEs evolutivas de segunda ordem da forma zt = A(x, t, z)z2 + B(x, t, z, z1), com z = z (x, t) e

zi = ∂iz
∂xi , sob as hipóteses que fij = fij (x, t, z, z1, z2) e f21 = η. De acordo com a classificação dada,

estas equações subdividem-se em três classes principais (chamadas de Tipos I-III) juntamente com os
correspondentes sistemas de 1-formas {ω1, ω2, ω3} que, em virtude da hipótese f21 = η, definem para
cada tipo uma famı́lia a 1-parâmetro de RCNs associadas. Nesta classe de equações PEs encontram-se
em particular algumas equações já conhecidas, dentre as quais as equações integráveis classificadas por
Svinolupov e Sokolov, a equação de Boltzmann, e equações de reação e difusão como a equação de Murray.
Ulteriores novos exemplos explicitos são também apresentados.

A segunda contribuição é relativa ao problema de existência de imersões isométricas locais,
no espaço Euclidiano 3-dimensional E3, para as famı́lias de superf́ıcies pseudo-esféricas descritas pelas
equações PEs da classificação acima. O resultado principal obtido neste caso é que estas imersões existem
somente para as equações do Tipo I, que possuem forma de lei de conservação, e isso levou à uma
extensão natural deste resultado ao caso das equações evolutivas de ordem k da forma Dt (f(x, t, z)) =
Dx (Ω(x, t, z, z1, . . . , zk)). No âmbito da literatura existente sobre este problema, todos os resultados
obtidos nesta parte do trabalho são novos; em particular além de equações de segunda ordem, como por
exemplo as equações de Boltzmann, Murray e as equações de Svinolupov e Sokolov, entre os exemplos
de equações PEs que admitem este tipo de imersão isométrica há também equações de ordem superior
como as equações de Kuramoto-Sivashinsky, Sawada-Kotera, Kaup-Kupershmidt e inteiras hierarquias
de equações integráveis como as de Burgers, mKdV e KdV.

Finalmente, nós consideramos o problema de construir famı́lias a 1-parâmetro não-triviais de
RCNs para equações PEs. Este problema é de interesse especial para as aplicações da teoria das RCNs,
por exemplo no cálculo de soluções exatas e hierarquias infinitas de leis de conservação, e tem sido
resolvido no caso mais geral de RCNs a valores em g, com g uma sub-álgebra de gl (n,R) ou gl (n,C),
usando a teoria de simetrias clássicas de equações diferenciais.

Os resultados originais deste trabalho são exibidos nos Caṕıtulos 2, 3 e 4. Em particular, os
resultados do Caṕıtulo 4 tem sido recentemente publicados no artigo [15].

Palavras-chave: Equações que descrevem superf́ıcies pseudo-esféricas; equações integráveis; repre-
sentações a curvatura nula; imersões isométricas; simetrias clássicas; geometria das equações diferenciais.



Abstract

This work provides some original contributions to the geometric study of evolution equations
which describe pseudospherical surfaces (PS equations). By definition, a PS equation for functions
z = z(x, t) is equivalent to the structure equations dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2 of a 2-
dimensional Riemannian manifold with Gaussian curvature K = −1, and with 1-forms ωi = fi1 dx+fi2 dt,
i = 1, 2, 3, satisfying the non-degeneracy condition ω1 ∧ ω2 6= 0 with fij smooth functions of x, t, z and
derivatives of z with respect to x and t. Using the notion of zero-curvature representation (ZCR), one
can say that every PS equation admits an sl (2,R)-valued ZCR.

The first contribution of this work concerns a complete and explicit classification of second order

evolution PS equations of the form zt = A(x, t, z)z2+B(x, t, z, z1), with z = z(x, t) and zi = ∂iz
∂xi , under the

assumptions that fij = fij (x, t, z, z1, z2) and f21 = η. According to this classification, these PS equations
are subdivided into three main classes (referred to as Types I-III) together with the corresponding systems
of 1-forms {ω1, ω2, ω3} which, in view of the assumption f21 = η, define for any such equation an associated
1-parameter family of ZCRs. Some already known equations are found to belong to this class of PS
equations, like Svinolupov-Sokolov equations admitting higher weakly nonlinear symmetries, Boltzmann
equation and reaction-diffusion equations like Murray equation. Other explicit examples are presented,
as well.

As a second contribution we considered, for the families of pseudospherical surfaces described by
above class of PS equations, the problem of existence of local isometric immersions into the 3-dimensional
Euclidean space E3. We found that only Type I equations admit such a kind of immersion and, on
the base of this result we also provided an extension to the case of k-th order evolution equations in
the conservation law form Dt (f(x, t, z)) = Dx (Ω(x, t, z, z1, . . . , zk)). The results and explicit examples
discussed in this part of the work are new, when compared with the existing literature, in particular the
examples include equations like Boltzmann, Murray and Svinolupov-Sokolov equations, as well as higher
order equations like Kuramoto-Sivashinsky, Sawada-Kotera and Kaup-Kupershmidt equations and also
full hierarchies of integrable equations like Burgers, mKdV and KdV.

Finally, we considered the problem of constructing nontrivial 1-parameter families of ZCRs for
PS equations. This problem is of special interest for the application of the theory of ZCRs, for instance
in the calculation of exact solutions and infinite hierarchies of conservation laws, and has been solved in
the more general case of g-valued ZCRs, with g a Lie sub-algebra of gl (n,R) or gl (n,C), by using the
theory of classical symmetries of differential equations.

The original results of this work are exposed in the Chapters 2, 3 and 4. In particular, the

results of Chapter 4 have been recently reported in the paper [15].

Keywords: Equations describing pseudospherical surfaces; integrable equations; zero-curvature repre-

sentations; isometric immersions; classical symmetries; geometry of differential equations.
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Introduction

Differential equations which describe pseudospherical surfaces (PS equations)

arise ubiquitously as suitable models in the description of nonlinear physical phenom-

ena as well as in many problems of pure and applied mathematics. Geometrically these

equations are characterized by the fact that their generic solutions provide metrics on

open subsets of R2, with Gaussian curvature K = −1. The first well known example of

such an equation is the sine-Gordon equation zxt = sin(z). This example was discov-

ered by Edmond Bour [3], who realized that in terms of Darboux asymptotic coordinates

the Gauss-Codazzi equations for pseudospherical surfaces contained in R3 reduce to the

sine-Gordon equation. Then, the discovery of Bäcklund transformations first, and later

the construction by Bianchi of the superposition formula for solutions of this equation,

focused even more attention on the sine-Gordon equation, that in the end it turned out

to be an important model in the description of several nonlinear phenomena (see for ex-

ample [31, 35, 59]). However, it was after the early observation [56] that “all the soliton

equations in 1 + 1 dimensions that can be solved by the AKNS 2 × 2 inverse scattering

method (for example, the sine-Gordon, KdV or modified KdV equations) ... describe

pseudospherical surfaces”, that the general study of these equations was initiated. In

particular, it was with the fundamental paper [20] by S. S. Chern and K. Tenenblat that

initiated a systematic study of these equations. The results of [20], together with the

considerable effort addressed over the past few decades to the possible applications of in-

verse scattering method, gave a significant contribution to the discovery of new integrable

equations. For instance, Belinski-Zakharov system in General Relativity [8], the nonlin-

ear Schrödinger type systems [19, 24, 27], the Rabelo’s cubic equation [6, 46, 47, 55], the

Camassa-Holm, Degasperis-Procesi, Kaup–Kupershmidt and Sawada-Kotera equations

[11, 14, 50, 51, 52, 53] are some important examples of PS equations which are integrable

by inverse scattering method. All these facts prove the relevance of these equations and

justify the general interest in their study and classification. This thesis provides some

contributions to the geometric study of evolution PS equations.

From a geometric point of view, every PS equation E satisfies the following re-

markable property: to any generic solution (see below) z = z(x, t) of E , defined on an open

1
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domain U ⊂ R2, it is associated a Riemannian metric defined almost everywhere on the

domain U with Gaussian curvature K = −1. Indeed, by definition a differential equation

E for a real function z = z(x, t) is a PS equation if it is equivalent to the structure equa-

tions dω1 = ω3∧ω2, dω2 = ω1∧ω3, dω3 = ω1∧ω2 of a 2-dimensional Riemannian manifold

whose Gaussian curvature K = −1, and with 1-forms ωi = fi1dx + fi2dt satisfying the

non-degeneracy condition ω1 ∧ω2 6= 0 with fij smooth functions of x, t, z and derivatives

of z with respect to x and t. Notice that according to the definition ω1 ∧ω2 is generically

nonzero on the solutions of a PS equation E . However, this condition does not guarantee

the property that, for any solution z : U ⊂ R2 → R, the restriction (ω1 ∧ω2)[z] of ω1 ∧ω2

to z is everywhere nonzero on U . Relatively to a given system of 1-forms {ω1, ω2, ω3}, we

will call generic a solution z : U ⊂ R2 → R such that (ω1 ∧ ω2)[z] is almost everywhere

nonzero on U , i.e., it is everywhere nonzero except for a subset of U of measure zero.

Thus, for any generic solution z : U ⊂ R2 → R of a PS equation E , the restriction I[z] of

I = ω2
1 + ω2

2 to z defines almost everywhere a Riemannian metric I[z] on the domain U

with Gaussian curvature K = −1. It is in this sense that one can say that a PS equation

describes, or parametrizes, a family of non-immersed pseudospherical surfaces.

For instance, one may easily check that sine-Gordon equation zxt = sin(z) is

equivalent to the above structure equations for the following system of 1-forms

ω1 = 1
η
sin (z) dt,

ω2 = η dx+ 1
η
cos (z) dt,

ω3 = zx dx,

(0.0.1)

with η ∈ R− {0}. In this case one has that I = ω2
1 + ω2

2 = 1
η2
dt2 + 2 cos(z) dx dt+ η2dx2.

Notice that, with respect to the system (0.0.1), sine-Gordon equation admits non-generic

solutions. For instance, z = kπ, k ∈ Z, is a non-generic solution of sine-Gordon equation.

PS equations can also be characterized in few alternative ways (see Section 1.2,

of Chapter 1). For instance, above structure equations are equivalent to the integrability

condition of an auxiliary first order linear system, and this naturally leads to study some

properties of PS equations by using the notion of zero-curvature representations (ZCRs),

(see Sections 1.2 and 1.5, of Chapter 1) which originates by the observation that some

nonlinear partial differential equations (PDEs) can be interpreted as integrability condi-

tions of an auxiliary linear system [54, 60]. Indeed, since the early applications of the

inverse scattering method to the computation of soliton solutions of PS equations like

KdV [1, 28], the notion of ZCR has been widely used in the study of PS equations as well

as of most general nonlinear PDEs (see for instance [2, 8, 9, 26, 54, 65] and references

therein). In particular, it is typical for an integrable system of PDEs to admit a ZCR
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which depends on some real parameter η, usually referred to as the spectral parameter. An

example of this is given by the sine-Gordon example (see Section 1.2, of Chapter 1). The

presence of such a parameter is crucial not only for the determination of exact solutions,

via the inverse scattering method [1, 64] or the finite gap integration method [42], but also

to guarantee other remarkable attributes of integrable equations like, for instance, para-

metric Bäcklund transformations and the existence of infinite hierarchies of conservation

laws (see Section 1.6, of Chapter 1, and also [18, 20, 54, 56]). However, only nontrivial

parameters are suitable for such applications of 1-parameter families of ZCRs. Hence the

problem of deciding whether a parameter is trivial or not is particularly relevant in the

theory of PS equations, as well as in the most general theory of ZCRs. This problem

has been already studied in the paper [38], by identifying a cohomological obstruction to

removability and providing an effective method for the elimination of trivial parameters.

In Chapter 4, as discussed below, we consider another important problem which is that of

constructing families of ZCRs (or linear problems) depending on nontrivial parameters.

In [20] Chern and Tenenblat obtained characterization results for evolution equa-

tions of the form zt = F (z, z1, ..., zk) (from now on we denote zi = ∂iz/∂xi), under

the assumptions that fij = fij(z, z1, ..., zk) and f21 = η, where η is a parameter. In

the same paper the authors also considered a similar problem for equations of the form

z1,t = F (z, z1, ..., zk). A noteworthy result of this study was an effective method for the

explicit determination of entire new classes of differential equations that describe pseu-

dospherical surfaces. Motivated by the results of [20], in a series of subsequent papers

[30, 46, 47, 48], the same method was systematically implemented and new classes of pseu-

dospherical equations were identified still with the basic assumption that f21 = η. Then

in [18] the authors showed how the geometric properties of pseudospherical surfaces may

provide infinite number of conservation laws when the functions fij are analytic functions

of the spectral parameter η.

In 1995, Kamran and Tenenblat [34] generalized the results of [20] by giving

a complete characterization of evolution equations of type zt = F (z, z1, ..., zk) which

describe pseudospherical surfaces, in terms of necessary and sufficient conditions that have

to be satisfied by F and the functions fij = fij(z, z1, ..., zk), with no further additional

conditions. Another generalization of [20] came in 1998 by Reyes who considered in

[49] evolution equations of the more general form zt = F (x, t, z, z1, ..., zk), allowing x, t to

appear explicitly in the equation and assuming that fij = fij(x, t, z, z1, ..., zk) and f21 = η.

Then, in a subsequent series of papers [50]-[52] Reyes also studied other aspects of such

equations.

In 2002, differential systems describing pseudospherical surfaces or spherical sur-

faces (with constant positive curvature metrics) were studied by Ding-Tenenblat in [24].
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Such systems include equations such as the nonlinear Schrödinger equation and the Heisen-

berg Ferromagnet model, and large new families of differential systems describing pseu-

dospherical surfaces were obtained. In particular, these families have relations with those

obtained by Fokas in [27].

Also we mention that a higher dimensional geometric generalization of the sine-

Gordon equation, characterizing n-dimensional sub-manifolds of the Euclidean E2n−1 with

constant sectional curvature K = −1, was considered in [62] and its intrinsic version as

a metric on open subsets of Rn, with K = −1, was studied in [7], by applying inverse

scattering method. Other differential n-dimensional systems that are the integrability

condition of linear systems of PDEs can be found in the so called generating system (see

[61] and its references).

The several characterization results obtained in [20, 34, 49] are extremely use-

ful, either in checking if a given differential equation describes pseudospherical surfaces

or in generating large families of such equations. For instance, as an application of

[34], Gomes [29] and Catalano-Tenenblat [17] classified evolution equations of the form

zt = z5 +G(z, z1, z2, z3, z4) and zt = z4 +G(z, z1, z2, z3), respectively, under the auxiliary

assumptions that f21 and f31 are linear combinations of f11. More recently, the same

assumptions have been used by Silva and Tenenblat in [14] to give a classification of third

order equations of the form zt = z2,t + λzz3 +G(z, z1, z2), with λ ∈ R.

The results of [14, 17, 29] permit the explicit description of huge classes of equa-

tions describing pseudospherical surfaces which, apart from the already known exam-

ples, represent a great amount of new equations whose physical relevance is highly ex-

pected. For example, some applications of equations classified by Rabelo and Tenenblat

[6, 30, 46, 47] have been recently discussed by Sakovich in a series of papers (see for in-

stance [55]). Of course, the same should occur in the case of results obtained in [14, 17, 29].

In Chapter 2 we give a classification of PS equations of the form

zt = A (x, t, z) z2 +B (x, t, z, z1) , A 6= 0,

with associated 1-forms

ω1 = f11 dx+ f12 dt, ω2 = f21 dx+ f22 dt, ω3 = f31 dx+ f32 dt,

such that fij = fij (x, t, z, z1) and

f21 = η, η ∈ R.

The main result of this classification shows that these evolution equations fall into three
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classes, further referred to as types. In each type, differential equations and associated

linear problems can be easily obtained by choosing some arbitrary differentiable func-

tions. Examples of such equations are the already known Svinolupov-Sokolov equations

admitting higher weakly nonlinear symmetries [43], Boltzman equation, Marvan equa-

tion [39] and reaction-diffusion equations like Murray equation. Many other examples are

presented forward the end of Section 2.2 and in Section 2.5.

In Chapter 3 we study the problem of determining local isometric immersion

of the families of pseudospherical surfaces described by the PS equations classified in

Chapter 2, as well as for that described by some simple generalizations.

From the classical theory of Monge-Ampère equations of the form f,xxf,tt− f 2
xt =

K, it follows that surfaces of constant Gaussian curvature K always admit local isometric

immersions in E3. However, due to Hilbert theorem, there exists no complete isometric

immersion of bidimensional Riemannian metrics with Gaussian curvature K = −1 in E3.

Hence, in particular, any given pseudospherical surface described by a PS equation E
admits a local isometric immersion.

Hence, in view of the Bonnet theorem, to any generic solution z of E , it is asso-

ciated a pair (I[z], II[z]) of first and second fundamental forms, which solves the Gauss-

Codazzi equations and describes a local isometric immersion into E3 of the associated

pseudospherical surface. However, the dependence of (I[z], II[z]) on z may be quite com-

plicate and in general it is not guaranteed the existence of a pair (I, II) which satisfies

Gauss-Codazzi equations and smoothly depends on the generic solutions z of E . In par-

ticular, the domain of the local immersion of the pseudospherical surface associated to

a generic solution z is in general a subset of the domain of z, and by passing to generic

solution z′ these domains could change as well.

Nevertheless such a pair (I, II), which satisfies Gauss-Codazzi equations and

smoothly depends on the solutions z, may still exist for some very special equations. An

example is provided by the sine-Gordon equation with ω1, ω2 and ω3 given by (0.0.1):

indeed in this case one has I = 1
η2
dt2 + 2 cos(z) dx dt + η2dx2 and it is known (see for

instance [61], Theorem 2.4) that Gauss-Codazzi equations are integrable and admit the

second fundamental form II = ±2 sin(z) dx dt as an explicit solution. Hence one can

always find local isometric immersions of pseudospherical surfaces corresponding to generic

solutions of sine-Gordon equation.

Hence, in view of sine-Gordon example, it is natural to ask whether are there

other PS equations which admit such a local isometric immersion for the described family

of pseudospherical surfaces.

Recently this question has been investigated by T. Castro Silva, N. Kahouadji,

N. Kamran and K. Tenenblat in the papers [13, 32, 33], under the assumption that the
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coefficients of the second fundamental form II depends on finitely many derivatives of z

and does not explicitly depend on x and t. In [32, 33] they provided an answer in the

case of k-th order evolution PS equations zt = F (z, z1, ..., zk) and second order hyperbolic

PS equations z1,t = F (z, z1), by restricting the study to the classes of 1-forms {ω1, ω2, ω3}
classified in [20] and [47]. Analogously, in [13] they provided an answer in the case of PS

equations of the form zt− z2,t = λzz3 +G(z, z1, z2), λ ∈ R, by restricting the study to the

classes of 1-forms {ω1, ω2, ω3} classified in [14].

The results of these papers prove that, in the class of PS equations, the property

of admitting local isometric immersions of the type considered above is exceptional since

it holds only for some special classes of PS equations. In particular it turns out that sine-

Gordon equation occupies a particularly special place amongst all these PS equations.

Indeed, in view of the second fundamental form II = ±2 sin(z) dx dt, for the sine-Gordon

equation the restriction (I[z], II[z]) of the pair (I, II) to a given generic solution z, defined

on a domain U ⊂ R2, is still defined on the same domain U without additional require-

ments. On the contrary, for all the other examples identified in the papers [13, 32, 33]

the second fundamental form is only defined on a strip contained in the domain of a

considered generic solution. Moreover, on the immersed pseudospherical surface defined

by any given generic solution z of sine-Gordon equation, the normal curvatures a, c and

the geodesic torsion b in the directions e1 and e2 dual to ω1 and ω2 (see sub-Section 1.1

of Chapter 1) depend explicitly on the particular solution z: indeed one can prove that

for the sine-Gordon equation a = ±2/tg(z), whereas b = ±1 and c = 0. On the contrary,

for all the other examples identified in the papers [13, 32, 33] one has that a, b and c

are independent of z, and only depend on x and t. Hence we can say that the local

isometric immersions of pseudospherical surfaces described by sine-Gordon equation have

the property of having “z-dependent” functions a, b and c.

The aim of Chapter 3 is that of continuing the investigations of papers [13, 32, 33]

in the case of evolution PS equations classified in Chapter 2, and for a simple k-th order

generalization of equations of Type I. Indeed, by first considering PS equations of the form

zt = A(x, t, z)z2 + B(x, t, z, z1) with f21 = η classified in Chapter 2, we found that only

Type I equations admit these kind of local isometric immersions. Then, on the base of this

result, we found an extension to the case of k-th order evolution equations in conservation

law form Dt (f(x, t, z)) = Dx (Ω(x, t, z, z1, . . . , zk)). As a result, we found that in the class

of PS equations admitting local isometric immersions one also has second order equations

like Boltzmann, Murray and Svinolupov-Sokolov equations, as well as higher order equa-

tions like Kuramoto-Sivashinsky, Sawada-Kotera and Kaup-Kupershmidt equations and

also full hierarchies of integrable equations like Burgers, mKdV and KdV, which were not

covered by the results of previous papers [32, 33]. However, it is noteworthy to observe
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that the special character of sine-Gordon equation is still confirmed by these results: sine-

Gordon equation is the unique known example of a PS equation where the pair (I, II)

has “z-dependent” functions a, b and c (see Section 1.1).

Finally in Chapter 4 we discuss a method which uses the theory of classical

symmetries of differential equations to construct nontrivial 1-parameter families of ZCRs,

for g-valued ZCRs with g a Lie sub-algebra of gl (n,R) or gl (n,C). The case of ZCRs of

PS equations corresponds to the special case g = sl(2,R).

While studying a differential equation, it is not unusual to know only a non-

parametric ZCR or even a trivial 1-parameter family of ZCRs [21, 37, 54, 60]. Hence,

the problem of constructing nontrivial 1-parameter families of ZCRs is of special interest

for the application of the theory of ZCRs. In such cases one is naturally faced with the

embedding problem of a given nonparametric ZCR into a nontrivial 1-parameter family

of ZCRs.

Due to the importance of this problem, various attempts have been already made

to provide any effective embedding method. Among these the symmetry method, first

suggested in [37, 56] and further developed in the papers [22, 21, 36], is particularly

representative.

In its original formulation, the symmetry method allows one to embed a given

ZCR α into a 1-parameter family of ZCRs αλ of E , via the action on α of a 1-parameter

group Aλ of projectable point symmetries of E . However, in general, a 1-parameter

group Aλ may be not “good” in the sense that the induced embedding may result in a

trivial 1-parameter family αλ. Hence, to solve this problem, the authors of [21] suggested

to compare the symmetry algebras of E and its covering, and conjectured that “good”

symmetry groups Aλ can be identified by a mismatch of these algebras. However, that

conjecture remained unproved.

The aim of Chapter 4 is that of further developing the symmetry method, by

taking into consideration the action of any kind of classical symmetry, and prove an

infinitesimal criterion which is particularly effective in the identification of “good” in-

finitesimal classical symmetries, i.e., those symmetries which can be used to embed α into

a nontrivial family αλ of ZCRs of E . According to that criterion we show that, relatively

to α, one may distinguish classical infinitesimal symmetries of E into gauge-like symme-

tries and non gauge-like symmetries. The first type of symmetries form a Lie sub-algebra

of the Lie algebra of symmetries of E and only produce trivial 1-parameter families of

ZCRs. On the contrary, any 1-parameter family αλ constructed with the flow of a non

gauge-like symmetry is nontrivial. These results are illustrated with some examples in

Section 4.3 and have been recently reported in the paper [15].

We note that Marvan also formulated in [40] an embedding method which is
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alternative to the symmetry method discussed in Chapter 4. Both methods may be

considered completely algorithmic, however the symmetry method is computationally

more simple than Marvan’s method, when a non gauge-like symmetry exists.



Chapter 1

Preliminaries

For the reader’s convenience we collect here some useful facts, and notations

used throughout the thesis. The interested reader should refer to the general references

[12, 20, 34, 38, 41, 44, 45, 53, 61, 63] for further details.

In particular, in Section 1.1 we review some useful elements of classical theory

of surfaces in terms of moving frame formalism. Then, in Sections 1.2 and 1.3 we collect

the material on PS equations used in the Chapters 2 and 3. Finally, in Sections 1.4, 1.5

and 1.6 we review the basic material on the geometric theory of differential equations and

zero-curvature representations (ZCRs) in the form which is used in the Chapter 4.

1.1 Elements of surfaces theory with moving frames

In the 3-dimensional Euclidean space E3, with the canonical scalar product < , >,

let r = r(x1, x2) be a local chart of a regular surface M . By naturally extending the

scalar product to E3-valued 1-forms, the first and second fundamental forms of M are

respectively defined by

I :=< dr, dr >=
2∑

i,j=1

gijdx
i · dxj, II := − < dr, dn >=

2∑
i,j=1

aijdx
i · dxj,

with

n :=
r,1 ∧ r,2
|r,1 ∧ r,2|

,

denoting the unit normal to M and

gij =< r,i, r,j >, aij = − < r,i,n,j >=< r,ij,n > .

The principal curvatures and principal directions ofM are the eigenvalues and eigenvectors

of the shape operator P defined as II(X, Y ) = I(PX, Y ), for any pair X, Y of vector fields
9
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tangent to M .

According to G. Darboux and E. Cartan the geometry of surfaces can be conve-

niently described by using the formalism of moving frames on M , which in the context

considered here are orthonormal frames {e1, e2, e3 = n} of vector fields with e1 and e2

tangent to M , and locally parametrized on the domain U ⊂ R2 of the chart r. Indeed,

since dr takes values in the tangent plane to M , one has that

dr = ω1e1 + ω2e2, (1.1.1)

with ω1 and ω2 differential 1-forms defined on U . On the other hand, in view of

< ei, ej >= δij, one has 
de1 = ω12e2 + ω13e3,

de2 = ω21e1 + ω23e3,

de3 = ω31e1 + ω32e2,

(1.1.2)

with differential 1-forms ωij defined on U and such that

ωij = −ωji.

Hence, in terms of these 1-forms the first and second fundamental forms read

I = ω2
1 + ω2

2, II = ω1 · ω13 + ω2 · ω23,

where ωi(ej) = δij. In particular, this means that {ω1, ω2} is a coframe on M dual to the

orthonormal frame {e1, e2}.
Equations (1.1.1-1.1.2) are the Gauss-Weingarten equations of classical theory of

surfaces, in the form of a first order system, whose compatibility conditions can be easily

obtained in view of d2 = 0. Indeed, from d2r = d2ei = 0 one easily gets the Cartan’s

structure equations

dω1 = ω12 ∧ ω2, dω2 = ω1 ∧ ω12, (1.1.3)

ω1 ∧ ω13 + ω2 ∧ ω23 = 0, (1.1.4)

and 
dω12 = ω13 ∧ ω32,

dω13 = ω12 ∧ ω23,

dω23 = ω21 ∧ ω13.

(1.1.5)
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It follows that, in view of (1.1.3), the connection 1-form ω12 is completely determined by

ω12(ei) = dωi(e1, e2), i = 1, 2, (1.1.6)

whereas, equation (1.1.4) entails that ω1 ∧ ω2 ∧ ω13 = ω1 ∧ ω2 ∧ ω23 = 0 and hence one

can write ω13 and ω23 as

ω13 = aω1 + bω2, ω23 = bω1 + cω2, (1.1.7)

with a, b, c differentiable functions on U , whose geometric interpretation is as follows (see

for instance [12]): functions a and c are the normal curvatures of M in the directions of

e1 and e2, respectively; b (resp., −b ) is the geodesic torsion in the direction of e1 (resp.,

e2).

Therefore equations (1.1.5) reduce to

dω12 = −Kω1 ∧ ω2, (1.1.8)

with

K = ac− b2, (Gauss equation) (1.1.9)

being the Gaussian curvature of M in terms of its extrinsic geometry, and dω13 = ω12 ∧ ω23,

dω23 = ω21 ∧ ω13.
(Codazzi equations) (1.1.10)

This way one easily gets the Gauss and Codazzi equations of the classical theory of

surfaces.

Equations (1.1.8-1.1.9) and (1.1.10) are the compatibility conditions of Gauss-

Weingarten equations (1.1.2).

It follows that the 1-forms ω1, ω2 and the connection form

ω3 = ω12

satisfy the equations 
dω1 = ω3 ∧ ω2,

dω2 = ω1 ∧ ω3,

dω3 = −Kω1 ∧ ω2.

(1.1.11)

In particular, the structure equations (1.1.11) describe the intrinsic geometry of the surface

M . Moreover, since in view of (1.1.6) the 1-form ω3 is completely determined by {e1, e2}
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and {ω1, ω2}, and hence it only depends on the intrinsic geometry of M , then the third

equation of (1.1.11) provides a proof of Gauss’ teorema egregium, which states that K

does not depend on the extrinsic geometry of M and is completely determined by first

fundamental form I. The extrinsic geometry of M , on the other side, is described by the

Gauss-Weingarten equations (1.1.1-1.1.2), provided that their compatibility conditions

(1.1.10) and (1.1.9) are satisfied.

Finally we remember here the classical Bonnet theorem which states that given

two symmetric bilinear forms I and II on U ⊂ R2, which satisfy (1.1.8-1.1.9) and (1.1.10)

and with I positive-definite, for every p ∈ U there exists a neighborhood V ⊂ U of p and

a diffeomorphism r : V → r(V ) ⊂ R3 such that the regular surface r(V ) ⊂ E3 has I and

II as first and second fundamental forms, respectively, and r is unique up to isometries

of E3. The mapping r is a local isometric immersion of the Riemannian manifold (U, I),

and in the particular case when I is pseudospherical, i.e. when I is such that K = −1,

it is also classically known that such a local isometric immersion of (U, I) in E3 always

exists. Observe that, in the case of a pseudospherical surface, equations (1.1.11) reduce

to the structure equations of pseudospherical surfaces used throughout this work.

1.2 PS equations

If (M, g) is a 2-dimensional Riemannian manifold and {ω1, ω2} is a coframe,

dual to an orthonormal frame {e1, e2}, then g = ω2
1 + ω2

2 and ωi satisfy the structure

equations: dω1 = ω3 ∧ ω2 and dω2 = ω1 ∧ ω3, where ω3 denotes the connection form

defined as ω3(ei) = dωi(e1, e2). The Gaussian curvature of M is the function K such that

dω3 = −Kω1 ∧ ω2.

We say that a k-th order differential equation E for a real-valued function z=z (x, t),

describes pseudospherical surfaces, or that it is a PS equation, if it is equivalent to the

structure equations of a surface with Gaussian curvature K = −1, i.e.,

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2, (1.2.1)

where {ω1, ω2, ω3} are 1-forms

ω1 = f11dx+ f12dt, ω2 = f21dx+ f22dt, ω3 = f31dx+ f32dt, (1.2.2)

such that ω1 ∧ ω2 6= 0 and fij are functions of x, t, z(x, t) and derivatives of z(x, t) with

respect to x and t.

Notice that according to the definition ω1 ∧ ω2 is generically nonzero on the

solutions of a PS equation E . However, this condition does not guarantee the property
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that, for any solution z : U ⊂ R2 → R, the restriction (ω1 ∧ ω2)[z] of ω1 ∧ ω2 to z is

everywhere nonzero on U . Relatively to a given system of 1-forms {ω1, ω2, ω3}, we will

call generic a solution z : U ⊂ R2 → R such that (ω1∧ω2)[z] is almost everywhere nonzero

on U , i.e., it is everywhere nonzero except for a subset of U of measure zero. Thus, for any

generic solution z : U ⊂ R2 → R of a PS equation E , the restriction I[z] of I = ω2
1 + ω2

2

to z defines almost everywhere a Riemannian metric I[z] on the domain U with Gaussian

curvature K = −1. It is in this sense that one can say that a PS equation describes, or

parametrizes, a family of non-immersed pseudospherical surfaces.

A classical example is the KdV equation zt = zxxx + 6zzx, which corresponds to

ω1 = (1− z) dx+ (−zxx + ηzx − η2z − 2z2 + η2 + 2z) dt,

ω2 = η dx+ (η3 + 2ηz − 2zx) dt,

ω3 = − (1 + z) dx+ (−zxx + ηzx − η2z − 2z2 − η2 − 2z) dt,

with η ∈ R. Another classical example is the sine-Gordon equation zxt = sin (z), which

corresponds to

ω1 = 1
η
sin (z) dt,

ω2 = η dx+ 1
η
cos (z) dt,

ω3 = zx dx,

with η ∈ R− {0}.
Another example is the nonlinear dispersive wave equation (Camassa-Holm)

zt − zxxt = zzxxx + 2zxzxx − 3zzx −mzx,

which corresponds to

ω1 =
(
z − zxx + m+η2

2
− 1
)
dx+

[
−z (f11 + 1)± ηzx − m+η2

2
+ 1
]
dt,

ω2 = η dx+ (−ηz ± zx − η) dt,

ω3 = ±
(
z − zxx + m+η2

2

)
dx+

[
∓z
(
z − zxx + m+η2

2

)
+ ηzx ∓ z ∓ m+η2

2

]
dt,

with η ∈ R.

PS equations can also be characterized in few alternative ways. For instance, the

system of equations (1.2.1) is equivalent to the integrability condition of the linear system(
dv1

dv2

)
=

1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)(
v1

v2

)
, (1.2.3)

where vi = vi (x, t).
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Another interpretation comes by the use of the sl (2,R)-valued 1-form

Ω =
1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
= Xdx+ Tdt, (1.2.4)

with X and T being the sl (2,R)-valued smooth functions (also known as Lax pair in

matrix form)

X =
1

2

(
f21 f11 − f31

f11 + f31 −f21

)
, T =

1

2

(
f22 f12 − f32

f12 + f32 −f22

)
. (1.2.5)

Indeed, equations (1.2.1) are equivalent to

dΩ− 1

2
[Ω,Ω] = 0.

This means that, for any solution z = z (x, t) of E , defined on a domain U ⊂ R2, Ω is

a Maurer-Cartan form defining a flat connection on a trivial principal SL (2,R)-bundle

over U (see for instance [25, 58]).

Moreover, by using the notation V := (v1, v2)
T

, (1.2.3) can be written as the

linear problem
∂V

∂x
= XV,

∂V

∂t
= TV. (1.2.6)

It is easy to show that equations (1.2.1) are equivalent to the integrability condi-

tion of (1.2.6), namely

DtX −DxT + [X,T ] = 0, (1.2.7)

where Dt and Dx are the total derivative operators with respect to t and x, respectively.

In the literature [23] 1-form Ω, and sometimes the pair (X,T ) or even (1.2.7), is re-

ferred to as an sl (2,R)-valued zero-curvature representation for the equation E . Moreover,

the linear system (1.2.3) or (1.2.6) is usually referred to as the linear problem associated

to E.

Remark 1.2.1. It is noteworthy to remark that saying that an equation E admits an

sl(2,R)-valued zero-curvature representation is not equivalent to say that E is a PS equa-

tion. Indeed, for E describing pseudospherical surfaces it is required that the functions

fij in (1.2.5) satisfy the non-degeneracy condition ω1 ∧ω2 = (f11f22 − f12f21) dx∧ dt 6= 0,

which guarantees that ω2
1 + ω2

2 is generically non-degenerated.

It is this linear problem that, in some cases, is used in the construction of explicit

solutions of PS equations, by means of inverse scattering method [4, 5, 28]. In particular,

when f21 = η, where η is a parameter and f11, f31 are independent of η, the linear problem

(1.2.6) is the so called AKNS system [1].
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We notice that, under the gauge transformation X → XS = S X S−1 +DxS S
−1,

T → T S = S T S−1 +DtS S
−1, where S is an SL(2,R)-valued smooth function, left hand

side of (1.2.7) transforms to

DtX −DxT + [X,T ] = S
(
DtX

S −DxT
S +

[
XS, T S

])
S−1,

and hence (1.2.7) is invariant. However, one should be aware of the fact that such a gauge

transformation may not preserve the condition ω1 ∧ ω2 = (f11f22 − f12f21) dx ∧ dt 6= 0.

For instance, with f11 = eηxz = −f31, f12 = eη (zx + z2) = −f32, f21 = η, f22 = 0,

the pair X, T given by (1.2.5) defines an sl (2,R)-valued zero-curvature representation of

Burgers equation zt = zxx + 2zzx, which transforms to

XS =

(
0 z

0 0

)
, T S =

(
0 zx + z2

0 0

)
,

under the transformation given by S =

(
e
ηx
2 0

0 e−
ηx
2

)
.

Therefore under the transformation defined by S, fij transforms as fSij = e−ηxfij,

for (i, j) 6= (2, 1), and fS21 = 0. Hence fS11f
S
22 − fS12f

S
21 = 0, whereas f11f22 − f12f21 6= 0.

Throughout this thesis, partial derivatives of z = z(x, t) of order i with respect

to x will be denoted by zi, i.e.,

zi =
∂iz

∂xi
.

Hence, an evolution equation of order k will be written in the form

zt = F (x, t, z, z1, . . . , zk) . (1.2.8)

It is noteworthy to remark that equations in conservation law forms are PS equations, as

stated by the following easy to prove

Theorem 1.2.2. The k-th order evolution equations of the form

Dt (f) = Dx (Ω) , (1.2.9)

where f = f (x, t, z), Ω = Ω (x, t, z, z1, . . . , zk−1) are arbitrary differentiable functions,

such that f ,z Ω,zk−1
6= 0 on a nonempty open set, is a PS equation with associated 1-forms

ωi = fi1 dx+ fi2 dt of one of the following two alternative types:

a)
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f11 = e−ε(ηx+g)f, f12 = e−ε(ηx+g)Ω,

f21 = η, f22 = g′,

f31 = εe−ε(ηx+g)f, f32 = εe−ε(ηx+g)Ω,

(1.2.10)

where ε = ±1, g = g(t) is an arbitrary differentiable function and η2 + (g′)2 6= 0;

b)

f11 = cosh (ηx+ g) f, f12 = cosh (ηx+ g) Ω,

f21 = η, f22 = g′,

f31 = −sinh (ηx+ g) f, f32 = −sinh (ηx+ g) Ω,

(1.2.11)

where g = g(t) is an arbitrary differentiable function and η2 + (g′)2 6= 0.

Remark 1.2.3. The class of PS equations described by Theorem 1.2.2 may be thought

as being a generalization to k-th order of the Type I class of PS equations obtained in

Chapter 2.

1.3 Finite-order local isometric immersions of sur-

faces described by PS equations

In view of (1.2.2) and (1.1.7), the second fundamental forms of local isometric

immersions of surfaces described by the solutions of a PS equation have the form

II = ω1ω13 + ω2ω23 = a11dx
2 + 2a12dx · dt+ a22dt

2,

with 
a11 = af 2

11 + 2bf11f21 + cf 2
21,

a12 = af11f12 + b (f11f22 + f21f12) + cf21f22,

a22 = af 2
12 + 2bf12f22 + cf 2

22,

(1.3.1)

and a, b, c differentiable functions of x, t, z and derivatives of z with respect to x and t.

It follows that, using the total derivative operators Dx and Dt, the two Codazzi
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equations (1.1.10) and the Gauss equation (1.1.9) have the form

f11Dta+ f21Dtb− f12Dxa− f22Dxb− 2b (f11f32 − f31f12)

+ (a− c) (f21f32 − f31f22) = 0,

f11Dtb+ f21Dtc− f12Dxb− f22Dxc+ (a− c) (f11f32 − f31f12)

+2b (f21f32 − f31f22) = 0,

(1.3.2)

and

ac− b2 = −1, (1.3.3)

respectively.

In view of Bonnet theorem, the local isometric immersion of the pseudospherical

surfaces described by the space of solutions of a PS equation exist if and only if there

exist a solution {a, b, c} of (1.3.2-1.3.3). In this thesis we will restrict the problem of

determining such a triple {a, b, c} in the case of PS equations described by Theorem 2.2.1,

and also Theorem 1.2.2, under the assumption that the triple {a, b, c} is of finite-order,

i.e., depends only on x, t, z and finitely many derivatives of z with respect to x and t. We

will refer to local isometric immersions described by such a finite-order triple {a, b, c}, as

finite-order local isometric immersions.

1.4 Symmetries of differential equations

Let π : E → M be a fiber bundle, with dimM = n and dimE = n + m. For

any k ∈ N we denote by Jk(π) the manifold of k-th order jets of sections of π and by

πk : Jk(π)→M the k-order jet bundle of sections of π. By definition, a point θ of Jk(π) is

an equivalence class θ = [s]ka of smooth sections s of π whose graphs at a ∈M pass through

the same point s(a), where they have the same contact up to order k. Hence, any section

s of π together with its derivatives up to order k determines a section jk(s) of πk which

is called the k-th order prolongation of s. For h > k we denote by πh,k : Jh(π) → Jk(π)

the natural projection of Jh(π) onto Jk(π), given by [s]ha → [s]ka.

Denoting by {x1, ..., xn} local coordinates on M and by {z1, ..., zm} local fiber

coordinates of π, the induced natural coordinates on Jk(π) will be {xi, zjσ}, where i ∈
{1, ..., n}, j ∈ {1, ...,m} and σ = (σ1, ..., σn) is a multi-index of order |σ| = σ1+...+σn such

that 0 ≤ |σ| ≤ k. By definition, if θ = [s]ka, then xi(θ) := xi(a) and zjσ(θ) := ∂|σ|sj

∂x
σ1
1 ...∂xσnn

(a).

Throughout the thesis, C∞(M) will denote the algebra of smooth functions on M and

Fk(π) will denote the algebra of smooth functions on Jk(π).

The k-th order jet space Jk(π) is naturally equipped with the Cartan distribution
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Ck(π), which is spanned by tangent planes to graphs of k-th order jet prolongations of

sections of π. In coordinates Ck(π) can be described either as the annihilator of the

Pfaffian system {θjσ = dzjσ −
∑

i z
j
σ+1i

dxi : 0 ≤ |σ| ≤ k − 1, j = 1, ...,m}, or as the

distribution generated by the vector fields {∂zjσ+1i

, D
(k)
i : 0 ≤ |σ| ≤ k − 1, j = 1, ...,m},

with D
(k)
i denoting the k-th order truncated total derivative operators, i.e.,

D
(k)
i := ∂xi +

∑
|σ|≤k−1

zjσ+1i
∂zjσ .

A k-th order system of differential equations E , for the sections of π, can be geometrically

interpreted as a submanifold E ⊂ Jk(π) and its solutions are just sections s of π whose

k-th prolongations jk(s) lie in E . Hence, solutions of E are sections of π whose k-th

prolongations are integral manifolds of the induced Cartan distribution Ck(E) := Ck(π) ∩
TE over E .

Classical finite symmetries of a k-th order system E ⊂ Jk(π) are finite symmetries

of Ck(π) which leave invariant the submanifold E . Classical infinitesimal symmetries of E
are vector fields on Jk(π) which are infinitesimal symmetries of Ck(π) and are tangent to

E . Hence, by definition, the flow of an infinitesimal symmetry of E is a 1-parameter local

group of local diffeomorphisms which are finite symmetries of E . A finite symmetry f is

called projectable if f ∗(C∞(M)) ⊂ C∞(M). Analogously, an infinitesimal symmetry X is

called projectable if X(C∞(M)) ⊂ C∞(M).

The explicit description of infinitesimal symmetries of Ck(π) is particularly simple.

Indeed, if one writes D
(k)
σ :=

(
D

(k)
1

)σ1
◦ ... ◦

(
D

(k)
n

)σn
, one can show that [44, 63]:

1. When m = 1, infinitesimal symmetries of Ck(π) are of the form

Y (k)
ϕ = −

n∑
i=1

∂ϕ

∂zi
D

(k)
i +

k−1∑
|σ|=0

D(k)
σ (ϕ)∂zσ , (1.4.1)

where ϕ ∈ F(π).

2. When m > 1, infinitesimal symmetries of Ck(π) are of the form

Y (k)
ϕ = −

∑
i

∂ϕa

∂zai
D

(k)
i +

k−1∑
|σ|=0

m∑
j=1

D(k)
σ (ϕj)∂zjσ , (1.4.2)

where a is any fixed integer in {1, ...,m} and ϕ = (ϕ1, ..., ϕm) is any smooth vector

function on J1(π) such that for any j ∈ {1, ...,m} one has ϕj =
n∑
i=1

ξi(x, z)zji +

ηj(x, z), for some smooth functions ξi and ηj.
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The function ϕ is called the generating function of the k-th order classical symmetry Y
(k)
ϕ ,

since the symmetry is completely determined by ϕ.

On the other hand, for any h > k, the symmetries Y
(h)
ϕ and Y

(k)
ϕ generated by ϕ

project one to the other under the action of the pushforward πh,k∗. Hence it is natural to

say that Y
(h)
ϕ is the prolongation of Y

(k)
ϕ to Jh(π). In particular, any classical infinitesimal

symmetry of Ck(π) is the prolongation of a first order symmetry. However, when m > 1

the generating function ϕ = (ϕ1, ..., ϕm) is always linear in the variables zji ’s, hence Y
(k)
ϕ

always projects to the vector field Y
(0)
ϕ := ξi∂xi + ηj∂zj on J0(π). In such a case one

may call Y
(k)
ϕ the prolongation to Jk(π) of the vector field Y

(0)
ϕ on J0(π). Traditionally,

classical infinitesimal symmetries which are prolongations of vector fields on J0(π) are

called infinitesimal point symmetries. On the contrary, infinitesimal classical symmetries

which are not point symmetries are traditionally called infinitesimal contact symmetries.

Infinitesimal contact symmetries only exist when m = 1, since for m = dimπ > 1 one

only has infinitesimal point symmetries.

In practice, computing infinitesimal classical symmetries E ⊂ Jk(π) consists in

the search of generating functions ϕ such that Y
(k)
ϕ are tangent to E . This tangency

condition returns a linear system of PDEs for the function ϕ, which is usually overdeter-

mined and hence can be algorithmically studied by taking into consideration the full set

of compatibility conditions. The analysis of this kind of system is in general more feasible

if one makes use of symbolic packages like those available in Maple.

The infinite jet space J∞(π) is the inverse limit of the sequence of surjections

M
π←− J0(π)

π1,0←− ...
πk,k−1←− Jk(π)

πk+1,k←− ... . By definition, any θ ∈ J∞(π) is a sequence

θ = {θr} of points θr ∈ Jr(π) such that πh,k(θh) = θk, for all h > k. Of course J∞(π) is not

a finite dimensional manifold, nevertheless one may introduce a differential calculus on

J∞(π) by making use of standard constructions of differential calculus over commutative

algebras [63]. Indeed, by defining the exterior algebra Λ∗(π) of differential forms on J∞(π)

as the direct limit of the sequences of embeddings Λ∗
(
Jk(π)

) π∗k+1,k−→ Λ∗
(
Jk+1(π)

) π∗k+2,k+1−→
.... , one also defines the commutative algebra of smooth functions on J∞(π) as F(π) :=

Λ0(π). Since Λ∗
(
Jk(π)

)
⊂ Λ∗

(
Jk+1(π)

)
⊂ ... , Λ∗(π) is a filtered algebra and one may

think of any h-form over J∞(π) as an h-form on some finite order jet space; this is true

in particular for F(π). It follows that the exterior differential d naturally extends to the

exterior algebra Λ∗(π) and defines the de Rham complex of J∞(π).

Then, the F(π)-module D(π) of vector fields on J∞(π) is by definition the module

of all derivations of F(π) which preserve the natural filtration Fk(π) ⊂ Fh(π) ⊂ ... of

F(π), i.e., any Z ∈ D(π) has an associated filtration degree l ∈ N such that Z(Fk(π)) ⊆
Fk+l(π), ∀k ∈ N. Hence, in coordinates, a vector field Z can be identified with a formal

series Z =
∑
αi∂xi +

∑
βjσ∂zjσ , with αi, β

j
σ ∈ F(π). It follows that vector fields on
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J∞(π), contrary to the finite dimensional case, do not have in general an associated flow.

However, any Z with zero filtration degree is the inverse limit of an inverse sequence {Z(k)}
of vector fields on finite order jet spaces, hence one may define the flow of Z as being the

inverse limit of a sequence of flows on finite order jet spaces. Moreover, one can define

Lie derivative of functions, vector fields or forms on J∞(π) in a completely algebraic way.

For instance, the Lie derivative of a function G ∈ F(π) along a vector field Z ∈ D(π) is

LZ(G) := Z(G), and the Lie derivative of Y ∈ D(π) along Z is LZY := [Z, Y ]. Whereas,

the Lie derivative of a form ω ∈ Λ∗(π) along Z is defined as LZω := iZ(dω) + d(iZω),

where iZ denotes the inner product operation iZ : Λh(π) −→ Λh−1(π).

Also J∞(π) is naturally equipped with a Cartan distribution denoted by C(π) and

defined as the inverse limit of the sequence of surjections C1(π)
π1,0∗←− C2(π)

π2,1∗←− ...
πk,k−1∗←−

Ck(π)
πk+1,k∗←− ... . In coordinates C(π) can be described either as the annihilator of the

Pfaffian system {θjσ = dzjσ −
∑

i z
j
σ+1i

dxi : |σ| ≥ 0, j = 1, ...,m}, or as the distribution

generated by the totality of vector fields {∂zjσ+1i

, Di : |σ| ≥ 0, j = 1, ...,m}, where

Di := ∂xi +
∑
|ρ|≥0

m∑
j=1

zjρ+1i
∂zjρ

denote the total derivative operators.

Given a k-th order equation (or system) E = {F = 0} ⊂ Jk(π), under regularity

conditions one may consider the r-th order prolongation E (r) = {DµF = 0 : 0 ≤ |µ| ≤ r}.
Equation E will be called formally integrable if, and only if, E (r) are submanifolds of

Jk+r(π) and the maps πk+r+1,k+r : E (r+1) → E (r) are smooth fiber bundles, for any r ≥ 0.

By definition the infinite prolongation E (∞) = {DµF = 0 : |µ| ≥ 0} of a formally

integrable equation E is the inverse limit of the sequence of fiber bundles πk+r+1,k+r :

E (r+1) → E (r). By restricting Λ∗(π) to E (∞) one gets the exterior algebra Λ∗(E) of differ-

ential forms on E (∞) and in particular the algebra F(E) of smooth functions on E (∞).

Moreover, since any prolongation E (r) is naturally equipped with an induced Cartan

distribution Ck+r(E (r)), also E (∞) is naturally equipped with an induced Cartan distri-

bution denoted by C(E) and defined as the inverse limit of the sequence of surjections

Ck(E)
πk+1,k∗←− Ck+1(E (1))

πk+2,k+1∗←− ... . Hence one may further extend the notion of symme-

try for a system E : a vector field Z ∈ D(π) is a symmetry of E (∞) if, and only if, Z is

a symmetry of C(π) which is tangent to E (∞). These symmetries are called generalized

symmetries of E , and we will refer to the restriction Z̄ of a generalized symmetry Z to

E (∞) as a restricted generalized symmetry.

Among the generalized symmetries of E one has the classical generalized symme-

tries, which by definition are infinite prolongations of classical symmetries of E : recall
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that, given a classical symmetry Yϕ of Ck(π), its infinite prolongation Y
(∞)
ϕ is

Y (∞)
ϕ = −

n∑
i=1

∂ϕa

∂zai
Di +

∑
|σ|≥0

m∑
j=1

Dσ(ϕj)∂zjσ .

In this thesis we are mainly concerned with classical generalized symmetries, since these

are the only generalized symmetries which always admit a flow. For further details on the

theory of generalized symmetries see [44, 63].

1.5 Horizontal forms with values in a Lie algebra and

ZCRs

Since C(π) is totally horizontal with respect to the mapping π∞ : J∞(π) → M ,

the tangent bundle T (π) on J∞(π) decomposes as T (π) = V(π)⊕ C(π), where V(π) :=

Ker (π∞)∗. Dually one has Λ1(π) = Λ(1,0)(π) ⊕ Λ(0,1)(π), where Λ(1,0)(π) := Ann (V(π))

and Λ(0,1)(π) := Ann (C(π)) are the F(π)-modules of horizontal and vertical 1-forms

on J∞(π) locally generated by {dxi} and the Cartan forms {θjσ}, respectively. More

in general, by considering Λ(p,q)(π) =
(∧p Λ(1,0)(π)

)∧ (∧q Λ(0,1)(π)
)
, the F(π)-module

of r-forms on J∞(π) decomposes as Λr (π) =
⊕

p+q=r Λ(p,q) (π). By definition we set

F(π) = Λ(0,0)(π). Accordingly, the exterior differential splits into the sum d = dH + dV of

the horizontal and vertical differentials dH : Λ(p,q)(π) → Λ(p+1,q)(π) and dV : Λ(p,q)(π) →
Λ(p,q+1)(π), satisfying d2

H = d2
V = 0 and dH ◦ dV = −dV ◦ dH . In coordinates, horizontal

and vertical differentials can be easily computed, since they act as graded derivations on

Λ∗(π) and for any function f ∈ F(π) they are such that dHf := Di(f)dxi, dV f := ∂f

∂ujσ
θjσ.

Analogously, given a formally integrable equation E , since C(E) is totally hori-

zontal with respect to the mapping π̄∞ : E (∞) → M , the tangent bundle T (E) on E (∞)

decomposes as T (E) = V(E)⊕ C(E), where V(E) := Ker (π̄∞∗) is the vertical bundle on

E (∞). Hence the F(E)-modules Λ(1,0)(E) and Λ(0,1)(E) of horizontal and vertical 1-forms

on E (∞), locally generated by {dxi} and the restricted Cartan forms
{
θ̄jσ := θjσ|E(∞)

}
, can

be used to decompose the F(E)-module of r-forms on E (∞) as Λr (E) =
⊕

p+q=r Λ(p,q) (E).

By definition we set F(E) = Λ(0,0)(E). Accordingly, the restriction d̄ := d|E(∞) splits into

the sum d̄ = d̄H+d̄V of the horizontal and vertical differentials d̄H : Λ(p,q)(E)→ Λ(p+1,q)(E)

and d̄V : Λ(p,q)(E)→ Λ(p,q+1)(E), which satisfy d̄2
H = d̄2

V = 0 and d̄H ◦ d̄V = −d̄V ◦ d̄H . In

coordinates, d̄H and d̄V can be easily computed, since they act as graded derivations on

Λ∗(E) and for any function f ∈ F(E) they are such that d̄Hf := D̄i(f)dxi, d̄V f := ∂f

∂ujσ
θ̄jσ,

with D̄i denoting the total derivatives restricted to E (∞). For ease of notation, we will

denote Λ(p,0)(π) and Λ(p,0)(E) by Λ̄p(π) and Λ̄p(E), respectively.
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Given a Lie sub-algebra g of gl(n,R) (or gl(n,C)), one may consider the exterior

algebras g ⊗ Λ∗(π) and g ⊗ Λ∗(E) of g-valued forms on J∞(π) and E (∞), respectively.

The graded algebra of g-valued horizontal forms on J∞(π) and E (∞), will be denoted by

g ⊗ Λ̄∗ (π) =
⊕

p g ⊗ Λ̄p(π) and g ⊗ Λ̄∗ (E) =
⊕

p g ⊗ Λ̄p (E), respectively. By definition,

g-valued horizontal p-forms on J∞(π) (resp., E (∞)) are generated by g-valued p-forms Aω,

with A g-valued functions on J∞(π) (resp., E (∞)). Then, one may define a skew-symmetric

product [ , ] by linearly extending the product [A1ω1, A2ω2] := [A1, A2]ω1 ∧ ω2, between

generators. One can check that [ , ] satisfies the following properties:

[ρ, σ] = −(−1)rs[σ, ρ], (1.5.1)

(−1)rt[ρ, [σ, τ ]] + (−1)sr[σ, [τ, ρ]] + (−1)ts[τ, [ρ, σ]] = 0, (1.5.2)

dH [ρ, σ] = [dHρ, σ] + (−1)r[ρ, dHσ], (1.5.3)

d̄H [ρ, σ] = [d̄Hρ, σ] + (−1)r[ρ, d̄Hσ], (1.5.4)

where r, s and t are the degrees of the g-valued horizontal forms ρ, σ and τ , respectively,

on J∞(π) or E (∞).

Analogously, one may define an exterior product ∧ on g⊗ Λ̄∗ (π), or g⊗ Λ̄∗ (E),

by linearly extending the product A1ω1 ∧ A2ω2 = A1A2ω1 ∧ ω2.

In the forthcoming sections, for any pair of natural numbers (a, b), the natural

projections Λ∗ (π) → Λ(a,b)(π) and g ⊗ Λ∗ (π) → g ⊗ Λ(a,b) (π) will be both denoted by

π(a,b). Analogously, the projections Λ∗ (E)→ Λ(a,b) (E) and g⊗Λ∗ (E)→ g⊗Λ(a,b) (E) will

be both denoted by π̄(a,b). Moreover, when an explicit reference to equation E is necessary,

instead of π̄(a,b) and d̄H , we will use π̄
(a,b)
E and d̄H,E .

We will use the following

Definition 1.5.1. Let E be a formally integrable equation. A g-valued zero-curvature

representation (ZCR) of E is a non-vanishing 1-form α ∈ g⊗ Λ̄1 (E) such that

d̄Hα−
1

2
[α, α] = 0. (1.5.5)

A 1-parameter family of g-valued ZCRs of E is a smooth map λ 7→ αλ defined on an open

interval I ⊂ R, such that αλ ∈ g⊗ Λ̄1 (E) is a g-valued ZCRs of E for any λ ∈ I.

Remark 1.5.2. We notice that (1.5.5) is written sometimes in the literature in the following

equivalent form d̄Hα− α ∧ α = 0. We also notice that, since E (∞) ⊂ J∞(π), any element
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of g ⊗ Λ̄1(E) can be identified with an element of g ⊗ Λ̄1(π). Hence (1.5.5) can also

be rewritten as dHα − 1
2

[α, α] = 0 mod E (∞). In particular, when E = {F j = 0, j =

1, ..., h}, under regularity assumptions (i.e., if any prolongation E (∞), h ≥ 0, is totally non-

degenerating [44]) (1.5.5) can also be rewritten in “characteristic” form dHα− 1
2

[α, α] =∑
Dσ(F j)ωσj , where ωσj ∈ g ⊗ Λ̄2(π). This shows that in general (1.5.5) may involve

differential consequences of E and, in such a case, (1.5.5) is not equivalent to {F j =

0, j = 1, ..., h}.

1.6 Gauge transformations, horizontal gauge com-

plex and removability of a parameter from a ZCR

Let g be the Lie algebra of a matrix Lie group G, and α be a g-valued ZCR of a

formally integrable equation E . As already observed in the particular case g = sl(2,R) of

Section 1.2, one can check that also in general the 1-form αS := d̄HS · S−1 + S · α · S−1

is another g-valued ZCR of E , for any given G-valued smooth function S on E (∞). Hence

a transformation α 7→ αS will be still referred to as a gauge transformation, and αS will

be called gauge equivalent to α. It is easy to check that
(
αS1
)S2 = αS2S1 , for any pair of

G-valued smooth functions S1, S2 on E (∞).

Of course, given a g-valued ZCR α, one may always embed α into a 1-parameter

family of g-valued ZCRs αλ := αMλ , with Mλ any G-valued smooth function on I ×E (∞).

However, in such a case, α = (αλ)
M−1
λ =

(
αMλ

)M−1
λ and the parameter λ can always be

removed by means of a gauge transformation. Also, since for any λ0 ∈ I one has that

αλ0 = (αλ)
(Mλ0

M−1
λ ), one may adopt the following

Definition 1.6.1. Let λ ∈ ]a, b[ ⊂ R and αλ be a 1-parameter family of g-valued ZCRs

of E . The parameter λ is removable from αλ if for any λ0 ∈ ]a, b[ there exists a G-

valued smooth function Sλ such that Sλ0 = I (identity) and αλ0 = α
S−1
λ
λ . When λ is not

removable, αλ is called a nontrivial 1-parameter family of g-valued ZCRs of E .

We will also use the following

Definition 1.6.2. Two 1-parameter families αλ and βη of g-valued ZCRs of E are called

equivalent if there exists some reparametrization λ = f(η), f ′(η) 6= 0, such that αf(η) is

gauge equivalent to βη.

In the paper [38], Marvan proved that the obstruction to removability of λ from

a 1-parameter family of g-valued ZCR αλ is the first cohomology group H̄1
αλ

(E , g) of the

horizontal gauge complex :

0→ g⊗ Λ̄0 (E)
∂̄α−→ g⊗ Λ̄1 (E)

∂̄α−→ g⊗ Λ̄2 (E) −→ ... −→ g⊗ Λ̄n (E) −→ 0
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where ∂̄αω = d̄Hω − [α, ω].

Indeed, in view of (1.5.5), the horizontal gauge differential ∂̄α is such that ∂̄2
α = 0

and one has the following

Theorem 1.6.3. (Marvan) If αλ is a 1-parameter family of g-valued ZCRs for E, with λ ∈
]a, b[, then α̇λ := d

dλ
αλ is a 1-cocycle with respect to ∂̄αλ, i.e., ∂̄αλ (α̇λ) = 0. In particular,

the parameter λ is removable if, and only if, there exists a solution K ∈ g⊗ Λ̄0(E) of the

equation

α̇λ = ∂̄αλ (K) . (1.6.1)

For any solution K of (1.6.1) and λ0 ∈]a, b[, the G-valued matrix Sλ such that αλ0 = α
S−1
λ
λ

is the solution of the Cauchy problem{
Ṡλ = K Sλ,

Sλ0 = I.

It is usually true that an integrable equation admits a g-valued ZCR, for some

matrix Lie-algebra g. The cases when such a ZCR is embeddable into a 1-parameter

family are considered the most important, since the presence of a parameter is crucial

from many points of view. For instance, it is known [20, 56] that in the case of equations

describing pseudospherical surfaces, the parameter may guarantee the existence of an

infinite sequence of nontrivial (and possibly nonlocal) conservation laws, which is usually

considered a remarkable attribute of integrable equations. Indeed, an equation (or system)

E of order k in two independent variables (x1, x2) is said to describe pseudospherical

surfaces if there exists an sl(2,R)-valued form

β = 1
2

 f21 f11 − f31

f11 + f31 −f21

 dx1 + 1
2

 f22 f12 − f32

f12 + f32 −f22

 dx2, (1.6.2)

with functions fij satisfying the non-degeneracy condition

f11f22 − f12f21 6= 0, (1.6.3)

and such that the zero-curvature condition dHβ − 1
2
[β, β] = 0 mod E (∞) is equivalent to

E . As a consequence, on any E describing pseudospherical surfaces, the following system

for ρ = ρ(x1, x2) {
ρx1 = −f31 + f11sin (ρ)− f21cos (ρ) ,

ρx2 = −f32 + f12sin (ρ)− f22cos (ρ) ,
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is compatible and the 1-form

ω = (−f31 + f11sin (ρ)− f21cos (ρ)) dx1 + (−f32 + f12sin (ρ)− f22cos (ρ)) dx2

represents a nonlocal conservation law for E . This entails, when fij are analytic func-

tions of a parameter λ, that ω can be expanded in a power series ω =
∑
ωiλ

i, where ωi

are possibly nonlocal conservation laws for E . However, this expansion guarantees the

existence of an infinite sequence of nontrivial conservation laws only when λ is not re-

movable. Indeed, as observed in [38], when λ is removable from (1.6.2), one could check

that ω = µ + d̄H(fλ), with fλ a function depending on λ and µ a 1-form independent of

λ (the explicit formulas for fλ and µ are too huge to be reported here).

More in general, the importance of nontrivial 1-parameter families of ZCRs is also

clear from the fact that the non-removability of the parameter is crucial for the application

of some integration techniques, such as the inverse scattering method. For instance, as

observed in [20], the applications given by Ablowitz et al. in [1] of the inverse scattering

method concern equations which describe pseudospherical surfaces with a family of ZCRs

depending on a parameter λ such that

f21 = λ,
df11

dλ
=
df31

dλ
= 0. (1.6.4)

In the paper [16] we used Theorem 1.6.3 to investigate the removability of a parameter λ,

from the ZCR (1.6.2) of an equation describing pseudospherical surfaces, when conditions

(1.6.4) are satisfied. Interestingly we found that in the case of evolutive equations, (1.6.4)

guarantees the non-removability of the parameter.



Chapter 2

Second order evolution PS equations

In this chapter we give a complete and explicit classification of second order

evolution PS equations of the form zt = A(x, t, z)z2 + B(x, t, z, z1), with z = z(x, t) and

zi = ∂iz
∂xi

, under the assumptions that fij = fij (x, t, z, z1, z2) and f21 = η. According to this

classification, the considered PS equations are subdivided into three main classes (referred

to as Types I-III) together with the corresponding system of 1-forms {ω1, ω2, ω3}. Some

already known equations are found to belong to the considered class of PS equations, like

Svinolupov-Sokolov equations admitting higher weakly nonlinear symmetries, Boltzmann

equation and reaction-diffusion equations like Murray equation. Other explicit examples

are presented, as well.

The chapter is organized as follows. In Section 2.1, we give a preliminary char-

acterization which naturally led us to distinguish between the generic and special cases

f11,z 6= 0 and f11,z = 0, respectively. In Section 2.2 we state the main result of the chapter,

Theorem 2.2.1, which classifies the differential equations into Types I-III and we summa-

rize the classification scheme followed in the subsequent sections. Moreover, we give some

simple examples from the classes of equations described in the main theorem. Section

2.3 is devoted to the complete analysis of the generic case f11,z 6= 0, which will lead to

identify the following types: Type I (a); Type I (b); Type II (a); Type III (a); and Type

III (b). Section 2.4 is devoted to the complete analysis of the special case f11,z = 0, which

will lead to identify the following remaining types: Type II (b); Type III (c). Finally, in

Section 2.5 we provide additional examples with the aim of illustrating further aspects of

the given classification.

26
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2.1 A characterization of PS equations of the form

zt = A (x, t, z) z2 +B (x, t, z, z1)

Necessary and sufficient conditions for equation (1.2.8) to describe pseudospher-

ical surfaces are given by the following

Theorem 2.1.1. (See [53].) A differential equation of the form (1.2.8) is a PS equation

with associated 1-forms ωi = fi1dx+ fi2dt, 1 ≤ i ≤ 3, depending on (x, t, z, ..., zk) if, and

only if, there exist functions fij satisfying the following conditions

f11f22 − f12f21 6= 0, (2.1.1)

∆ = (f11,z)
2 + (f21,z)

2 + (f31,z)
2 6= 0, (2.1.2)

fi1,zj = 0, fi2,zk = 0, 1 ≤ i ≤ 3, 1 ≤ j ≤ k, (2.1.3)

and such that

f21f32 − f22f31 − f11,zF + f12,x − f11,t +
k−1∑
i=0

f12,zizi+1 = 0,

f12f31 − f11f32 − f21,zF + f22,x − f21,t +
k−1∑
i=0

f22,zizi+1 = 0,

f12f21 − f11f22 − f31,zF + f32,x − f31,t +
k−1∑
i=0

f32,zizi+1 = 0.

(2.1.4)

In order to obtain classification results of PS equations of the form (1.2.8) one

has to obtain F and the functions fij satisfying (2.1.1-2.1.4).

As a consequence of Theorem 2.1.1, the following theorem gives a characterization

of the PS equations of the form

zt = A (x, t, z) z2 +B (x, t, z, z1) , A 6= 0. (2.1.5)

Theorem 2.1.2. A differential equation of the form (2.1.5) is a PS equation with asso-

ciated 1-forms ωi = fi1dx + fi2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2) if, and only if,

the functions fij have the form

fi1 = fi1 (x, t, z) , i = 1, 2, 3 (2.1.6)
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fi2 = A (x, t, z) fi1,zz1 + ψi2 (x, t, z) , i = 1, 2, 3 (2.1.7)

and in addition satisfy non-degeneracy conditions (2.1.1-2.1.2) and the system

(Af11,z) ,zz
2
1 + [ψ12,z + (Af11,z) ,x + A (f21f31,z − f21,zf31)] z1

+f21ψ32 − f31ψ22 − f11,zB − f11,t + ψ12,x = 0,

(Af21,z) ,zz
2
1 + [ψ22,z + (Af21,z) ,x + A (f31f11,z − f31,zf11)] z1

+f31ψ12 − f11ψ32 − f21,zB − f21,t + ψ22,x = 0,

(Af31,z) ,zz
2
1 + [ψ32,z + (Af31,z) ,x + A (f21f11,z − f21,zf11)] z1

+f21ψ12 − f11ψ22 − f31,zB − f31,t + ψ32,x = 0,

(2.1.8)

where ψi2, i = 1, 2, 3, are differentiable functions.

Proof. In view of Theorem 2.1.1, a differential equation of the form (2.1.5) is a PS equa-

tion with 1-forms ωi depending on (x, t, z, z1, z2) if, and only if, the functions fij sat-

isfy (2.1.1-2.1.4), with k = 2. Thus, equations (2.1.3) are equivalent to (2.1.6) and

fi2 = fi2(x, t, z, z1), i = 1, 2, 3. On the other hand, under the condition F = Az2 + B,

equations (2.1.4) rewrite as
(−Af11,z + f12,z1) z2 +R1 = 0,

(−Af21,z + f22,z1) z2 +R2 = 0,

(−Af31,z + f32,z1) z2 +R3 = 0,

(2.1.9)

with
R1 = f12,zz1 −Bf11,z + f21f32 − f31f22 + f12,x − f11,t,

R2 = f22,zz1 −Bf21,z + f31f12 − f11f32 + f22,x − f21,t,

R3 = f32,zz1 −Bf31,z + f21f12 − f11f22 + f32,x − f31,t.

It follows that (2.1.9) is equivalent to the system formed by the equations Ri = 0, i =

1, 2, 3, together with the following three equations

−Af11,z + f12,z1 = 0, −Af21,z + f22,z1 = 0, −Af31,z + f32,z1 = 0. (2.1.10)

Then conditions (2.1.7) readily follows by integrating (2.1.10) with respect to f12, f22 and

f32, and by substituting (2.1.7) into the remaining three equations Ri = 0, i = 1, 2, 3, one

finally gets equations (2.1.8).

In view of Theorem 2.1.2 one has the following
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Proposition 2.1.3. Consider a second order PS equation of the form (2.1.5) with asso-

ciated 1-forms ωi = fi1dx + fi2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2). The function

f11 satisfies the condition f11,z 6= 0 if, and only if

f21 = m2(x, t)f11(x, t, z) + h2(x, t), f31 = m3(x, t)f11(x, t, z) + h3(x, t), (2.1.11)

with m2,m3 and h2, h3 differentiable functions.

Proof. If f11,z 6= 0, the first equation of (2.1.8) gives

B = 1
f11,z

[Af11,zz + A,zf11,z] z
2
1

+ 1
f11,z

[A (f21f31,z + f11,xz − f31f21,z) + ψ12,z + A,xf11,z]

+ 1
f11,z

[f21ψ32 + ψ12,x − f11,t − f31ψ22] .

(2.1.12)

Then, by substituting (2.1.12) into the remaining two equations of (2.1.8), one gets

A [f11,zf21,zz − f21,zf11,zz] z
2
1 +

[
f11,zψ22,z − f21,zψ12,z + A

(
f31f

2
21,z

−f21,zf21f31,z − f21,zf11,xz − f11,zf11f31,z + f 2
11,zf31 + f11,zf21,xz

)]
z1

+ψ12f31f11,z − f21,zψ12,x − f11ψ32f11,z − f21,tf11,z + ψ22,xf11,z

+f21,zf31ψ22 − f21,zf21ψ32 + f21,zf11,t = 0,

A [f11,zf31,zz − f31,zf11,zz] z
2
1 + [f11,zψ32,z − f31,zψ12,z + A (f31f21,zf31,z

−f21f
2
31,z − f31,zf11,xz − f11,zf11f21,z + f 2

11,zf21 + f11,zf31,xz

)]
z1

+ψ12f21f11,z − f31,zψ12,x − f11ψ22f11,z − f31,tf11,z + ψ32,xf11,z

+f31,zf31ψ22 − f31,zf21ψ32 + f31,zf11,t = 0.

(2.1.13)

Therefore, in view of the independence of f11, f21, f31, ψ12, ψ22, ψ32 on z1, by deriving

(2.1.13) twice with respect to z1, it is easily seen that(
f21,z

f11,z

)
,z

= 0,

(
f31,z

f11,z

)
,z

= 0,

and (2.1.11) readily follow by an integration of the last two equations.

Conversely, if (2.1.11) holds, then non-degeneracy condition (2.1.2) entails that

(1 +m2
2 +m2

3) f11,z 6= 0 and consequently that f11,z 6= 0.

On the other hand, by solving the third equation of (2.1.8) with respect to B

and substituting in the remaining two equations, when f31,z 6= 0 the following analogue

of Proposition 2.1.3 can be readily proved.
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Proposition 2.1.4. Consider a second order PS equation of the form (2.1.5) with asso-

ciated 1-forms ωi = fi1dx + fi2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2). The function

f31 satisfies the condition f31,z 6= 0 if, and only if

f11 = m1(x, t)f31(x, t, z) + h1(x, t), f21 = m2(x, t)f31(x, t, z) + h2(x, t), (2.1.14)

with m1,m2 and h1, h2 differentiable functions.

Solving equations (2.1.8) in general is very complicated, however as proved in

Sections 2.3 and 2.4 they can be explicitly solved under the assumption f21 = η. To this

end, by taking advantage of the suitable form taken by f31, in view of Proposition 2.1.3,

we will distinguish between the following two cases:

(i) Generic case f11,z 6= 0, where

f31 = mf11 + h, (2.1.15)

in view of Proposition 2.1.3;

(ii) Special case f11,z = 0.

The generic case will be treated in Section 2.3, whereas the special case will be

treated in Section 2.4.

2.2 Main theorem and simple examples

In this section we present our main classification result, which is Theorem 2.2.1,

and illustrate some of its concrete applications by means of simple examples.

According to Theorem 2.2.1, a given second order differential equation of the

form (2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2)

and satisfying

f21 = η, η ∈ R, (2.2.1)

iff it belongs to one of Types I-III classified by theorem. Once a given equation is recog-

nized to belong to one of these types, Theorem 2.2.1 explicitly gives also the associated

functions fij. It is noteworthy to observe the possibility to have, in some cases, multiple

linear problems for the same given equation, which is an interesting feature of the given

classification since it may provide pairs of non gauge-equivalent linear problems (see for

instance Example 2.5.6).

The proof of Theorem 2.2.1 is based on the results of the subsequent Sections

2.3 and 2.4, which are graphically illustrated in the diagrams below where the branches

occurring in the generic case f11,z 6= 0 have been distinguished by means of the following



31

functions of m and h (see (2.1.15)):

α = mh3 + h (δ,x − ηmδ)− δh,x,

β = h2 (m2 − 1) + δ2,

δ = m,x + η (1−m2) ,

G = α + βf11.

(2.2.2)

According to the diagrams, the analysis of generic case in Section 2.3 leads to

equations of Types I-III, with linear problems (a) and (b) for Type I, linear problem (a)

for Type II and linear problems (a) and (b) for Type III. Whereas by analyzing the special

case f11,z = 0, one gets linear problems (b) and (c) for Type II and III, respectively.

Theorem 2.2.1. A PS equation

zt = A (x, t, z) z2 +B (x, t, z, z1) , A 6= 0,
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with associated 1-forms ωi = fi1dx + fi2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2) and

satisfying f21 = η, belongs to one of the following types, where δ and G are as in (2.2.2).

Type I

zt = 1
f,z

[ϕz2 + ϕ,zz
2
1 + (ϕ,x + ψ,z) z1 + ψ,x − f ,t] , (2.2.3)

where ϕ = ϕ (x, t, z), ψ = ψ (x, t, z), f = f (x, t, z) are arbitrary differentiable functions,

with ϕf,z 6= 0 on a nonempty open set, and the following two alternatives occur with

g = g(t) an arbitrary differentiable function such that η2 + (g′)2 6= 0:

a) the functions fij are

f11 = e−ε(ηx+g)f, f12 = e−ε(ηx+g) (ϕz1 + ψ) ,

f21 = η, f22 = g′,

f31 = εf11, f32 = εf12,

(2.2.4)

with ε = ±1;

b) the functions fij are

f11 = cosh(ηx+ g)f, f12 = cosh(ηx+ g) (ϕz1 + ψ) ,

f21 = η, f22 = g′,

f31 = −tanh (ηx+ g) f11, f32 = −tanh (ηx+ g) f12.

(2.2.5)

Type II

zt = ε1ε2 f
2z2 + ε1ε2

f2f,zz
f,z

z2
1 + f2

g

(
ε1ε2

gf,xz
f,z
− ψ,z

f,z
+ ε1ε2g,x + ε1ηmg

)
z1

− f2

gf,z
(ψ,x + ηmψ + ε1ε2 ηfgδ)− f,t

f,z
+ fg,t

gf,z
+ ε1

mf
f,z

´
g2δdx,

(2.2.6)

where ε1, ε2 = ±1, g = g (x, t) and f = f (x, t, z) are arbitrary differentiable functions

with gf,z 6= 0 on a nonempty open set, and the following two alternatives occur:

a) ε2 = 1 and the functions fij are

f11 = g
f
, f12 = −ε1gf,zz1 + ψ,

f21 = η, f22 = ε1
´
g2δdx,

f31 = mg
f
, f32 = m (−ε1gf,zz1 + ψ) + ε1fgδ.

(2.2.7)

with
ψ = −ε1gf,x + ε1

f
δ

(ηmgδ − gδ,x − g,xδ)

+ε1
g
fδ

[
ε1m,t + (1−m2)

´
g2δdx

]
,

(2.2.8)
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and m = m(x, t) is an arbitrary differentiable function such that δ = m,x+η (1−m2) 6=
0 on a nonempty open set;

b) ε2 = −1, m = 0 (hence δ = η) and the functions fij are

f11 = 0, f12 = −ε1ηgf,

f21 = η, f22 = ε1
´
ηg2dx,

f31 = g
f
, f32 = ε1gf,zz1 + ψ,

(2.2.9)

with

ψ = ε1gf,x + ε1fg,x + ε1
g
´
g2dx

f
. (2.2.10)

Type III

zt = −ε2 g,zf,z z2 − ε2 g,zzf,z
z2

1 + ε2

[
g,z
f,z

(
fδ−h,x

h
− ηm

)
− 2g,xz

f,z
+ gδ

h
+ ε2

q
h

]
z1

+ g
f,z

[
(δ,x+ηmδ)f+ε2f,xδ

h
+ ε2ηδ − h2 −mhf − ε2 fh,xδh2

+ε2

(
h,x
h

)2

− ε2 h,xxh − ηm
h,x
h

]
+ ε2

g,x
f,z

(
fδ−h,x

h
− ε2ηm

)
− ε2 g,xxf,z

+ f
hf,z

(q,x + ηmq) + qf,x
hf,z
− qfh,x

f,zh2
+ ηq−f,t

f,z
,

(2.2.11)

where ε2 = ±1, f = f (x, t, z) is an arbitrary differentiable function with f,z 6= 0 on a

nonempty open set, and the following three alternatives occur:

a) ε2 = 1, m = m(x, t) and g = g(x, t, z) are arbitrary differentiable functions such that

−1 < m < 1, δg,z 6= 0 on a nonempty open set and the functions fij are

f11 = f, f12 = −g,zz1 − g,x − g h,xh + qf
h

+ ε1fg
√

1−m2 ,

f21 = η, f22 = gh,

f31 = mf + h, f32 = mf12 + ε1gh
√

1−m2 + q,

(2.2.12)

with h and q such that 
h =

ε1δ√
1−m2

, ε1 = ±1,

q = ε1m,t√
1−m2 ;

(2.2.13)

b) ε2 = 1, m = m(x, t), q = q(x, t) and h = h(x, t) are arbitrary differentiable functions
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such that hβ 6= 0 on a nonempty open set and the functions fij are

f11 = f, f12 = −g,zz1 + qf
h
− g,x − gh,x

h
+ δfg

h
,

f21 = η, f22 = gh,

f31 = mf + h, f32 = mf12 + δg + q,

(2.2.14)

with

g = − 1
G

[h (q,x − h,t − ηmq) + (qδ −m,th) f ] ; (2.2.15)

c) ε2 = −1, m = 0 (hence δ = η), h = h(x, t), q = q(x, t) are arbitrary differentiable

functions and the functions fij are

f11 = h, f12 = q − ηg,

f21 = η, f22 = gh,

f31 = f f32 = g,zz1 + (q − ηg) f
h

+ g,x + gh,x
h
,

(2.2.16)

with

g = − [h(q,x−h,t)+ηqf ]

ηh,x−(η2+h2)f
. (2.2.17)

Here are some examples of equations described by the classification given in this

chapter. Further examples will be found in Section 2.5.

Example 2.2.2. Burgers equation

zt = z2 + zz1,

is a particular instance of Type I (a), for f = z, ϕ = 1, ψ = z2

2
. Hence, by using Theorem

2.2.1, one gets that the associated 1-forms ωi = fi1dx+ fi2dt are given by the functions

f11 = e−ε(ηx+g)z, f12 = e−ε(ηx+g)
(
z1 + z2

2

)
,

f21 = η, f22 = g′,

f31 = εe−ε(ηx+g)z, f32 = εe−ε(ηx+g)
(
z1 + z2

2

)
,

where g = g (t) is an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0.

Example 2.2.3. Potential Burgers equation

zt = z2 + z2
1 ,
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is a particular instance of Type I (b), for f = ϕ = ez and ψ = 0. Hence, by using Theorem

2.2.1, one gets that the associated 1-forms ωi = fi1dx+ fi2dt are given by the functions

f11 = cosh (ηx+ g) ez, f12 = cosh (ηx+ g) ezz1,

f21 = η, f22 = g′,

f31 = −sinh (ηx+ g) ez, f32 = −sinh (ηx+ g) ezz1,

where g = g (t) is an arbitrary differentiable function and η2 + (g′)2 6= 0.

Example 2.2.4. Equation

zt = z2z2 + xz1 − z − η2z3,

is a particular instance of Type II (a), for ε1 = 1, m = µ ∈ ]−1, 1[, f = z and g = 1√
1−µ2

.

Hence, by using Theorem 2.2.1, one gets that the associated 1-forms ωi = fi1dx + fi2dt

are given by the functions

f11 = 1

z
√

1−µ2
, f12 = − z1√

1−µ2
+ µηz√

1−µ2
+ x

z
√

1−µ2
,

f21 = η, f22 = ηx,

f31 = µ

z
√

1−µ2
, f32 = − µz1√

1−µ2
+ ηz√

1−µ2
+ µx

z
√

1−µ2
.

Example 2.2.5. The equation

zt = 2zz2 + 2z2
1 + 3z2z1,

is a particular instance of Type III (a), for m = 0, f = z, g = −z2 and ε1 = −1. Hence,

by using Theorem 2.2.1, one gets that the associated 1-forms ωi = fi1dx+ fi2dt are given

by the functions

f11 = z, f12 = 2zz1 + z3,

f21 = η, f22 = ηz2,

f31 = −η, f32 = −ηz2,

where η 6= 0.

Example 2.2.6. Equation

zt =
z2

z2
− 2z2

1

z3
+ xz1 + z − 1

z
,
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is a particular instance of Type III (b), for m = µ ∈ ]−1, 1[, h =
√

(η2 + 1) (1− µ2),

f = z√
1−µ2

− α
β

and q = βx
λ(µ2−1)

. Hence, by using Theorem 2.2.1, one gets that the

associated 1-forms ωi = fi1dx+ fi2dt are given by the functions

f11 = z√
1−µ2

+
µ
√

1+η2√
1−µ2

, f12 = z1

z2
√

1−µ2
+ µη

z
√

1−µ2
+ xz√

1−µ2
+

µx
√

1+η2√
1−µ2

,

f21 = η, f22 = ηx+

√
1+η2

z
,

f31 = µz√
1−µ2

+
µ2
√

1+η2√
1−µ2

+ f32 = µz1

z2
√

1−µ2
+ η

z
√

1−µ2
+ µxz√

1−µ2
+

x
√

1+η2√
1−µ2

.

+
√

(1 + η2) (1− µ2),

2.3 Analysis of the generic case f11,z 6= 0

The following theorem gives a characterization of PS equations of the form (2.1.5)

with associated 1-forms (1.2.2) satisfying f21 = η and f11,z 6= 0.

Theorem 2.3.1. A differential equation of the form (2.1.5) is a PS equation with asso-

ciated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with f21 = η and f11,z 6= 0 if, and only

if, B has the form

B = φ1 z
2
1 + φ2 z1 + φ3, (2.3.1)

where 
φ1 = 1

f11,z
[Af11,zz + A,zf11,z] ,

φ2 = 1
f11,z

[Af11,xz + A,xf11,z + ηmAf11,z + ψ12,z] ,

φ3 = 1
f11,z

[ψ12,x + ηψ32 −mf11f22 − hf22 − f11,t] ,

(2.3.2)

with f11 = f11 (x, t, z), f22 = f22 (x, t, z) and remaining fij satisfy the non-degeneracy

conditions (2.1.1-2.1.2) and have the form

f31 = mf11 + h, f12 = Af11,z z1 + ψ12, f32 = mAf11,z z1 + ψ32, (2.3.3)

with m = m (x, t), h = h (x, t), ψ12 = ψ12 (x, t, z), ψ32 = ψ32 (x, t, z) differentiable func-
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tions satisfying the system

f22,z + hAf11,z = 0,

f22,x +mf11ψ12 + hψ12 − f11ψ32 = 0,

ψ32,z −mψ12,z + δAf11,z = 0,

[(m2 − 1) f11 +mh] f22 + ψ32,x −mψ12,x

−η (mψ32 − ψ12)−m,tf11 − h,t = 0,

(2.3.4)

with δ given by (2.2.2).

Proof. The formulas (2.3.3) follow from (2.1.7) and second formula of (2.1.11). Hence,

solving the first equation of (2.1.8) with respect to B, one gets (2.3.1) with φ1, φ2, φ3

given by (2.3.2). Thus, the remaining two equations of (2.1.8) reduce to
(f22,z + hAf11,z) z1 + f22,x +mf11ψ12 + hψ12 − f11ψ32 = 0,

[ψ32,z −mψ12,z + δAf11,z] z1 + [(m2 − 1) f11 +mh] f22

+ψ32,x −mψ12,x − η (mψ32 − ψ12)−m,tf11 − h,t = 0.

(2.3.5)

Therefore in view of the independence of A, f11, f31, f22, ψ12 and ψ32 on z1, equations

(2.3.4) follow from the derivation of (2.3.5) with respect to z1.

The rest of this section is devoted to the characterization of PS equations of the

form (2.1.5) under the assumption (2.2.1) and with f11,z 6= 0. The analysis of this case

naturally splits into two cases h = 0 and h 6= 0. In Subsection 2.3.1, we consider the case

h = 0, whereas in Subsection 2.3.2 we treat the case h 6= 0.

2.3.1 Subcases with h = 0

According to the diagram of Section 2.2, the analysis of the case {f11,z 6= 0, h = 0}
naturally splits into further subcases which finally lead to distinguish the following types

of equations: Type I (a) with {δ = 0, m = ±1}; Type I (b) with {δ = 0, m 6= ±1}; Type

II (a) with δ 6= 0. In this subsection we aim at giving a detailed analysis of these three

subcases.

We start with the following auxiliary

Lemma 2.3.2. A differential equation of the form (2.1.5) is a PS equation with associated

1-forms (1.2.2) depending on (x, t, z, z1, z2) with f21 = η and {f11,z 6= 0, h = 0} if, and
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only if, B has the form (2.3.1) where

φ1 = 1
f11,z

[Af11,zz + A,zf11,z] ,

φ2 = 1
f11,z

[Af11,xz + A,xf11,z + ηmAf11,z + ψ12,z] ,

φ3 = 1
f11,z

[ψ12,x + ηmψ12 + ηδAf11 −mf11f22 − f11,t] ,

(2.3.6)

with f11 = f11 (x, t, z), f22 = f22 (x, t) and remaining fij satisfy non-degeneracy conditions

(2.1.1-2.1.2) and have the form

f31 = mf11, f12 = Af11,zz1 + ψ12, f32 = mAf11,zz1 + ψ32, (2.3.7)

with m = m (x, t), ψ12 = ψ12 (x, t, z), ψ32 = ψ32 (x, t, z), differentiable functions satisfying

the system
ψ32 = mψ12 + δAf11,

f22,x − δAf 2
11 = 0,

(m2 − 1) f11f22 + δψ12 + (δAf11),x − (ηmδA+m,t) f11 = 0.

(2.3.8)

Proof. Under the given assumptions, formulas (2.3.3) entail that (2.3.7) hold. Moreover,

the first equation of (2.3.4) implies that f22 = f22 (x, t). Thus, by deriving the second

equation of (2.3.4) with respect to z, one obtains

f11,z (mψ12 − ψ32) + f11 (mψ12,z − ψ32,z) = 0, (2.3.9)

and (2.3.8) readily follows from (2.3.4) and (2.3.9), as well as (2.3.6) follows from (2.3.2)

and first equation of (2.3.8).

In the next two subsections we will solve (2.3.8) under the assumption that δ = 0,

i.e., that m = m (x, t) satisfies the Riccati type equation

m,x + η
(
1−m2

)
= 0. (2.3.10)

Therefore we will distinguish the degenerate cases m = ±1, from the general case

where (2.3.10) has the solution m = −tanh (ηx+ g (t)).

2.3.1.1 Type I (a)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.3. In the case {f11,z 6= 0, h = 0, δ = 0, m = ±1}, a differential equation of

the form (2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2)
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with f21 = η if, and only if, the differential equation has the form

zt = 1
f ,z

[ϕz2 + ϕ,zz
2
1 + (ψ,z + ϕ,x) z1 + ψ,x − f ,t] , (2.3.11)

where ϕ = ϕ (x, t, z), ψ = ψ (x, t, z) and f = f (x, t, z) are arbitrary functions, such that

ϕf ,z 6= 0 on a nonempty open set, and the functions fij are

f11 = e−ε(ηx+g)f, f12 = e−ε(ηx+g) (ϕz1 + ψ) ,

f21 = η, f22 = g′,

f31 = εf11, f32 = εf12,

(2.3.12)

with ε = ±1 and g = g(t) arbitrary differentiable function such that η2 + (g′)2 6= 0.

Proof. Under the given assumptions, formulas (2.3.7-2.3.8) entail that f31 = εf11, ψ32 =

εψ12 and f22 = f22 (t). Thus, in view of (2.3.1) and (2.3.6), (2.1.5) takes the form

zt = Az2 + 1
f11,z

[(Af11,z) ,zz
2
1 + (ψ12,z + εηAf11,z + (Af11,z) ,x) z1

+εηψ12 − εf11f22 + ψ12,x − f11,t] ,
(2.3.13)

and, by introducing the functions

g =

ˆ
f22 dt, f = eε(ηx+g)f11, ϕ = Af ,z, ψ = eε(ηx+g)ψ12,

equation (2.3.13) reduces to (2.3.11). Moreover, in view of (2.3.7), the functions fij are

given by (2.3.12).

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that

η2 + (g′)2 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.11) coincides with (2.2.3) and it is referred to as of

Type I in our main classification result, Theorem 2.2.1.

Remark 2.3.4. It is noteworthy to remark that equation (2.3.11) can be written in the

form

Dt (f) = Dx (ϕz1 + ψ) ,

and by means of the point transformation {x = x, t = t, z̄ = f(x, t, z)}, it reduces to

z̄t = Dx

(
ϕ̄Dx(σ) + ψ̄

)
where z = σ (x, t, z̄) is inverse of z̄ = f(x, t, z) and ϕ̄ = ϕ̄ (x, t, σ (x, t, z̄)), ψ̄ = ψ̄ (x, t, σ (x, t, z̄)).
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2.3.1.2 Type I (b)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.5. In the case {f11,z 6= 0, h = 0, δ = 0, m 6= ±1}, a differential equation of

the form (2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2)

with f21 = η if, and only if, the differential equation has the form

zt = 1
f ,z

[ϕz2 + ϕ,zz
2
1 + (ψ,z + ϕ,x) z1 + ψ,x − f ,t] , (2.3.14)

where ϕ = ϕ (x, t, z), ψ = ψ (x, t, z) and f = f (x, t, z) are arbitrary functions, such that

ϕf ,z 6= 0 on a nonempty open set, and the functions fij are

f11 = cosh(ηx+ g)f, f12 = cosh(ηx+ g) (ϕz1 + ψ12) ,

f21 = η, f22 = g′,

f31 = −tanh (ηx+ g) f11, f32 = −tanh (ηx+ g) f12.

(2.3.15)

with g = g(t) arbitrary differentiable function and η2 + (g′)2 6= 0.

Proof. Under the given assumptions, from (2.3.10) and (2.3.7-2.3.8) one gets

f22 = f22 (t) , f31 = mf11, ψ32 = mψ12,

with m = −tanh (ηx+ g (t)) and in addition f22 = g′, since f11,z 6= 0. Thus, in view of

(2.3.1) and (2.3.6), (2.1.5) takes the form

zt = 1
f11,z
{Af11,zz2 + (Af11,z) ,zz

2
1 + [ψ12,z + (Af11,z) ,x − η tanh (ηx+ g)Af11,z] z1

+ψ12,x − η tanh (ηx+ g)ψ12 + tanh (ηx+ g) f11g
′ − f11,t} ,

which in its turn reduces to (2.3.14), by introducing the functions

f = f11/cosh(ηx+ g), ϕ = Af,z, ψ = ψ12/cosh(ηx+ g).

Then, by taking into consideration (2.3.7), the functions fij reduce to (2.3.15).

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that

η2 + (g′)2 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.14) coincides with (2.2.3) and it is referred to as of

Type I in our main classification result, Theorem 2.2.1. In particular Remark 2.3.4 still

applies to equation (2.3.14).
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2.3.1.3 Type II (a)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.6. In the case {f11,z 6= 0, h = 0, δ 6= 0}, a differential equation of the form

(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with

f21 = η if, and only if, the differential equation has the form

zt = ε1 f
2z2 + ε1

f2f,zz
f,z

z2
1 + f2

g

(
ε1
gf,xz
f,z
− ψ,z

f,z
+ ε1g,x + ε1ηmg

)
z1

− f2

gf,z
(ψ,x + ηmψ + ε1 ηfgδ)− f,t

f,z
+ fg,t

gf,z
+ ε1

mf
f,z

´
g2δdx,

(2.3.16)

where ε1 = ±1,

ψ = −ε1gf,x + ε1
f

δ
(ηmgδ − gδ,x − g,xδ) + ε1

g

fδ

[
ε1m,t +

(
1−m2

) ˆ
g2δdx

]
, (2.3.17)

and g = g (x, t), m = m (x, t), f = f (x, t, z) are arbitrary differentiable functions, such

that gf,z 6= 0 on a nonempty open set, and the functions fij are

f11 = g
f
, f12 = −ε1gf,zz1 + ψ,

f21 = η, f22 = ε1
´
g2δdx,

f31 = mg
f
, f32 = m (−ε1gf,zz1 + ψ) + ε1fgδ.

(2.3.18)

Proof. Under the given assumptions, from the second equation of (2.3.8) one gets A =
f22,x
f211δ

. On the other hand, in view of (2.3.7) and the first equation of (2.3.8), the functions

fij are such that

f31 = mf11, f12 = f22,xf11,z
f211δ

z1 + ψ12, f32 = m
(
f22,xf11,z
f211δ

z1 + ψ12

)
+ f22,x

f11
,

where f11 = f11 (x, t, z), f22 = f22 (x, t), f11 6= 0 on a nonempty open set, m = m (x, t)

and

ψ12 =
1

δ

[(
1−m2

)
f11f22 +m,t f11 +

f11,xf22,x

f 2
11

+
ηmf22,x

f11

− f22,xx

f11

]
,

in view of the third equation of (2.3.8). Thus, by (2.3.1) and (2.3.6), (2.1.5) takes the

form

zt = f22,x
f211δ

z2 + f22,x
f211δ

[
f11,zz
f11,z
− 2f11,z

f11

]
z2

1

+
{

1
f211δ

2 [(ηmδ − δ,x ) f22,x + f22,xxδ] + f22,x
f211δ

[
f11,xz
f11,z
− 2f11,x

f11

]
+ ψ12,z

f11,z

}
z1

+ 1
f11,z

[
ψ12,x − f11,t +m (ηψ12 − f11f22) + ηf22,x

f11

]
,

and one gets (2.3.16) and (2.3.17-2.3.18), after introducing the differentiable functions
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ψ(x, t, z), f(x, t, z) and g(x, t) such that

ψ = ψ12, ε1
f22,x

δ
= g2, f =

g

f11

,

with ε1 = sgn
(
f22,x
δ

)
.

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that

gf,z 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.16) coincides with (2.2.6), where ε2 = 1 and ψ satisfies

(2.2.8) and it is referred to as of Type II in our main classification result, Theorem 2.2.1.

2.3.2 Subcases with h 6= 0

When h 6= 0, in view of the system (2.3.4), one is naturally lead to distinguish

the cases G = 0 and G 6= 0, where G = α+ βf11 and α, β are given by (2.2.2). Hence, as

illustrated in diagram of Section 2.2, the analysis of the case {f11,z 6= 0, h 6= 0} naturally

leads to Type III (a) and Type III (b) equations, which correspond to G = 0 and G 6= 0,

respectively. In this subsection we aim at giving a detailed analysis of these two subcases.

We start with the following auxiliary

Lemma 2.3.7. A differential equation of the form (2.1.5) is a PS equation with associated

1-forms (1.2.2) depending on (x, t, z, z1, z2) with f21 = η, f11,z 6= 0 and h 6= 0 if, and only

if, fij satisfy non-degeneracy conditions (2.1.1-2.1.2), equations (2.3.3) hold with

A = − f22,z
hf11,z

,

ψ12 = f11f22δ
h2

+ qf11
h
− f22,x

h
,

ψ32 = m
(
f11f22δ
h2

+ qf11
h
− f22,x

h

)
+ f22δ

h
+ q,

(2.3.19)

and m = m (x, t), q = q (x, t), h = h (x, t), f22 = f22 (x, t, z), f11 = f11 (x, t, z), moreover

B has the form (2.3.1) with φi given by (2.3.2) and in addition the following differential

equation is satisfied

Gf22 + h (qδ −m,th) f11 + h2 (q,x − h,t − ηmq) = 0, (2.3.20)

where G = α + βf11 and α, β are given by (2.2.2).



43

Proof. Under the given assumptions, equations (2.3.19) are equivalent to the first three

equations of (2.3.4). Equation (2.3.20) readily follows from substituting (2.3.19) into the

last equation of (2.3.4).

It is noteworthy to remark here that, if h 6= 0, then the condition β = 0 implies

that α = 0. Indeed, β = 0 entails that h = ε1δ/
√

1−m2, with ε1 = ±1 and −1 < m < 1.

Then, using the obtained expression for h, one can easily check that βx = 2δα/h and

hence that α = 0, because of β,x = 0 and δ 6= 0.

2.3.2.1 Type III (a)

Using Lemma 2.3.7 one gets the following

Theorem 2.3.8. In the case {f11,z 6= 0, h 6= 0, G = 0}, a differential equation of the form

(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with

f21 = η if, and only if, the differential equation has the form

zt = − g,z
f,z
z2 − g,zz

f,z
z2

1 +
[
g,z
f,z

(
fδ−h,x

h
− ηm

)
− 2g,xz

f,z
+ gδ

h
+ q

h

]
z1

+ g
f,z

[
(δ,x+ηmδ)f+f,xδ

h
+ ηδ − h2 −mhf − fh,xδ

h2
+
(
h,x
h

)2

− h,xx
h
− ηmh,x

h

]
+g,x
f,z

(
fδ−h,x

h
− ηm

)
− g,xx

f,z
+ f

hf,z
(q,x + ηmq) + qf,x

hf,z
− qfh,x

f,zh2
+ ηq−f,t

f,z
,

(2.3.21)

where f = f (x, t, z), g = g (x, t, z), m = m(x, t) are arbitrary differentiable functions

with δf,zg,z 6= 0 on a nonempty open set, h and q are given by
h =

ε1δ√
1−m2

, −1 < m < 1, ε1 = ±1,

q =
ε1m,t√
1−m2

,
(2.3.22)

and the functions fij have the form

f11 = f, f12 = −g,zz1 − g,x − g h,xh + qf
h

+ ε1fg
√

1−m2,

f21 = η, f22 = gh,

f31 = mf + h, f32 = mf12 + ε1gh
√

1−m2 + q.

(2.3.23)

Proof. Under the given assumptions, one has that G = 0 entails that α = 0, β = 0. Hence
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in view of (2.3.20) one has that

mh3 + h (δ,x − ηmδ)− δh,x = 0,

h2 (m2 − 1) + δ2 = 0,

qδ −m,th = 0,

q,x − h,t − ηmq = 0.

(2.3.24)

Then by solving the second equation of (2.3.24) with respect to h one obtains that

h =
ε1δ√

1−m2
, ε1 = ±1, (2.3.25)

with m taking its values in the open interval ]−1, 1[. Thus, by substituting (2.3.25) into

the third equation of (2.3.24) one concludes that

q =
ε1m,t√
1−m2

,

and the first and fourth equations of (2.3.24) are automatically satisfied.

Now in view of (2.3.19), one gets

A = − f22,z
hf11,z

,

ψ12 = ε
√

1−m2f11f22
h

+ εm,tf11
h
√

1−m2 −
f22,x
h
,

ψ32 = m
(
ε
√

1−m2f11f22
h

+ εm,tf11
h
√

1−m2 −
f22,x
h

)
+ ε
√

1−m2f22 + εm,t√
1−m2 ,

(2.3.26)

and using (2.3.1-2.3.2), (2.1.5) takes the form

zt = − f22,z
hf11,z

z2 − f22,zz
hf11,z

z2
1 +

[
f22,z
f11,z

(
h,x+f11δ

h2
− ηm

h

)
− 2f22,xz

hf11,z
+ f22δ

h2
+ q

h

]
z1

+ f22
f11,z

[
(δ,x+ηmδ)f11+f11,xδ

h2
+ ηδ

h
− h−mf11 − 2h,xf11δ

h3

]
+ qf11,x

hf11,z

+f22,x
f11,z

(
h,x+f11δ

h2
− ηm

h

)
+ ηq−f11,t

f11,z
+ f11

hf11,z
(q,x + ηmq)

− f22,xx
hf11,z

− qf11h,x
f11,zh2

.

where f11 = f11 (x, t, z) and f22 = f22 (x, t, z) are arbitrary differentiable functions. More-

over one has that
f31 = mf11 + h,

f12 = 1
h

[
−f22,zz1 + qf11 − f22,x + f11f22δ

h

]
,

f32 = mf12 + f22δ
h

+ q,
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and by introducing the differentiable functions f = f(x, t, z), g = g(x, t, z) such that

f11 = f, f22 = gh,

one finally gets (2.3.21) and (2.3.23).

Notice that the non-degeneracy condition (2.1.1) holds in view of the fact that

f,zg,z 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.21) coincides with (2.2.11), where ε2 = 1 and h, m

and q satisfy (2.2.13), and it is referred to as of Type III in our main classification result,

Theorem 2.2.1.

2.3.2.2 Type III (b)

Using Lemma 2.3.7 one gets the following

Theorem 2.3.9. In the case {f11,z 6= 0, h 6= 0, G 6= 0}, a differential equation of the form

(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with

f21 = η if, and only if, the differential equation has the form

zt = − g,z
f,z
z2 − g,zz

f,z
z2

1 +
[
g,z
f,z

(
fδ−h,x

h
− ηm

)
− 2g,xz

f,z
+ gδ

h
+ q

h

]
z1

+ g
f,z

[
(δ,x+ηmδ)f+f,xδ

h
+ ηδ − h2 −mhf − fh,xδ

h2
+
(
h,x
h

)2

− h,xx
h
− ηmh,x

h

]
+g,x
f,z

(
fδ−h,x

h
− ηm

)
− g,xx

f,z
+ f

hf,z
(q,x + ηmq) + qf,x

hf,z
− qfh,x

f,zh2
+ ηq−f,t

f,z
,

(2.3.27)

where

g = − 1
G

[h (q,x − h,t − ηmq) + (qδ −m,th) f ] ,

f = f (x, t, z), m = m (x, t), h = h (x, t) and q = q (x, t) are arbitrary differentiable

functions, with hf,z 6= 0 on a nonempty open set, and the functions fij have the form

f11 = f, f12 = −g,zz1 + qf
h
− g,x − gh,x

h
+ fgδ

h
,

f21 = η, f22 = gh,

f31 = mf + h, f32 = mf12 + gδ + q.

(2.3.28)

Proof. Under the given assumption, by rewriting (2.3.20) as

f22 = − 1

G

[
h2 (q,x − h,t − ηmq) +

(
qhδ −m,th

2
)
f11

]
,
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and using the expression of A, ψ12 and ψ32 provided by (2.3.19) in the formulas (2.3.1-

2.3.2) and (2.1.7), one gets that (2.1.5) takes the form

zt = − f22,z
hf11,z

z2 − f22,zz
hf11,z

z2
1 +

[
f22,z
f11,z

(
h,x+f11δ

h2
− ηm

h

)
− 2f22,xz

hf11,z
+ f22δ

h2
+ q

h

]
z1

+ f22
f11,z

[
(δ,x+ηmδ)f11+f11,xδ

h2
+ ηδ

h
− h−mf11 − 2h,xf11δ

h3

]
+ qf11,x

hf11,z

+f22,x
f11,z

(
h,x+f11δ

h2
− ηm

h

)
+ ηq−f11,t

f11,z
+ f11

hf11,z
(q,x + ηmq)

− f22,xx
hf11,z

− qf11h,x
f11,zh2

,

(2.3.29)

where f11 = f11 (x, t, z), m = m (x, t), h = h(x, t), q = q(x, t) are arbitrary differentiable

functions and the remaining fij are such that

f31 = mf11 + h,

f12 = 1
h

[
−f22,zz1 + qf11 − f22,x + f11f22δ

h

]
,

f32 = mf12 + f22δ
h

+ q.

(2.3.30)

Finally (2.3.27) and (2.3.28) are easily obtained from (2.3.29) and (2.3.30) by introducing

the new functions f and g such that

f11 = f, f22 = gh.

Notice that the non-degeneracy condition (2.1.1) holds in view of the fact that f,zg,z 6= 0

on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.27) coincides with (2.2.11), where ε2 = 1 and g satisfies

(2.2.15), and it is referred to as of Type III in our main classification result, Theorem

2.2.1.

2.4 Analysis of the special case f11,z = 0

The following theorem gives a characterization of PS equations of the form (2.1.5)

with associated 1-forms (1.2.2) satisfying (2.2.1) and f11,z = 0.

Lemma 2.4.1. A differential equation of the form (2.1.5) is a PS equation with associated

1-forms (1.2.2) depending on (x, t, z, z1, z2) with f21 = η and f11,z = 0 if, and only if, B

has the form

B = φ1z
2
1 + φ2z1 + φ3, (2.4.1)
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where 
φ1 = 1

f31,z
[Af31,zz + A,zf31,z] ,

φ2 = 1
f31,z

[Af31,xz + A,xf31,z + ψ32,z] ,

φ3 = 1
f31,z

[ψ32,x + ηf12 − f11f22 − f31,t] ,

(2.4.2)

with f11 = f11 (x, t), f31 = f31 (x, t, z), f12 = f12 (x, t, z), f22 = f22 (x, t, z), f32 =

Af31,zz1 + ψ32 (x, t, z) differentiable functions such that

f11f22 − ηf12 6= 0, ∆ = f31,z 6= 0, (2.4.3)

and satisfying the system 

f12,z + ηAf31,z = 0,

f12,x − f11,t + ηψ32 − f31f22 = 0,

f22,z − Af11f31,z = 0,

f22,x + f31f12 − f11ψ32 = 0.

(2.4.4)

Proof. Equations (2.4.1) and (2.4.2) follow by solving the third equation of (2.1.8) with

respect to B. On the other hand the remaining two equations of (2.1.8) reduce to (f12,z + ηAf31,z) z1 + f12,x − f11,t + ηψ32 − f31f22 = 0,

(f22,z − Af11f31,z) z1 + f22,x + f31f12 − f11ψ32 = 0,
(2.4.5)

and, in view of the independence of f11, f31, f12, f22, ψ32 with respect to z1, one readily

gets equations (2.4.4). Finally, non-degeneracy conditions (2.4.3) are direct consequences

of (2.1.1-2.1.2).

The following two subsections are devoted to the classification of PS equations of

the form (2.1.5) under the assumption (2.2.1) with f11,z = 0. This is a special case, where

the analysis noteworthy simplifies and one only finds the two further types of equations

II (b) and III (c), as illustrated in diagram of Section 2.2.

2.4.1 Type II (b)

Using Lemma 2.4.1 one gets the following

Theorem 2.4.2. In the case f11 = 0, a differential equation of the form (2.1.5) is a PS

equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with f21 = η if, and



48

only if, the differential equation has the form

zt = −ε1 f 2z2 − ε1 f2f,zz
f,z

z2
1 −

f2

g

(
ε1
gf,xz
f,z

+ ψ,z
f,z

+ ε1g,x

)
z1

− f2

gf,z
(ψ,x − ε1η2gf)− f,t

f,z
+ fg,t

gf,z
,

(2.4.6)

where ε1 = ±1,

ψ = ε1gf,x + ε1fg,x + ε1
g
´
g2dx

f

and g = g (x, t), f = f (x, t, z) are arbitrary differentiable functions, such that gf,z 6= 0

on a nonempty open set, and the functions fij have the form

f11 = 0, f12 = −ε1ηgf,

f21 = η, f22 = ε1
´
ηg2dx,

f31 = g
f
, f32 = ε1gf,zz1 + ψ.

(2.4.7)

Proof. Under the given assumptions the system (2.4.4) reduces to

f12,z + ηAf31,z = 0,

f12,x + ηψ32 − f31f22 = 0,

f22 = f22 (x, t) ,

f22,x + f31f12 = 0,

(2.4.8)

whereas conditions (2.4.3) become ηf12,x 6= 0 and f31,z 6= 0, respectively. Thus, (2.4.8)

provide

A = − f12,z

ηf31,z

, ψ32 =
f31f22 − f12,x

η
, f12 = −f22,x

f31

,

and hence f32 = 1
η

(−f12,zz1 + f31f22 − f12,x). Then in view of (2.4.1-2.4.2), (2.1.5) takes

the form
zt = − f12,z

ηf31,z
z2 − f12,zz

ηf31,z
z2

1 −
(

2f12,xz
ηf31,z

− f22
η

)
z1 − f31,t−ηf12

f31,z

+f22,xf31
ηf31,z

+ f31,xf22−f12,xx
ηf31,z

,

and by introducing the differentiable functions f = f(x, t, z) and g = g(x, t) such that

f31 =
g

f
, ε1

f22,x

η
= g2, ε1 = sgn

(
f22,x

η

)
,

one finally gets (2.4.6) and (2.4.7).

Notice that, the functions fij satisfy the non-degeneracy condition (2.1.1) in view

of the fact that gf,z 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.
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Observe that equation (2.4.6) coincides with (2.2.6), where ε2 = −1, m = 0, δ = η

and ψ satisfies (2.2.10) and it is referred to as of Type II in our main classification result,

Theorem 2.2.1.

2.4.2 Type III (c)

Using Lemma 2.4.1 one gets the following

Theorem 2.4.3. In the case {f11,z = 0, f11 6= 0}, a differential equation of the form

(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with

f21 = η if, and only if, the differential equation has the form

zt = g,z
f,z
z2 + g,zz

f,z
z2

1 −
[
g,z
f,z

(
fη−h,x

h

)
− 2g,xz

f,z
+ gη

h
− q

h

]
z1

+ g
f,z

[
−f,xη

h
− η2 − h2 + fh,xη

h2
−
(
h,x
h

)2

+ h,xx
h

]
−g,x
f,z

(
fη−h,x

h

)
+ g,xx

f,z
+ fq,x

hf,z
+ qf,x

hf,z
− qfh,x

f,zh2
+ ηq−f,t

f,z
,

(2.4.9)

where

g = − [h(q,x−h,t)+ηqf ]

ηh,x−(η2+h2)f
.

and h = h (x, t), q = q (x, t), f = f (x, t, z) are arbitrary differentiable functions, such

that f,z 6= 0 on a nonempty open set, and the functions fij have the form

f11 = h, f12 = q − ηg,

f21 = η, f22 = gh,

f31 = f f32 = g,zz1 + (q − ηg) f
h

+ g,x + gh,x
h
.

(2.4.10)

Proof. Under the given assumptions, the first and the two last equations of (2.4.4) provide

f12 = q − ηf22

f11

, A =
f22,z

f11f31,z

, ψ32 =
f22,x + f31f12

f11

, (2.4.11)

where q = q (x, t) is an arbitrary differentiable function. Then in view of Lemma 2.4.1

one gets

f32 =
f22,z

f11

z1 +

(
q − ηf22

f11

)
f31

f11

+
f22,x

f11

,

and by substituting (2.4.11) into the second equation of (2.4.4) one gets

f22 =
ηqf11f31 + (q,x − f11,t) f

2
11

f31 (η2 + f 2
11)− ηf11,x

.
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Hence, in view of (2.4.1-2.4.2), (2.1.5) takes the form

zt = f22,z
f11f31,z

z2 + f22,zz
f11f31,z

z2
1 −

[
1

f31,z

(
f22,z(f11,x+ηf31)

f211
− 2f22,xz

f11

)
− q

f11
+ ηf22

f211

]
z1

+ f31
f31,z

[
2ηf11,xf22

f311
+ q,x

f11
− qf11,x+ηf22,x

f211

]
− f22

f31,z

[
f11 + η2

f11
+ ηf31,x

f211

]
+ηq − f31,t + qf31,x+f22,xx

f11
− f22,xf11,x

f211
.

Thus, by introducing the differentiable functions f = f(x, t, z) and g = g(x, t, z) such

that

f11 = h, f31 = f, f22 = gh,

one gets (2.4.9) and (2.4.10).

Notice that, the functions fij satisfy the non-degeneracy condition (2.1.1), since

f11f22 − f21f12 = g
(
h2 + η

)
− ηq,

is nonzero in view of the fact that g,z 6= 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.4.9) coincides with (2.2.11), where ε2 = −1, m = 0,

δ = η and g satisfies (2.2.17), and it is referred to as of Type III in our main classification

result, Theorem 2.2.1.

2.5 Additional examples

Here are some additional examples of equations obtained from the given classifi-

cation.

Example 2.5.1. Equations classified by Theorem 2.2.1 include the nonlinear second

order evolution equations admitting “higher weakly nonlinear symmetries”, which have

been classified by Svinolupov and Sokolov [43] and up to contact transformations can be

written in one of the following forms:

zt = z2 + 2zz1 + k (x) ,

zt = z2z2 − λxz1 + λz,

zt = z2z2 + λz2,

zt = z2z2 − λx2z1 + 3λxz,

(2.5.1)

with λ ∈ R and k(x) an arbitrary differentiable function.

Indeed one can readily check what follows:
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(i) The first equation of (2.5.1) is an example of the Type I (a), as well as of

Type I (b), with f = z, ϕ = 1, ψ = z2 +
´
k dx. For instance, using formulas (2.3.12),

one easily gets the corresponding 1-forms

ω1 = e−ε(ηx+g)
[
z dx+

(
z1 + z2 +

´
k dx

)
dt
]
,

ω2 = η dx+ g′ dt,

ω3 = εω1,

with g = g (t) an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0. It follows

that this equation is the integrability condition of a triangular linear problem given by

(1.2.6).

The first equation of (2.5.1) is also an example of the Type III (a) with f = z−p,
g = −z − p, m = 0, ε1 = −1. Using formulas (2.3.23), one easily gets the corresponding

1-forms
ω1 = (z − p) dx+ (z1 + z2 + p′ − p2) dt,

ω2 = η dx+ η (z + p) dt,

ω3 = −η dx− η (z + p) dt,

(2.5.2)

where p = p (x) satisfies k = p′′ − 2pp′.

(ii) The second equation of (2.5.1) is an example of the Type I (a), and Type I

(b), with f = z−1, ϕ = −1, ψ = −λxz−1. Using formulas (2.3.12), one easily gets the

corresponding 1-forms

ω1 = e−ε(ηx+g) [z−1 dx+ (−z1 − λxz−1) dt] ,

ω2 = η dx+ g′ dt,

ω3 = εω1,

with g = g (t) an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0. It follows

that this equation is the integrability condition of a triangular linear problem given by

(1.2.6).

(iii) The third equation of (2.5.1) is an example of the Type I (a), and Type I

(b), with f = xz−1, ϕ = −x, ψ = z − λx2

2
. Using formulas (2.3.12), one easily gets the

corresponding 1-forms

ω1 = e−ε(ηx+g)
[
xz−1 dx+

(
−xz1 + z − λx2

2

)
dt
]
,

ω2 = η dx+ g′ dt,

ω3 = εω1,
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with g = g (t) an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0. It follows

that this equation is the integrability condition of a triangular linear problem given by

(1.2.6).

(iv) The fourth equation of (2.5.1) is an example of the Type I (a), and Type I

(b), with f = xz−1, ϕ = −x, ψ = z − λx3

z
. Using formulas (2.3.12), one easily gets the

corresponding 1-forms

ω1 = e−ε(ηx+g)
[
xz−1 dx+

(
−xz1 + z − λx3

z

)
dt
]
,

ω2 = η dx+ g′ dt,

ω3 = εω1,

with g = g (t) an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0. It follows

that this equation is the integrability condition of a triangular linear problem given by

(1.2.6).

Similar results have been obtained by Reyes in [49].

Remark 2.5.2. It is noteworthy to note that for all the linear problems of previous example

the parameter η is always removable. Indeed η is removable from the linear problems

described by Theorems 2.3.3 and 2.3.5 by means of the gauge transformation defined by

S =

(
e
ηx
2 0

0 e−
ηx
2

)
.

In fact, under such a transformation, the 1-forms ωi of Theorem 2.3.3 are transformed to
ωS1 = e−εg (f dx+ (ϕz1 + ψ) dt) ,

ωS2 = g′ dt,

ωS3 = εωS1 ,

(2.5.3)

whereas the 1-forms ωi of Theorem 2.3.5 are transformed to
ωS1 = cosh(g) (f dx+ (ϕz1 + ψ) dt) ,

ωS2 = g′ dt,

ωS3 = −tanh(g)ωS1 .

(2.5.4)

Notice that, despite the analogy between (2.5.3) and (2.5.4), it may be checked

that the corresponding zero-curvature representations are not gauge equivalent.

On the other hand one can easily check that by means of the gauge transformation
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defined by

S =

 1
2
√
η
−√η

1
2
√
η

√
η

 , (2.5.5)

η is removable also from the linear problem given by (2.5.2).

Example 2.5.3. Murray equation

zt = z2 + λ1zz1 + λ2z − λ3z
2,

is another example of Type I (a), and Type I (b), corresponding to the choice:

f = e
− 1

λ21
[(λ21λ2+4λ23)t+2λ1λ3x]

z, ϕ = e
− 1

λ21
[(λ21λ2+4λ23)t+2λ1λ3x]

,

ψ = e
− 1

λ21
[(λ21λ2+4λ23)t+2λ1λ3x] (λ1z2

2
+ 2λ3z

λ1

)
.

For instance, by using formulas (2.3.12), one easily gets the corresponding 1-forms

ω1 = e−ε(ηx+g)e
− 1

λ21
[(λ21λ2+4λ23)t+2λ1λ3x] [

z dx+
(
z1 + λ1z2

2
+ 2λ3z

λ1

)
dt
]
,

ω2 = η dx+ g′ dt,

ω3 = εω1,

with g = g (t) an arbitrary differentiable function, ε = ±1 and η2 + (g′)2 6= 0. It follows

that this equation is the integrability condition of a triangular linear problem given by

(1.2.6).

Example 2.5.4. Boltzman equation

zt = zz2 + z2
1 ,

is another example of Type I (a), and Type I (b), corresponding to the choice:

f = ϕ = z, ψ = 0, g = g (t) .

Using formulas (2.3.15), one easily gets the corresponding 1-forms

ω1 = cosh (ηx+ g) (z dx+ zz1 dt) ,

ω2 = η dx+ g′ dt,

ω3 = −sinh (ηx+ g) (z dx+ zz1 dt) ,
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with g = g (t) an arbitrary differentiable function and η2 + (g′)2 6= 0. It follows that this

equation is the integrability condition of the linear problem given by (1.2.6).

Example 2.5.5. The equation

zt = z2z2 + 4xz1 − 4z3 − 4z, (2.5.6)

is the “simplest” member, up to contact transformations, of the class of second order

evolution equations described by Michal Marvan in [39]. It is another example of Type II

(a) corresponding to the choice

ε1 = 1, m = 0, f = z, g = η = 2, (2.5.7)

which, in view of (2.3.18), also gives the corresponding 1-forms

ω1 = 2
z
dx+

(
−2z1 + 8x

z

)
dt,

ω2 = 2 dx+ 8x dt,

ω3 = 4z dt.

(2.5.8)

One can check that in view of Theorem 6 of [39], (2.5.6) is up to contact transforma-

tions the unique equation described by Theorem 2.2.1 which admits an irreducible zero-

curvature representation. In particular, we notice that the irreducible zero-curvature

representation obtained in [39] for (2.5.6) coincides with the one obtained from (1.2.6)

and (2.5.8) by passing to new 1-forms ω1 7→ ω2, ω2 7→ ω1 and ω3 7→ −ω3.

Example 2.5.6. Burgers equation

zt = z2 + zz1, (2.5.9)

can be embedded in Type I (a-b) with f = z, ϕ = 1, ψ = z2/2, as well as in Type III (a)

with f = z/2, g = −z/2, m = 0, ε1 = −1. In particular the linear problem corresponding

to Type III (a) coincides with the one already given by Chern and Tenenblat in [20].

These two linear problems of (2.5.9) provide of an example of a pair of linear

problems which are non gauge equivalent. Indeed only the second linear problem admits

non gauge-like symmetries, as one can check by using the method discussed in Chapter

4. Hence, the two linear problems must be considered as being structurally different.

In particular, as shown in Chapter 4, after removing the parameter η with the gauge

transformation defined by (2.5.5), one can insert a non-removable parameter in the second
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linear problem by using the flow Aλ of the non gauge-like symmetry generated by t∂x−∂z.
Indeed, in this way one get the following family of ZCRs of (2.5.9)

αλ =

 z
4
− λ

4
0

−1
2

λ
4
− z

4

 dx+

 z1
4

+ (z−λ)2

8
+ λ(z−λ)

4
0

−λ
4
− z

4
− z1

4
− (z−λ)2

8
− λ(z−λ)

4

 dt,

which depends on a non-removable parameter λ.

Example 2.5.7. Equation

zt = xz2 + 2 (xz + 1) z1 + z2, (2.5.10)

is another example of Type III (a) corresponding to the choice

f = z, g = −xz m = 0, ε1 = −1.

Using formulas (2.3.23), one easily gets the corresponding 1-forms

ω1 = z dx+ (xz1 + xz2 + z) dt,

ω2 = η dx+ ηxz dt,

ω3 = −ω2,

(2.5.11)

with η 6= 0. Hence equation (2.5.10) is the integrability condition of a linear depending

on a parameter η.

This parameter is removable by means of the gauge transformation defined by

(2.5.5). However, by using the method discussed in Chapter 4, one can easily construct a

linear problem depending on a non-removable parameter λ.

Indeed, the symmetry generated by xt∂x + t2

2
∂t −

(
1
2

+ tz
)
∂z is non gauge-like

for the given zero-curvature representation and its flow Aλ can be used to insert a non-

removable parameter λ into it. Indeed, by preliminarily removing the parameter η through

the gauge transformation defined by (2.5.5), one gets the following family of ZCRs of

(2.5.10)

αλ =

 λ+λtz−2z
2(λt−2)

0

− 2
(λt−2)2

−λ+λtz−2z
2(λt−2)

 dx

+

 1
2

[
xz1 + xz2 + z + λ(λt−λx−2)

(λt−2)2

]
0

− 2xz
(λt−2)2

+ 2λx
(λt−2)3

−1
2

[
xz1 + xz2 + z + λ(λt−λx−2)

(λt−2)2

]
 dt,
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which depends on a non-removable parameter λ.

Remark 2.5.8. In the context of equations describing pseudospherical surfaces the occur-

rence of differential substitutions that, like the celebrated Cole-Hopf transformation, map

solutions of an already known integrable equation (e.g. a linear equation) to solutions of a

new equation, is quite natural. Indeed, as already observed by Reyes (see for instance [53])

these substitutions can be often obtained from the following Riccati first order system for

an auxiliary function Γ = Γ(x, t) Γ,x = −1
2

(f31 − f21) Γ2 + f11Γ− 1
2

(f31 + f21) ,

Γ,t = −1
2

(f32 − f22) Γ2 + f12Γ− 1
2

(f32 + f22) ,
(2.5.12)

which is naturally defined by the 1-forms ωi = fi1 dx + fi2 dt of an equation describing

pseudospherical surfaces. This fact is due to the remarkable property that the integrability

of (2.5.12) is equivalent to the structure equations (1.2.1), and will be illustrated below

by means of next three examples.

Example 2.5.9. Here we will use the Riccati first order system (2.5.12) to identify a dif-

ferential substitution which “linearizes” the first equation of (2.5.1) (generalized Burgers

equation). To this end we observe that by using the linear problem of Type III (a) given

in the Example 2.5.1, (2.5.12) takes the form Γ,x = ηΓ2 + (z − p) Γ,

Γ,t = η (z + p) Γ2 + (z1 + z2 + p,x − p2) Γ.

Hence, by assuming that Γ 6= 0, (2.5.12) can be rewritten as z = Γ,x
Γ
− ηΓ + p,

Γ,t = Γ,xx − 2ηΓΓ,x + 2pΓ,x + 2p,xΓ.
(2.5.13)

We notice that (2.5.13) is well defined whatever is the value of η and in particular that it

is defined also for η = 0.

When η = 0, if p = p(x) is such that p′′ − 2pp′ = k(x) then (2.5.13) provides the

differential substitution

z =
Γ,x
Γ

+ p,

which transforms the nonzero solutions of the linear equation

Γ,t = Γ,xx + 2pΓ,x + 2p′Γ,
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to solutions of the generalized Burgers equation

zt = z2 + 2zz1 + k.

When p = 0 above transformation reduces to the celebrated Cole-Hopf transformation.

Example 2.5.10. Here we will use the Riccati first order system (2.5.12) to identify a

differential substitution which “linearizes” equation (2.5.10). To this end we observe that

by using the linear problem (2.5.11), (2.5.12) takes the following form Γ,x = ηΓ2 − zΓ,

Γ,t = ηxzΓ2 + (xz1 + z + xz2) Γ.

Hence, by assuming that Γ 6= 0, (2.5.12) can be rewritten as z = Γ,x
Γ
− ηΓ,

Γ,t = xΓ,xx − 2ηxΓΓ,x + Γ,x − ηΓ2.
(2.5.14)

Also in this case, the Riccati system is well defined also for the particular value η = 0 by

which it provides the differential substitution

z =
Γ,x
Γ
,

transforming the nonzero solutions of the linear equation

Γ,t = xΓ,xx + Γ,x,

to solutions of (2.5.10), i.e.,

zt = xz2 + 2 (xz + 1) z1 + z2.

Example 2.5.11. Another application of the method illustrated in the last two examples

can be given by considering the following class of equations

zt = A2z2 + (A1 + 2A2z + A2,x) z1 + A2,xz
2 + A1,xz + A1,xx − A2,xxx, (2.5.15)

where A1 = A1 (x, t) and A2 = A2 (x, t) are arbitrary differentiable functions, with A2 6= 0.

Equations (2.5.15) are of Type III (a), as one can check by taking

f = z, g = −A2z + A2,x − A1, ε1 = −1, m = 0, (2.5.16)
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in the equation (2.2.11). As in the previous example, we will use the Riccati system

(2.5.12) to show that the whole class (2.5.15) can be “linearized” by using a differential

substitution.

Indeed, in view of (2.5.16), by using the corresponding fij, the Riccati system

(2.5.12) takes the following form Γ,x = ηΓ2 − zΓ,

Γ,t = η (A2z − A2,x + A1) Γ2 + (A2z1 + A2z
2 + A1z + A1,x − A2,xx) Γ,

and assuming that Γ 6= 0 it can be rewritten as z = Γ,x
Γ
− ηΓ,

Γt = A2Γ,xx − 2ηA2ΓΓ,x + A1Γ,x − ηA2,xΓ
2 + (A1,x − A2,xx) Γ.

(2.5.17)

Thus, since for η = 0 the system (2.5.17) reduces to z = Γ,x
Γ
,

Γt = A2Γ,xx + A1Γ,x + (A1,x − A2,xx) Γ,

it follows that the non-vanishing solutions of the linear equation

Γt = A2Γ,xx + A1Γ,x + (A1,x − A2,xx) Γ,

are transformed by means of z = Γ,x
Γ

to solutions of the nonlinear equations (2.5.15).

More in general, it is not difficult to prove that the class of equations

zt = A2z2 + (A1 + 2A2z + A2,x) z1 + A2,xz
2 + A1,xz + A0,x, (2.5.18)

where A0 = A0(x, t), A1 = A1(x, t) and A2 = A2(x, t) 6= 0 are arbitrary differentiable

functions, is the most general class of equations of the form zt = F (x, t, z, z1, z2) which

can be “linearized”, in the above sense, to

Γ,t = A2Γ,xx + A1Γ,x + A0Γ,

by means of the “Cole-Hopf” differential substitution

z =
Γ,x
Γ
.

Equations (2.5.15) are just obtained from (2.5.18) by choosing A0 = −A2,xx + A1,x.
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Remark 2.5.12. According to the convention introduced by Calogero in [10], equations

like Burgers and those considered in the Examples 2.5.9, 2.5.10 and 2.5.11 are called

C-integrable. On the other hand, the type of equations considered by Svinolupov and

Sokolov in [43] is sometimes referred to as symmetry-integrable. It is noteworthy to

remark here that these two notions of integrability are not coincident. Indeed one has

examples of equations, like Burgers equation, which are both C-integrable and symmetry-

integrable. However it is easy to find examples of equations which are integrable in a

sense but not in the other. For instance, equation (2.5.10) is C-integrable but it is neither

linearizable by contact transformations (Indeed Cole-Hopf transformation is not a contact

transformation) nor equivalent to one of the four equations (2.5.1). Indeed, the algebra

of classical symmetries of (2.5.10) is 3-dimensional and hence (2.5.10) cannot be contact

equivalent to a linear equation. On the other hand, it can also be shown that none of the

four equations (2.5.1) is contact equivalent to (2.5.10). Indeed

x̄ = f(x, t), t̄ = g(t), z̄ = h(x, t, z). (2.5.19)

is the most general contact transformation which leave invariant the class of evolution

equations

z̄t̄ = a3(x̄, t̄, z̄)z̄x̄x̄ + a2(x̄, t̄, z̄)z̄2
x̄ + a1(x̄, t̄, z̄)z̄x̄ + a0(x̄, t̄, z̄), (2.5.20)

where z̄t̄, z̄x̄ z̄x̄x̄ are partial derivatives of z̄ = z̄(x̄, t̄) and ai are arbitrary differentiable

functions such that ā3 6= 0. Hence, under transformations (2.5.19), any equation of the

form (2.5.20) is mapped to

zt =
g′a3

f 2
,x

z2 +
g′ f,x

[
h2
,za2 + h,zz a3

]
f 3
,xh,z

z2
1

+

[
h,z f

2
,xg
′ a1 + 2g′ h,x h,z f,x a2 + (2g′ h,xz f,x − g′ h,z f,xx) a3 + h,z f,t f

2
,x

]
f 3
,xh,z

z1

−
[
g′ f 3

,x − g′ h,x f 2
,xa1 − g′ h2

,xf,x a2 + (g′ h,x f,xx − g′ h,xx f,x) a3 + h,t f
3
x − h,x f,t f 2

,x

]
f 3
,xh,z

.

(2.5.21)

In view of (2.5.21) it is not difficult to check that, by means of a contact transformation,

none of the four equations (2.5.1) can be transformed to (2.5.10).



Chapter 3

Finite-order local isometric

immersions of pseudospherical

surfaces described by second order

evolution PS equations and

generalizations

In this chapter we consider the problem of existence of local isometric immersions,

into the 3-dimensional Euclidean space E3, for the families of pseudospherical surfaces

described by PS equations classified in the Chapter 2. We will show that only Type I

equations admit such a kind of immersion and, on the base of this result, we also provide

an extension of the results to the case of k-th order evolution equations in the conservation

law form Dt (f(x, t, z)) = Dx (Ω(x, t, z, z1, . . . , zk)). The examples discussed in the end

of this chapter include second order equations as Boltzmann, Murray and Svinolupov-

Sokolov equations, as well as higher order equations like Kuramoto-Sivashinsky, Sawada-

Kotera and Kaup-Kupershmidt equations, and also full hierarchies of integrable equations

like Burgers, mKdV and KdV, which were not covered by the results of previous papers

[32, 33].

The chapter is organized as follows. In Section 3.1 we state the Theorem 3.1.1

and Theorem 3.1.2, which are the main results of the chapter, and in Section 3.2 we give

detailed proofs of these theorems. Finally, in Section 3.3 we illustrate these results by

means of some examples.
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3.1 Main results

The chapter is mainly concerned with the following question:

Do finite-order local isometric immersions exist for the family of pseu-

dospherical surfaces described by the evolution second order PS equations of

Theorem 2.2.1?

The answer to this question is provided by Theorem 3.1.1, which is the main

result of the present chapter and is stated below. According to this theorem such an

immersion only exists for equations of Type I.

Theorem 3.1.1. For second order PS equations classified by Theorem 2.2.1, there exists

no finite-order local isometric immersions for the families of pseudospherical surfaces

described by Types II and III, whereas for those described by Type I such an immersion

exists if, and only if, there are constants γ, ζ ∈ R, γ 6= 0, ζ > 0, ζ2 − 4γ2 > 0 such that:

(i) for Type I (a) the generic solutions z and associated 1-forms ωi = fi1 dx +

fi2 dt, given by (2.2.4), are defined on a strip of R2 of the form

log

√
ζ −

√
ζ2 − 4γ2

2γ2
< ε (ηx+ g) < log

√
ζ +

√
ζ2 − 4γ2

2γ2
, (3.1.1)

and the functions a, b, c appearing in (1.3.1) are given by

a = ν
√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1,

b = γe2ε(ηx+g),

c = b2−1
a

= ν γ2e4ε(ηx+g)−1√
ζe2ε(ηx+g)−γ2e4ε(ηx+g)−1

,

(3.1.2)

with ν = ±1;

(ii) for Type I (b) the generic solutions z and associated 1-forms ωi = fi1 dx +

fi2 dt, given by (2.2.5), are defined on a strip of R2 of the form

arccosh

√ζ −
√
ζ2 − 4γ2

2

 < ηx+ g < arccosh

√ζ +
√
ζ2 − 4γ2

2

 , (3.1.3)

and the functions a, b, c appearing in (1.3.1) are given by

a = ν

√
ζ cosh2(ηx+g)−cosh4(ηx+g)−γ2

cosh2(ηx+g)
,

b = γ
cosh2(ηx+g)

,

c = b2−1
a

= ν γ2−cosh4(ηx+g)

cosh2(ηx+g)
√
ζ cosh2(ηx+g)−cosh4(ηx+g)−γ2

,

(3.1.4)
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with ν = ±1.

On the other hand since Type I equations can be written in conservation law

form, like the k-th order equations described by Theorem 1.2.2, the answer provided by

Theorem 3.1.1 naturally led us to the following second question.

Do finite-order local isometric immersions exist for the family of pseu-

dospherical surfaces described by the evolution k-th order PS equations of

Theorem 1.2.2?

The answer to this second question is provided by the following

Theorem 3.1.2. Finite-order local isometric immersions for the families of pseudospher-

ical surfaces described by k-th order PS equations of Theorem 1.2.2 exist if, and only if,

there are constants γ, ζ ∈ R, γ 6= 0, ζ > 0, ζ2 − 4γ2 > 0 such that:

(i) for type (a) the generic solutions z and associated 1-forms ωi = fi1 dx+fi2 dt,

given by (1.2.10), are defined on a strip of R2 of the form

log

√
ζ −

√
ζ2 − 4γ2

2γ2
< ε (ηx+ g) < log

√
ζ +

√
ζ2 − 4γ2

2γ2
, (3.1.5)

and the functions a, b, c appearing in (1.3.1) are given by

a = ν
√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1,

b = γe2ε(ηx+g),

c = b2−1
a

= ν γ2e4ε(ηx+g)−1√
ζe2ε(ηx+g)−γ2e4ε(ηx+g)−1

,

(3.1.6)

with ν = ±1;

(ii) for type (b) the generic solutions z and associated 1-forms ωi = fi1 dx+fi2 dt,

given by (1.2.11), are defined on a strip of R2 of the form

arccosh

√ζ −
√
ζ2 − 4γ2

2

 < ηx+ g < arccosh

√ζ +
√
ζ2 − 4γ2

2

 , (3.1.7)

and the functions a, b, c appearing in (1.3.1) are given by

a = ν

√
ζ cosh2(ηx+g)−cosh4(ηx+g)−γ2

cosh2(ηx+g)
,

b = γ
cosh2(ηx+g)

,

c = b2−1
a

= ν γ2−cosh4(ηx+g)

cosh2(ηx+g)
√
ζ cosh2(ηx+g)−cosh4(ηx+g)−γ2

,

(3.1.8)

with ν = ±1.
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The proofs of Theorem 3.1.1 and the Theorem 3.1.2 are presented in Section 3.2.2

and Section 3.2.3, respectively.

3.2 Proofs of the main results

3.2.1 Auxiliary lemmas

We begin with the following

Lemma 3.2.1. If zt = F (x, t, z, z1, . . . , zk) is a k-th order PS equation with associated

1-forms ωi = fi1 dx+ fi2 dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, . . . , zk) then

fi1 = fi1 (x, t, z) , fi2 = fi2 (x, t, z, z1, . . . , zk−1) . (3.2.1)

In particular if f11 = f11 (x, t) and f21 = η, then

f12,zk−1
= f22,zk−1

= 0, (3.2.2)

f31,z 6= 0, (3.2.3)

f32,zk−1
6= 0. (3.2.4)

Proof. In view of Theorem 2.1.1 one has (3.2.1). On the other hand, by assuming that

f11 = f11 (x, t) and f21 = η, one can rewrite structure equations (1.2.1) as

f12,x + f12,zz1 + · · ·+ f12,zk−1
zk + ηf32 − f31f22 − f11,t = 0,

f22,x + f22,zz1 + · · ·+ f22,zk−1
zk + f12f31 − f11f32 = 0,

f32,x + f32,zz1 + · · ·+ f32,zk−1
zk + ηf12 − f11f22 − f31,t − f31,zF = 0.

(3.2.5)

Then (3.2.2) follows by deriving first two equations of (3.2.5) with respect to zk. On

the other hand, equations (3.2.3) and (3.2.4) easily follow deriving the third equation of

(3.2.5) with respect to zk and by the non-degeneracy condition (2.1.2).

The following lemma is an analogue of the main result of the paper [32] and

will facilitate the proofs of Theorem 3.1.1 and Theorem 3.1.2, which are provided in

Subsections 3.2.2 and 3.2.3, respectively.

Lemma 3.2.2. Let zt = F (x, t, z, z1, . . . , zk) be a k-th order PS equation with k ≥ 2

and associated 1-forms ωi = fi1 dx + fi2 dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, . . . , zk)

and satisfying f21 = η. If there exists a finite-order local isometric immersion for the

pseudospherical surfaces described by solutions z = z(x, t) of this PS equation, then the

functions a, b and c, defined in (1.1.7), depend only on x and t.
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Proof. If the coefficients of the second fundamental form (1.3.1) depend on finite-order

jet prolongations of solutions z, and the functions fij only depend on (x, t, z, z1, . . . , zk),

then a, b and c may depend only on x, t, z, z1, ..., zl, where l is a fixed positive integer.

Hence, (1.3.2) rewrites as

f11a,t + ηb,t − f12a,x − f22b,x − 2b (f11f32 − f31f12) + (a− c) (ηf32 − f31f22)

−
l∑

i=0

(f12a,zi + f22b,zi) zi+1 +
l∑

i=0

(f11a,zi + ηb,zi) zi,t = 0,

f11b,t + ηc,t − f12b,x − f22c,x + (a− c) (f11f32 − f31f12) + 2b (ηf32 − f31f22)

−
l∑

i=0

(f12b,zi + f22c,zi) zi+1 +
l∑

i=0

(f11b,zi + ηc,zi) zi,t = 0.

(3.2.6)

We will prove the lemma by distinguishing the two cases: η = 0 and η 6= 0.

Case η = 0. In this case, the non-degeneracy condition ω1 ∧ ω2 6= 0 rewrites as

f11f22 6= 0. Hence, since zt = F is a k-th order equation, by deriving both equations of

(3.2.6) with respect to zl+k, one obtains

a,zl = 0, b,zl = 0, (3.2.7)

and in view of Gauss equation (1.3.3) one has that

ac,zl = 0. (3.2.8)

Thus when a 6= 0, in view of (3.2.8), c,zl = 0 and by successive differentiating equations

(3.2.6) with respect to zi+k, for i = 0, ..., l − 1, one has that a,zi = b,zi = c,zi = 0.

On the contrary, when a = 0, then Gauss equation leads to b = ε = ±1 and

(3.2.6) becomes
f31f22c− 2ε (f11f32 − f31f12) = 0,

f22c,x + c (f11f32 − f31f12) + 2εf31f22 +
l∑

i=0

f22c,zizi+1 = 0.
(3.2.9)

Hence, in (3.2.9), by substituting the expression of f11f32− f31f12 obtained from the first

equation into the second equation one gets

c,x +
l∑

i=0

c,zizi+1 +
εc2f31

2
+ 2εf31 = 0,
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and in view of Lemma 3.2.1, by means of successive differentiations with respect to zi+1,

for i = 0, ..., l, one gets that c,zi = 0.

Hence when η = 0, one has

a,zi = b,zi = c,zi = 0, i = 0, 1, . . . , l.

Case η 6= 0. In view of (1.2.8), by deriving both equations of (3.2.6) with respect

to zl+k, one obtains

b,zl = −f11

η
a,zl , c,zl =

f 2
11

η2
a,zl , (3.2.10)

and the derivative of the Gauss equation (1.3.3) with respect to zl returns(
c+

af 2
11

η2
+

2bf11

η

)
a,zl = 0. (3.2.11)

Now we will proceed by further distinguishing the two subcases:

(i) a,zl = 0, c+
af211
η2

+ 2bf11
η
6= 0;

(ii) c+
af211
η2

+ 2bf11
η

= 0.

Subcase (i). In view of (3.2.10),

a,zl = b,zl = c,zl = 0, (3.2.12)

and by substituting (3.2.12) in (3.2.6) one readily gets the following analogous of (3.2.10)

and (3.2.11):

b,zl−1
= −f11

η
a,zl−1

, c,zl−1
=
f 2

11

η2
a,zl−1

, (3.2.13)

and (
c+

af 2
11

η2
+

2bf11

η

)
a,zl−1

= 0. (3.2.14)

Hence in view of c+
af211
η2

+ 2bf11
η
6= 0 one also obtains that

a,zl−1
= b,zl−1

= c,zl−1
= 0. (3.2.15)

Thus the desired result easily follows by observing that iterating above procedure one

would get that

a,zi = b,zi = c,zi = 0, i = 0, 1, . . . , l.

Subcase (ii). If c+
af211
η2

+ 2bf11
η

= 0, then by substituting c = −af211
η2
− 2bf11

η
into

the Gauss equation, one gets

b = ν − af11

η
, (3.2.16)
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where ν = ±1. Hence

c =
af 2

11

η2
− 2νf11

η
, (3.2.17)

and the following identities hold,

Dtb = −f11Dta
η
− aDt(f11)

η
, Dtc =

f211Dta

η2
+ 2

η

(
af11
η
− ν
)
Dt (f11) ,

Dxb = −f11Dxa
η
− aDx(f11)

η
, Dxc =

f211Dxa

η2
+ 2

η

(
af11
η
− ν
)
Dx (f11) ,

(3.2.18)

where Dx and Dt are the total derivative operators. Then, by using (3.2.18), equations

(1.3.2) rewrite as

−af11,t − af11,zF + ∆12a,x
η

+ ∆12

η

l∑
i=0

a,zizi+1 +
af22Dx (f11)

η

−2b (f11f32 − f31f12) + (a− c) (ηf32 − f31f22) = 0,

(
af11
η
− 2ν

)
f11,t +

(
af11
η
− 2ν

)
f11,zF − f11

η

∆12a,x
η
− f11

η
∆12

η

l∑
i=0

a,zizi+1

−
[

∆12a
η2

+ f22
η

(
af11
η
− 2ν

)]
Dx (f11) + (a− c) (f11f32 − f31f12)

+2b (ηf32 − f31f22) = 0,

(3.2.19)

where ∆12 := f11f22 − ηf12 6= 0 in view of the non-degeneracy condition ω1 ∧ ω2 6= 0.

Now to prove that in the current subcase a, b, c do not depend on (z, z1, . . . , zl)

we analyze separately the cases l ≥ k, l = k − 1 and l ≤ k − 2.

When l ≥ k, by deriving (3.2.19) with respect to zi+1, i = k, . . . , l, one gets that

∆12a,zi = 0. Therefore an argument similar to that used in the analysis of subcase (i),

shows that

a,zi = b,zi = c,zi = 0, ∀ i = k, . . . , l. (3.2.20)

When l = k − 1, by deriving (3.2.19) with respect to zk, one gets that −af11,zF ,zk + ∆12

η
a,zk−1

= 0,(
af11
η
− 2ν

)
f11,zF ,zk −

f11
η

∆12

η
a,zk−1

= 0,
(3.2.21)

which easily leads to a,zk−1
= 0 and hence, in view of (3.2.10), to

a,zk−1
= b,zk−1

= c,zk−1
= 0. (3.2.22)

Hence in view of (3.2.20) and (3.2.22) the jet-order of a, b and c cannot exceed k − 1.

However we will prove now that a, b, c may only depend on (x, t). Indeed, when l ≤ k−2,
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by deriving (3.2.19) with respect to zk, one gets that −af11,zF ,zk = 0,(
af11
η
− 2ν

)
f11,zF ,zk = 0,

which easily leads to νf11,zF ,zk = 0 and hence to f11 = f11 (x, t), since zt = F is by

assumption a k-th order equation. Therefore in such a case equations (3.2.19) reduce to

−af11,t + ∆12

η
a,x + ∆12

η

l∑
i=0

a,zizi+1 + af11,xf22
η
− 2b (f11f32 − f31f12)

+ (a− c) (ηf32 − f31f22) = 0,

(
af11
η
− 2ν

)
f11,t − f11∆12

η2
a,x − f11∆12

η2

l∑
i=0

a,zizi+1

+
[

∆12a
η2

+ f22
η

(
af11
η
− 2ν

)]
f11,x + (a− c) (f11f32 − f31f12)

+2b (ηf32 − f31f22) = 0,

(3.2.23)

and in view of Lemma 3.2.1, conditions (3.2.2), (3.2.3) and (3.2.4) must be satisfied.

In particular, if l = k − 2, by deriving (3.2.23) with respect to zk−1 one has
∆12a,zk−2

η
− 2bf11f32,zk−1

+ (a− c) ηf32,zk−1
= 0,

−f11
η

[
∆12a,zk−2

η
− η (a− c) f32,zk−1

− 2η2bf32,zk−1

f11

]
= 0,

(3.2.24)

where f11 6= 0 in view of (3.2.4). In particular, by comparing first and second equation of

(3.2.24), one gets

ηf11 (a− c) =
(
f 2

11 − η2
)
b, (3.2.25)

where f 2
11−η2 6= 0, since otherwise a−c = 0 and by (3.2.17) one would get f11 = 0. Then,

by substituting (3.2.16-3.2.17) into (3.2.25) one obtains f 2
11 + η2 = 0 which contradicts

η 6= 0 and f11 6= 0.

On the other hand, if l < k−2 then by deriving (3.2.23) with respect to zk−1 and

using (3.2.4), one gets the system(
−f11 η

−η f11

)(
2b

a− c

)
=

(
0

0

)
,

which in view of f 2
11 + η2 6= 0 immediately leads to b = 0 and a = c, which contradicts

the Gauss equation (1.3.3).
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3.2.2 Proof of Theorem 3.1.1

In the proof of Theorem 3.1.1 we will analyze separately equations of Type I and

equations of Types II-III.

3.2.2.1 Existence of finite-order local isometric immersions for Type I equa-

tions

To prove that equations of Type I admit finite-order local isometric immersions,

we will distinguish between Type I (a) and Type I (b).

Type I (a). In view of Lemma 3.2.2 and (2.2.4), equations (1.3.2) reduce to

−ϕe−ε(ηx+g) [a,x − ε (a− c) η] z1 − ψe−ε(ηx+g) [a,x − ε (a− c) η]

+ηb,t − g′b,x + e−ε(ηx+g)f [a,t − εg′ (a− c)] = 0,

−ϕe−ε(ηx+g) [b,x − 2εηb] z1 − ψe−ε(ηx+g) [b,x − 2εηb]

+ηc,t − g′c,x + e−ε(ηx+g)f (b,t − 2εg′b) = 0.

(3.2.26)

Hence, in view of the independence of ϕ, ψ, f , g and a, b, c on z1, (3.2.26) splits into the

following two systems  a,x − ε (a− c) η = 0,

b,x − 2εηb = 0,
(3.2.27)

and  e−ε(ηx+g)f [a,t − εg′ (a− c)] + ηb,t − g′b,x = 0,

e−ε(ηx+g)f (b,t − 2εg′b) + ηc,t − g′c,x = 0.
(3.2.28)

In its turn, in view of f,z 6= 0 and the independence of g, a, b, c on z, the system (3.2.28)

splits into the following system 

a,t − εg′ (a− c) = 0,

b,t − 2εg′b = 0,

ηb,t − g′b,x = 0,

ηc,t − g′c,x = 0.

(3.2.29)

Then, from the second equation of (3.2.27) and second equation of (3.2.29), one gets the

expression of b given by (3.1.2). In particular the third equation of (3.2.29) is automatically

satisfied.

On the other hand, in view of η2 + (g′)2 6= 0, from the first equations of (3.2.27)
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and (3.2.29) one has that a 6= 0 and from the Gauss equation one gets

c =
b2 − 1

a
. (3.2.30)

Then in view of (3.2.30), first equations of (3.2.27) and (3.2.29) rewrite as aa,x − εη
[
a2 − γ2e4ε(ηx+g) + 1

]
= 0,

aa,t − εg′
[
a2 − γ2e4ε(ηx+g) + 1

]
= 0,

(3.2.31)

and can be readily integrated in the form

a2 = ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1, ζ ∈ R, (3.2.32)

by using the integrating factor e−2εηx. Thus (3.2.32) entails that

a = ν
√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1,

which is defined whenever ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1 > 0. Therefore ζ > 0 and

ζ −
√
ζ2 − 4γ2

2γ2
< e2ε(ηx+g) <

ζ +
√
ζ2 − 4γ2

2γ2
,

i.e., a is defined on the strip described by (3.1.1). Finally, by substituting above results

in (3.2.30) one gets the expression of c given in (3.1.2), and one can readily check that

also the fourth equation of (3.2.29) is satisfied.

A straightforward computation shows that also the converse of the theorem holds

for current type.

Type I (b). The proof is similar to that of Type I (a). In this case instead of

(3.2.26) one has the following system

−ϕ [cosh (ηx+ g) a,x + η sinh (ηx+ g) (a− c)] z1 + ηb,t − g′b,x

−ψ [cosh (ηx+ g) a,x + η sinh (ηx+ g) (a− c)]

+ [cosh (ηx+ g) a,t + sinh (ηx+ g) g′ (a− c)] f = 0,

−ϕ [cosh (ηx+ g) b,x + 2η sinh (ηx+ g)] z1 + ηc,t − g′c,x

−ψ [cosh (ηx+ g) b,x + 2η sinh (ηx+ g)]

+ [cosh (ηx+ g) b,t + 2 sinh (ηx+ g) g′b] f = 0,

(3.2.33)
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by which one obtains, instead of (3.2.27) and (3.2.28), the following two systems cosh (ηx+ g) a,x + η sinh (ηx+ g) (a− c) = 0,

cosh (ηx+ g) b,x + 2η sinh (ηx+ g) = 0,
(3.2.34)

and  [cosh (ηx+ g) a,t + sinh (ηx+ g) g′ (a− c)] f + ηb,t − g′b,x = 0,

[cosh (ηx+ g) b,t + 2 sinh (ηx+ g) g′b] f + ηc,t − g′c,x = 0.
(3.2.35)

Hence, instead of (3.2.29), in this case one gets the system

cosh (ηx+ g) a,t + sinh (ηx+ g) g′ (a− c) = 0,

ηb,t − g′b,x = 0,

cosh (ηx+ g) b,t + 2 sinh (ηx+ g) g′b = 0,

ηc,t − g′c,x = 0,

(3.2.36)

and the proof runs as that of Type I (a). In particular one gets the expression of b given

in (3.1.4), as well as that c = b2−1
a

. Moreover by integrating the following analogue of

(3.2.31) aa,x + η tanh (ηx+ g) a2 − η tanh (ηx+ g)
[
γ2−cosh4(ηx+g)
cosh4(ηx+g)

]
= 0,

aa,t + g′tanh (ηx+ g) a2 − g′tanh (ηx+ g)
[
γ2−cosh4(ηx+g)
cosh4(ηx+g)

]
= 0,

(3.2.37)

by means of the integrating factor e
´

2η tanh(ηx+g) dx = −cosh2 (ηx+ g), one gets

a2 =
ζ (t) cosh2 (ηx+ g)− cosh4 (ηx+ g)− γ2

cosh4 (ηx+ g)
, ζ ∈ R, (3.2.38)

which is exactly the expression of a given (3.1.4) and is defined whenever

ζ cosh2 (ηx+ g)− cosh4 (ηx+ g)− γ2 > 0.

Therefore one has that ζ > 0 and

ζ −
√
ζ2 − 4γ2

2
< cosh2 (ηx+ g) <

ζ +
√
ζ2 − 4γ2

2
,

i.e., a is defined on the strip described by (3.1.3). By substituting above results for a and

b into c = b2−1
a

one obtains the expression of c given in (3.1.3) and one can readily prove
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that all equations of (3.2.34) and (3.2.36) are satisfied.

A straightforward computation shows that also the converse of the theorem holds

for the current type.

3.2.2.2 Non-existence of finite-order local isometric immersions for Type II

and III equations

To prove that equations of Type II and Type III do not admit finite-order local

isometric immersions, we will separately analyze Type II (a), Type II (b) and Type III

(c), whereas Type III (a) and Type III (b) will be analyzed almost simultaneously.

Type II (a). In view of Lemma 3.2.2 and (2.2.7), equations (1.3.2) reduce to

[a,x − ηm (a− c)] ε1gf,zz1 + ε1ηgδ (a− c) f − 2ε1g
2bδ − ε1b,x

´
g2δ dx

+η [b,t +mψ (a− c)]− a,xψ + g
f

[
a,t − ε1m (a− c)

´
g2δ dx

]
= 0,

[b,x − 2ηmb] ε1gf,zz1 + 2ε1ηgδbf + ε1g
2δ (a− c)− ε1c,x

´
g2δ dx

+η [c,t + 2mψb]− b,xψ + g
f

[
b,t − 2ε1mb

´
g2δ dx

]
= 0.

(3.2.39)

Hence, in view of the independence of δ, m, f , g, ψ and a, b, c on z1, (3.2.39) splits into

the following two systems  a,x − ηm (a− c) = 0,

b,x − 2ηmb = 0,
(3.2.40)

and 

ε1ηgδ (a− c) f 2 +
(
ηb,t − 2ε1g

2bδ − ε1b,x
´
g2δ dx

)
f

+g
[
a,t − ε1m (a− c)

´
g2δ dx

]
= 0,

2ε1ηgδbf
2 +

[
ε1g

2δ (a− c)− ε1c,x
´
g2δ dx+ ηc,t

]
f

+g
[
b,t − 2ε1mb

´
g2δ dx

]
= 0.

(3.2.41)

Then if η 6= 0, by deriving (3.2.41) twice with respect to z, one gets

b = 0, a = c,

which contradicts the Gauss equation (1.3.3).

On the other hand, if η = 0, then from (3.2.40) one gets a,x = b,x = 0 and (3.2.41)

reduces to −2ε1g
2bδf + g

[
a,t − ε1m (a− c)

´
g2δ dx

]
= 0,[

ε1g
2δ (a− c)− ε1c,x

´
g2δ dx

]
f + g

[
b,t − 2ε1mb

´
g2δ dx

]
= 0.

(3.2.42)
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Hence, by deriving the first equation of (3.2.42) with respect to z, one has that b = 0

and a 6= 0, because of Gauss equation (1.3.3). Also, by deriving the Gauss equation with

respect to x, one gets c,x = 0 and hence, in view of f,z 6= 0, from the second equation of

(3.2.42) one concludes that a = c, which contradicts the Gauss equation.

Type II (b). In view of Lemma 3.2.2 and (2.2.9), equations (1.3.2) reduce to

ηε1gf,z (a− c) z1 + ε1ηga,xf − ε1η
(
2g2b+ b,x

´
g2 dx

)
+η [b,t + ψ (a− c)]− ε1ηg

´
g2 dx

f
(a− c) = 0,

2ηε1gbf,zz1 + ε1ηgb,xf + ε1ηg
2 (a− c)− ε1ηc,x

´
g2 dx

+η (c,t + 2bψ)− 2ηε1gb
´
g2 dx

f
= 0.

(3.2.43)

Hence, since f11 = 0, it follows that ω1 ∧ ω2 6= 0 is equivalent to ε1η
2gf 6= 0 and by

deriving (3.2.43) with respect to z1, one concludes that

b = 0, a = c,

which contradicts the Gauss equation (1.3.3).

Type III (a-b). In view of Lemma 3.2.2 and (2.2.12-2.2.14), equations (1.3.2)

reduce to

[a,x − 2bh− ηm (a− c)] g,zz1 + [a,x − 2bh− ηm (a− c)] g,x

−
[
mh (a− c)− δηm(a−c)−δa,x

h

]
fg +

[
a,t + qηm(a−c)−qa,x

h

]
f

+
[
h,xa,x−ηmh,x(a−c)

h
− (a− c)h2 − hb,x − 2bh,x + ηδ (a− c)

]
g

+ηq (a− c) + ηb,t = 0,

[b,x − 2ηmb+ h (a− c)] g,zz1 + [b,x − 2ηmb+ h (a− c)] g,x

−
[
2mhb− 2ηmδh−δb,x

h

]
fg +

[
b,t + 2ηmqb−qb,x

h

]
f

+
[
h,xb,x−2ηmbh,x

h
− 2bh2 − c,xh+ h,x (a− c) + 2ηδb

]
g

+2ηqb+ ηc,t = 0.

(3.2.44)

Hence, in view of the independence of h, m, q, f , g and a, b, c on z1, (3.2.44) splits into

the following two systems  a,x = 2bh+ ηm (a− c) ,

b,x = 2ηmb− h (a− c) ,
(3.2.45)
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and

fa,t + ηb,t +
[
mh

(
b2−1
a
− a
)
− 2δb

]
gf − 2qbf

+
[
ηδ
(
a+ 1−b2

a

)
− 2ηmhb

]
g + ηq

(
a+ 1−b2

a

)
= 0,

η(1−b2)
a2

a,t +
(
f + 2ηb

a

)
b,t +

[
δ
(
a+ 1−b2

a

)
− 2mhb

]
gf

+q
(
a+ 1−b2

a

)
f +

[
2ηδb+ ηmh

a

(
2b2−1−b4

a2
− 1− 3b2

)]
g + 2bηq = 0,

(3.2.46)

where we have used the identity c = b2−1
a

. Indeed a 6= 0, since otherwise (3.2.45) reduces

to (
h −ηm
ηm h

)(
2b

c

)
=

(
0

0

)
,

where det

(
h −ηm
ηm h

)
6= 0, and b = c = a = 0 contradicts Gauss equation. Therefore,

by rewriting (3.2.46) as a,t =
[
mh
a

(a2 − b2 + 1) + 2δb
]
g + 2qb

a
,

b,t =
[
2mhb− δ

a
(a2 − b2 + 1)

]
g − q

a
(a2 − b2 + 1) ,

(3.2.47)

and deriving (3.2.47) with respect to z one gets(
δ mh

mh −δ

)(
2ab

a2 − b2 + 1

)
=

(
0

0

)
, (3.2.48)

and

a,t = 2qb
a
, b,t = − q(a2−b2+1)

a
. (3.2.49)

In the case of Type III (a) one has that

−
(
δ2 +m2h2

)
= −

[
h2
(
1−m2

)
+m2h2

]
= −h2 6= 0,

and hence (3.2.48) entails that b = 0 and a2 + 1 = 0, which is a contradiction.

On the other hand, in the case of Type III (b) either m2 + δ2 6= 0 or m = δ = 0,

however in both cases equations (3.2.48) and (3.2.49) lead to a contradiction. Indeed,

when m2 + δ2 6= 0, (3.2.48) entails that b = a2 + 1 = 0. On the other hand, in view of

(2.2.2), when m = δ = 0 one also has η = 0 and hence from the compatibility of (3.2.45)

and (3.2.49) one obtains

b (h,t − q,x) = 0, (3.2.50)
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where h,t − q,x 6= 0, otherwise by (2.2.15) one would get g = 0 and hence (2.2.11) would

degenerate to a first-order equation. Thus, from (3.2.50) one has b = 0 and in view of

h 6= 0, (3.2.49) and (3.2.45) one easily that q = a − c = 0, which contradicts the Gauss

equation (1.3.3).

Type III (c). In view of Lemma 3.2.2 and (2.2.16), equations (1.3.2) reduce to

[η (a− c)− 2hb] g,zz1 + [η (a− c)− 2hb] g,x − gf
[
h (a− c) + η2

h
(a− c)

]
+g
[
ηa,x − hb,x − 2bh,x + ηh,x

h
(a− c)

]
+ηqf

h
(a− c) + ha,t + ηb,t − qa,x = 0,

[h (a− c) + 2ηb] g,zz1 + [h (a− c) + 2ηb] g,x − gf
[
2hb+ 2η

2

h
b
]

+g
[
ηb,x − hc,x + (a− c)h,x + 2ηh,x

h
b
]

+ 2ηqf
h
b+ hb,t + ηc,t − qb,x = 0.

(3.2.51)

Hence, in view of the independence of h, m, q, f and g on z1, one readily gets that(
−h η

η h

)(
2b

a− c

)
=

(
0

0

)
,

where det

(
−h η

η h

)
6= 0, and hence that b = a − c = 0 which contradicts the Gauss

equation (1.3.3).

3.2.3 Proof of Theorem 3.1.2

In the following proof of Theorem 3.1.2, we distinguish between the linear prob-

lems (a) and (b) provided by (1.2.10) and (1.2.11).

(a) In view of Lemma 3.2.2 and (1.2.10), equations (1.3.2) reduce to
−Ωe−ε(ηx+g) [a,x − ε (a− c) η] + e−ε(ηx+g)f [a,t − εg′ (a− c)]

+ηb,t − g′b,x = 0,

−Ωe−ε(ηx+g) [b,x − 2εηb] + e−ε(ηx+g)f (b,t − 2εg′b) + ηc,t − g′c,x = 0,

(3.2.52)

where Ω,zk−1
6= 0. Hence, in view of the independence of f , g and a, b, c on zk−1, (3.2.52)

splits into the following systems a,x − ε (a− c) η = 0,

b,x − 2εηb = 0,
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and  e−ε(ηx+g)f [a,t − εg′ (a− c)] + ηb,t − g′b,x = 0,

e−ε(ηx+g)f (b,t − 2εg′b) + ηc,t − g′c,x = 0.

The rest of the proof runs as that of Theorem 3.1.1, in the case of Type I (a).

(b) In view of Lemma 3.2.2 and (1.2.11), equations (1.3.2) reduce to

−Ω [cosh (ηx+ g) a,x + η sinh (ηx+ g) (a− c)] + cosh (ηx+ g) a,t

+ηb,t − g′b,x + sinh (ηx+ g) g′f (a− c) = 0,

−Ω [cosh (ηx+ g) b,x + 2η sinh (ηx+ g)] + cosh (ηx+ g) b,t

+ηc,t − g′c,x + 2 sinh (ηx+ g) g′fb = 0,

(3.2.53)

where Ω,zk−1
6= 0. Hence, in view of the independence of f , g and a, b, c on zk−1, (3.2.53)

splits into the following systems cosh (ηx+ g) a,x + η sinh (ηx+ g) (a− c) = 0,

cosh (ηx+ g) b,x + 2η sinh (ηx+ g) = 0,

and  cosh (ηx+ g) a,t + ηb,t − g′b,x + sinh (ηx+ g) g′f (a− c) = 0,

cosh (ηx+ g) b,t + ηc,t − g′c,x + 2 sinh (ηx+ g) g′fb = 0.

The rest of the proof runs as that of Theorem 3.1.1, in the case of Type I (b).

3.3 Examples

Example 3.3.1. Boltzman equation

zt = zz2 + z2
1 , (3.3.1)

is an example of Type I (a) and Type I (b).

For instance, by choosing 1-forms

ω1 = e−ε(ηx+g) (z dx+ zz1 dt) , ω2 = η dx+ g′ dt, ω3 = εω1,

equation (3.3.1) can be seen as a particular instance of Type I (a), described by (2.2.3),

with ε = ±1, f = ϕ = z, ψ = 0 and g = g (t) an arbitrary differentiable function. In this

case, equation (3.3.1) describes a family of pseudospherical surfaces with first fundamental
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form

I =
[
e−2ε(ηx+g)z2 + η2

]
dx2 + 2

[
e−2ε(ηx+g)z2z1 + ηg′

]
dx dt+

[
e−2ε(ηx+g)z2z2

1 + (g′)2] dt2,
and in view of Theorem 3.1.1, whenever the associated 1-forms ωi = fi1 dx + fi2 dt and

the generic solutions z of (3.3.1) are defined on a strip of the form (3.1.1), such a family

of pseudospherical surfaces admits a finite-order local isometric immersion with second

fundamental form given by

II = a11 dx
2 + 2a12 dx dt+ a22dt

2,

where
a11 = νe−2ε(ηx+g)z2

√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1

+2ηγeε(ηx+g)z + νη2 γ2e4ε(ηx+g)−1√
ζe2ε(ηx+g)−γ2e4ε(ηx+g)−1

,

a12 = νe−2ε(ηx+g)z2z1

√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1

+γeε(ηx+g) (g′z + ηzz1) + νηg′ γ2e4ε(ηx+g)−1√
ζe2ε(ηx+g)−γ2e4ε(ηx+g)−1

,

a22 = νe−2ε(ηx+g)z2z2
1

√
ζe2ε(ηx+g) − γ2e4ε(ηx+g) − 1

+2γeε(ηx+g)g′zz1 + (g′)2 ν γ2e4ε(ηx+g)−1√
ζe2ε(ηx+g)−γ2e4ε(ηx+g)−1

.

On the other hand, by choosing 1-forms

ω1 = cosh (ηx+ g) (z dx+ zz1 dt) , ω2 = η dx+ g′ dt, ω3 = −tanh (ηx+ g)ω1,

equation (3.3.1) can be seen as a particular instance of Type I (b), described by (2.2.3),

with f = ϕ = z, ψ = 0 and g = g (t) an arbitrary differentiable function. In this case,

equation (3.3.1) describes a family of pseudospherical surfaces with first fundamental form

I = [cosh2 (ηx+ g) z2 + η2] dx2 + 2 [cosh2 (ηx+ g) z2z1 + ηg′] dx dt

+
[
cosh2 (ηx+ g) z2z2

1 + (g′)2] dt2,
and in view of Theorem 3.1.1, whenever the associated 1-forms ωi = fi1 dx+fi2 dt and the

generic solutions z are defined on a strip of the form (3.1.3), such a family of pseudospheri-

cal surfaces admits a finite-order local isometric immersion with second fundamental form

given by

II = a11 dx
2 + 2a12 dx dt+ a22dt

2,
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where
a11 = νz2

√
ζcosh2 (ηx+ g)− cosh4 (ηx+ g)− γ2

+ 2γηz
cosh(ηx+g)

+ νη2 γ2−cosh4(ηx+g)

cosh2(ηx+g)
√
ζcosh2(ηx+g)−cosh4(ηx+g)−γ2

,

a12 = νz2z1

√
ζcosh2 (ηx+ g)− cosh4 (ηx+ g)− γ2

+γ(g′z+ηzz1)
cosh(ηx+g)

+ ηg′ν γ2−cosh4(ηx+g)

cosh2(ηx+g)
√
ζcosh2(ηx+g)−cosh4(ηx+g)−γ2

,

a22 = νzz1

√
ζcosh2 (ηx+ g)− cosh4 (ηx+ g)− γ2

+ 2g′γzz1
cosh(ηx+g)

+ (g′)2 ν γ2−cosh4(ηx+g)

cosh2(ηx+g)
√
ζcosh2(ηx+g)−cosh4(ηx+g)−γ2

.

Example 3.3.2. Equation

zt = xz2 + 2 (xz + 1) z1 + z2, (3.3.2)

is an equation of Type I (a) and Type I (b), as well as of Type III (a).

For instance, if in Type I one chooses f = z, ϕ = x, ψ = xz2+z, one can interpret

(3.3.2) as a particular instance of Type I (a), with associated 1-forms

ω1 = e−ε(ηx+g) [z dx+ (xz1 + xz2 + z) dt] ,

ω2 = η dx+ g′ dt,

ω3 = εω1,

(3.3.3)

where ε = ±1 and g = g (t) is an arbitrary differentiable function. In this case, equation

(3.3.2) describes a family of pseudospherical surfaces with first fundamental form I =

ω2
1 + ω2

2 given by (3.3.3), and in view of Theorem 3.1.1, whenever the associated 1-forms

ωi = fi1 dx+ fi2 dt and the generic solutions z of (3.3.2) are defined on a strip of the form

(3.1.1), such a family of pseudospherical surfaces admits a finite-order local isometric

immersion. In such a case, the coefficients aij of the second fundamental form are given

by (1.3.1) where a, b, c are given by (3.1.6).

On the other hand, if in Type III (a) one chooses f = z, g = −xz, m = 0,

h = −η and ε1 = −1, one can interpret (3.3.2) as a particular instance of that type with

associated 1-forms
ω1 = z dx+ [xz2 + 2 (xz + 1) z1 + z2] dt,

ω2 = η dx+ ηxz dt,

ω3 = −ω2,

(3.3.4)

where η 6= 0. In this case, equation (3.3.2) describes pseudospherical surfaces with first

fundamental form I = ω2
1 + ω2

2 given by (3.3.4), however in view of Theorem 3.1.1,
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such a family of pseudospherical surfaces does not admit any finite-order local isometric

immersion.

This proves that the existence of finite-order local isometric immersions depends

on the particular choice of the associated linear problem.

Example 3.3.3. In view of Theorem 1.2.2, any evolution equation written in conservation

law form is a PS equation. Hence, in view of Theorem 3.1.2, whenever the associated

1-forms ωi = fi1 dx + fi2 dt and the generic solutions z are defined on a strip of the

form (3.1.5) or (3.1.7), there exists a local finite-order isometric immersion in E3 of the

corresponding family of pseudospherical surfaces described by such a PS equation. In

such a case, the coefficients aij of the second fundamental form are given by (1.3.1),

where a, b, c are given by (3.1.6) or (3.1.8).

Examples of this type are provided by many well known evolution equations. Ex-

amples of second order are for instance provided by Burgers equation, Murray equation

and Svinolupov-Sokolov equations. Higher order examples are provided by Kuramoto-

Sivashinsky equation (see also [17]), Sawada-Kotera equation and Kaup-Kupershmidt

equation (see also [29]) as well as by hierarchies of evolution equations written in conser-

vation law form like the following ones:

(i) Burgers hierarchy

zt = Dx

[
Dx (an) +

z

2
an

]
, n ∈ N,

where a1 = z and an+1 = Dx (an) + z
2
an;

(ii) mKdV hierarchy

zt = Dx

[
Dx

(
Dx (an)

z

)
+ zan

]
, n ∈ N,

where a1 = z2

2
and Dx(an+1)

z
= Dx (zan) +D2

x

[
Dx(an)

z

]
;

(iii) KdV hierarchy

zt = Dx

(an+1

4

)
, n ∈ N,

where a1 = 4z, Dx

(
an+1

4

)
= D3

x

(
an
4

)
+ zDx (an) + z1an

2
.

Theorem 3.1.2 proves that, whenever the associated 1-forms ωi and the solutions z

are defined on a strip of the form (3.1.5) or (3.1.7), finite-order local isometric immersions

for the described family of pseudospherical surfaces exist in all such cases.



Chapter 4

Nontrivial 1-parameter families of

ZCRs obtained via symmetry actions

In this chapter we consider the problem of constructing nontrivial 1-parameter

families of ZCRs for PS equations. This problem is of special interest for the application

of the theory of ZCRs, for instance in the calculation of exact solutions and infinite

hierarchies of conservation laws, and has been solved in the more general case of g-valued

ZCRs, with g a Lie sub-algebra of gl (n,R) or gl (n,C), by using the theory of classical

symmetries of differential equations and the cohomology defined by the horizontal gauge

differential of a given ZCR. In particular we provide an infinitesimal criterion which

permits to identify all infinitesimal classical symmetries of an equation E whose flow

Aλ could be used to embed a given ZCR α of E into a nontrivial 1-parameter family

αλ of zero-curvature representations of E . The results reported here have been recently

published in the paper [15].

The chapter is organized as follows. In Section 4.1 we discuss the application

of symmetries of an equation E in the construction of a 1-parameter family of ZCRs of

E . In Section 4.2 we prove the main theorem which allows one to identify infinitesimal

gauge-like symmetries as well as non gauge-like ones, for a given ZCR. In view of this

theorem, only infinitesimal symmetries which are non gauge-like, for a ZCR α, may be

used to construct a nontrivial 1-parameter family αλ. Then we illustrate the results of

this chapter by means of some examples in Section 4.3.

4.1 Action of continuous symmetries on ZCRs

In this section we will show how the flows of infinitesimal classical symmetries

of a differential equation E could be used to embed a given g-valued ZCR α of E into a

1-parameter family αλ of ZCRs.

79
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Since the flow of a classical infinitesimal symmetry of an equation E ⊂ Jk(π)

is in particular a 1-parameter family of finite symmetries of Ck(π), it will be useful to

recall that finite symmetries of Ck(π) can always be obtained by prolonging either a

(local) diffeomorphism on J0(π) or a (local) diffeomorphism on J1(π). Indeed, in view

of Bäcklund theorem [45, 63], finite symmetries of Ck(π) are of two distinct types: when

m > 1 classical finite symmetries are prolongations of (local) diffeomorphisms on J0(π)

(also called point transformations); on the contrary when m = 1 there are classical finite

symmetries which are not prolongations of point transformations, but are prolongations

of (local) diffeomorphisms on J1(π) (also called contact transformations). In practice, a

contact or point transformation can be prolonged to a finite symmetry of Ck(π) on Jk(π)

as follows.

For ease of notation, denoting by z(h) the totality of coordinate zjσ, with j ∈
{1, ...,m} and 0 ≤ |σ| ≤ h, the prolongations

x̄i = ξi(x, z
(1)), z̄jρ = ψjρ(x, z

(k)), 0 ≤ |ρ| ≤ k

to Jk(π) of a contact transformation on J1(π)

x̄i = ξi(x, z
(1)), z̄jσ = ψjσ(x, z(1)), 0 ≤ |σ| ≤ 1

can be computed by using for any fixed σ and j the following recurrence formula

∥∥z̄jσ+1i

∥∥ = ∆−1
∥∥∥D(k+1)

i ψjσ(x, z(k))
∥∥∥ ,

where the D
(k+1)
i denote the (k + 1)-th order truncated total derivative operators

D
(k+1)
i := ∂xi +

∑
|σ|≤k

zjσ+1i
∂zjσ ,

and ∆ is the nonsingular matrix

∆ :=

∥∥∥∥∥∥∥∥
D

(1)
1 (ξ1) ... D

(1)
1 (ξn)

...
...

D
(1)
n (ξ1) ... D

(1)
n (ξn)

∥∥∥∥∥∥∥∥ . (4.1.1)

The same formula could be used to prolong a point transformation {x̄i = ξi(x, z), z̄j =

ψj(x, z)} on J0(π) to a (local) finite symmetry of Ck(π) on Jk(π).

Now, since the infinite prolongation of a finite classical symmetry is a finite sym-

metry of C(π), by considering g-valued forms, with g a sub-algebra of gl(n,R), one has
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the following

Lemma 4.1.1. Let F be the infinite prolongation of a point or contact transformation.

For any pair (a, b) of natural numbers, the following diagram commutes:

g⊗ Λ(a+1,b)(π)
π(a+1,b)◦F ∗−→ g⊗ Λ(a+1,b)(π)

dH ↑ 	 ↑ dH
g⊗ Λ(a,b)(π) −→

π(a,b)◦F ∗
g⊗ Λ(a,b)(π).

In particular, if F̄ is the restriction to E (∞) of the infinite prolongation F of a point or

contact transformation which maps a formally integrable equation E ⊂ Jk(π) to a formally

integrable equation Y ⊂ Jk(π), then for any pair (a, b) of natural numbers the following

diagram commutes:

g⊗ Λ(a+1,b)(Y)
π̄
(a+1,b)
E ◦F̄ ∗
−→ g⊗ Λ(a+1,b)(E)

d̄Y ↑ 	 ↑ d̄E
g⊗ Λ(a,b)(Y) −→

π̄
(a,b)
E ◦F̄ ∗

g⊗ Λ(a,b)(E).

Proof. We only give a proof of the commutativity of the first diagram, since the commu-

tativity of the second diagram is obtained by restricting on E (∞) and Y(∞).

Since d = dH + dV and F ∗ commute, for any α ∈ g ⊗ Λ(a,b)(π) one gets that

F ∗(dHα)+F ∗(dV α) = dH (F ∗(α))+dV (F ∗(α)). On the other hand, since F is a symmetry

of C(π), it is not difficult to see that, for any ρ ∈ Λ(p,q), all terms in the decomposition

of F ∗(ρ) on
⊕

r+s=p+q

Λ(r,s)(π) have at least vertical degrees q. Hence π(a+1,b) (F ∗(dV α)) =

π(a+1,b) (dV (F ∗(α))) = 0, and one has that π(a+1,b) (F ∗(dHα)) = π(a+1,b) (dH (F ∗(α))).

But, again in view of the fact that F is a symmetry of C(π), one has π(a+1,b) (dH (F ∗(α))) =

dH
(
π(a,b) (F ∗(α))

)
then π(a+1,b) (F ∗(dHα)) = dH

(
π(a,b) (F ∗(α))

)
.

An analogous result holds for forms on J∞ (π) and E (∞).

We will adopt the following

Definition 4.1.2. Let F be the infinite prolongation of a point or contact transformation.

By F# we denote the map

F# = π(a,b) ◦ F ∗ : g⊗ Λ(a,b)(π)→ g⊗ Λ(a,b)(π).

Analogously, if F̄ is the restriction to E (∞) of the infinite prolongation F of a point or

contact transformation which maps a formally integrable equation E ⊂ Jk(π) to a formally
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integrable equation Y ⊂ Jk(π), by F̄# we will denote the map

F̄# = π̄
(a,b)
E ◦ F̄ ∗ : g⊗ Λ(a,b)(Y)→ g⊗ Λ(a,b)(E).

Notice that, if F is projectable (i.e., F ∗(C∞(M)) ⊂ C∞(M)), then F# = F ∗ and

F̄# = F̄ ∗.

Now we can prove the following

Proposition 4.1.3. If F is the infinite prolongation of a point or contact transformation,

which maps a formally integrable equation E ⊂ Jk(π) to a formally integrable equation

Y ⊂ Jk(π), then

F̄# : g⊗ Λ̄1(Y)→ g⊗ Λ̄1(E)

maps any ZCR β of Y to a ZCR α = F̄#(β) of E.

Proof. It is not difficult to show that, in view of the non degeneracy of (4.1.1), α is a non-

vanishing g-valued horizontal form on E (∞). Hence, one has to prove that d̄H,Eα− 1
2
[α, α] =

0. To this end, it suffices to observe that in view of Lemma 4.1.1

F̄#
(
d̄H,Yβ − 1

2
[β, β]

)
= d̄H,E

(
F̄#(β)

)
− 1

2

([
F̄# (β) , F̄# (β)

])
= d̄H,Eα− 1

2
[α, α].

Hence the claim follows by the fact that d̄H,Yβ − 1
2
[β, β] = 0.

Corollary 4.1.4. If F̄ is the restriction to E (∞) of a classical symmetry of a formally

integrable equation E, then F̄ ] maps any ZCR α of E to a ZCR F̄#(α). In particular, if

Aλ is the flow of a restricted classical generalized symmetry of E, then αλ := A#
λ (α) is a

1-parameter family of ZCRs of E.

We close this section with the following examples illustrating the results of Propo-

sition 4.1.3 and Corollary 4.1.4.

Example 4.1.5. The sine-Gordon equation

E := {z1,t = sin (z)} , (4.1.2)

defines a submanifold of J2(π), with π : R2 × R → R2, (x, t, z) 7→ (x, t), and admits the

following sl(2,R)-valued ZCR

α :=

 1 − z1
2

z1
2
−1

 dx+
1

4

 cos (z) sin (z)

sin (z) −cos (z)

 dt. (4.1.3)
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The algebra of classical symmetries of E is generated by the prolongations of vector fields

Y1 = ∂x, Y2 = ∂t, Y3 = x∂x − t∂t.

Symmetries Y1 and Y2 describe the obvious invariance of (4.1.2) under translations x 7→
x + c1 and t 7→ t + c2, c1, c2 ∈ R. Hence their prolongations leave invariant the ZCR α

and cannot be used to construct a 1-parameter family of sl(2,R)-valued ZCRs of (4.1.2).

The same is not true for Y3, and according to Corollary 4.1.4 one could use the flow Aλ of

the restriction to E (∞) of Y
(∞)

3 to generate a 1-parameter family of sl(2,R)-valued ZCRs

of (4.1.2). Indeed, since α only involves first-order jet-coordinates and Aλ induces the

following first-order transformation

t 7→ e−λt, x 7→ eλx, z 7→ z, z1 7→ e−λz1, zt 7→ eλzt,

one readily gets that

αλ = A#
λ (α) =

 eλ − z1
2

z1
2
−eλ

 dx+
1

4eλ

 cos (z) sin (z)

sin (z) −cos (z)

 dt,

which is the well known 1-parameter family of ZCRs for the sine-Gordon equation [56].

Using Theorem 1.6.3, one could check that λ is not removable, and hence that αλ is a

nontrivial 1-parameter family of sl(2,R)-valued ZCRs. Using the Theorem 4.2.8 of next

section one could predict the non-removability of λ by the fact that the prolongation of

Y3 is non gauge-like for α.

Remark 4.1.6. We notice that, in the current literature, classical symmetries of nonlinear

differential equations admitting ZCRs are usually projectable. However, as shown by the

following example, non-projectable symmetries also may occur and hence exploited in the

embedding of a given nonparametric ZCR α into a 1-parameter family αλ of ZCRs.

Example 4.1.7. In the previous example, Aλ is projectable and hence A#
λ (α) = A∗λ(α).

However, if one uses the non-projectable transformation F defined by the prolongation of

the point transformation

τ = t− z, ξ = x, v = z , (4.1.4)

equation (4.1.2) and ZCR (4.1.3) transform to

Y =

{
vξτ =

1

vτ − 1

(
vξvττ + v3

τsin (v)− 3v2
τsin (v) + 3vτsin (v)− sin (v)

)}
(4.1.5)
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and

β =
(
F̄−1

)#
(α) =

 1− vξcos(v)

4

vξ
2(vτ−1)

− vξsin(v)

4

vξ
2(1−vτ )

− vξsin(v)

4

vξcos(v)

4
− 1

 dξ

+1−vτ
4

 cos (v) sin (v)

sin (v) −cos (v)

 dτ,

respectively, where F̄ is the restriction of F to E (∞). Consequently, Y3 transforms to the

non-projectable field X3 := F∗(Y3) = ξ∂ξ + (v − τ) ∂τ which generates a non-projectable

classical symmetry of Y . Hence the flow Bλ of the restriction to Y(∞) of X
(∞)
3 is not

projectable and B#
λ (β) does not coincide with B∗λ(β).

Since β only involves first-order jet-coordinates and Bλ induces the following

first-order transformation

ξ 7→ eλξ, τ 7→ v + (τ − v) e−λ, v 7→ v, vξ 7→ e−2λvξ
vτ+e−λ−e−λvτ , vτ 7→ vτ

vτ+e−λ−e−λvτ ,

one gets that

βλ = B#
λ (β) =

 eλ − vξcos(v)

4eλ
vξ

2(vτ−1)
− vξsin(v)

4eλ

vξ
2(1−vτ )

− vξsin(v)

4eλ
vξcos(v)

4eλ
− eλ

 dξ

+1−vτ
4eλ

 cos (v) sin (v)

sin (v) −cos (v)

 dτ.

Of course, since F transforms the flow of Y3 to the flow of X3, one has that F̄#(βλ) = αλ.

4.2 Infinitesimal criterion for gauge-like symmetries

and nontrivial 1-parameter families of ZCRs

In this section we will prove an infinitesimal version of Theorem 1.6.3 (see The-

orem 4.2.8 below), which will give a characterization of classical symmetries whose flows

acts like gauge transformations for a ZCR α of E . We will call these symmetries gauge-like

and prove that they form a sub-algebra of the Lie algebra of symmetries of E . Hence,

αλ := A#
λ (α) is nontrivial if and only if Aλ is the flow of a restricted classical non gauge-like

symmetry.

We begin by introducing the following

Definition 4.2.1. Let Z be a vector field on J∞(π) and ω ∈ g ⊗ Λ(p,q)(π). By Z(ω) we
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denote the π(p,q)-projected Lie derivative

Z(ω) := π(p,q) (LZ(ω)) .

In particular, if Z is a generalized symmetry of E and Z̄ its restriction to E (∞), for any

ω ∈ g⊗ Λ(p,q)(E) we denote by Z̄(ω) the π̄(p,q)-projected Lie derivative

Z̄(ω) := π̄(p,q) (LZ̄(ω)) .

The following lemma gives an analogy of the standard commutation property

between the Lie derivative and the exterior differential.

Lemma 4.2.2. If Z is a generalized symmetry of E and Z̄ its restriction to E (∞), then

Z̄(d̄H(ω)) = d̄H(Z̄(ω)) for any ω ∈ g⊗ Λ(a,b)(E).

Proof. Since LZ and d commute on g ⊗ Λ∗(E) and Z is tangent to E (∞), one gets that

(LZ̄ ◦ d|E(∞) − d|E(∞) ◦ LZ̄) (ω) = 0, for any ω ∈ g ⊗ Λ(a,b)(E). On the other hand, since

d|E(∞) = d̄H + d̄V , Lemma 4.1.1 allows one to rewrite

π̄(a+1,b) ◦ (LZ̄ ◦ d|E(∞) − d|E(∞) ◦ LZ̄) (ω) = 0

as ((
π̄(a+1,b) ◦ LZ̄

)
◦ d̄H − d̄H ◦

(
π̄(a,b) ◦ LZ̄

))
(ω) =

(
π̄(a+1,b) ◦

[
d̄V , LZ̄

])
(ω).

Then, since Z̄ is a symmetry of C(E),
[
d̄V , LZ̄

]
(ω) cannot have horizontal degree greater

than a and
(
π̄(a+1,b) ◦

[
d̄V , LZ̄

])
(ω) = 0.

It is not difficult to prove also the following two results

Lemma 4.2.3. If A,B are infinite prolongations of point or contact transformations,

then B# ◦ A∗ = B# ◦ A#. In particular, if A and B are symmetries of E, then their

restrictions Ā, B̄ to E (∞) are such that B̄# ◦ Ā∗ = B̄# ◦ Ā#.

Lemma 4.2.4. If Z1, Z2 are generalized symmetries of E, then for any α ∈ g ⊗ Λ̄1(E)

their restrictions Z̄1 and Z̄2 to E (∞) are such that Z̄1 (LZ̄2
α) = Z̄1

(
Z̄2 (α)

)
.

Lemma 4.2.4 will be used in the proof of Proposition 4.2.10, whereas Lemma 4.2.3

is needed in the proof of the following

Proposition 4.2.5. Let α ∈ g ⊗ Λ̄1(E) be a ZCR of E and Z be a classical symmetry

of E. If Aλ is the flow of the restriction Z̄ of Z to E (∞), i.e., Z̄ = d
dλ

∣∣
λ=0

A∗λ, then the

1-parameter family of ZCRs αλ := A#
λ (α) is such that:
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(i) Z̄(α) = d
dλ

∣∣
λ=0

A#
λ (α);

(ii) dαλ
dλ

= A#
λ

(
Z̄(α)

)
.

Proof. (i) By definition of Lie derivative LZ̄(α) = d
dλ

∣∣
λ=0

A∗λ(α), hence the claim follows

by observing that Z̄(α) = π̄(1,0)
(
d
dλ

∣∣
λ=0

A∗λ(α)
)

=
(
d
dλ

∣∣
λ=0

π̄(1,0) (A∗λ(α))
)

= d
dλ

∣∣
λ=0

A#
λ (α).

(ii) In view of Lemma 4.2.3, A#
λ+δ = π̄(1,0) ◦A∗λ ◦A∗δ = A#

λ ◦A∗δ = A#
λ ◦A

#
δ hence

dαλ
dλ

= lim
δ→0

A#
λ

(
A#
δ (α)− α

)
δ

= A#
λ

(
lim
δ→0

A#
δ (α)− α

δ

)
= A#

λ

(
Z̄(α)

)
,

in view of (i).

Then one can also prove the following

Proposition 4.2.6. Let α ∈ g ⊗ Λ̄1(E) be a ZCR of E. If Z̄ is a restricted generalized

symmetry of E, then Z̄(α) is a 1-cocycle with respect to ∂̄α, i.e.,

∂̄αZ̄(α) = 0.

Proof. Since d̄Hα− 1
2
[α, α] = 0 and Z̄ is a vector field on E (∞), one still has

LZ̄

(
d̄Hα−

1

2
[α, α]

)
= 0

identically on E (∞). Hence, by using Lemma 4.2.2 and formula (1.5.1), the derivative of

Z̄
(
d̄Hα− 1

2
[α, α]

)
returns

0 = d̄H
(
Z̄(α)

)
− 1

2
[Z̄(α), α]− 1

2
[α, Z̄(α)] = d̄H

(
Z̄(α)

)
− [α, Z̄(α)] = ∂̄αZ̄(α).

Remark 4.2.7. If Z̄ is the restriction to E (∞) of a classical symmetry Z of E with flow

Aλ, one can prove Proposition 4.2.6 by using Proposition 4.2.5. Indeed, by considering

αλ = Ā#
λ (α) and differentiating the identity d̄αλ − αλ ∧ αλ = 0 at λ = 0, one gets

0 = d̄H
(
Z̄(α)

)
− Z̄(α) ∧ α− α ∧ Z̄(α) = d̄H

(
Z̄(α)

)
− 2α ∧ Z̄(α)

= d̄H
(
Z̄(α)

)
− [α, Z̄(α)] = ∂̄α

(
Z̄(α)

)
.

The following result, together with Proposition 4.2.6, provides a cohomological obstruction

to the removability of λ from the 1-parameter family of ZCRs obtained by using the flow

of a classical symmetry.
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Theorem 4.2.8. Let α ∈ g⊗ Λ̄1(E) be a ZCR of E, Z a classical symmetry of E and Aλ

the flow of its restriction Z̄ to E (∞). Then the parameter λ in αλ = A#
λ (α) is removable

if, and only if, Z̄(α) is a coboundary with respect to ∂̄α, i.e.,

Z̄(α) = ∂̄αK, (4.2.1)

for some g-valued smooth function K on E (∞).

Proof. If the parameter λ is removable, then for λ0 = 0 there exists some G-valued

function Sλ such that S0 = I (identity) and

α = α
S−1
λ
λ =

(
A#
λ α
)
S−1
λ = d̄H

(
S−1
λ

)
Sλ + S−1

λ

(
A#
λ α
)
Sλ.

Hence, by differentiating with respect to λ

0 = d̄H
(
d
dλ

(
S−1
λ

))
Sλ + d̄H

(
S−1
λ

)
d
dλ
Sλ +

(
d
dλ
S−1
λ

) (
A#
λ α
)
Sλ + S−1

λ

(
d
dλ
A#
λ α
)
Sλ

+S−1
λ

(
A#
λ α
)

d
dλ
Sλ,

and further evaluating at λ0 = 0, by Proposition 4.2.5 one gets

0 = d̄H

(
d

dλ

∣∣∣∣
λ=0

S−1
λ

)
+

(
d

dλ

∣∣∣∣
λ=0

S−1
λ

)
α + Z̄ (α) + α

d

dλ

∣∣∣∣
λ=0

Sλ. (4.2.2)

On the other hand d
dλ

(
S−1
λ Sλ

)
= 0 entails that

(
d
dλ
S−1
λ

)
Sλ + S−1

λ

(
d
dλ
Sλ
)

= 0 and hence
d
dλ

∣∣
λ=0

S−1
λ = − d

dλ

∣∣
λ=0

Sλ. Therefore, by choosing K = d
dλ

∣∣
λ=0

Sλ, (4.2.2) can be rewritten

as Z̄ (α) =
(
d̄H − [α, .]

)
(K) = ∂̄α (K).

Conversely, assume that Z̄ (α) = ∂̄α (K) and consider a solution Sλ of Ṡλ = A∗λ (K)Sλ,

S0 = I,
(4.2.3)

where Ṡλ = d
dλ
Sλ. In a neighborhood I of λ0 = 0, Sλ defines the gauge transformation

αSλ = d̄HSλS
−1
λ + SλαS

−1
λ which can be rewritten as d̄HSλ = αSλSλ − Sλα. Then, by

defining

zλ := d̄HSλ + Sλα− αλSλ, (4.2.4)

one readily gets

zλ =
(
αSλ − αλ

)
Sλ. (4.2.5)

Of course z0 = 0, and it can be proved that zλ = 0, for any λ ∈ I. To this end, one may
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first consider the derivative of (4.2.4) with respect to λ

żλ = d̄H Ṡλ + Ṡλα− α̇λSλ − αṠλ,

and, by using equation (4.2.3), rewrite it as

żλ = d̄H (A∗λ (K)Sλ) + (A∗λ (K)Sλ)α− α̇λSλ − αλA∗λ (K)Sλ.

On the other hand, in view of Proposition 4.2.5, one has

α̇λ =
d

dλ
A#
λ (α) = A#

λ Z(α) = A#
λ

(
∂̄α (K)

)
.

Hence
żλ = d̄H (A∗λ (K))Sλ + A∗λ (K) d̄HSλ + A∗λ (K)Sλα− A#

λ

(
∂̄α (K)

)
Sλ

−A#
λ (α)A∗λ (K)Sλ

= d̄H (A∗λ (K))Sλ + A∗λ (K) d̄HSλ + A∗λ (K)Sλα− A#
λ

(
d̄HK − [α,K]

)
Sλ

−A#
λ (α)A∗λ (K)Sλ

= d̄H (A∗λ (K))Sλ + A∗λ (K)
(
d̄HSλ + Sλα

)
− d̄H (A∗λ (K))Sλ

+A#
λ (α)A∗λ (K)Sλ − A∗λ (K)A#

λ (α)Sλ − A#
λ (α)A∗λ (K)Sλ

= A∗λ (K)
(
d̄HSλ + Sλα− A#

λ (α)Sλ

)
= A∗λ (K) zλ

and zλ must be the solution of the Cauchy problem żλ = A∗λ (K) zλ

z0 = 0.

It follows, by the existence and uniqueness of solutions to such a Cauchy problem, that

zλ must be identically zero. Then, since Sλ is invertible, by (4.2.5) one gets α = α
S−1
λ
λ and

hence that λ is removable .

This theorem justifies the following

Definition 4.2.9. A generalized symmetry Z of E is called gauge-like for the ZCR

α ∈ g ⊗ Λ̄1(E) if its restriction Z̄ to E (∞) satisfies the condition Z̄(α) = ∂̄αK for some

g-valued smooth function K on E (∞). If in addition Z is a classical symmetry, then Z will

be called a classical gauge-like symmetry for α.

We have the following
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Proposition 4.2.10. Let Z1 and Z2 be two gauge-like symmetries for the same ZCR

α ∈ g⊗ Λ̄1(E) of E. Then also [Z1, Z2] is gauge-like for α. In particular, if

Z̄1(α) = ∂̄αK1, Z̄2(α) = ∂̄αK2, (4.2.6)

then

[Z1, Z2](α) = ∂̄α (K12) ,

with

K12 = Z̄1(K2)− Z̄2(K1)− [K1, K2] .

Proof. First observe that [Z1, Z2] =
[
Z̄1, Z̄2

]
and L[Z̄1,Z̄2] = [LZ̄1

, LZ̄2
]. Hence, in view of

Lemma 4.2.4, one gets

[
Z̄1, Z̄2

]
(α) = Z̄1(Z̄2(α))− Z̄2(Z̄1(α)),

and a direct computation gives

Z̄1(Z̄2(α))− Z̄2(Z̄1(α)) = d̄H
(
Z̄1(K2)− Z̄2(K1)

)
−
[
α, Z̄1(K2)− Z̄2(K1)

]
−
{[
Z̄1(α), K2

]
−
[
Z̄2(α), K1

]}
.

Then using again (4.2.6), and formulas (1.5.1,1.5.2,1.5.4), one readily gets that

Z̄1(Z̄2(α))− Z̄2(Z̄1(α)) = ∂̄α
(
Z̄1(K2)− Z̄2(K1)− [K1, K2]

)
.

Hence one gets the following

Corollary 4.2.11. Gauge-like symmetries, for the same ZCR α of E, form a Lie sub-

algebra of the Lie algebra of generalized symmetries of E. In particular, classical gauge-like

symmetries form a Lie sub algebra of the Lie algebra of classical symmetries.

Remark 4.2.12. It is worth to remark here that, in general, two non gauge-like symmetries

Z1, Z2 lead to two nontrivial 1-parameter families of ZCRs α1
λ and α2

η. However, one

should consider α1
λ and α2

η as being two distinct 1-parameter families only if they are not

equivalent, according to Definition 1.6.2.

We conclude this section by observing that the Lie algebra of gauge-like symme-

tries for a ZCR α of E is invariantly associated to any equation equivalent to E , modulo

some contact transformation. Indeed one has the following
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Proposition 4.2.13. If F is the infinite prolongation of a point or contact transformation

which maps a formally integrable equation E ⊂ Jk(π) to a formally integrable equation

Y ⊂ Jk(π), then the push-forward F∗ transforms the Lie algebra of gauge-like symmetries

for a ZCR α of E to the Lie algebra of gauge-like symmetries for the ZCR β = (F−1)
#

(α)

of Y.

Proof. Consequence of the formula (F−1)
∗

(LZ̄α) = LF∗(Z̄) (F−1)
∗

(α), which holds for any

restricted generalized symmetry Z̄ of E , and of formulas π̄
(a,b)
Y ◦ (F−1)

∗
= (F−1)

∗ ◦ π̄(a,b)
E

and d̄H,Y ◦ (F−1)
#

= (F−1)
# ◦ d̄H,E .

4.3 Examples

Here we illustrate some examples of how, starting from a given ZCR α of E , one

may use the flow of an infinitesimal classical symmetry which is non gauge-like for α to

construct a nontrivial 1-parameter family αλ of ZCRs of E .

Example 4.3.1. Burgers equation

zt = z2 + zz1, (4.3.1)

is one of the better-known nonlinear differential equations. In the paper [20] it has been

observed that (4.3.1) can be embedded into a huge class of pseudospherical equations. In

particular, the sl(2,R)-valued ZCR of (4.3.1) found in that paper is

βη :=

 η
2

z
4

+ η
2

z
4
− η

2
−η

2

 dx+

 ηz
4

z1
4

+ z2

8
+ ηz

4

z1
4

+ z2

8
− ηz

4
−ηz

4

 dt,

where η is a nonzero parameter. However, by using Theorem 1.6.3 one can see that η is

removable through the gauge transformation defined by

S =

 1
2
√
η
−√η

1
2
√
η

√
η

 .

Indeed, one has that

α = S−1βηS − S−1d̄HS =

 z
4

0

−1
2
− z

4

 dx+

 z1
4

+ z2

8
0

− z
4

− z1
4
− z2

8

 dt.

Here, by applying the results of Sections 4.1 and 4.2, we will show how use α to

construct a nontrivial 1-parameter family of ZCRs of (4.3.1).
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To this end, we first observe that the algebra of classical symmetries of (4.3.1) is

5-dimensional and generated by the prolongations of vector fields

Y1 = ∂x, Y2 = ∂t, Y3 = x∂x + 2t∂t − z∂z, Y4 = t∂x − ∂z,

Y5 = −xt∂x − t2∂t + (x+ tz) ∂z.

In particular, the structure of the algebra of classical symmetries is

[Y1, Y2] = [Y1, Y4] = [Y4, Y5] = 0, [Y1, Y3] = [Y2, Y4] = Y1,

[Y2, Y3] = 2Y2, [Y5, Y2] = Y3, [Y3, Y5] = 2Y5, [Y5, Y1] = [Y3, Y4] = Y4.

Then, using Theorem 4.2.8, one can check that Y1, Y2 and Y3 generate the algebra

of gauge-like symmetries for α. On the contrary Y4 and Y5 are non gauge-like for α. Notice

that the sub-algebra of gauge symmetries, with respect to α is not an ideal. For instance

this is evident from the commutator [Y3, Y5] = 2Y5.

By way of illustration, we explicitly prove these properties for Y3 and Y5.

For instance, denoting by Z̄ the restriction of Y
(∞)

3 to the infinite prolongation

E (∞) of the Burgers equation. Equation (4.2.1) is equivalent to(
0 0

−1
2

0

)
dx+

(
0 0

− z
4

0

)
dt = d̄HK − [α,K] , (4.3.2)

where d̄H is the horizontal differential on E (∞) and K =

(
a b

c −a

)
an sl(2,R)-valued

function on E (∞). Then, it is not difficult to check that (4.3.2) is satisfied by K =(
−1

2
0

0 1
2

)
, and hence that Y3 is gauge-like for α.

On the other hand, denoting by Z̄ the restriction of Y
(∞)

5 to E (∞), one can readily

check that the resulting equation (4.2.1) does not admit any solution K. Indeed, assuming

that K =

(
−1

2
0

0 1
2

)
is an sl(2,R)-valued function on E (∞), then the coefficient of dx in

the 1-form Z̄(α)− d̄HK + [α,K] is

i∂x
(
Z̄(α)− d̄HK + [α,K]

)
=

 x+2b
4
− D̄xa

zb
2

+ D̄xb

t−zc
2
− a− D̄xc −x+2b

4
+ D̄xa

 . (4.3.3)

Now, it is straightforward to check that for (4.3.3) being identically zero it is necessary

that the functions a, b, c depend only on (x, t). But, even in such a case (4.3.3) would

never vanish due to its dependence on z. Hence Y5 is non gauge-like for α.
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Hence, for instance, one may use the flow Aλ of the restricted symmetry Ȳ
(∞)

5 ,

to construct a nontrivial 1-parameter family of ZCRs of (4.3.1).

Indeed, since α only involves first-order jet-coordinates and Aλ induces the fol-

lowing first-order transformation

x 7→ x

1 + λt
, t 7→ t

1 + λt
, z 7→ (1 + λt) z + λx, z1 7→ (1 + λt)2 z1 + λ (1 + λt) ,

one gets the following nontrivial 1-parameter family of ZCRs of (4.3.1):

αλ := A#
λ (α) =

 z
4

+ λx
4(1+λt)

0

− 1
2(1+λt)

− z
4
− λx

4(1+λt)

 dx

+

 z1
4

+ z2

8
+ λ

4(1+λt)
− λ2x2

8(1+λt)2
0

− z
4(1+λt)

+ λx
4(1+λt)2

− z1
4
− z2

8
− λ

4(1+λt)
+ λ2x2

8(1+λt)2

 dt.

Another nontrivial 1-parameter family of ZCRs of (4.3.1) is

βη :=

 z
4
− η

4
0

−1
2

η
4
− z

4

 dx+

 z1
4

+ (z−η)2

8
+ η(z−η)

4
0

−η
4
− z

4
− z1

4
− (z−η)2

8
− η(z−η)

4

 dt,

and arises from the non gauge-like symmetry generated by Y4. One can see that αλ and

βη are not equivalent, in the sense of Definition 1.6.2.

Example 4.3.2. The well-known 1-parameter family of ZCRs [56] of KdV equation

zt = z3 + 6zz1, (4.3.4)

can be obtained by the following nonparametric sl(2,R)-valued ZCR

α :=

 0 z − 1

−1 0

 dx+

 z1 −4 + 2z + z2 + 2z2

−4− 2z −z1

 dt,

with the use of a symmetry which is non gauge-like for α.

Indeed the algebra of classical symmetries of (4.3.4) is 4-dimensional and gener-

ated by the prolongations of the vector fields

Y1 = ∂x, Y2 = −t∂x +
1

6
∂z, Y3 = ∂t, Y4 = x∂x + 3t∂t − 2z∂z.
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In particular, the structure of the algebra of classical symmetries is

[Y1, Y2] = [Y1, Y3] = 0, [Y1, Y4] = [Y2, Y3] = Y1, [Y2, Y4] = −2Y2, [Y3, Y4] = 3Y3.

Now, in view of Theorem 4.2.8, one can check that Y1 and Y3 generate the sub-algebra of

gauge-like symmetries for α. On the contrary Y2 and Y4 are non gauge-like for α.

By way of illustration, here we will explicitly prove that Y4 is non gauge-like.

For instance, denoting by Z̄ the restriction of Y
(∞)

4 to the infinite prolongation

E (∞) of the KdV equation, one can readily check that the resulting equation (4.2.1) does

not admit any solution K. Indeed, assuming that K =

(
a b

c −a

)
is an sl(2,R)-valued

function on E (∞), then the coefficient of dx in the 1-form Z̄(α)− d̄HK + [α,K] is

i∂x
(
Z̄(α)− d̄HK + [α,K]

)
=

 b+ (z − 1)c− D̄xa −z − 1− 2(z − 1)a− D̄xb

−1− 2a− D̄xc −b− (z − 1)c+ D̄xa

 .
(4.3.5)

Now, it is straightforward to check that for (4.3.5) being identically zero it is necessary

that the functions a, b, c depend only on (x, t). But, even in such a case (4.3.5) would

never vanish due to its dependence on z. Hence Y4 is non gauge-like for α.

Hence, for instance, one may use the flow Aλ of the restricted symmetry Ȳ
(∞)

4 to

construct a nontrivial 1-parameter family αλ := A#
λ (α) of ZCRs of (4.3.4). To this end,

since α only involves second-order jet-coordinates and Aλ induces the following second-

order transformation

x 7→ eλx, t 7→ e3λt, z 7→ e−2λz, z1 7→ e−3λz1, z2 7→ e−4λz2,

one gets that

αλ =

 0 e−λz − eλ

−eλ 0

 dx+

 z1 −4e3λ + 2e−λz2 + e−λz2 + 2eλz

−4e3λ − 2eλz −z1

 dt.

Up to a gauge transformation αλ is equivalent to the already known 1-parameter family

of ZCRs [56]

α̃η :=

 η z

−1 −η

 dx+

 4η3 + 2ηz + z1 z2 + 2ηz1 + 4η2z + 2z2

−4η2 − 2z −4η3 − 2ηz − z1

 dt,
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where η 6= 0. Indeed, if one chooses η = eλ and S =

(
eλ −eλ

0 1

)
, then (α̃eλ)S = A]λ (α).

On the contrary, by using the non gauge-like symmetry generated by Y2, one

would get another nontrivial 1-parameter family

βη :=

 0 z + η
6
− 1

−1 0

 dx

+

 z1 z2 + (2− η)
(
z + η

6
− 1
)

+ 2
(
z + η

6

)2 − 2

2η
3
− 4− 2z −z1

 dt.

However αλ and βη are equivalent (according to Definition 1.6.2), since for η = 6
(
1− eλ

)
and S =

(
eλ/2 0

0 e−λ/2

)
one has that (αλ)

S = βη.

Example 4.3.3. The known 1-parameter family of ZCRs [19] of the Chen-Lee-Liu system{
zt = z2 + 2zvz1

vt = −v2 + 2zvv1

(4.3.6)

can be obtained by the following nonparametric sl(2,R)-valued ZCR

α :=

 zv−1
2

z

v 1−zv
2

 dx+

 z1v−zv1+(zv−1)2

2
z2v − z + z1

zv2 − v − v1
zv1−z1v−(zv−1)2

2

 dt,

with the use of a symmetry which is non gauge-like for α. Indeed, the algebra of classical

symmetries of (4.3.6) is 4-dimensional and generated by the prolongations of vector fields

Y1 = ∂x, Y2 = ∂t, Y3 = −z∂z + v∂v, Y4 = x∂x + 2t∂t − v∂v.

In particular, the structure of the algebra of classical symmetries is

[Y1, Y2] = [Y1, Y3] = [Y2, Y3] = [Y3, Y4] = 0, [Y1, Y4] = Y1, [Y2, Y4] = 2Y2.

Now, in view of Theorem 4.2.8, one can check that Y1, Y2 and Y3 generate the sub-algebra

of gauge-like symmetries for α. On the contrary Y4 is non gauge-like for α. Hence, by using

the flow Aλ of the restricted symmetry Ȳ
(∞)

4 , one can construct a nontrivial 1-parameter

family αλ := A#
λ (α) of ZCRs of (4.3.6). To this end, since α only involves first-order
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jet-coordinates and Aλ induces the following transformation

x 7→ eλx, t 7→ e2λt, z 7→ z, v 7→ e−λv, z1 7→ e−λz1, v1 7→ e−2λv1,

one gets that

αλ :=

 zv−eλ
2

eλz

v eλ−zv
2

 dx+

 z1v−zv1+(zv−eλ)
2

2
eλ
(
z2v − eλz + z1

)
zv2 − eλv − v1

zv1−z1v−(zv−eλ)
2

2

 dt.

The already known 1-parameter family α̃λ of ZCRs of (4.3.6) can be obtained in a similar

way by using the flow Bλ of the restricted symmetry X̄(∞) = 2Ȳ
(∞)

4 + Ȳ
(∞)

3 , i.e., α̃λ =

B#
λ (α). On the other hand, since Bλ = Cλ ◦ A2λ with Cλ being the flow of the restricted

symmetry 1
2
Ȳ

(∞)
3 , then α̃λ = B]

λ (α) = A#
2λ

(
C#
λ (α)

)
.

Example 4.3.4. The known 1-parameter family of ZCRs [24, 64] of theDNSL− Schrödinger

system {
zt = −v2 + 6z2z1 + 2z1v

2 + 4zvv1

vt = z2 + 4zz1v + 2z2v1 + 6v2v1

(4.3.7)

can be obtained by the following nonparametric sl(2,C)-valued ZCR

α :=

 −iv z + i
2

i
2
− z iv

 dx

+

 i [(1− 2z2 − 2v2) v − z1] (i+ 2z) (z2 + v2)− v1 − z − i
2

(i− 2z) (z2 + v2) + v1 + z − i
2

i [z1 − (1− 2z2 − 2v2) v]

 dt,

with the use of a symmetry which is non gauge-like for α. Indeed, the algebra of classical

symmetries of (4.3.7) is 4-dimensional and generated by the prolongations of vector fields

Y1 = ∂x, Y2 = ∂t, Y3 = 2x∂x + 4t∂t − z∂z − v∂v, Y4 = −v∂z + z∂v.

In particular, the structure of the algebra of classical symmetries is

[Y1, Y2] = [Y1, Y4] = [Y2, Y4] = [Y3, Y4] = 0, [Y1, Y3] = 2Y1, [Y2, Y3] = 4Y2.

Now, in view of Theorem 4.2.8, one can check that Y1, Y2 and Y4 generate the sub-algebra

of gauge-like symmetries for α. On the contrary Y3 is non gauge-like for α. Hence, by using

the flow Aλ of the restricted symmetry Ȳ
(∞)

3 , one can construct a nontrivial 1-parameter

family αη := A#
λ (α) of ZCRs of (4.3.7). To this end, since α only involves first-order
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jet-coordinates and Aλ induces the following transformation

x 7→ e2λx, t 7→ e4λt, z 7→ e−λz, v 7→ e−λv, z1 7→ e−3λz1, v1 7→ e−3λv1,

one gets

αλ :=

 −iηv zη + iη2

2

iη2

2
− ηz iηv

 dx+

 iη [(η2 − 2z2 − 2v2) v − z1] η
[
(iη + 2z) (z2 + v2)− v1 − η2z − iη3

2

]
η
[
(iη − 2z) (z2 + v2) + v1 + η2z − iη3

2

]
iη [z1 − (η2 − 2z2 − 2v2) v]

 dt.

with η = eλ, which is the already known 1-parameter family of ZCRs given in [24, 64].

Example 4.3.5. The Sawada-Kotera equation [57]

zt = z5 + 5z2z1 + 5zz3 + 5z1z2, (4.3.8)

admits the following nonparametric sl (3,R)-valued ZCR

α :=


0 1 0

0 0 1

1
3
−z 0

 dx

+


−2z z2 − z2 3z1 − 3

−1− z1 z − zz1 − z3 z2 + 2z2

z2

3
− z2

3
−z3 − 1− 3zz2 − z2

1 − z4 z3 + z + zz1

 dt.

Here, by applying the results of Sections 4.1 and 4.2, we will show how use α to construct

a nontrivial 1-parameter family of ZCRs of (4.3.8).

To this end, we first observe that the algebra of classical symmetries of (4.3.8) is

3-dimensional and generated by the prolongations of vector fields

Y1 = ∂x, Y2 = ∂t, Y3 = x∂x + 5t∂t − 2z∂z.
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In particular, the structure of the algebra of classical symmetries is

[Y1, Y2] = 0, [Y1, Y3] = Y1, [Y2, Y3] = 5Y2.

Now, in view of Theorem 4.2.8, one can check that Y1 and Y2 generate the sub-algebra of

infinitesimal symmetries which are gauge-like for α. On the contrary Y3 is non gauge-like

for α. Hence, by using the flow Aλ of the restricted symmetry Ȳ
(∞)

3 , one can construct a

nontrivial 1-parameter family αλ := A#
λ (α) of ZCRs of (4.3.8). To this end, since α only

involves fourth-order jet-coordinates and Aλ induces the following transformation

t 7→ e5λt, x 7→ eλx, z 7→ e−2λ, z1 7→ e−3λz1,

z2 7→ e−4λz2, z3 7→ e−5λz3, z4 7→ e−6λz4,

one gets that

αλ :=


0 µ 0

0 0 µ

µ
3
− z
µ

0

 dx

+


−2µ3z µ (z2 − z2) 3µ2z1 − 3µ5

−µ5 − µ2z1 µ3z − zz1 − z3 µ (z2 + 2z2)

µ
(
z2

3
− z2

3

)
−µ5 − z3+3zz2+z21+z4

µ
z3 + µ3z + zz1

 dt,

where µ = eλ.
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