Programa Multiinstitucional de Pés-Graduacao em Ciéncia
da Computacao- PMCC

UNDERSTANDING AND GUIDING SOFTWARE
PRODUCT LINES EVOLUTION BASED ON
REQUIREMENTS ENGINEERING ACTIVITIES
By

Raphael Pereira de Oliveira

Ph.D. Thesis

SALVADOR
September/2015

PMCC-Dsc-0022

PMCC-Dsc-0022

RAPHAEL PEREIRA DE OLIVEIRA

UNDERSTANDING AND GUIDING SOFTWARE
PRODUCT LINES EVOLUTION BASED ON
REQUIREMENTS ENGINEERING ACTIVITIES

Ph.D. Thesis presented to the Multi-institutional
Graduate Program in Computer Science at Fed-
eral University of Bahia, Salvador University,
and Feira de Santana State University in partial
Sulfillment of the requirements for the degree of
Philosophy Doctor in Computer Science.

Advisor: Eduardo Santana de Almeida

SALVADOR
September/2015

048u

Oliveira, Raphael Pereira de

Understanding and Guiding Software Product Lines Evolution based on Requirements
Engineering Activities / Raphael Pereira de Oliveira. — Salvador: Universidade Federal da
Bahia, 2015.

237p. il.

Inclui apéndices e bibliografia.

Orientador: Prof. Dr. Eduardo Santana de Almeida.

Tese (doutorado) — Universidade Federal da Bahia, Instituto de Matematica, Universidade
Salvador, Universidade Estadual de Feira de Santana, 2015.

1. Software Engineering. 2. Software Product Lines. 3. Software Evolution. 4.
Requirements Engineering. 5. Empirical Studies. I. Almeida, Eduardo Santana de. I1.
Universidade Federal da Bahia, Instituto de Matematica. III. Universidade Salvador. IV.
Universidade Estadual de Feira de Santana. V. Titulo.

CDU - 004.41

Ficha catalografica elaborada por Patricia da Silva Santos CRB 5/ 1285

To my beloved parents, Alzido de Oliveira (in memoriam)

and Francisca 1. P. de Oliveira.

Acknowledgements

First of all, I would like to thank God, who always blessed my way over this Ph.D.

Secondly, I would like to thank (from the bottom of my heart) to my family, mainly my
beloved parents Alzido de Oliveira (in memoriam) and Francisca Isaldite Pereira de Oliveira.
Dear Parents, all of this would not be possible without the encouragement and support that you
have given to me. Father, I am very proud of the path that you took on this earth, spreading
your knowledge all around the world. You are my inspiration and I know that, right now, you
are happy with this moment, wherever you are. Mother, I see you as the greatest woman in
the world who always knew how to overcome obstacles. Your heart, filled with kindness and
dedication, taught me the true meaning of life, the love. I cannot forget the support that I had
from my dear siblings over this Ph.D., thanks Fabiola, Sérgio, Denise, Angela and SoOnia!

My thanks to a very special person in my life, my fiancée Isabelle Aparecida Dellela
Blengini. I am very happy to have you by my side whenever and wherever we are (Sao Carlos -
SP, Salvador - BA, Valencia - Spain, and in a near future, Sergipe). Thanks for all your patience
and support within the hard moments of my Ph.D., you gave me courage to deal with all of them.
Thank you for showing me that together we are stronger to face the life’s obstacles.

My sincere thanks to my advisor Eduardo Santana de Almeida. Eduardo, you showed me
that we can always do more and also that the challenges are here to be faced. I admire your way
of life as advisor and researcher. Many thanks for the growth opportunities that you offered to
me. Thanks for the talks, discussions, and challenges that we faced together. Today, thanks to
you, I consider myself much more mature and prepared for the world.

I also would like to thank the Professors Emilio Insfrdn and Silvia Abrahio, from Polytechnic
University of Valencia, in Spain. Thanks for hosting me in your research group during my Ph.D.
sandwich. Our meetings, discussions, and presentations resulted (and continue to give results)
on publications. Thank you for the opportunity to work with you.

Thanks to the collaboration, advice, and experiences that I could share with some Professors.
Gecynalda Soares Silva Gomes, thanks to your statistics analysis, our work earned much more
importance. Professor David Weiss, I always thanks for having had the opportunity to meet such
a good person in my life, a great professional and a great person. And I cannot forget to thank
the dear Joanne Weiss (David Weiss wife). Thank you very much for sharing with me your huge
experience of life. Professor Nenad Medvidovic, my thanks for the advice and experience of life
that we shared when you visited us in Bahia.

I cannot forget to thank the staff from CEAPG-MAT/UFBA. Thanks for all of your attention
and availability, reserving rooms and attending to my requests, over these four years and a half.

X

Thank you very much Davilene, Solange, Mércio, Gustavo and Kleber!

I really thank to my dear friends of this journey that are, or have been, part of RiSE Labs,
INES Laboratory (UFBA), Software Engineering Laboratory (LES-UFBA) and Department
of Computer Systems and Computation (DSIC-Spain). It was very grateful to count on you
in several discussions, meetings, and why not to mention, our entertainments moments. Many
thanks to Ivan Machado, Alcemir Santos, Iuri Souza, Tassio Vale, Ivonei Freitas, Crescéncio
Lima, Simone Morais, Thiago Souto, Paulo Silveira, Padraig O’Leary, Carlos Andrade, Javier
Gonzalez—Huerta, David Blanes, Priscila Cedillo, Kamil Krynicki, Luanna Lobato, Y guarata
Cavalcanti, Renato Novais, Rodrigo Rocha, Bruno Carreiro, Jonatas Bastos, Leandro Oliveira,
Larissa Rocha, Michelle Larissa, Loreno Alvim, Magno Lua, Hugo Sica, Douglas Barbosa, Alex
Bruno, Bruno Cabral, Karla Malta, Anna Luiza, Matheus Lessa e Williams Barbosa.

Life brings you some lovely friends, and I had the opportunity to meet two very special
friends: Aidil Almeida and Luciano Melo. “Aunt” Aidil, you are a very special person that
appeared in my life, you show the city of Salvador to me, all its culture and foods. You are a
very special friend of my that will live in my heart forever! Luciano Melo, it is amazing to meet
a person with a huge heart like yours. I will never forget all the support that you gave me when I
arrived at Estancia, Sergipe. Thanks so much my dear friend. Our friendship will live forever!

To the committee of my Ph.D. defense, my sincere thanks. All of your questions and
suggestions helped to improve this Thesis. Thanks a lot Leonardo Murta, Uird Kulesza, Christina
Von Flach, Claudio Sant’ Anna and Eduardo Almeida.

Again, a very special thanks to my family that was at my defense giving me an special
support. Thanks a lot Francisca Isaldite, Isabelle Blengini, Fabiola Oliveira, Leticia Macedo,
Pedro Henrique, Antdnio Leite, Helena Repolho, and Yara Matos.

Thanks for the financial support of FAPESB - Foundation of the Bahia State Research,
CAPES, and CAPES-DGU. Without these scholarships, this investigation could not be per-
formed. I also thank you the Federal Institute of Sergipe (IFS), mainly Gino, Fernando, and
Lunalva, for the financial support on traveling expenses to present a paper abroad. My thanks to
Patricia da Silva Santos for helping me with the catalog in publication.

Finally, thanks to all the others who have crossed my way over these four and a half years
of my Ph.D. “And in the end, the” product “you take, is equal to the” work, “you make!” Thus,

let’s keep working!

Agradecimentos

Em primeiro lugar a Deus, que sempre abencoou meu caminho durante esse doutorado.

Em segundo lugar, agradeco do fundo do meu corag@o a minha familia, especialmente meus
queridos pais Alzido de Oliveira (in memoriam) e Francisca Isaldite Pereira de Oliveira. Pais,
saibam que tudo isso ndo seria possivel sem o incentivo e apoio que vocés me deram. Pai, tenho
muito orgulho do caminho que vocé trilhou aqui na terra e dos diversos frutos que vocé plantou,
vocé € minha inspiracdo de vida e sei que estds feliz com esse momento, queira Deus onde vocé
estiver. Mae, saiba que vejo em vocé uma mulher guerreira que sempre soube superar qualquer
obstaculo. Seu coracido repleto de bondade e dedicacdo me ensinou o verdadeiro sentido da vida,
o amor. Nao posso deixar de fora o apoio que tive dos meus irmaos em diversos momentos
desse doutorado, muito obrigado Fabiola, Sérgio, Denise, Angela e Sonia!

O meu muito obrigado também a uma pessoa muito especial em minha vida, a minha noiva
Isabelle Aparecida Dellela Blengini. Fico muito feliz por ter vocé do meu lado sempre, seja onde
for, Sao Carlos — SP, Salvador — BA, Valéncia — Espanha, e futuramente em Sergipe. Obrigado
pela paciéncia nos momentos dificeis do meu doutorado e por todo suporte, principalmente
o emocional, que voc€ me deu. Obrigado por me mostrar que juntos somos mais fortes para
enfrentar qualquer obstaculo.

Meus sinceros agradecimentos ao meu orientador Eduardo Santana de Almeida. Eduardo,
voc€ me mostrou que sempre podemos mais e que os desafios estdo aqui para serem enfrentados.
Admiro muito seu trajeto de vida como orientador e pesquisador. Meu muito obrigado pelas
diversas oportunidades de crescimento que vocé me ofereceu. Gragas as diversas conversas,
discussdes e desafios que enfrentamos juntos, hoje me considero muito mais maduro e preparado
para o mundo.

Gostaria de agradecer também aos professores Emilio Insfran e Silvia Abrahdo da Universi-
dade Politécnica de Valéncia, na Espanha. Obrigado pelo carinhoso acolhimento na Espanha
durante meu doutorado sanduiche. Nossas reunides, discussdes e apresentacdes renderam (e
continuam rendendo) diversos frutos. Obrigado pela oportunidade de trabalhar com vocés.

Obrigado também aos trabalhos, conselhos e experiéncias que pude partilhar com alguns
professores. Gecynalda Soares Silva Gomes, gracas a sua estatistica, nossos trabalhos ganharam
muito mais relevancia. Professor David Weiss, agradeco sempre por ter tido a oportunidade
de encontrar uma pessoa tao boa como vocé em minha vida, um excelente profissional e uma
excelente pessoa, sempre disposto a ajudar. E ndo poderia deixar de agradecer a querida Joanne
Weiss (esposa do professor David Weiss). Muito obrigado por compartilhar a enorme experiéncia

de vida de vocés. Ao professor Nenad Medvidovic, o meu muito obrigado pelos conselhos e

X1

experiéncia de vida que partilhamos no periodo que esteve conosco na Bahia.

Nao posso me esquecer dos funciondrios do CEAPG-MAT/UFBA. Meu muitissimo obrigado
pela aten¢do e disponibilidade, nas reservas de salas e solicitagdes, ao longo desses pouco mais
de quatro anos. Muito obrigado Davilene, Solange, Marcio, Gustavo e Kleber!

Agradeco aos meus amigos e parceiros dessa caminhada que fazem ou fizeram parte do
RiSE Labs, Laboratério INES (UFBA), Laboratério de Engenharia de Software (LES-UFBA)
e Departamento de Sistemas Informéticos Y Computacion (DSIC-Espanha). Muito grato de
poder contar com vocés em diversas discussoes, reunides e por que nao, diversdes. O meu muito
obrigado a Ivan Machado, Alcemir Santos, Iuri Souza, Tassio Vale, Ivonei Freitas, Crescéncio
Lima, Simone Morais, Thiago Souto, Paulo Silveira, Padraig O’Leary, Carlos Andrade, Javier
Gonzalez—Huerta, David Blanes, Priscila Cedillo, Kamil Krynicki, Luanna Lobato, Yguarata
Cavalcanti, Renato Novais, Rodrigo Rocha, Bruno Carreiro, Jonatas Bastos, Leandro Oliveira,
Larissa Rocha, Michelle Larissa, Loreno Alvim, Magno Lua, Hugo Sica, Douglas Barbosa, Alex
Bruno, Bruno Cabral, Karla Malta, Anna Luiza, Matheus Lessa e Williams Barbosa.

A vida nos traz amizades muito amaveis, € eu tive a oportunidade de encontrar duas delas:
Aidil Almeida e Luciano Melo. “Tia” Aidil, vocé é uma pessoal especial que apareceu na minha
vida. Vocé me apresentou Salvador, sua cultura e culindria. Voc€ é uma amiga muito especial
que ird morar no meu coracio para sempre! Luciano Melo, é muito legal encontrar uma pessoa
com um cora¢do tdo grande como o seu. Eu nunca vou me esquecer do suporte que vocé me deu
quando eu cheguei em Estancia, Sergipe. Muito obrigado meu querido amigo. Nossa amizade
serd eterna!

A banca do meu doutorado, meus sinceros agradecimentos. Todas as questdes e sugestdes
levantadas ajudaram a melhorar essa Tese. Muito obrigado Leonardo Murta, Uird Kulesza,
Christina Von Flach, Claudio Sant’ Anna e Eduardo Almeida.

Mais uma vez, um muito obrigado a minha familia que estava presente na minha defesa
me dando um suporte adicional! Muito obrigado Francisca Isaldite, Isabelle Blengini, Fabiola
Oliveira, Leticia Macedo, Pedro Henrique, Antonio Leite, Helena Repolho e Yara Matos.

Agradeco o apoio financeiro da FAPESB - Fundacdo de Amparo a Pesquisa do Estado da
Bahia, CAPES, CAPES-DGU, sem as bolsas, em seus respectivos momentos, nio seria possivel
realizar este trabalho. Eu também agradeco ao Instituto Federal de Sergipe (IFS), principalmente
Gino, Fernando e Lunalva, pelo apoio financeiro relativo a apresentagao de um artigo no exterior.
Muito obrigado Patricia da Silva Santos por me ajudar com a ficha catalografica da minha Tese.

Para finalizar, o meu muito obrigado a todos os demais que passaram pelo meu caminho
nesses quatro anos e meio do doutorado. No final, a colheita é proporcional ao que foi plantado.

Por isso, continuemos plantando!

Xii

“And in the end
The love you take
Is equal to

The love you make”

—JOHN LENNON AND PAUL MCCARTNEY (THE BEATLES)

Abstract

Software Product Line (SPL) has emerged as an important strategy to cope with the increasing
demand of large-scale products customization. SPL has provided companies with an efficient
and effective means of delivering products with higher quality at a lower cost, when compared
to traditional software engineering strategies. However, such benefits do not come for free.

There is a necessity in SPL to deal with the evolution of its assets to support changes
within the environment and user needs. These changes in SPL are firstly represented by
requirements. Thus, SPL should manage the commonality and variability of products by means
of a “Requirements Engineering (RE) - change management” process. Hence, besides dealing
with the reuse and evolution of requirements in an SPL, the RE for SPL also needs an approach
to represent explicitly the commonality and variability information (e.g., through feature models
and use cases).

To understand the evolution in SPL, this Thesis presents two empirical studies within indus-
trial SPL projects and a systematic mapping study on SPL evolution. The two empirical studies
evaluated Lehman’s laws of software evolution in two industrial SPL projects, demonstrating
that most of the laws are supported by SPL environments. The systematic mapping study on
SPL evolution identified approaches in the area and revealed gaps for researching, such as, that
most of the proposed approaches perform the evolution of SPL requirements in an ad-hoc way
and were evaluated through feasibility studies.

These results led to systematize, through guidelines, the SPL processes by starting with
the SPL requirements. Thus, it was proposed an approach to specify SPL requirements called
Feature-Driven Requirements Engineering (FeDRE). FeDRE specifies SPL requirements in a
systematic way driven by a feature model. To deal with the evolution of FeDRE requirements,
a new approach called Feature-Driven Requirements Engineering Evolution (FeDRE?) was
presented. FeDRE? is responsible for guiding, in a systematic way, the SPL evolution based on
activities from RE. These two proposed approaches are responsible for dealing with the first
phase of the SPL development, which is the RE for the domain engineering.

Both proposed approaches, FeDRE and FeDRE?, were evaluated and the results, besides
being preliminaries, shown that the approaches were perceived as easy to use and also useful,

coping with the improvement and systematization of SPL processes.

Keywords: Software Product Lines, Software Evolution, Requirements Engineering, Empirical
Studies.

XV

Table of Contents

List of Figures xxi
List of Tables xxiii
List of Acronyms XXV
I Introduction 1
1 Introduction 3
I.1 Motivation oL e e 4

1.2 Objective e e 5

1.3 ResearchMethod 6

1.4 ResearchHistory 8

1.5 Contributions e 11

1.6 Outof Scope e 12

1.7 Organizationof the Thesis 13

II Background 17
2 Background 19
2.1 Software ProductLines 19
2.1.1 Software Product Line Essential Activities 20

2.1.2 Software Product Line Variability Management 22

2.2 Software Product Lines Evolution 25
2.2.1 ForcesforChange 25

2.2.2 Evolution Propagation 26

2.3 Software Product Lines Requirements Engineering 27
2.3.1 RisksandChallenges, 30

2.4 Evolution of Software Product Lines Requirements 31

2.5 Chapter Summaryo e e e e e 32

xXvii

III Understanding Software Product Lines Evolution

3 Empirical Studies on the Application of Lehman’s Laws within the Industry

3.1 Introduction
32 RelatedWork
3.3 Empirical Studies Lo
33.1 General Planning

33.2 FirstEmpirical Study o
3321 Execution

3.3.2.2 Data Analysis and Discussion

3.3.3 Motivation for Conducting the Replication

3.3.4 Changes to the Original Experiment

3.3.5 Second Empirical Study oL,
3351 Execution

3.3.5.2 Data Analysis and Discussion

3.3.6 Comparison and Discussion of Results
3.3.6.1 ConsistentResults 0L

3.3.6.2 Partially ConsistentResults

3.3.6.3 Partially DifferentResults

3.3.6.4 DifferencesinResults

34 Threatsto Validity e
3.5 Key Findings and Contributions for SPL Community
3.6 Chapter Summary e e e e

Software Product Lines Evolution: A Systematic Mapping Study

4.1 Introduction
4.1.1 Motivation e e e e e e e e
42 Background
421 RelatedWork
43 ResearchMethod
43.1 Planning Stage
43.1.1 ResearchQuestion

4.3.1.2 Search Strategy

4.3.1.3 Selection of primary studies

43.1.4 Quality Assessment

33

35
35
37
40
40
42
43
45
51
51
52
53
54
59
60
60
60
61
62
63
65

Xviii

4.3.1.5 Data Extraction Strategy 75

432 Conducting Stage e e 78
4.3.2.1 Search from 1996 upto2014 78
4.3.2.2 Selection of Studies from 1996 up to 2014 80
4.4 Results. 80
4.4.1 Why SPL approaches need to deal with evolution? (RQ1.1) 84
4.4.2 When the SPL approaches perform the evolution? (RQ1.2) 86
4.4.3 Where the SPL approaches perform the evolution? (RQ1.3) 89
4.44 What type of Evolution (static or dynamic) does the approach support?
(RQLA) . . e 93
4.4.5 How SPL approaches support the evolution? (RQL.5) 95
4.4.6 What is the SPL life cycle and phase in which the evolution is applied?
(RQL.6) . . . o e 97
4.477 What is the evaluation procedure from the approach? (RQ1.7) 99
4.4.8 What type of tool support does the approach offer? (RQ1.8) 100
4.4.9 In which context the approach is applied? (RQ1.9) 100
4.4.10 MappingResultso 100
44.11 Threatsto Validity 111
4.5 Chapter Summaryo e e e e e e e 112

IV Guiding Software Product Lines Evolution based on Requirements

Engineering Activities 115
5 Feature-Driven Requirements Engineering (FeDRE) Approach 117
5.1 Introduction 117

5.2 Related Work 119

5.3 Feature-Driven Requirements Engineering Approach For SPL. 121
531 Scoping e e e 122

5.3.1.1 Existing Assets 123

5.3.1.2 Feature Model 123

5.3.1.3 Feature Specification 124

53.14 ProductMap 124

5.3.2 Requirements Specification for Domain Engineering 125

5321 Glossary e 126

Xix

5.3.2.2 Functional Requirements

5.3.2.3 Traceability Matrix, .

5.3.3 Guidelines for Specifying SPL Functional Requirements

54 Empirical Study e
5.4.1 Design of the empirical study

5.4.2 Preparation of the empirical study

543 Collectionofthedata
5.4.3.1 Which features can be grouped to be specified by UC?

5.4.3.2 What are the specific UC for the feature or set of features? . .

5.4.3.3 Where the UC should be specified?

5.4.3.4 How each UC is specified in terms of steps?

544 DataAnalysis
5.4.4.1 First Quantitative Analysis

5.4.4.2 Second Quantitative Analysis

54.5 Threatstovalidity

5.5 Chapter Summary e e

Feature-Driven Requirements Engineering Evolution (FeDRE?) Approach
6.1 Introduction
6.2 Background
6.2.1 RelatedWork
6.3 FeDREZ Approach,
6.3.1 Task 1: Identify the Evolution Scenario
6.3.1.1 Change Request Artifact.
6.3.1.2 Feature Model Artifact
6.3.1.3 Use Case Textual Specification Artifact
6.3.1.4 Use Case Diagram Artifact
6.3.1.5 Product Map Artifact
6.3.2 Task 2: Evolve the SPL Requirements
6.3.3 Task 3: Update the Traceability Matrix
6.3.3.1 Traceability Matrix Artifact
6.4 Empirical Study
6.4.1 Design of the Empirical Study
6.4.2 Preparation of the Empirical Study
6.43 DataCollection

137
137
138

XX

6.43.1 BackgroundForm 160

6432 Empirical Study oo 160

6433 Survey 161

6.4.4 DataAnalysis 162

6.4.4.1 First Quantitative Analysis 162

6.4.4.2 Second Quantitative Analysis 163

6.4.5 Threatsto Validity, 167

6.5 Chapter Summary e e e 168

V Conclusions and Future Work 169
7 Conclusions 171
7.1 Future Work e 172
7.1.1 Evaluating Lehman’s Laws (LL) of Software Evolution 172

7.1.2 Systematic Mapping Study on SPL Evolution 172

7.1.3 Feature-Driven Requirements Engineering (FeDRE) Approach 173

7.1.4 Feature-Driven Requirements Engineering Evolution (FeDRE?) Approach173

7.2 Related Work e 173

7.3 Main Contributions e e 174
References 176
Appendices 187
A Empirical Studies 189
A.1 The KPSS Test and Hypotheses results (at MC) 190
A.2 The KPSS Test and Hypotheses results (atFC) 191

B SPL Evolution: A Systematic Mapping Study 193
B.1 Primary studies selected 194
B.2 DataExtractionForm 208
B.3 Search String for each Electronic Database 212
B.4 Mapping of the primary studies 214

C Feature-Driven Requirements Engineering (FeDRE) Approach 223
C.1 Survey Statements to Evaluate FeDRE, based on PEOU and PU variables . . . 224

XX

C.2 Identified Use Cases for each Feature 225

C.3 Subject’s Responses for PEOUandPU 226
C.4 Box Plots for PEOU and PU Variables 227
D Feature-Driven Requirements Engineering Evolution (FeDRE?) Approach 229
D.1 Survey Statements to Evaluate FeDRE?, based on PEOU and PU variables . . . 230
D.2 FeDRE? Background Form 231
D.3 FeDREZ SUIVEY o o oot i e e e e 234
D.4 Subject’s Responses for PEOUandPU 237

Xxii

1.1
1.2
1.3
1.4

2.1
22
2.3
24
2.5
2.6

3.1
3.2
33
34
3.5
3.6

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

List of Figures

Thesis Motivation e e 5
Research Methodology 7
Research Timeline 9
Ph.D. Thesis Organization 14
Software Product Lines Essential Activities (Clements and Northrop, 2002) . . 20
SPL Core Asset Development (Clements and Northrop, 2002) 21
SPL Production Plan (Clements and Northrop, 2002) 22
SPL Product Development (Clements and Northrop, 2002) 23
Feature Model Example 24
SPL Assets Types« o o o i e e 24
Modules (assets) per Areas Supportedby MC. 44
Plotted Graphs from CIC data and LOC (atMC) 46
Confidence Intervals for the Regression Coefficients (at MC) 48
Modules (assets) per Areaat FC. L. 53
Plotted Graphs from Bug Tracking System data and LOC (at FC) 55
Confidence Intervals for the Regression Coefficients (at FC) 56
Paper Selection Processo o 81
Bubble Chart for the combination of RQ1.1 (Why) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation) e 101
Bubble Chart for the combination of RQ1.1 (Why) by RQ1.8 (Tool) and RQ1.9

(Context) . . . v v o e e e e e e e e e 102
Bubble Chart for the combination of RQ1.2 (When) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation) e 103
Bubble Chart for the combination of RQ1.2 (When) by RQ1.8 (Tool) and RQ1.9

(Context) . . v v v o e e e e e e e e 104
Bubble Chart for the combination of RQ1.3 (Where) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation) e 105
Bubble Chart for the combination of RQ1.3 (Where) by RQ1.8 (Tool) and RQ1.9

(Context) . . . v v o e 106
Bubble Chart for the combination of RQ1.4 (What) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation) 107

xxiii

4.9

4.10

4.11

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Bubble Chart for the combination of RQ1.4 (What) by RQ1.8 (Tool) and RQ1.9

(Context) v o e e e 108
Bubble Chart for the combination of RQ1.5 (How) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation) 109
Bubble Chart for the combination of RQ1.5 (How) by RQ1.8 (Tool) and RQ1.9

(Context) o e e e e e e 110
Overview of the FeDRE approach. 122
Detailed Scoping Activity. L e 123
Product Map Example. 125
Detailed Requirements Specification Activity. 127
Meta-Model for SPL Requirements. 129
Overview of Activities, Tasks and Artifacts from the Guidelines. 130
Guidelines For Specifying SPL Functional Requirements. 131
Selected Features from the Feature Model for the Case Study. 135
UC Diagram (Feature AccessControl). 138
SPEM Profiles used by FeDRE? 145
FeDRE? Approach OVerview. v v i i 147
Change Request Example. 149
Feature Model Example. 149
Use Case Diagram Example. 151
Product Map Example. 151
Guidelines For Evolving SPL Functional Requirements. 153
Excerpt of a Traceability Matrix. 155
Perceived Ease of Use and Perceived Usefulness Box Plot. 165
Perceived Ease of Use Box Plot, for each Session (Brazil and Spain). 165
Perceived Usefulness Box Plot, for each Session (Brazil and Spain). 166

XX1v

2.1

3.1
3.2

33
34
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
53
54
5.5
5.6
5.7
5.8

List of Tables

SPL Use Case Example. 29
Lehman’s Laws of Software Evolution (Herraiz et al., 2013). 36
Relationship among Laws, Dependent Variables and Measurement, based on

Barry et al. (2007). 42
Maintenance Types Groupsat MC. 45
Laws and Results from the First Empirical Study (at MC). 51
Maintenance Types Groupsat FC. 53
Laws and Results from the Second Empirical Study (at FC). 59
Consistent/Different Results from the Empirical Studies. 59
Sub-Research Questions and Motivation. 71
Selected Conferences for Manual Search. 72
Selected Journals for Manual Search. 72
Search String for the Digital Libraries. 73
Quality Assessment Form. L. 74
Total of Retrieved Papers from Databases (1996-2014) 79
Total of Retrieved Papers from the Manual Search on Conferences (1996-2014) 79
Total of Retrieved Papers from the Manual Search on Journals (1996-2014) . . 79
Total of Retrieved Papers (1996-2014) 79
Summary of the Results. L 0o 81
Association of the main findings with Why/When/Where/What/How SPLs Evolve.112
Findings Consolidation 114
Comparative among current RE proposals from SPL. 120
Features Variability. o 124
Planning. 133
Excerpt from the Glossary. 134
Excerpt from the Traceability Matrix. 137
Retrieve Contacts Use Case Specification. 139
Mean and Standard Deviation for the analyzed variables. 140
Analysis of the PEOU and PU variables. 141

XXV

6.1

6.2
6.3
6.4
6.5
6.6

Safe Evolution Templates, Evolution Scenarios and Evolution Scenarios De-

SCIIPHION. .« . v v v v v e it e e e e e e e e e e e e 148
Send Message Use Case Textual Specification Example. 150
Empirical Study Design. 158

Mean and Standard Deviation for the Analyzed Objective Dependent Variables. 163
Analysis of PEOU and PU Variables. 164
Mann-Whitney U Test Analysis of PEOU and PU Variables for Each Session. . 167

XXVi

AE
CAD
DE
FeDRE
FeDRE?
FM

CR

LL
LOC
PD

RE

SPL

List of Acronyms

Application Engineering

Core Asset Development

Domain Engineering

Feature-Driven Requirement Engineering
Feature-Driven Requirement Engineering Evolution
Feature Model

Change Request

Lehman’s Laws

Lines Of Code

Product Development

Requirements Engineering

Software Product Lines

XXvii

PART 1

Introduction

Introduction

Advances in technologies, platforms and devices, which occur in various areas of computing,
have required a great effort of the software engineering field in order to achieve goals such as: to
decrease the software development costs, to cope with tight schedules, to deal with the market
pressure, to maintain market presence, to improve the software development quality, to improve
scale productivity, and to enable mass customization. In order to deal with these goals, software
engineering offers paradigms and approaches to achieve a more effective software development.

One of the paradigms to achieve such goals is Software Product Lines (SPL), which is based
on a set of systems sharing a common, managed suite of features that satisfy the specific needs
of a particular market or mission. The products which compose the SPL are developed from a
common set of core assets in a prescribed way (Clements and Northrop, 2002).

However, SPL. demands approaches that deal with the evolution of its assets (common,
variable and product specific assets) to support changes within the environment/user needs,
and to keep its satisfactory performance (Mens and Demeyer, 2008). If the software does not
support changes, then it will gradually lapse into uselessness (First Law of Software Evolution,
Lehman, 1974). Sources of changes in SPL include changes: targeted to the entire product
line; targeted to some products; and repositioning of assets from an individual product to the
entire SPL (Svahnberg and Bosch, 1999; Ajila and Kaba, 2004; Bailetti et al., 2004). Thus, the
management of the SPL evolution is an essential activity to its success. Managing the changes
in an SPL can also bring some benefits such as: to improve the traceability between artifacts in
core assets and products (Ajila and Kaba, 2004); to avoid some irregular growth or decrease
before it becomes a threat to the system; and to use the products feedback to improve the core
asset.

These changes in SPL are firstly represented by requirements. Thus, an SPL has to manage

the commonality and variability of products by means of a “Requirements Engineering (RE) -

change management” process (Clements and Northrop, 2002). Besides dealing with the sys-
tematic reuse of requirements in an SPL, RE also needs to represent explicitly the commonality
and variability information (e.g., through feature models and use cases) (Alves et al., 2010).
Moreover, in SPL development, the requirements specification is even more critical (Clements
and Northrop, 2002), since it is necessary to deal with common, variable, and product-specific
requirements, not only for a single product but also for the whole set of products in the family.

Since SPL evolution is an essential activity and SPL RE is the basis of the SPL development,
there is a need to understand and improve the software product lines evolution process, mainly
for requirements. Thus, in this Thesis, studies were performed to understand the SPL evolution
and approaches were proposed in order to deal with the specification and evolution of SPL

requirements.

1.1 Motivation

The evolution of a software product line is risky because it can impact several products. Thus,
when evolving an SPL it is important to make sure that the requirements of existing products
are changed correctly. However, most of the approaches perform the SPL evolution only at the
feature model level (Alves ef al., 2006; Thiim ez al., 2009; Botterweck et al., 2010; Schulze ef al.,
2012), as show in Figure 1.1 (ellipse A). Borba et al. (2012) also deal with SPL evolution at
the feature model level considering configuration knowledge to trace features and SPL artifacts,
however, how the SPL artifacts evolve, specially requirements, it is not taken into account, as
show in Figure 1.1 (ellipses A and B). Neves et al. (2011) also deal with the evolution of SPL
(features and assets, Figure 1.1 ellipses A and B), however, they also do not present how an asset
should evolve. Thus, when SPL approaches perform the requirements engineering activity they
lack of guidelines (Alves et al., 2010) and conduct this activity in an ad-hoc way. The lack of
guidance for performing the SPL requirements evolution activity makes this activity a tough
task, since the requirement engineer will not have a catalog of possible evolution scenarios and
actions to handle each evolution. Hence, guidelines for supporting the evolution of SPL features
and requirements should exist to systematize and make more effective this process (Figure 1.1,
ellipse C).

Thus, we decided to improve the SPL evolution by understanding how the SPL evolution
process is performed, and by proposing two approaches for specifying and evolving SPL
requirements in a systematic way, through guidelines (Figure 1.1, ellipses A, B, and C). The

proposed approaches intend to make easier and more effective the SPL evolution process.

4

1.2. OBJECTIVE

SPL - Domain Engineeri

C
Guidelines for Evolving
Features and Requirements

[

Figure 1.1: Areas Covered by this Thesis.

The choice of improving the SPL requirements evolution process was taken because require-
ments engineering is the basis of the SPL development and there is still a lack of guidelines for
this process. It is important to perform an effective SPL RE activity and also handle its evolution.
Managing the SPL RE evolution may bring some benefits, such as: to keep the SPL requirements

rightly specified and updated; and to maintain traceability links between requirements and other

artifacts.
Hence, considering the existing RE and evolution support for SPL engineering, and the

SPL demands, the central problem addressed in this Thesis is the lack of adequate support for

specifying and evolving SPL requirements in a systematic way through guidelines.

1.2 Objective

The main goal of this thesis is to improve SPL evolution based on requirements activities,
through systematic guidelines.

The research has the following specific objectives:

* Understand, through empirical studies, the SPL evolution;

* Propose approaches for specifying and evolving SPL requirements according to guidelines;
* Perform empirical evaluations of the proposed approaches;

On the basis of such defined objectives, it was established the research question that drives

this investigation:

How to achieve SPL requirements specification and evolution in a systematic way?

It is hypothesized that the proposed approaches, for specifying and evolving SPL require-
ments, are useful and facilitate the SPL RE specification and evolution. Moreover, the proposed
approaches may increase the effectiveness within the tasks for specifying and evolving SPL

requirements.

1.3 Research Method

This Section describes the research design employed as the basis for this Thesis. Based upon
the research objectives, we decided to apply a combination of methods, to both gain a further
understanding of the research problem, and to enrich our conclusions (Hesse-Biber, 2010).

The present research can be split into four specific parts: 1. Background, 2. Understanding
SPL Evolution, 3. Guiding SPL Activities, and 4. Evaluation. Figure 1.2 shows a diagram with
these macro parts and an overview of the sub-activities.

Part 1. Background
The background of this research was built based on relevant topics from the Software Engineering
area. The studied topics included Software Product Lines (SPL), SPL Evolution, SPL RE, and
Evolution of SPL requirements. Several papers and books aid in the construction of this
background and also helped within the execution of the next part of the research.

Part 2. Understanding SPL Evolution
This second part is divided in two main group of activities, the industrial studies and the research
studies to better understand the SPL evolution processes.

In the former, two exploratory empirical studies were performed within companies located
in Salvador, Bahia, Brazil. These studies helped to understand better how the SPL assets evolve
over a period of time.

In the latter, it was performed an SPL evolution mapping study. The SPL evolution mapping
study helped to identify relevant approaches that deal with SPL evolution and possible gaps of
research.

Part 3. Guiding SPL Activities
Based on the background and the knowledge acquired, it was identified a gap of approaches
describing, in a systematic way, the specification and evolution of SPL requirements.

In order to deal with the specification of SPL requirements in a systematic way, it was

1.3. RESEARCH METHOD

S

\

SPL

SPL Evolution

Evolution of SPL

SPL RE Requirements

{ ackground

Foundation Knowledge for the Thesis

Industry Studies

Understanding
SPL Evolution

1st SPL Evolution
Study

2nd SPL Evolution
Study

25

Research Study
SPL Evolution
Mapping Study

[UPV/Spain]

CUnderstandmg the SPL Evolution Field, through Empirical Studies within Industry and Academia, for the

Thesis Proposal Definition

Guiding SPL
Activities

Feature-Driven Requirement
Engineering Approach (FeEDRE)
[UPV/Spain]

Feature-Driven Requirement
Engineering Evolution
Approach (FeDRE?)

This Thesis was build on top of the Results from the Studies

Empirical Studies

(
C

Evaluations to be performed to both validate the Proposal, and reach an affordable Approach

N A NN A

Figure 1.2: Research Methodology.

defined and evaluated a new SPL requirements specification approach called Feature-Driven
Requirements Engineering (FeDRE).

Thus, the following part of the research was to propose a Feature-Driven Requirements
Engineering Evolution (FeDRE?) approach to deal with the SPL requirements evolution in a
systematic way.

Part 4. Evaluation
The last part of this work consisted of carrying out the evaluation and refinement of the proposed
approaches. In order to evaluate both approaches, an empirical study with Brazilian and Spanish
subjects was performed for each approach. For each approach, we evaluated the perceived
easy of use and perceived useful of the approach according to its proposed guidelines. The
results shown that both approaches were perceived to be easy to use and useful for Brazilian and
Spanish subjects. Thus, since each approach was evaluated in a different country, it was possible
to strengthen the empirical studies results and get more feedback about the effectiveness and

usefulness of the approaches.

1.4 Research History

This Section describes the history of this Ph.D. investigation, which officially started in 2011.
Figure 1.3 outlines the major activities performed up to date. It consists of one continuum that

represents the current Ph.D. investigation. These are detailed next.

* Ph.D. course starts. In the year 2011 this Ph.D. research started. The first year (from
March/2011 to February/2012) was dedicated to take the regular courses, mandatory
in our Graduate program. Besides taking classes, it was possible to run two industrial

exploratory empirical studies within companies in Salvador, Bahia, Brazil.

* Scope definition. As soon as the regular courses ended, we started discussing about
the intended goals to this investigation. By analysing the data from the two empirical
studies, observing practices available in the literature, and rounds of discussion with
internal and external members of our research group, we could establish a research agenda,
which included the major research investigation goal: to provide a better support for SPL

evolution.

* Internship. Over six months (from October/2012 to March/2013), this research was
carried out in the Software Engineering and Information Systems (ISSI) research group,

at Universidad Politécnica de Valencia, in Spain under the supervision of Prof. Dr. Silvia

1.4. RESEARCH HISTORY

Deﬁn!ng and Valid:_iting a Feature-Driven Evaluating Lehman s Laws of Software :

Requirements Engineering Approach, accepted at JUCS Evolution within Software Product Lines: A

P = H

3rd Best Paper Award at SIBCARS Preliminary Empirical Study, accepted at ICSR '
! Evaluating Lehman's

Industrial Projects, submitted to JSS
]
1st Best Paper Award at SBCAR!
1
Requirements Evolution
in SPL: An Empirical Study,
accepted at SBCARS
|
'
Guiding SPL Evolution based

A Feature-Driven Requirements

Internship at Universitat Polifécnica de Valéncia,
Mapping Study on SPL Evolution and on Requirements Engineering
Requirements Engineering for SPL Activities, submitted to IST
1
: 1
! !
H Ph.D. Defense
|
. —----:_—-_-—_—‘..('-.—.]
1
! 1
|
1
1
1

Proposal Defense
Scope Definition FeDRE Evaluation
|

Ph.D. Course Starts

)

+ |
Mapping Study in 2 . Lehman's Laws and SPL
SPL Evolution starts H FeDRE“ Evaluation

1st Industry Exploratory

Empirical Study n In rial Empirical

)

|

|

|

1

1 Studies, submitted to IEEE
1

' Software

|

|

E)Eploratory Study on the Relati(lmship
betweenFeatures Granularity and i
Non-conformities in SPL, accepted at SBES PL Evolution: A teml tic M in

. : SPL Evolution: A Systematic Mapping.
Exploratory Study on the Relationship b 1 Str ies for Consi: y Study, submitted to ACM Computing.
Inspection and Evolution in SPL, d at SBES Checking on SPL, accepted at EASE Surveys

1

Figure 1.3: Research Timeline.

2nd Industry Exploratory
Empirical Study
1

Abrahao and Prof. Dr. Emilio Insfran. This was a labor-intensive period in which it was
possible to share our ideas and discuss them with a very productive research group. Such
a period provided us with the opportunity to start an SPL evolution mapping study and
also improve our knowledge within SPL requirements engineering, where it was defined

and evaluated FeDRE approach.

* Proposal defense. In early June of 2014, the proposal (Feature-Driven Requirements
Engineering Evolution Approach for Software Product Lines - FeDRE?*) was presented and
assessed by a board committee. In addition to the formalism requested by the Graduate
Program, this was the time to discuss on top of the proposed idea, and draws further
steps. After the Proposal Defense, we made some improvements within the work of
this Thesis. The first improvement was related to the Empirical studies evaluating the
Lehman’s laws of software evolution within SPL. We changed the statistical method to
evaluate the formulated hypothesis from Augmented Dickey Fulley Test to KPSS test,
which led us to a better statistical analysis. The second improvement was to update the
SPL evolution systematic mapping study including papers published from 1996 up to
2014. The third improvement was the evaluation of FeDRE?. This approach was evaluated

within Brazilian and Spanish subjects.

* Ph.D. defense. On September 10" of 2015, this Ph.D. Thesis was presented and assessed

by a board committee in fulfillment of the requirements for the degree of Philosophy

Doctor in Computer Science.

Some results. The bold highlighted texts in Figure 1.3 are the main results so far. The
underline ones are strictly related to this Thesis. At the end of 2012, using the data
collected from the private exploratory empirical study, we had an accepted paper at
the Brazilian Symposium on Software Engineering (SBES) where we investigated the
relationship between information from features non-conformities and data from corrective
maintenance: On the Relationship between Inspection and Evolution in Software Product
Lines: An Exploratory Study (Souza et al., 2012). At the end of 2013, we had two
accepted papers. The first one was an investigation of a possible correlation between
feature granularity and feature non-conformity, accepted at SBES: On the Relationship
between Features Granularity and Non-conformities in Software Product Lines: An
Exploratory Study (Souza et al., 2013). The second one was a paper accepted at Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS): A Feature-
Driven Requirements Engineering Approach for Software Product Lines (Oliveira et al.,
2013). This paper is the approach for specifying SPL requirements in a systematic
way, defined in partnership with the ISSI group from Spain and Sholom Cohen from
Software Engineering Institute (SEI). This paper also received the 3’? best paper award at
SBCARS’13. We improved the SBCARS paper, mainly the guidelines for specifying SPL
requirements and the case study, and we had an accepted paper at Journal of Universal
Computer Science (J.UCS), special issue: Software Components, Architectures and Reuse:
Defining and Validating a Feature-Driven Requirements Engineering Approach (Oliveira
et al., 2014). In the beginning of 2015, the first empirical study, in a medical company,
evaluating the Lehman’s Laws (LL) within SPL (Evaluating Lehman’s Laws of Software
Evolution within Software Product Lines: A Preliminary Empirical Study) was accepted at
the International Conference on Software Reuse (ICSR) (Oliveira ef al., 2015a). Next, it
was performed a mapping of the existing approaches to inconsistency management within
SPL: Strategies for Consistency Checking on Software Product Lines: A Mapping Study,
published at the International Conference on Evaluation and Assessment in Software
Engineering (EASE) (Santos et al., 2015a). The replication of the study evaluating
LL within SPL, in a financial company, entitle Evaluating Lehman’s Laws of Software
Evolution within Software Product Lines Industrial Projects, was submitted to the Journal
of Systems and Software (JSS) (Oliveira et al., 2015b). This study evaluated the LL
in another company and compared the new results (Oliveira et al., 2015b) with the

10

1.5. CONTRIBUTIONS

previous ones (Oliveira et al., 2015a). The Feature-Driven Requirements Engineering
Evolution (FeDRE?) approach was evaluated and the paper describing the approach and its
empirical evaluation was accepted at the Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), entitled: Requirements Evolution in Software Product
Lines: An Empirical Study (Oliveira and Almeida, 2015b). This paper also received the
1*" best paper award at SBCARS’15. Next, the SPL evolution systematic mapping
(Software Product Lines Evolution: A Systematic Mapping Study), covering papers from
1996 up to the end of 2014, was submitted to the ACM Computing Surveys Journal
(Oliveira et al., 2015d). To sum up the work performed in this Thesis, a paper called
Guiding Software Product Line Evolution Based on Requirements Engineering Activities
was submitted to the Information and Software Technology (IST) Journal (Oliveira and
Almeida, 2015a). Finally, an overview of the studies evaluating Lehman’s Laws (Lehman’s
Laws of Software Evolution and Software Product Lines: Empirical Studies) was submitted
to IEEE Software (Oliveira et al., 2015¢).

1.5 Contributions

The main contributions of this work are following listed:

* SPL Industry Empirical Studies. We performed a first exploratory study to understand
the evolution in a private SPL. The same study was replicated in another private SPL.
Within the results of these studies, we identified that guidelines should exist to handle the
evolution of the SPL artifacts.

* Body of knowledge about SPL evolution. The number of studies in the SPL evolution
field is increasing year by year. We performed an SPL evolution mapping study aiming at
providing the state-of-the-art evidence, that can be used in a range of investigations in the
field.

* SPL Requirement Engineering Field. SPL requirements engineering field lacked of a
systematic way for specifying requirements. We presented an approach, called Feature-
Driven Requirements Engineering (FeDRE), for specifying SPL requirements, based on

the feature model, in a systematic way through guidelines.

* Evolution of SPL Requirements. SPL requirements engineering field also lacks of a

systematic way for evolving requirements. Thus, it was proposed an approach, called

11

Feature-Driven Requirements Engineering Evolution (FeDRE?), for evolving systemati-

cally SPL requirements, based on the feature model, through the use of guidelines.

+ Empirical Studies in Software Engineering. In order to evaluate FeDRE and FeDRE?
approaches, and improve the body of knowledge in empirical software engineering, we

performed empirical studies in Brazil with a replication in Spain.

1.6 Out of Scope

It is out of scope of this Thesis, the following topics:

* evolution of other activities in Domain and Application engineering: how the following
SPL domain activities (Architecture, Implementation, Test) and the SPL application
activities (Requirement, Architecture, Implementation, Test) deal with evolution over the

time;

« evolution of other types of variability, besides the ones supported by FeDRE: since FeDRE?
approach is based on the FeDRE approach, the evolution of other types of variability, such
as, variability in the use case steps and cross-cutting variability (using parameters in use

case), is out of scope of this Thesis;

* dynamic evolution: changes within an SPL can be static (the SPL does not need to be

running during the evolution) or dynamic (the SPL is running during the evolution and

autonomously drives changes to itself). The latter is out of the scope of this Thesis;

* implementation: This Thesis deals only with the specification and evolution of SPL

requirements. It does not deal with their implementation within the source code.

* tool support: the RiSE Labs group ! has a tool for supporting the development of an SPL,

called SPLICE 2. However, it is out of scope of this Thesis the extension of the SPLICE

tool to support the specification and evolution of SPL requirements;

* requirements heterogeneity: this Thesis deals with requirements represented as use cases

(textual and diagrams). It is out of scope of this Thesis how other representations of

requirements such as, goals, and so on, evolve over time.

Thttp://www.rise.com.br/riselabs/
Zhttp://www.rise.com.br/splice

12

1.7. ORGANIZATION OF THE THESIS

1.7 Organization of the Thesis

The thesis is structured into five parts plus appendices. Figure 1.4 shows a schematic overview
of the thesis structure. Apart from the present Introduction Part I, the remainder can be outlined

in the following way:

* PartII - Background. This part, represented by Chapter 2, provides background concepts
on the topics involved in this investigation, namely software product lines, software
product lines evolution, software product lines requirements engineering, and evolution of

software product lines requirements.

Software Product Lines essential activities and variability management are presented in
Section 2.1. Section 2.2 shows how SPL can deal with its evolution by presenting the
forces of change in SPL and how the evolution is propagated among the essential activities
of the SPL. The Software Product Lines Requirements Engineering (Section 2.3) shows
the SPL RE concepts focusing on the activities performed by the SPL. RE and presents
its risks and challenges. Finally, Section 2.4 introduces the different contexts that can

influence the SPL requirements evolution and also some gaps for future research.

* Part III - Understanding Software Product Lines Evolution. This part, divided in two
Chapters, shows the studies performed in this investigation to understand the evolution
within SPL.

Chapter 3 presents the empirical studies performed in two SPL industry projects, where
the evolution of the SPL. common, variable and product-specific assets were studied and
some findings were identified. Section 3.3.2 shows the first empirical study performed in
a Brazilian company which develops software for the medical domain and Section 3.3.5
presents the second empirical study performed in a Brazilian company which develops
software for the financial domain. These studies revealed a decrease of quality in the
artifacts over the SPL evolution process. Moreover, we identified that guidelines for

evolving such artifacts should exist to make the evolution process more effective.

The next Chapter (Chapter 4) shows the mapping study in SPL evolution in order to
understand and propose improvements to the area. The focus of this study is to reveal

approaches that deal with SPL evolution and reveal gaps for future research.

e Part IV - Guiding Software Product Lines Evolution based on Requirements En-
gineering Activities. This part, composed of two Chapters, introduces the proposed
approaches for specifying and evolving SPL requirements and their evaluations.

13

Part . Introduction

Chapter 1.

Introduction

and Motivates

J,Contextua lize

4 Part Il. Background N
Chapter 2. Background
: Softwar_e Product ; ' SPL Evolution !
, Lines .o .
! SPL Requirements + . Evolution of SPL
! Engineering . ' Requirements
N J

J, Motivates

(Part lll. Understanding Software Product Lines Evolution

Study

.............

Chapter 3.

Empirical Studies on the Applicability of

Study

2 Empirical |

..........

Chapter 4.
SPL Evolution
Mapping Study

J

Characterize Problems
and Research Directions

Part IV. Guiding Software Product Lines)
Evolution based on Requirements Engineering

Activities

Chapter 5.
Feature-Driven
Requirement
Engineering
Approach (FeEDRE)

\-

Chapter 6.
Feature-Driven
Requirement
Engineering
Evolution Approach
(FeDRE?)

Leads
to

J/

Figure 1.4: Ph.D. Thesis Organization.

Part V. Conclusion

Chapter 7.
Conclusion and
Future Work

14

1.7. ORGANIZATION OF THE THESIS

The Feature-Driven Requirements Engineering (FeDRE) Approach is presented in Chapter

5. FeDRE is an approach to help in the specification of SPL domain requirements.

Chapter 6 shows the Feature-Driven Requirements Engineering Evolution (FeDRE?)

Approach, which helps in the evolution of SPL domain requirements.

* Part V - Conclusion and Future Work. It presents conclusions and future work (Chapter
7). This Chapter presents some conclusions based on the previous performed studies and

also shows the next steps to further enhance the research in this field.

15

PART II

Background

Background

In early 1967 there was an increasing importance and impact of software systems in many
activities of society. In addition, there was a general belief that available techniques to build
software should be less ad-hoc, and instead, they should be based on theoretical foundations, as
the established disciplines of engineering. These were the main driving factors for organizing
the first conference on Software Engineering in 1968 (Naur and Randell, 1969). The goal of this
conference was “the establishment and use of engineering principles in order to obtain reliable,
efficient and economically viable software”. Among the many activities of software engineering,
this conference discussed about software mass customization (principle for Software Product
Lines - SPL, Section 2.1), software maintenance (Section 2.2), user requirements (Section 2.3),
and evolution of requirements (Section 2.4). These software development activities (which
turned into formal software engineering fields later on) are discussed in this Chapter in the

context of Software Product Lines.

2.1 Software Product Lines

The way that goods are produced has changed significantly in over the time. Previously, goods
were handcrafted for individual customers (Pohl et al., 2005), although each more, the number
of people who could afford to buy several kinds of products have increased.

In the domain of vehicles this led to Henry Ford’s invention of the mass production (product
line), which enabled production for a mass market cheaper than individual product creation
on a handcrafted basis. The same idea was made also by Boeing, Dell, and even McDonald’s
(Northrop, 2002).

Customers were satisfied with standardized mass products for while (Pohl ef al., 2005),

however, not all of the people want the same kind of car. Thus, industry was challenged with the

19

rising interest for individual products, which was the beginning of mass customization.

Thereby, many companies started to introduce common platforms for their different types of
products, by planning beforehand, which parts will be used in different product types. Thus, the
use of platforms for different products led to the reduction in the production cost for a particular
product kind. The systematic combination of mass customization and common platforms is the
key for product lines.

Realizing the success of this combination, this concept was turned to software as Software
Product Lines (SPL), which is a “set of software-intensive systems that share a common,
managed feature set, satisfying a particular market segment’s specific needs or mission and that
are developed from a common set of core assets in a prescribed way” (Clements and Northrop,

2002). The SPL essential activities are shown in next Section.

2.1.1 Software Product Line Essential Activities

Software product lines include three essential activities, as shown in Figure 2.1: Core Asset
Development (CAD), Product Development (PD) and Management (Clements and Northrop,
2002). Some authors (Pohl et al., 2005) use other terms for CAD and PD, for example, Domain
Engineering (DE) representing the CAD and Application Engineering (AE) representing the PD.
These activities are detailed as follows.

I 00

Core Asset
Development

Product
Develnpment

\?"\ s

Management

\d"

Figure 2.1: Software Product Lines Essential Activities (Clements and Northrop, 2002).

20

2.1. SOFTWARE PRODUCT LINES

Core Asset Development (Domain Engineering). This activity focus on establishing a
production capability for the products (Clements and Northrop, 2002). It is also known as
Domain Engineering and involves the creation of common assets, generic enough to fit different
environments and products in the same domain. Figure 2.2 illustrates the core asset development

activity along with its outputs and contextual factors.

,f"'l i

Product Constraints Core Asset Base

Production Constraimis
Production Strategy
Preexisting Azsets

Core Asset Production Plan
Development

":zdv’

Management

Figure 2.2: SPL Core Asset Development (Clements and Northrop, 2002).

The core asset development activity is iterative, and according to Clements and Northrop
(2002) some contextual factors can impact in the way the core assets are produced. Some
contextual factors can be listed as follows: product constraints such as commonalities, variants,
and behaviors; and production constraints, which is how and when the product will be bring to
market. These contextual factors may drive decisions about the used variability mechanisms.

Variability is one of the foundation concepts for the core asset development. Since core
assets need to fulfill many product requirements at the same time, the core asset needs to have
the potential to vary its behavior for the different products (variability management is discussed
further in Section 2.1.2). Because of the variability inside of each core asset, it is important
to exist a guideline to conduct the use of an asset inside of a product. This guideline is called
production plan (Clements and Northrop, 2002), and should contain the production process,
which is influenced by the product constraints, project details and etc, as shown in Figure 2.3.

Product Development (Application Engineering). The main goal of this activity is to
create individual (customized) products by reusing the core assets. This activity is also known

as Application Engineering and depends on the outputs provided by the core asset develop-

21

[] A

Core Assets Attached
- ...

Core Asset
Development PREsincton Plan

)

Management

Figure 2.3: SPL Production Plan (Clements and Northrop, 2002).

ment activity (the core assets and the production plan). The relationship between Core Asset
Development and Product Development activities, is illustrated in Figure 2.4.

Product engineers use the core assets, in accordance with the production plan, to produce
products that meet their respective requirements. Product engineers also have an obligation
to give feedback on any problem within the core assets, to avoid the SPL decay (minimizing
corrective maintenance) and keep the core asset base healthy and viable for the construction of
the products.

Management. This activity includes technical and organizational management. Technical
management is responsible for the coordination between core asset and product development
and the organizational management is responsible for the production constraints and ultimately

determines the production strategy.

2.1.2 Software Product Line Variability Management

To successfully introduce software product lines concepts in a software development environ-
ment, the notion of variability is extremely important. There are common representations of
variability within SPL, such as Decision Models (Weiss and Lai, 1999) and Feature Models

(Kang et al., 1990). Feature models are commonly used to represent the SPL variability through

22

2.1. SOFTWARE PRODUCT LINES

Froduct \
Development

e o CE
T e =

: ﬂij::H::: Fh" Product Conatraints
+++"ﬂ' Management '

'.:.'Prncllnl Descriplicn

Figure 2.4: SPL Product Development (Clements and Northrop, 2002).

features. A feature is defined as a “prominent or distinctive user-visible aspect, quality, or char-
acteristic of a software system or systems” (Kang et al., 1990). The SPL features are grouped
in a feature model diagram to represent the SPL variability. Figure 2.5 shows a feature model
diagram for the domain of cars. This feature model diagram has “concrete” features, “abstract”
features, “mandatory” features, “optional” features, “or” features, and “alternative” features.
“Concrete” features are features that will have code implementation. “Abstract” features will not
have code implementation and they are used for grouping features in the feature model diagram.
“Mandatory” features will be present in all products from the SPL. “Optional” Features may be
or not present in a product configuration. “OR” Features allow the selection of one or more
features from the group. “Alternative” features allow the selection of exact one feature from
the group. There are also constraints among features, such as, “requires” and “excludes”. If a
feature X may “requires” a feature Y, thus, when selecting the feature X, the feature Y must also
be selected. On the other hand, if a feature X may “excludes” a feature Z, thus, when selecting
the feature X, the feature Z must not be selected. A valid configuration of the feature model
allows the creation of an SPL product. For example, according to the feature model diagram
from Figure 2.5, a valid configuration would be the selection of the following features: CarSPL,
Airbag, StabilityConstrolSystem->BasicSkidControl, AntilockBreakingSystem, AudioSystem-
>MultimediaAudioSystem->MP3Radio. By selecting these features and their associated assets

(requirements, architecture, implementation, test, and so on) an SPL product can be instantiated.

23

BasicCruiseControl Legend:
() CruiseControl_ =—_J
AdaplativeCruiseControl | @ Mandatory
d Optional
A o
BasicSkidControl, [\ Attemative
() StabilityControlSystem, < Abstract
ExtendedSkidControl
[Concrete

CarsPL
4 O) TractionControlSystem. ‘

FMRadio_
MultimediaAudiosystem, CDRadio_
AudioSystem. Mp3Radio_ |

NavigationAudioSyster |

Figure 2.5: Feature Model Example.

Variability has an important role within SPL. When corrected managed, it will allow the
SPL to build different products according to the selected variability. The goal of variability
management inside SPL is to support the development and reuse of variable assets.

Variability management can occur in the core asset development level, with the definition
of the variability inside a core asset, and also in the product development asset, by exploring
the variability previously defined. Figure 2.6 shows the assets types to build SPL products.
“Common” assets will be present in all SPL products. “Variable” assets will be present in some
products, but not all of them. Finally, “Product Specific” assets will be part of specific products
of the SPL.

Legend:

C: Common Asset

V: Variable Asset

PS: Product Specific Asset
P1, P2, P3: SPL Products

Figure 2.6: SPL Assets Types.

The variability identification observes what vary (the variability subject, that could be a

24

2.2. SOFTWARE PRODUCT LINES EVOLUTION

variable item of the real world or a variable property in such an item), why does it vary (the
drivers of the variability need, such as stakeholder needs, technical reasons, market pressures,
etc.), and how does it vary (the possibilities of variation, also known as variability objects).

Inside variability management, there are also the concepts of variability points and variants.
The variation point is the representation of a variability subject within the core assets, enriched
by contextual information. The variant is the representation of the variability object within the
core assets. These two concepts are the basis for the variability definition inside an SPL (Pohl
et al., 2005).

The variability, according to (Krueger, 2002a), can be classified as: variability in time,
which is the existence of different version of the same asset (or asset item) at different moments,
also present in single-systems development, and are normally handled by traditional Software
Configuration Management (SCM) activities; and variability in space, which is the existence of

the same asset (or asset item) in different shapes, which is the variability for the asset.

2.2 Software Product Lines Evolution

Due to changes within the environment and users’ needs, software product lines are continuously
evolving, thus, its evolution should be managed properly to achieve all benefits from this
approach.

Evolution in a product line is more complicated than single system because of the fact that
an asset, can be shared among several products, and any change in this asset may affect all of
the related products (McGregor, 2003; Botterweck and Pleuss, 2014). This makes evolution
management in SPL. more challenging than in traditional single software development (Pussinen,
2002).

2.2.1 Forces for Change

As in single-system development, software product lines are also subject of forces for change.
Those forces may come from different contexts. According to (McGregor, 2003), the forces for
change can be classified as external forces and internal forces.

External forces are one of the forces for changing in the product line organization. Some

external forces are described next:

* Potential new Competitors. Potential competitors entering the market might force a change
in the business strategies in the organization. Such a change could cause consequent

changes in the product line strategy, the architecture, and related assets.

25

* Buyers. They might force change by demanding the latest available technology on the
products they buy.

 Suppliers. They might force a change by discontinuing or evolving assets they provide to
the SPL.

The interactions identified in Figure 2.1 among the three essential activities result in internal
forces for evolution. Some possible internal forces are described next, separated by each SPL

essential activity.

* Core Asset Development (Domain Engineering). The Core Asset development evolution
forces the evolution on product development by providing new versions of assets and
additional variants. The more frequent these releases are, the more product development
resources will be consumed in order to adapt to these new versions. On the other hand,
if the core asset versions wait too long to be released, it may allows the product teams
to “clone and own” the assets and adapt it to their needs, breaking the flow of the SPL

essential activities and making harder future evolutions for the SPL.

* Product Development (Application Engineering). Product development may evolve
by providing change requests to the existing assets. Besides the change requests, the
product teams may discover defects and bugs in the assets, and request their fix. Product
development also evolves by requesting a product specific asset to be incorporated in the
core asset base, becoming a core asset reusable by other products, or it can also evolve by
requesting an change within product-specific assets, without affecting the core asset and

other products.

* Management. It drives the evolution in the core asset development by updating and
adjusting the production plan for the product line. Core asset development responds to
these evolutions by updating the existing core assets or creating new ones. Management
also drives the evolution in the product development, by modifying the production plan

and the product line scope.

Some of the examples of internal forces for changes, may result in the propagation of the

changes (evolution). The evolution propagation is described next.

2.2.2 Evolution Propagation

In traditional single-system development, the changes performed into an artifact may have

impacts on other artifacts of the system. In the software product line context, where changes to

26

2.3. SOFTWARE PRODUCT LINES REQUIREMENTS ENGINEERING

an artifact may impact dozens or hundreds of assets and products, the impacts of evolution are
even bigger.

In certain situations (such as the internal forces for changes described in section 2.2.1) one
change in a SPL development level (core asset development or product development) may have
effects on the other one. Because of that, the changes performed to an asset or a product have
to be propagated to the other development level, to keep the products or assets compliant with
each other. Thus, the propagation of changes (evolution propagation) may occur in different
directions (Atkinson et al., 2002; Botterweck and Pleuss, 2014):

* Internal Propagation (Core Asset Development / Domain Engineering). When a core
asset change only affects other core assets. Thus, the change propagation is performed

internally in the core asset development level.

e Internal Propagation (Product Development / Application Engineering). When a product
change only has effects on a specific product. Thus, the change propagation is performed

internally in the product development level.

* Propagation from Core Asset Development to Product Development. Every new core asset
release (comprising a set of changes) can be propagated to the product development level,
in order to keep the products up-to-date with the latest versions of core assets (with fixed
defects, improvements, etc). In this context, the changes are propagated from the core

asset development to the product development level.

* Propagation from Product Development to Core Asset Development. Whenever a core
asset is modified in the product development level, that change may be propagated back
to the core asset development level. Also, when a product specific asset should become a
core asset, the product specific asset is propagated to the core asset development level,

and integrates the core asset base.

The changes performed within SPL are firstly represented by requirements. Thus, the next

Section presents how SPL requirements engineering is performed.

2.3 Software Product Lines Requirements Engineering

Requirements are typical assets in SPL. They are specified in reusable models, in which
commonalities and variabilities are documented explicitly. Thus, these requirements can be

instantiated and adapted to derive the requirements for an individual product (Cheng and Atlee,

27

2007). During product derivation, for each variant asset, it is decided whether the asset is (or is
not) supported by the product to be built. When a domain requirement is instantiated, it can be
become a concrete product requirement. Thus, new products in the SPL will be much simpler to
specify, because the requirements are reused and tailored (Clements and Northrop, 2002).

Deciding which products to build depends on business goals, market trends, technological
feasibility, and so on. On the other hand, there are many sources of information to be considered
and many trade-offs to be made. The SPL requirements must be general enough to support
reasoning about the scope of the SPL, predicting future changes in requirements and anticipated
SPL growth.

In practice, establishing the requirements for an SPL is an iterative and incremental effort,
covering multiple requirements sources with many feedback loops and validation activities
(Chastek et al., 2001). Thus, Requirement Engineering (RE) in SPL has an additional cost.
Many SPL requirements are complex, interlinked, and divided into common, variable and
product-specific requirements (Birk ez al., 2003; Oliveira et al., 2014). Regarding to single
systems, RE for SPL has some differences, such as (Clements and Northrop, 2002; Pohl et al.,
2005; Thurimella and Bruegge, 2007):

* FElicitation captures anticipated variations over the foreseeable life-cycle of the SPL. RE
must anticipates prospective changes in requirements, such as laws, standards, technology
changes, and market needs for future products. Thus, its sources of information are

probably larger than for single-system requirements elicitation.
* Analysis identifies variations and commonalities, and discovers opportunity for reuse.

* Negotiation solves conflicts not only from a logical viewpoint, but also taking into consid-
eration economical and market issues. The SPL requirements may require sophisticated
analysis and intense negotiation to agree on both common requirements and variation

points that are acceptable for all the systems.

* Specification documents a SPL set of requirements. Notations are used to represent the

product line variabilities and enable the product instantiation.

* Verification checks if the SPL requirements can be instantiated for the products, ensuring

the reusability of the requirements.

* Management must provide a systematic mechanism for proposing changes, evaluating

how the proposed changes will impact the SPL, specifically its core asset base. Evolution

28

2.3. SOFTWARE PRODUCT LINES REQUIREMENTS ENGINEERING

can affect the reuse and customization, therefore, appropriate mechanisms must be used

to manage the variabilities.

In SPL, RE also has influence of several stakeholders that participate of the SPL. Identifying
stakeholders that directly influence the RE is essential to define the requirements negotiation
participants. They are responsible for resolving conflicts and providing information.

Each stakeholder plays a role with respect to the SPL. Many of the stakeholders that help to
define the requirements also use them. These users have different expectations of the outputs of
SPL analysis. Some may simply want to confirm that their interests have been represented (e.g.,
marketers, domain expert and analyst domain). Others (e.g., architects and developers) may
want to describe proposed functional and non-functional capabilities, and their commonality
and variability across the SPL, thus, those decisions about architectural solutions and asset
construction should be taken into account (Chastek er al., 2001).

Several approaches to deal with the definition and specification of functional requirements in
SPL development have been proposed over the last few years. Some approaches specify the SPL
requirements through features and use cases (Griss et al., 1998; Bayer et al., 1999a; Moon et al.,
2005; Eriksson et al., 2005; Bonifacio and Borba, 2009; Alférez et al., 2011; Mussbacher et al.,
2012; Shaker et al., 2012). An SPL functional requirement represented as an use case has at least
the following fields: identifier, name, description, associated feature(s), pre and post-Conditions,
and the Main Success Scenario, as shown in Table 2.1. It may also has alternative scenarios,
includes/extends relationships, and so on. The feature associated to the use case handles the
variability within the SPL.

Table 2.1: SPL Use Case Example.

*1D: Use case identifier
*Name: Use case name
*Description: Use case description
Associated feature: Feature associated to | Actor(s) [0..]: Actor associated
the use case to the use case
*Pre-condition: Use case pre-condition | *Post-condition: | Use case post-
condition
*Main Success Scenario
Step Actor Action Blackbox System Response

Step represented by a number | Actor action System response
* Mandatory Field

However, the approaches for specifying SPL functional requirements do not propose guide-
lines, showing step by step how the specification should be done. This lack of guidelines may

led to some challenges and risks.

29

2.3.1 Risks and Challenges

A key RE challenge for SPL development includes strategic and effective techniques for an-
alyzing domains, identifying opportunities for SPL, and identifying the commonalities and
variabilities of an SPL (Cheng and Atlee, 2007). Another challenge related to RE is that the
applicability of more systematic techniques and tools is limited, partly because such techniques
are not yet designed to cope with SPL development’s inherent complexities (Birk ez al., 2003).

Regarding to the risks associated with RE for SPL, the major risk is failure to capture the
right requirements, and their variabilities, over the life of the SPL (Clements and Northrop,
2002). Documenting the wrong or inappropriate requirements, failing to keep the requirements
up-to-date, or failing to document the requirements at all, may affects the subsequent activities
(architecture, implementation, tests, and so on). They will be unable to produce systems that
satisfy the customers and fulfill the market expectations. Moreover, inappropriate requirements

can result from the following (Clements and Northrop, 2002):

* Failure in the communication between core assets requirements development and product
requirements development. The core asset builders need to know the requirements they
must build, while the product-specific software builders must know what is expected of
them. The lack of communication between these two development stages may led to

inconsistent requirements or even unnecessary variabilities in the requirements.

* Insufficient generality. Insufficient generality in the requirements leads to a design that is

too fragile to deal with the change actually experienced over the life-cycle of the SPL.

» Excessive generality. Excessive generality on requirements lead to excessive effort in
producing both core assets (to provide that generality) and specific products (which must

turn that generality into a specific instantiation).

» Wrong variation points. Incorrect determination of the variation points results in inflexible

products and the inability to respond rapidly to customer needs and market shifts.

e Failure to account for qualities other than behavior. SPL requirements (and software
requirements in general) should capture requirements for quality attributes such as perfor-

mance, reliability, and security.

In order to minimize the risks within SPL requirements engineering, the evolution of SPL

requirements should be addressed in an effective way considering the SPL context.

30

2.4. EVOLUTION OF SOFTWARE PRODUCT LINES REQUIREMENTS

2.4 Evolution of Software Product Lines Requirements

In general, the SPL requirements evolution decisions can be justified by the SPL context. There

are different contexts that can influence the SPL requirements evolution decisions, such as:

 Starting situation: An SPL can start from the scratch, it can be introduced while some
products are already under development, or the new requirements can be re-engineered
from legacy systems (Bayer et al., 1999b). The latter influences the evolution of the

requirements specification from single system requirements to SPL requirements.

* Market orientation: An SPL can be developed for a specific market segment without a
concrete customer in mind, or for individual customer projects (Birk ez al., 2003). This
situation influences the identification of the stakeholders involved in the SPL requirements
evolution. For example, whether the SPL is oriented for a market segment, potential
information sources for the SPL requirements evolution can be marketers. However,
whether the SPL is oriented for a specific customer, this customer is a potential stakeholder

for the SPL requirements evolution.

* Domain maturity: The domain may exists for quite some time and it is well understood,
or the domain may be new. This influences the problem understanding, so it can be
essential for evolution decisions in relation to the detail level of the SPL requirements

specification.

* Business constraints: Business constraints (e.g., time to market and resources) can

influence the SPL requirements evolution.

* Organizational context: The organizational structure and behavior can influence the
SPL requirements evolution, such as team size, organizational structure and available
stakeholders.

* Geographical context: The geographical separation can also influence the SPL require-
ments evolution, since different means for communication and coordination are used,

depending on the distance among collaborators (Fricker and Stoiber, 2008).

* Domain stability: Domain may not be expected to change in the near feature, or the
domain may change with frequency. This situation must be analyzed to negotiate require-
ments and identify best strategies for changes management. Whether the domain is not

stable, it requires an more systematic SPL evolution management.

31

According to previous studies, there is a lack of approaches that deal with SPL requirements
evolution in an systematic way (Alves et al., 2010; Oliveira and Almeida, 2015b). Thus, the
definition and use of guidelines for performing the evolution of the requirements in SPL may
improve the effectiveness of the SPL, since requirements are the basis of the SPL. development.
The guidelines should deal with the most common evolutions in SPL through well defined steps,

keeping the traceability among the artifacts over the evolution process.

2.5 Chapter Summary

Software product lines development aims at reducing costs, reducing time to market, improving
the software quality, and improving the reuse. However, SPL are also under pressure of evolution
due to external and internal forces to change the requirements. New software requirements are
always part of requests due to the fact that the software must adapt to its environment and user’s
needs to keep the user’s satisfaction, otherwise, the software is discontinued. Thus, in order to
cope with new SPL requirements and improve the SPL evolution process, there is a need for
understanding the SPL evolution area and proposing new approaches for dealing with the SPL
requirements, since they are the basis of the SPL development and may affect the whole SPL.
Next Chapter presents the studies performed to understand the SPL evolution field, where

we performed two empirical studies within the industry and a systematic mapping study.

32

PART III

Understanding Software Product Lines

Evolution

Empirical Studies on the Application of

Lehman’s Laws within the Industry

The evolution of SPL assets is an important activity to keep the SPL users’ satisfaction and also
avoid the SPL to break down. This Chapter starts a series of studies performed to understand
the SPL evolution. The first study (Oliveira et al., 2015a) presents a first empirical study
performed in an industrial SPL project in Salvador, Bahia, Brazil, which develops software for
the medical domain. The second study (Oliveira et al., 2015b) presents an empirical evaluation
performed in another industrial SPL project in Salvador, Bahia, Brazil, which develops software
for the financial domain. The evolution of the different SPL assets (common, variable, and
product-specific) were evaluated within both studies and some findings were identified.

The remainder of this Chapter is organized as follows: Section 3.1 introduces the background
concepts and the objective of the studies. Section 3.2 discusses related work and uses it as
context to position this work. Section 3.3 describes both empirical investigations, including
a comparison between their results. Section 3.4 presents the threats to validity of our studies.
Next, it is discussed the key findings and contributions to the SPL community in Section 3.5.

Finally, Section 3.6 presents the Chapter summary.

3.1 Introduction

Software evolution is a very important activity where the software must have the ability to adapt
according to the environment or user needs, to keep its satisfactory performance, (Mens and
Demeyer, 2008) given that if a system does not support changes, it will gradually lapse into
uselessness (Lehman, 1980).

Back in the 1970s, Meir Lehman started to formulate his laws of software evolution, after

35

Table 3.1: Lehman’s Laws of Software Evolution (Herraiz et al., 2013).

Formulation Software Evolution Description

Year Laws

Evolution of Software System Characteristics (ESSC)

(1974) Continuing change An E-type system must be continually adapted, or else
it becomes progressively less satisfactory in use.

(1974) Increasing complexity ~ As an E-type is changed, its complexity increases and

becomes more difficult to evolve unless work is done
to maintain or reduce the complexity.

(1980) Continuing growth The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over
system lifetime.

(1996) Declining quality Unless rigorously adapted and evolved to take into
account changes in the operational environment, the
quality of an E-type system will appear to be declining.

Organizational/Economic Resource Constraints (OERC)

(1980) Conservation of organi- The work rate of an organization evolving an E-type
zational stability software system tends to be constant over the opera-

tional lifetime of that system or phases of that lifetime.

(1980) Conservation of famil- In general, the incremental growth (growth rate trend)
iarity of E-type systems is constrained by the need to main-

tain familiarity.
Meta-Laws (ML)
(1974) Self regulation Global E-type system evolution is feedback regulated.
(1996) Feedback System E-type evolution processes are multilevel, multiloop,
multiagent feedback systems.

realizing the need for software systems to evolve. These laws, shown in Table 3.1, stressed that
a system needed to evolve due to its requirement to operate in or address a problem or activity
in the real world, what Lehman called E-type Software.

According to Barry et al. (2007), these laws can be ordered into three broad categories:
(i) laws about the Evolution of Software System Characteristics (ESSC); (i1) laws referring
to Organizational/Economic Resource Constraints (OERC) on software evolution; and (iii)
Meta-Laws (ML) of software evolution. However, these laws were evaluated in the context of
single systems.

In SPLs, the evolution needs a special attention since sources of SPL changes can be targeted
to the entire product line (affecting common assets), targeted to some products (affecting variable
assets), or targeted to an individual product (affecting product-specific assets) (Svahnberg and
Bosch, 1999; Ajila and Kaba, 2004; Bailetti et al., 2004).

36

3.2. RELATED WORK

Thus, the objective of this study is to examine whether Lehman’s Laws (LL) are reflected in
the development of SPLs, where common, variable and product specific assets are built. The
hypotheses that we put forward is that there is a relationship between LL of Software Evolution
and the software evolution in SPL environments. In this context, in order to understand whether
there is a relationship between the LL of software evolution and the SPL evolution process, it
was carried out two empirical investigations in industrial SPL projects. As a preliminary study, it
was selected the first and the second group of laws (Evolution of Software System Characteristics
- ESSC, which includes the Continuing change, Continuing growth, Increasing complexity, and
Declining quality laws; and Organizational/Economic Resource Constraints - OERC, which
includes the Conservation of Familiarity and the Conservation of Organizational Stability laws)
to perform the evaluation. So far, the Meta-Laws - ML (Self Regulation and Feedback System
laws) were not evaluated in both industrial projects. Thus, it was evaluated each one of the
laws from the ESSC and OERC groups for common, variable and product-specific assets in
the context of both industrial SPL projects. We consider that the variation points are implicit
represented by common and variable assets from these SPLs. To the best of our knowledge, this
is the first study stating that most of evaluated LL of software evolution can be applied in the
context of SPL.

3.2 Related Work

Since the publication of Lehman’s work on software changes, other researchers have investigated
his laws within the context of open source and industrial projects.

The first empirical work on software changes was carried out by Lehman (1980), in which
he used a large-scale commercial system, the IBM OS/360, to validate his laws. From this work,
two well know Laws of Software Evolution could be summarized as follows (Gupta et al., 2010):
Law of continuing change (a system that is being used undergoes continuing change) and Law
of increasing complexity (a computer program that is changed becomes less and less structured).
After the publication of Lehman’s eight laws of software evolution (Lehman et al., 1997), other
researchers started to check their validity within open source and industrial software.

Godfrey and Tu (2000) explored the evolution of the Linux kernel both at the system level
and within the major subsystems and found out that the Linux has been growing in a super-linear
rate over the years. However, as will be detailed later, within the context of this study it was
found a different behavior. The complexity within the assets has grown over the years and the

quality has decreased. It is important to notice that the number of maintainers in a private context

37

is smaller compared to maintainers of the Linux kernel and also the time-to-market pressure in a
private context can influences the overall software product quality.

Barry et al. (2007) also investigated Lehman’s Laws (LL); however within the context of
industrial projects. They proposed some metrics as dependent variables (number of activities;
module count; cyclomatics per module, operands per module, and calls per module; number of
corrections per module; percentage growth in module count; number of activities per developer),
which were also related to six LL (the self-regulation and the feedback system laws were
not investigated in this study). In their study, four laws were supported (continuing change,
continuing growth, declining quality, and conservation of familiarity laws) and two were not
supported (increasing complexity and conservation of organizational stability). In this Thesis,
some of these metrics, proposed by Barry et al. (2007), were adapted (as shown in the next
section) to support and evaluate the LL in industrial SPL projects.

Xie et al. (2009) also investigated LL by studying 7 open source applications written in
C and several laws were confirmed in their experiment. Their analysis covered 653 releases
in total and sum 69 years of software evolution including the 7 applications. According to
the authors, the definition of the increasing complexity and declining quality laws may lead to
misinterpretations, and the laws could be supported or rejected, depending on the interpretation
of the law definition. In this Thesis, to avoid this misinterpretation, it is considered that the
increasing of complexity and the declining of quality must happen to support these laws.

Israeli and Feitelson (2010) examined LL within the context of the Linux kernel. They
selected the Linux kernel because of its 14 years data recording history about the system’s
evolution, which includes 810 versions, and also because within the Linux kernel they had
access to all the source code. Thus, they were able to evaluate all of the laws within the
Linux kernel and realized that the Linux kernel is an example of a perpetual development,
where the development is performed in collaboration with its users. Hence, most of the laws
were supported in their evaluation and only two out of the eight laws were not supported (i.e.,
self-regulation and feedback system).

Lotufo et al. (2010) studied the evolution of the Linux kernel variability model. This model
is responsible for describing features and configurations from the Linux kernel. They found that
the feature model grows together with the code. Besides the growth of the number of features,
the complexity still remains the same. Most of the evolution activity is related to add new
features. Their results showed that evolving large variability models is feasible and does not
necessarily deteriorate the quality of the model. Some might claim that the Linux kernel is an
SPL, but since it does not follow the SPL development paradigm we did not consider it as an
SPL.

38

3.2. RELATED WORK

Herraiz et al. (2013) analyzed the most relevant publications dealing with LL over a period
of more than 40 years. They started with studies that led to the formulation of the laws and
finished with studies which elaborate questions or confirm their validity. According to them, not

only the software systems need to evolve, but also their environment and the formulated laws.

Gonzalez-Barahona ef al. (2014) studied the evolution of a long lived FLOSS! software
project, called glib, based on information of around 20 years in the repository. They observed
which information could be extracted from the repository and then evaluated the laws according
to the available retrieved information (i.e., number of commits, number of files per commit,
number of changes, lines added and removed, Lines of Code (LOC), Source Lines of Code
(SLOC)). They used these retrieved information to evaluate most of the laws, however, others
(self-regulation, declining quality, and feedback system) could not be evaluated with the available
data. The findings for this study were: the continuing change law was completely supported; the
increasing complexity law was supported only in part and during some periods; the conservation
of organizational stability law was supported at least to a certain extent; the conservation of
familiarity law was not supported during most of the life of glibc and; the continuing growth
law was not supported during the last phase of the project.

Godfrey and German (2014) performed some observations on modern software evolution
and LL. They discuss how LL may need to evolve to accommodate new trends (i.e., agile
development, cloud-based services, powerful run-time environments). According to them, new
metrics and new empirical models are necessary to deal with new approaches of software
development and reuse. Thus, LL are “beholden” to Lehman’s first law (continuing change), in
which we need to continually adapt them or they will become less useful (Godfrey and German,
2014).

The ML group of laws (Self Regulation and the Feedback System laws) were not evaluated
in this empirical study. Barry et al. (2007) and Gonzalez-Barahona et al. (2014) also did not
evaluated them. According to Barry et al. (2007), it is difficult to state which empirical model
could be used to support or reject these laws. Gonzalez-Barahona et al. (2014) said that these
ML require “feedback mechanisms” to be evaluated, which are key to their formulation. Thus,
according to their available data, they could not evaluate them. We faced the same challenge
within this empirical study. Thus, we could not find an empirical model neither available

feedback data within the project to evaluate the ML.

The empirical studies performed and presented in this Chapter have a long history of

data, with more than 10 years of evolution records, as many of the presented related work.

'Free Open Source Software - http://freeopensourcesoftware.org

39

Nevertheless, they were performed with private SPLs, allowing the evaluation of the laws for

the common, variable and product-specific assets.

3.3 Empirical Studies

The empirical studies presented herein focuses on investigating the relationship between LL of
software evolution and the common, variable and product-specific assets, based on data from
two industrial SPL projects. They were planned and executed according to Jedlitschka et al.
(2008) and Carver (2010) guidelines.

The first empirical study was performed in the medical domain and the second one was
performed in the financial domain, both in an industrial setting. Since both empirical studies
used the same planning, it is presented first the general planning and after the details of each

empirical study.

3.3.1 General Planning

The planning for both empirical studies started by defining their goals based on the GQM
approach (Basili er al., 1994), as follows: the goal of each empirical study is to analyze
Lehman’s Laws of Software Evolution for the purpose of evaluation with respect to its validity
from the point of view of the researcher in the context of an industrial SPL project. Based on

the stated Goal, it was addressed the following research questions:

RQ1. Is there a relationship between the Continuing Change law and the evolution of common,

variable, and product-specific assets?

RQ2. Is there a relationship between the Continuing Growth law and the evolution of common,

variable, and product-specific assets?

RQ3. Is there a relationship between the Increasing Complexity law and the evolution of common,

variable, and product-specific assets?

RQ4. Is there a relationship between the Declining Quality law and the evolution of common,

variable, and product-specific assets?

RQS5. Is there a relationship between the Conservation of familiarity law, and the evolution of

common, variable and product-specific assets?

40

3.3. EMPIRICAL STUDIES

RQ6. Is there a relationship between the Conservation of organizational stability law and the

evolution of common, variable, and product-specific assets?

The term relationship used in the RQs seeks for evidences of each evaluated law in the SPL
common, variable, and product specific assets. In order to answer those questions, some metrics
were defined. Since the SPL literature does not provide clear metrics directly associated to
the laws, the metrics extracted from Barry et al. (2007), Xie et al. (2009), and Kemerer and
Slaughter (1999) were used herein. Barry et al. defined some dependent variables and some
metrics for measuring each dependent variable. Based on their work, in order to evaluate each
LL of software evolution, it was adapted the relationship among laws, dependent variables
and the measurements (as shown in Table 3.2), according to the available data in the private
industrial environment. Moreover, instead of using the Cyclomatic Complexity (McCabe, 1976)
as in Barry’s work, we decided to use the LOC metric, since LOC and Cyclomatic Complexity
are found to be strongly correlated (Kan, 2002).

For each one of the dependent variables, we have stated one null and one alternative

hypothesis. The hypotheses for the empirical study are shown next:
Hy : There is no growth trend in the data during the years (Stationary);
Hp : There is a growth trend in the data during the years (Trend);

To corroborate Lehman’s Laws of Software Evolution, Continuing Change, Continuing
Growth, Increasing Complexity and Declining Quality, we must reject Hy. Thus, if there is
a trend of growth in the data during the years, there is evidence to support these four laws.
However, for the Conservation of Familiarity and the Conservation of Organizational Stability
laws, we must not reject Hy. Thus, no growth trend should exist in the data during the years for
these two laws.

In order to evaluate the hypotheses it was applied the KPSS Test (Kwiatkowski et al., 1992).
This test is used to test a null hypothesis for an observable time series. If the series is stationary,
then we do not reject the null hypothesis. Otherwise, if the series has a trend, we reject the null
hypothesis. In this study, the level of significance used was 5% (alpha-value). We could evaluate
95% of the assets (common, variable and product-specific) for all the laws using this statistical
test.

It was also applied a linear regression analysis (Yan and Su, 2009) to the collected data to
evaluate the variance between the assets of the industrial SPL projects. Through this variance, it
was possible to understand which assets evolve more and should receive more attention. It was

checked the variance (Y = By + B1X) for each dependent variable and for each asset (Common

41

Table 3.2: Relationship among Laws, Dependent Variables and Measurement, based on Barry

et al. (2007).

Law Dependent Acronym | Measurement
Variable
Continuing change Number of Ac- NA Count of corrective, adaptive and
tivities perfective requests over the years
(Barry et al., 2007)
Continuing growth Lines Of Code LOC Number of lines of code of mod-
ules over the years (Xie et al.,
2009)
Increasing complexity | Number of | NCLOC | Total of correction requests di-
Corrections per vided by LOC of modules over
LOC the years (adapted from Kemerer
and Slaughter (1999))
Declining quality Number of | NCM Total correction requests divided
Corrections per by the number of modules over
Module the years (Barry et al., 2007)
Conservation of famil- | Relative Growth RGM New modules created in the year
iarity in Module count divided by the total number of
modules from the previous year
(Barry et al., 2007)
Conservation of orga- | Number of Ac- NAD Count of corrective, adaptive and
nizational stability tivities per De- perfective requests divided by the
veloper count of developers in the year
(Barry et al., 2007)

= comm, Variable = var, Product-Specific = ps) of the SPL. Next, it is presented details of the
first empirical study (Oliveira et al., 2015a).

3.3.2 First Empirical Study

The industrial SPL project, used as basis for the investigation described herein, has been
conducted in partnership with a company located in Brazil, which develops for more than 10
years strategic and operational solutions for hospitals, clinics, labs and private doctor offices.
This company has ~ 50 employees, of which six are SPL developers with a range of 4 to 19
years of experience in software development.

The company builds products, using the PowerBuilder integrated development environment?,

within the scope of four main areas (hospitals, clinics, labs and private doctor offices). Such

Zhttp://www.powerbuilder.eu/

42

3.3. EMPIRICAL STUDIES

products comprise 45 modules altogether, targeting at specific functions (e.g., financial, inventory
control, nutritional control, home care, nursing, and medical assistance). Market trends, technical
constraints and competitiveness motivated the company to migrate their products from a single-
system development to an SPL approach. Within SPL, the company was able to deliver its
common, variable and product-specific assets. To keep the company name confidential, it will
be called Medical Company (MC). During the investigation, MC allowed full access to its code
and bug tracking system.

Regarding the bug tracking system, it was collected a total of 70,652 requests over 10 years,
allowing an in-depth statistical data analysis. Thus, for MC we analyzed the data through the
years. MC uses a bug tracking system called Customer Interaction Center (CIC), which was
internally developed. CIC allows MC’s users to register requests for adaptations, enhancements,
corrections and also requests for the creation of new modules.

All the products at MC have some assets (called modules) in common (commonalities),
some variable assets (variabilities) and also some specific assets (product-specific), enabling the
creation of specific products depending on the combination of the selected assets.

Figure 3.1 shows the division of modules between the areas supported by MC. Four (4)
modules represent the commonalities of the MC SPL, twenty-nine (29) modules represent the
variabilities of the MC SPL and, twelve (12) modules represent the product-specific assets,
totaling forty-five (45) modules in the MC SPL. These modules were classified into common,
variable, and product-specific according to their usage in the MC supported areas. A senior
developer helped us in this classification, since the modules did not have clear boundaries among
them.

Based on those modules, some of the laws could be evaluated with the records from CIC.
However, other ones required the LOC of these modules. From CIC and LOC, we collected data
since 1997. Nevertheless, data related to the three types of maintenance (adaptive, corrective
and perfective) just started to appear in 2003.

The next subsection describes how the data were collected and grouped to allow the evalua-

tion of the defined hypotheses.

3.3.2.1 Execution

The object of this study was the MC SPL. To collect the necessary data (from source code and
the bug tracking system), we defined an approach composed of three steps. In the first step,
we were able to collect data from Customer Interaction Center (CIC), in the second one we
collected LOC data and at the third step, MC clarified some doubts, through interviews, that

43

[1]Product Specific
|:| Commonality

[] variability 111

Hospital

7 Modules

// X § Private Doctor Office ./ S’
/(-\ 2 Modules / '
' Laboratory Clinic
2 Modules { 3 Modules
\\
\\\

Figure 3.1: Modules (assets) per Areas Supported by MC.

we had about the collected data. To collect data from CIC we built a tool that accessed the CIC
database and generated the necessary reports. To collect the data from LOC in PowerBuilder we

used a software called Visual Expert>.

After collecting all the data, we started to group them according to an CIC filed. When
registering a new request at CIC, the user must fill a field called request type. Based on this
request type, the records from CIC were grouped according to the types of maintenance (Lientz
and Swanson, 1980; Gupta et al., 2010). The records were grouped in three types of maintenance,

according to Table 3.3.

It was possible to relate each request from the bug tracking system to either adaptive,
corrective, or perfective maintenance since each request has a field for its type, and each type is
related to a maintenance type. The preventive maintenance type was not used because none of
the records corresponded to this type. We also show other records not related to maintenance
types from CIC, since MC also use CIC to register management information. These other records
had a null request type field or their request type field was related to commercial proposals,
visiting requests or training requests. Thus, they were not used in the analysis. It was found a
total of 70,652 requests in the CIC system.

Based on this classification and the LOC, it was possible to investigate each dependent

variable and also perform the statistical analysis as discussed in the next section.

3http://www.visual-expert.com/

44

3.3. EMPIRICAL STUDIES

Table 3.3: Maintenance Types Groups at MC.

Maintenance | Request Type in CIC Total of
Type Records
Adaptive Reports and System Adaptation Request 22,005
Corrective System Error, Database Error, Operating System Error, Error | 14,980

Message of type “General Fail in the System", Error Message
(Text in English) and System Locking / Freezing
Perfective Comments, Suggestions and Slow System 2,366
Other Doubts, Marketing - Shipping Material, Marketing- | 31,301
Presentation, Marketing-Proposal, Marketing-Negotiation,
Training and Visit Request

3.3.2.2 Data Analysis and Discussion

For analyzing the evolution at MC, in the first step, we collected data related to all assets and we
did not distinguish common, variable and product-specific records. This step can be seen in each
graph from Figure 3.2 as the 7otal line. As the objective was to evaluate the evolution in software
product lines, the records were grouped into commonalities, variabilities and product-specific,
facilitating the understanding of the evolution at MC.

The period in which the data were collected was not the same to all the laws evaluated.
The continuing growth and conservation of familiarity laws were evaluated using data from
the period between 1997 and 2011. The other laws (continuing change, increasing complexity,
declining quality, and conservation of organizational stability) were evaluated using data from
the period between 2003 and 2011.

The descriptive statistics analysis and the discussion of this first empirical study results are

shown next grouped by each research question.

RQ1.) Is there a relationship between the Continuing Change law and the evolution of common,

variable, and product-specific assets?

For this law, the number of activities (adaptive, corrective and perfective) registered in CIC
from January 2003 up to December 2011 were used, corresponding to the Number of Activities
dependent variable as shown on Figure 3.2(a). The plot shows a growth for the commonalities
and variabilities, however, for the product-specific activities a small decrease can be noticed for
the last years. The number of activities related to the variabilities are greater than the activities
related to the commonalities. For the product-specific activities, as expected, there is a smaller

number of activities, since it corresponds to the small group of assets from the MC SPL.

45

7000 1 7000000 17
6000 6000000 1
£ 5000 1 o 5000000 1
£ 3
S 4000 - "Ué 4000000
s $ 3000000 1
5 3000 2
£ - am e o = 2000000 1
3 2000 1 PR il e
4 4 o B2 22 228
- 1000000 "ﬁmﬂnﬂnn-—
1000 e .. -
{..........O'.. e AR X RN 0 .- T T T T T T T T T T T T T
0t 5 2235 838388583823¢%
2003 2004 2005 2006 2007 2008 2009 2010 2011 222 R RIRXRKRKIRIRIRKRKR
@= @ Commonality Variability ® ® ® ® Product Specific Total @= @@= Commonality Variability ® ® ® ® Product Specific Total
(a) Number of Activities (b) Lines of Code per Year
0,0014 7 450,00 7
20,0012 400,00 1
S A\ $ 350,00
% 0,001 / E
3 / \\ 8 300,00
2]
£ 0,0008 / N 2 250,00
~ \ ")
20,0006 - / L § 200,00 4
S & ‘B
2 g
g 0,0004 1 < et g 150,00
S 00002 ’ o O © 100,00 1
’ P4 ecsseooece® ®Cncssces
e ® b 50,00 1 ——T
0 " T " T " T " T = T - T - T S — 0,00 ..'....'...o'-.cl i ...'...'....?..
o o o o o o o ey bl
5 5 5 Q <4 Q 54 5 5 2003 2004 2005 2006 2007 2008 2009 2010 2011
@» @ Commonality Variability ® ® ® ® Product Specific Total Commonality Variability ® ® ® ® Product Specific Total
(c) Corrections / LOC per Year (d) Number of Corrections per Module
4,5 3500 1
4 » 3000
3,5 g
£ S 2500
& 25 & 2000 1
° =
> 2 @
£ £ 1500
° 15 g
°‘ 5 1000 A
1 E LS
% < s ~
05 “ 500 1 pd S e e
P ¥ e S e et ., -
0 . wecemocece
°® ®oomoece®ocee
= &N MM N O N 0 O O 0 T T T T T T T
o o o o o o o o o - b=l
S 8 R R 8 8 R & R] R 2003 2004 2005 2006 2007 2008 2009 2010 2011
@ @ Commonality Variability ® ® ® ® product Specific Total @ @ Commonality Variability ® ® ® ® Product Specific Total

(e) Relative Growth in Module Count

(f) Number of Activities per Developer

Figure 3.2: Plotted Graphs from CIC data and LOC (at MC)

46

3.3. EMPIRICAL STUDIES

Besides the small decrease for product-specific assets activities for the last years, we could
identify a trend of growing in the number of activities for all assets (common, variable and
product-specific) by applying the KPSS Test. Based on the confidence intervals analysis, Figure
3.3(a) (that presents, for each law, which asset — common, variable, and product-specific —
corresponds more with a determined law) indicates that the different assets from the SPL have
different amounts of activities. The number of activities related to the variabilities are bigger in
the SPL because “variability has to undergo continual and timely change, or a product family

will risk losing the ability to effectively exploit the similarities of its members” (Deelstra et al.,
2004).

RQ2.) Is there a relationship between the Continuing Growth law and the evolution of common,

variable, and product-specific assets?

Regarding this law, it was possible to identify similar behaviors for each of the SPL assets.
Figure 3.2(b) shows the lines of code from 1997 up to 2011, corresponding to the Lines Of
Code dependent variable. For common, variable and product-specific assets, we can observe a
tendency to stabilization over the years. They grow at a high level in the first years, but they
tend to stabilize over the next years.

Due to the growth in the number of activities for common and variable assets according to
the Continuing Change law, these activities had an impact on the LOCs. By using the KPSS Test,
the commonalities and variabilities showed a trend of increasing. Despite the continuing change
observed for the commonalities and variabilities in the SPL, MC does not worry about keeping
the size of its common and variable assets stable, contributing with the increase of complexity.

For the product-specific assets, the KPSS Test showed a stationary behavior. Therefore, the
Continuing Growth law to the product-specific assets is rejected. This happens because similar
functions among the product-specific assets are moved to the core asset of the SPL. (Mende
et al., 2008).

Moreover, through the confidence intervals analysis, Figure 3.3(b) shows that the variabilities
from the SPL have more LOC than other assets. This could be a reason why variabilities have

more activities (Continuing Change).

RQ3.) Is there a relationship between the Increasing Complexity law and the evolution of common,

variable, and product-specific assets?

The total number of corrections per line of code, corresponding to the Number of Corrections

per LOC dependent variable is shown in Figure 3.2(c). As it can be seen, the complexity for

47

600 600000
500 T 500000 -
[]
400 <+ 400000
300 E 300000 =
200 200000
100 i 100000 § E
0 T 0
coeff_NAcomm coeff_NAvar coeff_NAps coeff_LOCcomm coeff_LOCvar coeff_LOCps
(a) NA (b) LOC
0.00016 40
0.00014 T 35
0.00012 30
[]
0.0001 25
0.00008 20
0.00006 = 15 =
0.00004 { 10
0.00002 - 5 E E
0 T 0
coeff_NCLOCcomm coeff_NCLOCvar coeff_NCLOCps coeff_NCMcomm coeff_NCMvar coeff_NCMps
() NCLOC (d) NCM
0.06 250
0.05 —
0.04 200
0.03
0.02 150
0.01 . + .
[]
0 } T 100
-0.01 []
-0.02 T 50
-0.03 - 1 {
-0.04 0
coeff_PGMcomm coeff_PGMvar coeff_PGMps coeff_NADcomm coeff_NADvar coeff_NADps
(e) RGM (f) NAD

Figure 3.3: Confidence Intervals for the Regression Coefficients (at MC)

48

3.3. EMPIRICAL STUDIES

commonalities, variabilities and product-specific assets is increasing up to 2007. This increase
was bigger for the commonalities because at that time MC had to evolve the SPL to support new
government laws. However, variable and product-specific assets have also grown up to 2007,
since modifications within common assets also had an impact on variable and product-specific
assets (Svahnberg and Bosch, 1999; Ajila and Kaba, 2004; Bailetti et al., 2004). After 2007,
MC started to try to reduce the complexity and prevent the system from breaking down.

However, we could also identify a trend of growing in the complexity for the commonalities,
variabilities and product-specific assets by applying the KPSS Test in the Increasing Complexity
law. Hence, considering that the complexity is always growing, the Increasing Complexity law
is supported for all the assets in the SPL at MC.

Confidence intervals analysis (see Figure 3.3(c)) indicates that the complexity inside the
commonalities raises more than inside other assets. It happens because the commonalities have
to support all the common assets from the products of the SPL and any change can affect the
entire SPL (Svahnberg and Bosch, 1999; McGregor, 2003; Ajila and Kaba, 2004; Bailetti et al.,
2004).

RQ4.) Is there a relationship between the Declining Quality law and the evolution of common,

variable, and product-specific assets?

The number of corrections per total of modules in the year, corresponding to the Number of
Corrections per Module dependent variable, is shown in Figure 3.2(d). The number of corrections
for the variabilities and for the specific assets follow almost the same pattern. However, for the
common assets of the product line, we can notice a higher number of corrections per module
in 2007, also caused by the adaptation of the system to the government laws. A small increase
in the variabilities and in the specific assets also can be observed in the same year. From 2007,
the number of corrections per module starts to decrease because of the feedback from users and
corrections of problems related to the evolution to deal with the new government laws.

Besides the decrease after 2007, a trend of growing in the number of corrections per modules
could be identified for the commonalities, variabilities and product-specific assets by using the
KPSS Test. Hence, considering that the number of corrections per module is always growing,
the Declining Quality law is supported for all the assets in the SPL at MC.

Based on the confidence intervals analysis, Figure 3.3(d), we could conclude that the number
of corrections per module inside the commonalities is bigger than the other assets. As stated for
commonalities the increasing complexity law, this happens because the commonalities have to

support all the common assets from the products of the SPL and any change can affect the entire

49

product line (Svahnberg and Bosch, 1999; McGregor, 2003; Ajila and Kaba, 2004; Bailetti et al.,
2004).

RQS5.) Is there a relationship between the Conservation of Familiarity law and the evolution of

common, variable, and product-specific assets?

The relative growth in module count, corresponding to the Relative Growth in Module count
dependent variable, is shown in Figure 3.2(e). We can notice that in 1997, MC had already a
well defined scope for the common assets since almost all of them were included in the SPL.
at that time. Over the years, most of the assets included in the SPL, for accommodating the
necessary changes, were variable and product-specific assets.

Regarding this law, a similar behavior could be identified in the SPL assets. To support the
Conservation of Familiarity law, we were looking for assets that have a stationary growth over
the years. The relative growth in module count for common, variable and product-specific assets
have a stationary behavior by applying the KPSS Test. Thus, the Conservation of Familiarity
law was supported within this project.

Unfortunately, as shown in Figure 3.3(e), all the assets have intersections among their limits,

thus, we could not conclude which asset had the biggest relative growth.

RQ6.) Is there a relationship between the Conservation of Organizational Stability law and the

evolution of common, variable, and product-specific assets?

The total number of activities (adaptive, corrective, and perfective) per year divided by the total
number of developers working on the activities, corresponding to dependent variable Number of
Activities per Developer, is shown in Figure 3.2(f). The number of activities for the variabilities
are bigger in the first years, however, it tends to decrease in the following years. This situation
also happened within the common and product-specific assets of the product line.

To support the Conservation of Organizational Stability law, we were looking for assets that
have a stationary growth over the years. Applying the KPSS Test in common, variable, and
product-specific assets, the Conservation of Organizational Stability law was supported since
they have a stationary trend, meaning that the conservation of organizational stability indeed
exists.

Nevertheless, as shown in Figure 3.3(f), we could not conclude which assets had the biggest
number of activities per developer, since the assets have intersections among their limits.

The results of the KPSS test for MC are shown in Appendix A.1.

50

3.3. EMPIRICAL STUDIES

Table 3.4: Laws and Results from the First Empirical Study (at MC).

Law Commonalities | Variabilities | Product Specific
Continuing Change Supported Supported Supported
Continuing Growth Supported Supported Not Supported
Increasing Complexity Supported Supported Supported
Declining Quality Supported Supported Supported
Conservation of Familiarity Supported Supported Supported
Conservation of Organizational Stability Supported Supported Supported

From this first empirical study, commonalities, variabilities, and product-specific assets
seems to behave differently regarding evolution. Five laws were completely supported (continu-
ing change, increasing complexity, declining quality, conservation of familiarity, and conserva-
tion of organizational stability) in this empirical study. The other law (continuing growth) was
partly supported, depending on the SPL asset in question, as shown in Table 3.4.

Next Section presents the motivation for performing the replicated empirical study.

3.3.3 Motivation for Conducting the Replication

The first empirical study was performed in the medical domain. In order to broaden the results
of LL within SPL, the first empirical study was replicated in the financial domain (Oliveira
et al., 2015b). Some of the laws were completely supported in the first empirical study, such
as continuing change, increasing complexity, declining quality, conservation of familiarity,
and conservation of organizational stability laws. One law (continuing growth) was partially
supported for common and variable assets and rejected for product specific ones. Since most of
the laws were supported for the first empirical study, we started to understand how SPLs evolve
and we would like to have more insights to propose improvements in the SPL evolution process.

This replication was conducted by the same researchers (internal replication), using the same
research questions, dependent variables, metrics and hypotheses, however, as a replicated study,

the domain was changed to draw further conclusions.

3.3.4 Changes to the Original Experiment

The first empirical study was evaluated using a larger data set, which was grouped by year.
Within this first empirical study, it was possible to collect data since 1997 for LOCs and since
2003 for the bug tracking system. However, in the second study, the data set was smaller. Data

from LOC:s started to appear in January of 2009, and data from the bug tracking system started to

51

appear in November of 2010. Thus, in order to check some tendencies using statistical methods,

the second study was grouped by months.

3.3.5 Second Empirical Study

The company (environment) in the replicated study was an IT company in the financial domain.
Thus, herein to preserve the company’s name, it will be called Financial Company (FC). FC is
using the SPL paradigm with success to develop their common, variable and product specific
assets, and it has more than 3 years of historical data, which allowed the statistical data analysis.

Thus, for FC we analyzed the data over the months.

FC builds products, using Delphi programming language*, for four main areas: financial
support, account support, budget support and fixed assets support. During the investigation, FC

allowed full access to its code and its bug tracking system.

Regarding the bug tracking system, FC uses one developed by FC itself, called Client
Relationship Center (CRC). CRC allows FC’s users to register requests for adaptations, enhance-

ments, corrections and also requests for the creation of new modules.

All the products from FC have some assets (called modules) in common (commonalities),
some variable assets (variabilities) and also some specific assets, enabling the derivation of the
specific products depending on the combination of the selected assets, characterizing the FC
SPL.

Figure 3.4 shows the division of modules among the main areas in which FC develops
products. One (1) module composes the commonalities of the FC SPL, seven (7) modules
compose the variabilities of the FC SPL, and the others eighteen (18) modules compose the
product specific assets, totalizing twenty-six (26) modules in the FC SPL. These modules
were classified into common, variable, and product-specific according to their usage in the FC
supported areas. A senior developer helped us with the classification, since these modules did

not have clear boundaries among them.

Based on data of those modules, most of the laws could be evaluated with the records from
CRC, however, other ones required the LOC metric. From CRC, it was collected data since 2010
concerning to the three types of maintenance (adaptive, corrective, and perfective). Regarding
LOC, it was possible to collect data since 2009.

“http://www.embarcadero.com/products/delphi

52

3.3. EMPIRICAL STUDIES

3.3.5.1 Execution

The object of the second empirical study was the FC SPL. It was defined an approach composed
of two steps to collect the necessary data (from source code and the bug tracking system). In
the first step, it was collected data from CRC and LOC. These data correspond to all types of
requests that the users can make within CRC and the total LOCs, respectively. In a second step,
FC clarified some doubts, through interviews, about the collected data. To collect data from
CRC, reports were exported by the tool. The developers extracted the information from LOC in

Delphi and sent to us.
After collecting all the data, we started to group them according to an CRC field. When

registering a new request, the user must fill a field called request type. Based on this request type,
the records from CRC were grouped according to the types of maintenance (adaptive, corrective,

and perfective), as shown in Table 3.5.

It was possible to relate each request from the bug tracking system to either adaptive,

corrective, or perfective maintenance since each request has a field for its type, and each type is

B e

Product Specific (18 Modules) _ == "™
= f () ¢eo: Financial

[[] Commonality (1 Module)

[] variability (7 Modules)
E] without Module Intersection

Figure 3.4: Modules (assets) per Area at FC.

Table 3.5: Maintenance Types Groups at FC.

Maintenance Type | Total of Records
Adaptive 25
Corrective 724
Perfective 41
TOTAL 790

53

related to a maintenance type. Thus, it was investigated each dependent variable and performed

statistical analysis based on this classification and the LOC, as discussed in the next section.

3.3.5.2 Data Analysis and Discussion

For analyzing the evolution at FC, in the first step, it was collected data related to all assets and
it was not distinguished common, variable, and product-specific records to check the general
evolution of FC assets. This step can be seen in each graph from Figure 3.5 as the Total line.
As the objective was to evaluate the evolution within SPL, the records were groupped into
commonalities, variabilities, and product-specific facilitating the understanding of the evolution
at FC.

The period in which the data were collected was not the same to all the laws evaluated.
The continuing growth and conservation of familiarity laws were evaluated using data from
the period between January of 2009 and April of 2012. The other laws (continuing change,
increasing complexity, declining quality, and conservation of organizational stability) were
evaluated using data from the period between November of 2010 and June of 2012.

The descriptive statistics analysis and the discussion of the second empirical study results

are shown next, grouped by each research question.

RQ1.) Is there a relationship between the Continuing Change law and the evolution of common,

variable, and product-specific assets?

For this law, we used the number of activities (adaptive, corrective, and perfective) registered
in CRC from November 2010 up to June 2012, corresponding to the Number of Activities
dependent variable as shown on Figure 3.5(a). The plot shows that all assets (common, variable,
and product specific) grow up in the first months, however, after that, they present a ripple effect
and they do not grow at all over the next months. By applying the KPSS statistical test, we could
identify that commonalities, variabilities, and product specific assets have a stationary behavior
over the months. Thus, we could not support the continuing change laws for all the assets at FC.

Based on the confidence intervals analysis, Figure 3.6(a) (that presents, for each law, which
asset — common, variable, and product-specific — corresponds more with a determined law), we

could not identify which asset had more activities since they have intersections among them.

RQ?2.) Is there a relationship between the Continuing Growth law and the evolution of common,

variable, and product-specific assets?

54

EMPIRICAL STUDIES

3.3.

55

(f) Number of Activities per Developer
System data and LOC (at FC)

ing

[= Cerunr [zrunr
2Ty 5 [ecrew 8 [erew 3
| 21 uer [21 ady ® | z11dy
TT PO I [4 %21 .m ZT TN
I e g | B o g
| S L E L =
i | zrver H = |ruer g
Ltrady 2 [5 11290
| 11 uer .,-M 2 | TEAON dm o] ”:>oz m
= o) vo & & Mo =
L 010 O TTdas .2 [TTdos
L = L
| oTinr bS] 1180y 3 11 Sny
| 0T 4dy W. % ”ﬁH_D_. HW. H |._”._“_3ﬁ W.
g | .8 Trunr B nw Crun B
Lotuer 5 | 5 . 5 L 5
g ITlen = Gy TN =
~~ I~
| 60 M0 S TT 1y m | 170y
N— o
| 60Inr | TN 2 TTZIN
z gy 2 r z
0w 5 e 2 m [1raes £
5 A s |z TTUer §
Gouer £ orwa E | Forza £
i S L
g 8 8 g8 g © S jorren 81 2 otaon S
8 8 8 8 8 y) !)) " —_—+
e} o wn o 2] 0 o wn o wn o
o~ o~ — — ~ ~ — — 0 N~ W n = m ~N = O
2pod jo saurn $3|Npoly / suoydalio) s1adojanaq 1ad saningoy
zrun [_ [_
[©
7T e m | 2T e ..m\ _it/iqe m
ZT 1dy _gr/uel
7T 2N 42T
r _TT/ino
mwed g £ £
21 uer m. " | cruer m. _TT/inf m
(2] v wy
wza ¢ 0 o 5 Q _ITt/aqe g
IIAON o = TTAON 3 o) E
o > [1 Tr/uel 8
P £ m P m | r g
11 dos < | Trees » _ot/ano
11 3ny 4 g
= | © e . | .8 _ot/inl
winr £ r r = o £
wur 8| 8 w2 2 _or/ige 3
mew S | g F s | 3 otjuel =
1T ady M N—_— @) [
T 2N = L @ _ 60/3n0
11 624 M, ~ | TT uer z _eo/Inf =
ue r 2 o
LT uer m | m _ 60/4qe 5
orza g | OTAON £ £
otron S — 3 60/uel 3
r T T T T T T 5 8 8 3 8 o8 g © L T T T T T t
o o o © © o o o S 9 9 9 © 9 © mog Y42 2 8 °
R & v § ™ « = S o o o o o o °© S5 ° S ° o
S3UIALIY JO J3quINN 2p0) 30 saul] / suoKRIALI0) Yimou annepy

Plotted Graphs from Bug Track

(e) Relative Growth in Module Count

Figure 3.5

1,8 8000
16 T 7000
1,4
. 6000 *
1,2
- 5000 T
1
4 4000
0,8 &
3000
0,6 T
2000
0,4
§
0,2 1000
0 : . 0 . -
coeff_NAcomm coeff_NAvar coeff_NAps coeff_LOCcomm coeff_LOCvar coeff_LOCps
(2) NA (b) LOC
0,00035 1,2
0,0003 = 1
0,00025 08
[} ’ L]
0,0002
0,6
0,00015 1 -+
04
0,0001
0,00005 0,2 t
¥ . =
0 T T 0 T
coeff_NCLOCComm coeff_NCLOCvar coeff_NCLOCps coeff_NCMcomm coeff_NCMvar coeff_NCMps
() NCLOC (d) NCM
0,001 0,2
0,0008 — 018 T T
0,16
0,0006
0,14
0f L]
0,0004 0,12 -
0,0002 7 0,1 pa 1 4
0 - . - . 0,08
0,06 =+
-0,0002
0,04
-0,0004 - 0,02
-0,0006 0 T
coeff_PGMcomm coeff_PGMvar coeff_PGMps coeff_NADcomm coeff_NADvar coeff_NADps

(e) RGM

(f) NAD

Figure 3.6: Confidence Intervals for the Regression Coefficients (at FC)

56

3.3. EMPIRICAL STUDIES

Regarding this law, it was possible to identify similar behaviors for each of the SPL assets.
Figure 3.5(b) shows the lines of code from January of 2009 up to April 2012, corresponding to
the Lines Of Code dependent variable. For common, variable, and product-specific assets, we
can observe a small tendency of growing over the months. Besides, there is no such growing in
the activities according to the continuing change law, overall, the total LOC of each asset had a
growth trend.

By using the KPSS Test, the commonalities, variabilities, and product specific assets showed
a trend of increasing, thus, we could support the continuing growth law for all assets.

Moreover, through the confidence intervals analysis, Figure 3.6(b) shows that the product
specific assets had more LOC than other assets. One of the reasons is that product specific assets
correspond to the majority of assets at FC SPL.

RQ3.) Is there arelationship between the Increasing Complexity law and the evolution of common,

variable, and product-specific assets?

The total number of corrections per line of code corresponds to the Number of Corrections
per LOC dependent variable, as shown in Figure 3.5(c). As it can be seen, the complexity
for variabilities is higher compared to other assets. However, we could not identify a trend
of growing in the complexity for the commonalities, variabilities and product-specific assets
by applying the KPSS Test in the Increasing Complexity law. Hence, considering that the
complexity is not growing over the months, the Increasing Complexity law is not supported for
all the assets in the FC SPL.

Confidence intervals analysis (see Figure 3.6(c)) indicates that the complexity inside the
variabilities raises more than inside other assets. It happens because “variability has to undergo
continual and timely change, or a product family will risk losing the ability to effectively exploit
the similarities of its members” (Deelstra et al., 2004). These continual and timely changes raise
the complexity of variabilities at FC, however, the company deals with this complexity avoiding

its growth.

RQ4.) Is there a relationship between the Declining Quality law and the evolution of common,

variable, and product-specific assets?

The number of corrections per total of modules in the year, corresponding to the Number of
Corrections per Module dependent variable, is shown in Figure 3.5(d). The number of corrections
for the variabilities and for the specific assets follow almost the same pattern. However, common

assets of the SPL had a higher number of corrections per module. Besides this growth for

57

common assets, the commonalities, variabilities, and product-specific assets had a stationary
behavior over the months by using the KPSS Test. Hence, considering that the number of
corrections per module is not growing, the Declining Quality law is not supported for all the
assets in the FC SPL.

Based on the confidence intervals analysis, Figure 3.6(d), we could conclude that the number
of corrections per module inside the commonalities is bigger than the other assets. As stated, this
happens because the commonalities have to support all the common assets from the products
of the SPL and any change can affect the entire product line (Svahnberg and Bosch, 1999;
McGregor, 2003; Ajila and Kaba, 2004; Bailetti et al., 2004).

RQ5.) Is there a relationship between the Conservation of Familiarity law and the evolution of

common, variable, and product-specific assets?

The relative growth in module count, corresponding to the Relative Growth in Module count
dependent variable, is shown in Figure 3.5(e). We can notice a significant growth in the first
months of 2010 for product specific assets. For common and variable assets we could notice an
stationary behavior over the months.

To support the Conservation of Familiarity law, we were looking for assets that have a
stationary growth over the years. The relative growth in module count for common, variable
could not be evaluated because of the stabilization over the months. Product-specific assets have
a stationary behavior by applying the KPSS Test. Thus, the Conservation of Familiarity law was
supported only within the product specific assets.

Unfortunately, as shown in Figure 3.6(e), all the assets have intersections among their limits,

thus, we could not conclude which asset had the biggest relative growth.

RQ6.) Is there a relationship between the Conservation of Organizational Stability law and the

evolution of common, variable, and product-specific assets?

The total number of activities (adaptive, corrective and perfective) per year divided by the total
number of developers working on the activities, corresponding to dependent variable Number of
Activities per Developer, is shown in Figure 3.5(f). The number of activities for the variabilities
are bigger in the first months, however, it tends to decrease in the following months. This
situation also happened within the common and product-specific assets of the product line.

To support the Conservation of Organizational Stability law, we were looking for assets that
have a stationary growth over the months. Applying the KPSS Test in common, variable and

product-specific assets, the Conservation of Organizational Stability law was supported since

58

3.3. EMPIRICAL STUDIES

Table 3.6: Laws and Results from the Second Empirical Study (at FC).

Law Commonalities | Variabilities | Product Specific
Continuing Change Not Supported | Not Supported | Not Supported
Continuing Growth Supported Supported Supported
Increasing Complexity Not Supported | Not Supported | Not Supported
Declining Quality Not Supported | Not Supported | Not Supported
Conservation of Familiarity - - Supported
Conservation of Organizational Stability Supported Supported Supported

they have a stationary trend, meaning that the conservation of organizational stability indeed
exists.

Nevertheless, as shown in Figure 3.6(f), we could not conclude which assets had the biggest
number of activities per developer, since the assets have intersections among their limits.

The results of the KPSS test for FC are shown in Appendix A.2.

From this second empirical study, commonalities, variabilities, and product-specific assets
seems to behave differently regarding evolution. Two laws were completely supported (continu-
ing growth and conservation of organizational stability) in this empirical study. Three laws were
not supported (continuing change, increasing complexity, and declining quality). Finally, one
law (conservation of familiarity) was supported only for product-specific assets, as shown in

Table 3.6.

Next, it is presented a comparison of the results from both empirical studies.

3.3.6 Comparison and Discussion of Results

After applying the KPSS statistical test in both empirical studies, it was found that the results
are one-third consistent. Next, it is discussed the consistent and different results, according to
Table 3.7.

Table 3.7: Consistent/Different Results from the Empirical Studies.

Dependent Variable Law Commonalities | Variabilities | Product Specific
NA Continuing Change Different Different Different
LOC Continuing Growth Consistent Consistent Different
NCLOC Increasing Complexity Different Different Different
NCM Declining Quality Different Different Different
RGM Conservation of Familiarity Different Different Consistent
NAD Conservation of Organizational Stability Consistent Consistent Consistent

59

3.3.6.1 Consistent Results

Comparing both empirical studies, one law (conservation of organizational stability) was
completely supported for all assets (commonalities, variabilities, and product specific), as shown
in Table 3.7.

- The Conservation of Organizational Stability (NAD) law. For this law, our findings
shown that common, variable, and product specific assets have a stable behavior over the years
for both empirical studies. Thus, the number of activities per developer over the time for both
companies are constant, supporting this law.

Moreover, since the number of activities in all assets per developers keeps constant, these
companies avoid a frequent problem of overloading the developers with extra tasks, smoothing
the SPL evolution.

3.3.6.2 Partially Consistent Results

We also had partially consistent results for some assets concerning two laws (continuing growth
and conservation of familiarity).

- The continuing growth (LOC) law. We could support the Continuing Growth (LOC)
law in both empirical studies for common and variable assets, meaning that these assets keep
growing in LOC over the years. Moreover, according to the first study at MC, variable assets
had more LOC than other assets to support all the product configurations (Figure 3.3(b)).

The increase of LOC for common and variable is an evidence that a control under the growth
of these assets should exists to avoid a future increase within the SPL complexity.

- The Conservation of Familiarity (RGM) law. Product specific assets for this law also had
a consistent result. Both results showed a stationary trend in the relative growth of module count
over the time. Thus, this law was supported for product specific assets within both empirical

studies.

3.3.6.3 Partially Different Results

We also had partially different results for some assets concerning the continuing growth and
conservation of familiarity laws.

- The continuing growth (LOC) law. Product specific assets had a difference in the results
for both empirical studies according to this law. With the MC empirical study, this law was
not supported. However, it was supported for product specific assets at the second empirical

study in the FC. Thus, the number of LOC’s for product specific assets within FC increased over

60

3.3. EMPIRICAL STUDIES

the time being also responsible for the higher number of LOC’s within this SPL compared to
other assets (Figure 3.6(b)). This can also brings some increase in the their complexity in a near
future. Thus, in order to avoid such increasing, a standard behavior within an SPL should be a
refactoring of product specific assets into common or variable ones.

- The Conservation of Familiarity (RGM) law. According to this law, the system growth
should be constant. This could be confirmed for common and variable assets of the first empirical
study. Hence, there is no relative growth in module count over the time. However, common and
variable assets of the second study at FC could not be evaluated through the KPSS statistical test
since the data were constant over the time. Thus, we need more studies to support this law for

SPL common and variable assets.

3.3.6.4 Differences in Results

Three of the laws (continuing change, increasing complexity, and declining quality) had differ-
ences within all the assets (common, variable, and product specific) according to the results of
both empirical studies, as shown in Table 3.7. Next, it is discussed the differences.

- The Continuing Change (NA) law. This law was completely supported for all assets in the
first empirical study at MC. Hence, the number of activities for MC is increasing over the time.
It is interesting to check that the number of activities for the medical domain are increasing, thus
the need to evolve the SPL according to the user needs or due a changing environment indeed
happens. On the other side, neither asset supported this law within the second empirical study at
FC. In the financial domain, the need to evolve the SPL according to the user needs does not
happen because of the maturity in the domain, where common, variable, and product-specific
assets were strictly developed according to user needs.

For the first study, we could identify that variable assets have the greater number of activities
(Figure 3.3(a)). The number of activities for variable and product specific assets in the second
study seems to be apparently higher than activities for common assets, however, we could not
verify which asset had more activities, since they had intersections among their limits, as shown
in Figure 3.6(a). Nevertheless, we should consider the number of activities for variable assets,
since it was the biggest number within the first study and it was also high for the second one.
This may happen to keep updated the variabilities within the SPL, allowing the configuration,
and customization of several products.

- The Increasing Complexity (NCLOC) law. This law was completely supported for all
assets in the first empirical study at MC. Hence, the number of corrections per LOC in MC is

increasing over the time. On the other side, neither asset supported this law within the second

61

empirical study at FC.

Moreover, the complexity was higher for common assets within the first empirical study
(Figure 3.3(c)), and it was higher for variable assets within the second empirical study (Figure
3.6(c)). The complexity for these assets may be higher because of the following SPL behaviors:
common assets should support all the products from the SPL (McGregor, 2003) and; “variability
has to undergo continual and timely change, or a product family will risk losing the ability to
effectively exploit the similarities of its members” (Deelstra et al., 2004).

- The Declining Quality (NCM). This law was completely supported for all assets in the
first empirical study at MC. Thus, the number of corrections per module count within MC
is increasing over the time. Nonetheless, neither asset supported this law within the second
empirical study at FC.

For both empirical studies, the evidences shown that common assets had more declining
quality than others (Figures 3.3(d) and 3.6(d)). Since commonalities have to support all the
common assets from the SPL products, their quality also should rise to improve the whole SPL

quality. Next, it is presented the threats to validity of the studies.

3.4 Threats to Validity

There are some threats to the validity of the study. They are described and detailed as follows.

External Validity threats concern the generalization of our findings. It was analyzed SPLs
from two specifics domains: the medical and the financial ones. There are requests for changing
that are specific to these domains such as the need of changing because of a new government
law (medical domain). Hence, it is not possible to generalize the results to other domains than
the ones investigated here. However, these are the first results, which can be considered within
the medical and financial domains.

These empirical studies involved two SPL companies. Thus, it needs a broader evaluation in
order to try to generalize the results. However, this was the first step where LL were evaluated
within two industrial SPL from different domains in which a long historical data was made
available for the researchers.

Internal Validity threats concern factors that can influence our observations. The period in
which the data were collected was not the same. Some laws were evaluated using the period
between 1997-2011 (MC) / 2009-2012 (FC). Others were evaluated using the period between
2003-2011 (MC) / 2010-2012 (FC). For MC we analyzed data by year and for FC we analyzed
data by months. Also, the requests from the bug tracking system were used in the same way no

62

3.5. KEY FINDINGS AND CONTRIBUTIONS FOR SPL COMMUNITY

matter of their quality, duplication, request implementation, or rejected requests. Moreover, the
size in modules of the systems were not the same and they did not have clear boundaries among
them. Nevertheless, we asked a senior developer to help us with the modules classification.
Moreover, the available data are meaningful because we could deal with industrial SPL projects
with long periods of historical data, where statistical methods could be successfully applied.

Construct Validity threats concern the relationship between theory and observation. The
metrics used in this study may not be the best ones to evaluate some of the laws, considering
that there is no baseline for those metrics applied to SPL. However, metrics used to evaluate
LL in previous studies were the basis for this work. Some metrics were based on LOC. Even
though LOC can be considered a simplistic method, LOC and Cyclomatic Complexity are found
to be strongly correlated (Kan, 2002), thus we decided to use LOC since MC and FC had this
information previously available.

Conclusion Validity threats concern with issues that affect the ability to draw the correct
conclusion about the outcome of the study. Indeed, not all of the laws were supported to all
assets (common, variable, and product-specific) concerning the evaluated laws. However, most
of the laws were supported according to the asset type within both empirical studies (twenty-four

supported assets from a total of third-six assets).

3.5 Key Findings and Contributions for SPL. Community

In this section, it is presented the key findings and also discussed what is the impact of each

finding for industrial SPL practitioners, according to each law.

a. Continuing Change Law. Variable assets are responsible for the greater number of
activities performed in the MC industrial SPL project and also it is one of the assets
with more activities for the FC SPL industrial project. Practitioners should be aware of
making modifications within those assets, since there are several constraints among them.
According to the MC SPL, we could realize that the number of product-specific activities
decreases starting 2007 while the number of activities on common and variable assets
increases. It could be that there are so many activities on the variable and common assets
(compared to the product-specific assets) because their scope has not been chosen well (or
has changed significantly in 2007), implying that more and more specifics assets have to
be integrated into commonalities and variabilities. This would be a typical SPL behavior.
Also, another reason for increasing the number of activities on variable assets is that SPL

needs more attention within the variabilities for the sake of reuse.

63

b. Continuing Growth Law. The increase of LOC for common and variable is an evidence
that a control under the growth of these assets should exists to avoid a future increase
within the SPL complexity. Also, we identified that variable and product-specific assets
had also the biggest growth. Practitioners should search among the variable and product
specific assets, those that share behavior and can be transformed into common assets.
Transforming variable and product specific assets into common assets will reduce the their

total growth and it also will reduce their complexity.

c. Increasing Complexity Law. Complexity within common assets is bigger than for other
assets within the MC SPL. According to the FC SPL, variable assets had the biggest
complexity. Practitioners should be aware of complexity in common and variable assets
since they have to support all the products and variations from the SPL (McGregor, 2003;
Deelstra et al., 2004). This makes any kind of change in common and variable assets to

be considered as critical, since they may affect the whole SPL.

d. Declining Quality Law. The number of corrections per modules were higher for common
assets in both studies. In fact, for these empirical studies we also have to consider the
number of maintainers at both companies, which were a small number. Moreover, it is
very important to control the quality of the SPL, mainly for commonalities. Since they
have to support all the common assets from the SPL, their quality also should rise to

improve the whole SPL quality.

e. Conservation of Familiarity Law. All assets from MC (common, variable and product-
specific) supported the conservation of familiarity law. Within the FC SPL, we could not
evaluated this law for common and variable assets because of the data stabilization over the
time. Hence, more studies are need. However, product specific assets at FC also supported
this law. In order to avoid the loss of familiarity with the SPL, practitioners should

maintain the relative growth for all assets constant, avoiding the exponential growth.

f. Conservation of Organizational Stability Law. All assets support this law by keeping
the same amount of work among the developers for both empirical studies. Practitioners
should try to achieve a better management of the developers’ work, without overloading

them with unnecessary work.

Based on the results of these empirical studies, the following initial items were proposed to

improve the evolution within SPLs:

64

3.6. CHAPTER SUMMARY

. Creation of guidelines for evolving each SPL artifact. The lack of systematization over
the SPL evolution process may led to inconsistent results for common, variable, and
product-specific assets among the companies. Thus, guidelines supporting evolution
steps for SPL artifact should exist to systematize the evolution of common, variable and
product-specific assets. These guidelines should consider why, when, where and how the

SPL assets evolve.

. For each evolution task, keep constant or improve the quality of the SPL. Although the
results from the KPSS statistical test did not confirm the loss of quality for the FC company,
the regression analysis shown that common assets within the FC are losing quality. Thus,
measurements should be applied over the evolution process within the all the SPL assets.
These measurements can be extended also to all phases of the SPL development (including

requirements, architecture, code, and so on).

. For each evolution task, try to decrease the complexity of the SPL. Although the results
from the KPSS statistical test did not confirm the increase of complexity for the FC
company, the regression analysis shown that the complexity of variable assets within the
FC is increasing. Thus, after evolving the SPL code, measurements may be applied to

check if the new change in the code increases or not the complexity of the SPL;

. Improve the feedback. Our results shown that both companies care about the amount
of work performed by developers. This is a good practice within the SPL development.
Thus, the management team should be aware of the clients’ needs in order to keep
adding/removing functionalities within the SPL paying attention to not increase LOCs of

the assets.

The above list summarizes some improvements that can be followed according to the findings

of these empirical studies at MC and FC. Next Section presents the Chapter summary.

3.6 Chapter Summary

Lehman’s Laws of Software Evolution were published in the seventies, updated years ago, and

are still perceived in nowadays software evolution context. The investigation performed here

with two industrial SPL projects shown that commonalities, variabilities, and product-specific

assets seems to behave differently regarding evolution.

Few results were consistent between both empirical studies. The benefits are twofold: the

consistent results confirm once again the LL regarding SPL; and the different results indicate

65

that more investigation is needed to better understand the reason why LL may not hold for SPL.
However, we believe that the LL are also applicable in the SPL context, since most of the laws
could be supported for most of the SPL assets of the two SPL industrial projects (twenty-four
supported assets from a total of third-six assets).

In summary, the consistent results shown that SPL support the conservation of organizational
stability law, however, there is a need to cope with the continuing growth, which may affect the
whole SPL complexity and quality. According to the first study, all assets are changing over the
time. However, there is an increasing of complexity and a decrease of quality over the years.
Therefore, dealing with the complexity and quality in evolving an SPL needs special attention.
Additionally, guidelines may help with the declining quality and increase complexity during
the SPL evolution, since they can make the evolution more effective. These guidelines may
help during the whole SPL evolution starting from the SPL requirements up to the SPL tests,
considering all LL of software evolution. Next Chapter presents a systematic mapping study on
SPL evolution, which identified approaches from 1996 up to the end of 2014.

66

Software Product Lines Evolution: A

Systematic Mapping Study

Software Product Lines (SPL) evolution is a highly active research area, which receives signifi-
cant attention of the software engineering community. However, so far, there is no systematic
overview including this whole research area. Thus, this Chapter presents an overview from
the state of research on SPL evolution. It was performed a systematic mapping study on SPL
evolution which selected relevant papers from 1996 up to the end of 2014.

The remainder of this Chapter is organized as follows: Section 4.1 introduces the concept
of systematic mapping study and presents the motivation to perform this study. Section 4.2
presents the general background and relates our study to others (Section 4.2.1). Section 4.3
shows the research method applied in this systematic mapping study. Section 4.4 discusses the
results according to each defined research question and presents the threats to validity. Section
4.5 presents the Chapter summary and the consolidation of the findings from both empirical
studies, which evaluated the applicability of LL within SPL, and the systematic mapping study.

4.1 Introduction

A systematic mapping study provides well defined procedures to identify work related to a
research question. Moreover, it also reveals gaps in current research in order to foster further
investigation (Budgen et al., 2008).

Thus, in order to understand and improve the Software Product Lines (SPL) evolution
processes, a mapping study was performed (Oliveira et al., 2015d). The focus of this study is to

reveal approaches that deal with SPL evolution and reveal gaps for future research.

67

4.1.1 Motivation

So far, there is still a lack of a global landscaping covering the whole SPL life cycle and its
evolution. A systematic mapping study can help to reveal how approaches are dealing with SPL
evolution and show some gaps that need to be improved.

To the best of our knowledge, there are only two systematic mapping study about SPL
evolution: Laguna and Crespo (2013) and Assuncdo and Vergilio (2014). However, these
mapping studies focuses only in re-engineering into SPLs and SPL refactoring.

Thus, the proposed systematic mapping study is going to be the first one to identify:

* approaches that deal with evolution in SPL

* why, where, when, what, and how SPL evolve
Moreover, there are some benefits of this systematic mapping study, as follows:

* This study can benefit researchers, practitioners. Since it presents a whole overview of
the SPL evolution area, from 1996 up to the end of 2014, researchers and practitioners
may choose the best SPL evolution approach according to their needs.

* Point out research gaps. This study pointed out some research gaps that so far were not
researched or need more investigation.

* Since this study is based on a taxonomy for software change (Buckley et al., 2005), it can
be possible to suggest a taxonomy for SPL evolution. This taxonomy should take into
account where most of the studies fitted according to the data extraction form and try to

identify what is specific to SPL.

4.2 Background

There are some taxonomies (Buckley et al., 2005; Fenske ef al., 2014) and classifications (Bosch
and Ran, 2000) for evolution, which served as a basis to this work.

Fenske et al. (2014) built a taxonomy for SPL re-engineering. They gave different names to
distinct activities and shown their relationships. However, their effort was only concentrated in
the categorization of existing work. Moreover, since their proposed taxonomy only deals with
SPL re-engineering, some relevant SPL evolution approaches may not fit into the taxonomy.
Thus, we decided to use the more general taxonomy proposed by Buckley ef al. (2005).

Buckley et al. (2005) defined a taxonomy for software changes within single systems. This

taxonomy identifies when, where, what, and how a single system evolves, according to: the

68

4.2. BACKGROUND

Temporal Properties Evaluated (When), the Object of Change Evaluated (Where), the System
Properties (What), and the Change Support (How). However, this taxonomy has not been
applied to SPL so far. Thus, within this systematic mapping study, we use this taxonomy to
identity When, Where, What, and How SPL evolve over the time.

Bosch and Ran (2000) defined some SPL categories of SPL evolution, as follows: New
product family; Introduction of New Product; Adding New Features; Extend Standard Support;
New Version of Infrastructure; and Improvement of Quality Attribute. Based on these categories

of SPL evolution, we could identify within the selected approaches Why an SPL needs to evolve.

4.2.1 Related Work

To the best of our knowledge this is the first systematic mapping study covering the whole SPL
evolution area. However, there are other mapping studies on SPL evolution that cover specific
areas (Laguna and Crespo, 2013; Assuncao and Vergilio, 2014; Santos et al., 2015a). Next it is

present an overview of these studies.

SPL evolution is an highly active research area which have already some systematic mapping
studies. Laguna and Crespo (2013) performed a systematic mapping study which focused on
approaches that deal with re-engineering of legacy system to SPL and refactoring of SPL.
Assunc¢do and Vergilio (2014) also performed a systematic mapping study, however their
focus was only within migrating a single system to SPL through the identification of features.
Since the focus from these work were limited (re-engineering and refactoring), some SPL
evolution studies remain unrevealed. Moreover, within their search string, the authors did not
consider the term evolution. Santos et al. (2015a) mapped the existing approaches dealing
with inconsistency management within SPL. Such approaches cope with the identification
and management of inconsistencies during the evolution of SPL artifacts. They classified and
performed a characterization of these approaches through a mapping study, and organized it
in three main categories: (1) Model against Source code, (i1) Model against Model, and (iii)
Model against Specifications. However, their mapping study focused only in approaches that
deal with inconsistencies within the evolution of SPL artifacts. Thus, our systematic mapping
study aims to complement these SPL. mapping studies by addressing all approaches concerning
SPL evolution.

69

4.3 Research Method

We followed the guidelines provided by Budgen et al. (2008); Petersen et al. (2008); Kitchenham
and Charters (2007). A systematic mapping study is a way of categorizing and summarizing the
existing information about a research question in an unbiased manner. This one was performed
in three stages: Planning, Conducting, and Reporting (this document). The Planning and the

Conducting stages are presented next.

4.3.1 Planning Stage

This stage is composed of the following activities: definition of the research question (Section
4.3.1.1); definition of the search strategy (Section 4.3.1.2); selection of primary studies (Section
4.3.1.3); definition of the quality assessment form (Section 4.3.1.4); and definition of the data
extraction strategy (Section 4.3.1.5).

4.3.1.1 Research Question

The goal of this study is to reveal approaches that deal with evolution in SPL from the point of
view of the following research question: RQ1) Which are the existing approaches for dealing
with evolution in SPL? This research question allowed us to categorize and summarize the
current knowledge concerning SPL evolution approaches, and also, to identify gaps for further
investigation. Since the main research question is too broad, we decomposed it into more

detailed sub-questions. Table 4.1 shows nine sub-research questions and their motivations.

4.3.1.2 Search Strategy

We used four digital libraries to perform the automated search for primary studies, as follows:
IEEE Xplore; ACM Digital Library; Springer Link; and Science Direct. Moreover, we also
manually searched in the main conference proceedings and journals that are relevant for SPL and
evolution. Table 4.2 shows the manual searched conferences and Table 4.3 shows the manual
searched journals. Although some conferences and journals selected for the manual search are
indexed by some of the selected digital libraries, we also performed the manual search to ensure
that all relevant papers have been included in the systematic mapping study, since there may be

a bias in the automated search (Santos et al., 2015b).

To perform the automatic search within the digital libraries, we built a search string consisting

of two parts focusing on covering the concepts that represent the evolution in SPL. The first

70

4.3. RESEARCH METHOD

Table 4.1: Sub-Research Questions and Motivation.

Sub-Research Questions

Motivation

RQ1.1) Why SPL approaches need to deal
with evolution?

RQ1.2) When SPL approaches perform the
evolution?

RQ1.3) Where the SPL approaches perform
the evolution?

RQ1.4) What type of Evolution (static or dy-
namic) does the approach support?

RQ1.5) How SPL approaches support the evo-
lution?

RQ1.6) What is the SPL life cycle and phase
in which the evolution is applied?

RQ1.7) What is the evaluation procedure
from the approach?

RQ1.8) What type of tool support does the
approach offer?

RQ1.9) What is the context in which the ap-
proach is applied?

Identify the reason Why SPL evolve over the
time according to Bosh and Ran SPL evolu-
tion categories (Bosch and Ran, 2000).
Identify When SPL need to evolve according
to the taxonomy defined by Buckley et al.
(2005). This includes the time of a change,
change history, change frequency, and antici-
pation of a change.

Identify Where the SPL need to evolve accord-
ing to the taxonomy defined by Buckley et al.
(2005). This includes which artifact evolves,
its granularity, the impact of a change, and if
any kind of change propagation is supported.
Identify What type of evolution happens in
an SPL according to the taxonomy defined
by Buckley et al. (2005). The type of SPL
evolution includes availability of the system
during the evolution, type of activeness of
the system (reactive or proactive), if the ap-
proach is open or closed to extensions, the
type of safety during the evolution, and other
possible types of evolution.

Identify How SPL evolve according to the
taxonomy defined by Buckley er al. (2005).
This includes the degree of automation, the
degree of formalization, and the change type
(re-engineering or refactoring).

Identify what is the SPL life cycle (domain
engineering or application engineering) and
also which phase (scoping, requirements, ar-
chitecture, realization, and tests) the approach
is applied.

Identify what kind of evaluation was per-
formed by applying the approach. The evalu-
ation can be case studies, surveys, controlled
experiments, feasibility studies, or not evalu-
ated at all.

Identify whether the approach offers a tool
for automation or not.

Identify if the SPL evolution approach is ap-
plied within the industry, academia, or both.

71

Table 4.2: Selected Conferences for Manual Search.

1 | International Conference on Software Maintenance and Evolution (ICSME)

2 | Software Product Line Conference (SPLC)

3 | Conference on Software Analysis, Evolution, and Reengineering (SANER)

4 | International Conference on Software Engineering (ICSE)

5 | International Workshop on Principles of Software Evolution (IWPSE) / ERCIM
Workshop on Software Evolution (EVOL)

6 | International Conference on Software Reuse (ICSR)

7 | International Workshop on Variability Modelling of Software-Intensive Sys-

tems (VaMoYS)

8 | European Software Engineering Conference (ESEC/FSE)

9 | Generative Programming and Component Engineering (GPCE)

10 | International Conference/Workshop on Program Comprehension (ICPC)
11 | Automated Software Engineering (ASE)

12 | European Conference on Software Architecture (ECSA)

13 | Working IEEE/IFIP Conference on Software Architecture (WICSA)

Table 4.3: Selected Journals for Manual Search.

Transactions on Software Engineering (TSE)
Information and Software Technology (IST)
Journal of Systems and Software (JSS)
Empirical Software Engineering (ESE)
Journal of Software: Evolution and Process
Communications of the ACM (CACM)
Transactions On Software Engineering and Methodology (TOSEM)
Software Practice and Experience (SPE)
IET Software / IEE Proceedings

ACM Sigsoft Software Engineering Notes
Journal of Object Technology

OO0 A NN =W —

o | ek
—_ O

part is related to the studies that deal with software evolution and the second one is related
to software product lines studies. Table 4.4 shows the search string in which synonyms and
alternate terms were joined using the Boolean operator OR; and the Boolean operator AND has

been used to join the two parts of the string.

During the search in the digital libraries, the defined search string was applied in the title,
abstract and keywords of each paper. Moreover, since each digital library has a specific syntax,
the search string syntax was adapted according to each digital library. We also took into account

these search terms when the manual search was performed.

72

4.3. RESEARCH METHOD

Table 4.4: Search String for the Digital Libraries.

(((evol*) OR (maint*) OR (chang*) OR (modif*))
AND
((“product line”’) OR (“product-line”’) OR (“product family”) OR (“product-family”’) OR
(“product families””) OR (“product-families”) OR (“family of product”) OR (“families of
product”) OR (SPL)))

This systematic mapping study covers the literature from 1996 up to December 2014. This
period was selected because 1996 was the first year in which a conference specifically dedicated
to SPL was held (called Workshop on the Design and Evolution of Software Architecture of
Product Families, which was the root of the current Software Product Line Conference - SPLC).

To validate our search string, we compared the results from the digital libraries with 10
representative studies that should appear in the results. These 10 studies (Acher et al., (S3),
Ajila et al. (S5), Alves et al. (S7), Borba et al. (S16), Botterweck et al. (S17), Dhungana et
al. (S30), Lotufo er al. (S65), Neves et al. (S70), Schulze ez al. (S95), Thum ez al. (S104))!
were previously selected since they are papers with a detailed description of the SPL evolution
approach and they also presented clear results after applying the SPL evolution approach. Thus,

we have more confidence that the search string was able to find the corrected sample.

4.3.1.3 Selection of primary studies

Each retrieved paper (from the automated search or the manual search) was evaluated by the
authors in order to decide whether or not it should be included by considering the title, abstract
and keywords. Disagreements in the selection were solved after scanning the whole paper. The

studies that met the following inclusion criteria were selected:

- Studies that focus on software product line evolution / maintenance approaches;
- English peer-reviewed studies that provide answers to the research questions; and

- Full Papers with 6 or more pages.
Studies that met at least one of the following exclusion criteria were removed:

- Studies that are not related to the research questions;
- Papers not written in English;

- Introductory papers for special issues;

I'Each one of the references represented as S(number) is a paper from the Appendix B.1.

73

- Books;
- Papers containing extended abstracts; and

- Duplicate reports of the same study in different sources.

4.3.1.4 Quality Assessment

A three-point Likert-scale questionnaire was designed to assess the quality of the selected
papers. This questionnaire is composed of three subjective closed-questions and one objective

closed-question. We defined the following subjective questions:

(a) Does the study present a detailed description of the SPL evolution approach?
(b) Does the study provide guidelines for applying the SPL evolution approach? and
(c) Does the study present clear results after applying the SPL evolution approach?

The possible answers to these questions were: “Yes, I agree (+1)”; “Partially (0)”; and “No,

I do not agree (-1)”. The objective question was:

(d) Does the study have been cited by other authors? The possible answers to this question
were: “Yes (+1)” if the paper has been cited by more than five authors; “Partially (0)” if
the paper has been cited from 1 up to 5 authors; and “No (-1)” if the paper has not citation.
We used the Google Scholar citations count to rate this question. To not penalize early

publications (i.e., papers published in 2014), we rated them as “Partially (0)”.

The quality assessment form (Table 4.5) helped in the identification of good quality papers.

Table 4.5: Quality Assessment Form.

Quality Assessment +1 0| -1

a. | Does the study present a detailed description of the SPL evolution ap-

proach?
b. | Does the study provide guidelines for applying the SPL evolution ap-

proach?
c. | Does the study present clear results after applying the SPL evolution

approach?
d. | Does the study has been cited by other authors?

*Adapted from Fernandez et al. (2011)

Zhttp://scholar.google.com.br/

74

4.3. RESEARCH METHOD

4.3.1.5 Data Extraction Strategy

The employed data extraction strategy was built according to the set of possible answers for
each defined sub-research question. By applying the same extraction data criteria to all selected
papers, we also facilitated their classification. The data extraction form was created based on the
work of Bosch and Ran (2000) for identifying Why an SPL evolve, and also it was based on the
work of Buckley et al. (2005) to identity When, Where, What, and How an SPL evolve. The
possible answers to each sub-research question are explained in more detail as follows.

With regard to RQ1.1 (Categories of SPL. Requirement Evolution [Why]), an approach can

be classified according to the following answers:

(a) New product family: it is the introduction of a new SPL based on an existing one.

(b) Introduction of New Product: Is the introduction of a new product in the SPL.

(c) Adding New Features: it is the introduction of new features into the SPL due to market
investigation, new technological opportunities, or competitors.

(d) Extend Standard Support: it is the extension of standard support in the SPL, for example,
due to new network communication protocols, component communication standards, or
file systems.

(e) New Version of Infrastructure: it is a new version of the infrastructure (e.g., hardware,
operating systems) that is used as basis for the SPL products.

(f) Improvement of Quality Attribute: it is the improvement of quality attributes from the SPL

and its assets.

With regard to RQ1.2, RQ1.3, RQ1.4, and RQI1.5 the taxonomy proposed by Buckley et al.
(2005) was employed in order to classify the evolution within SPL.
Concerning RQ1.2 (Temporal Properties Evaluated [When]), an approach can be classified

according to the following:

(a) Time of change: it is the possibility of representing the different phases of the software life-
cycle, such as: compile-time, load-time, and run-time. Compile-time (static) represents
a change made in the software code, thus, the software needs a recompilation to keep
running. Load-time describes a change while software elements are loaded into an
executable system. Run-time (dynamic) occurs when the software change is performed
during its execution.

(b) Change history: it is related to the possibility of storing the history of all changes
(sequential or parallel) performed in a software. There are tools, called version control

tools, that make this change history available.

75

(¢c) Change frequency: changes in a software may be performed continuously, periodically,
or at arbitrary intervals. Sometimes, users frequently request changes, but these changes
should follow a periodically schedule to be integrated into the software (i.e., during
scheduled down-times). Other software systems (i.e., interpreted systems), follow a
less-formal change process and may allow developers to integrate changes continuously.

(d) Anticipation: it refers to the time when the requirements for a software change are foreseen.
If the approach supports anticipation of a change it is explicit registered in the extraction

form, for example, a design decision to support a future change.

Regarding to RQ1.3 (Object of Change Evaluated [Where]), an approach can be classified

according to the following:

(a) Artifact: several types of artifacts may be subject to change over the evolution. We adapted
the taxonomy from Buckley et al. (2005) to support the SPL artifacts. A Core Asset Base
artifact is a group of artifacts from an SPL core. A Core Asset artifact is one artifact from
an SPL core, apart from the SPL core architecture. An SPL Architecture artifact is an
artifact from the core SPL architecture. A Product Architecture artifact is an artifact from
the product architecture. A Product artifact is an artifact from the SPL product, apart from
the product architecture. Also, an artifact can be classified as Other if it does not fit in
neither of the previous categories.

(b) Granularity: another influencing factor is the granularity of the change. Within SPL, we
defined that Coarse Grained artifacts are related to scoping, requirements and architecture.
On the other hand, Fine Grained artifacts are related to code.

(¢c) Impact: we also adapted the impact of change from the Buckley et al. (2005) taxonomy to
deal with SPL. A Local change affects only a product from the SPL. A Global change
affects the whole SPL.

(d) Change propagation: the change impact analysis (Bohner and Arnold, 1996) tries to
measure or assess the consequences of a change. The traceability analysis is a way to deal
with the change impact analysis, since it establishes explicit relationships between/among
two or more artifacts of the software process. In many cases, changes with a global impact
require more effort to be performed, which can be estimated by applying effort estimation
techniques (Ramil and Lehman, 2000).

Concerning RQ1.4 (System Properties [What]), an approach can be classified according to

the following answers:

76

4.3. RESEARCH METHOD

(a) Availability: availability indicates whether the SPL has to be continuously available or not
during the evolution.

(b) Activeness: the SPL can be reactive (changes are driven by an external need) or proactive
(the SPL autonomously drives changes to itself, related to dynamic SPL).

(c) Openness: SPL are Open if they are built to allow extensions. Closed SPL do not allow
extensions.

(d) Safety: static safety SPLs preserve specific safety aspects at compile-time. Dynamic safety
SPLs are built-in provisions for preventing or restricting undesired behavior at run-time.

(e) Other: if the paper approach deals with some kind property different from the previous

cited, it can be classified as Other with the name of the new property.

Referring to RQ1.5 (Change Support [How]), an approach can be classified according to the

following:

(a) Degree of automation: the degree of automation is strictly related to the tool support. An
Automated degree supports a fully automated SPL maintenance task. A Partially degree
supports a partial automated SPL maintenance task. A Manual degree does not have a
tool to support the SPL evolution task.

(b) Degree of formality: a change support mechanism may be implemented in an Ad-hoc way
or based on some underlying Mathematical formalism.

(c) Change type: structural changes (Re-engineering) refer to changes that modify the struc-
ture of the software, changing the software behavior. Semantics (Refactoring) correspond
to the concept of software refactoring, where the behavior of the software still the same

over the evolution process.

With regard to RQ1.6 (Phase of the SPL life cycle in which the evolution is applied), an

approach can be classified according to the following:

(a) Domain Engineering: when it is related to the SPL core asset, the approach may deal with
the SPL core scoping, SPL core requirement, SPL core architecture, SPL core realization,
and/or SPL core test.

(b) Application Engineering: when it is related to the SPL products, the approach may deal
with the SPL product requirement, SPL product architecture, SPL product realization,
and/or SPL product test.

Concerning RQ1.7 (Evaluation Procedure), an approach can be classified according to the

following:

71

(a) Case study: if it provides a formal and rigorous study in which data is collected to evaluate
the SPL evolution.

(b) Survey: if it tries to obtain a feedback about the benefits and limitations of the SPL
evolution approach (i.e., by applying a questionnaire), over a certain period of time.

(c) Controlled experiment: if it provides a controlled investigation, which is based on verifying
hypotheses concerning the SPL evolution approach.

(d) Feasibility Study: if it only presents a proof of concept.

(e) Not Evaluated: if it does not provide any type of evaluation.
Referring to RQ1.8 (Tool Support), an approach can be classified according to:

(a) Automatic: if the approach provides a tool for automatizing the whole/partially SPL
evolution.

(b) Manual: if the approach does not provide a tool for automatizing the SPL evolution.
With regard to RQ1.9 (Current Usage), an approach can be classified according to:

(a) Academia: if the approach is applied within the academia context.

(b) Industry: if the approach is applied within the industry context.

A template for data extraction activities was designed to make easier the management of the

data extracted for each paper (see Appendix B.2).

4.3.2 Conducting Stage

The defined search string (Table 4.4) was adapted for each electronic database. Each search was
performed within the title, abstract, and keywords of the papers (see Appendix B.3).

4.3.2.1 Search from 1996 up to 2014

From those database sources (IEEE Xplore, ACM Digital Library, Science Direct, Springer
Link), it was found a total of 1,837 papers, as shown in Table 4.6.

From the manual search, a total of 243 papers were found. From this total, 103 were new
papers (papers that were not retrieved by the search engines), as shown in Table 4.7 (conferences)

and Table 4.8 (journals). The sum of all retrieved papers was 1,940 papers (Table 4.9).

78

4.3. RESEARCH METHOD

Table 4.6: Total of Retrieved Papers from Databases (1996-2014)

IEEE Xplore 521

ACM Digital Library | 308

SpringerLink 489

ScienceDirect 519
Total 1,837

Table 4.7: Total of Retrieved Papers from the Manual Search on Conferences (1996-2014)

International Conference on Software Maintenance and Evolution (ICSME) 1

Software Product Line Conference (SPLC) 46
Conference on Software Analysis, Evolution, and Reengineering (SANER) 4
International Conference on Software Engineering (ICSE) 4
International Workshop on Principles of Software Evolution IWPSE) / ERCIM | 2

Workshop on Software Evolution (EVOL)
Intenational Conference on Software Reuse (ICSR) 6

International Workshop on Variability Modelling of Software-Intensive Sys- | 10
tems (VaMoY)

Generative Programming and Component Engineering (GPCE) 5
Automated Software Engineering (ASE) 1
European Conference on Software Architecture (ECSA) 4
Working IEEE/IFIP Conference on Software Architecture (WICSA) 1
Total 84

Table 4.8: Total of Retrieved Papers from the Manual Search on Journals (1996-2014)

Information and Software Technology (IST) 3
Transactions on Software Engineering (TSE) 1
Journal of Systems and Software (JSS) 5
Journal of Software: Evolution and Process 4
3
1
2

Communications of the ACM (CACM)

Transactions On Software Engineering and Methodology (TOSEM)
Software: Practice and Experience (SPE)

Total 19

Table 4.9: Total of Retrieved Papers (1996-2014)

Database Search* | 1,837
Manual Search* 103
Total 1,940

* removing duplicates

79

4.3.2.2 Selection of Studies from 1996 up to 2014

The selection of the papers was performed by applying 2 filters and extracting the paper
information (Figure 4.1), as follows:

* 1st Filter - Applying the Inclusion/Exclusion Criteria (Title and Abstract): First a
brief read of the paper title and abstract was performed. From 1,940 papers, only 463
papers left. Since the number of papers were still high (463), we decided to perform

another filter.

* 2nd Filter - Applying the Inclusion/Exclusion Criteria (Abstract, Introduction and
Conclusion): We performed a second filter to ensure that the selected papers are relevant
and to perform a more detailed analysis of each paper. It consisted in reading the paper
Abstract, Introduction and Conclusion. In parallel with this filter, we also extracted the
paper information to fill the data extraction form. Thus, if we decided to select the paper
after the 2nd filter, we also extracted its information, according to the data extraction form.
After this extraction, we selected another paper, from the remaining papers, to apply once
again the 2nd filter. This process was repeated up to the end of the remaining papers. At

the end, only 142 papers left.

4.4 Results

The general results, which were revealed by counting the approaches classified in each of the
answers of the research sub-questions, is presented in Table 4.10. The complete list of the
selected papers from this systematic mapping study is available in B.1. Both the classification of

the selected papers in each category and their quality scores are provided in Appendix B.4.

80

4.4. RESULTS

1st Filter

Brief read of paper title and abstract From 1.940 => To 463 papers

‘ 463 papers

2nd Filter

Reading of the paper abstract, introduction and
conclusion

Apply the 2nd
Filter to the)
remaining If the paper is selected

papers
Data Extraction
1

If there is no
more papers to
apply the 2nd
filter and
extract
information

Fill the data extraction form

Selected Papers

142 papers at the end

Figure 4.1: Paper Selection Process

Table 4.10: Summary of the Results.

Results
Studies Percentage

Possible Answers

RQ1.1*

New Product Family 21 14.79
Intro. of New Product 20 14.08
Adding New Features 103 72.54

Continued on next column

81

Continued from previous column

Results

Possible Answers -
Studies Percentage

Extend Standards Support 1 0.70
New Version of Infrastruct. 11 7.75
Improvement of Q.A. 13 9.15
RQ1.2*

Time of Change: Static 102 71.83
Time of Change: Load Time 4 2.82
Time of Change: Run-Time 45 31.69
Change History: Parallel 14 9.86
Change History: Sequential 5 3.52
Change Freq.: Arbitrary 10 7.04
Change Freq.: Continuous 0 0.00
Change Freq.: Periodically 3 2.11
Anticipation 10 7.04
RQ1.3*

Artifact: Core Asset Base 40 28.17
Artifact: Core Asset 82 57.75
Artifact: SPL Architecture 26 18.31
Artifact: Prod. Architecture 10 7.04
Artifact: Product 21 14.79
Artifact: Other 1 0.70
Granularity: Fine Grained 46 32.39
Granularity: Coarse Grained 127 89.44
Impact: Local 30 21.13
Impact: Global 138 97.18
Change Prop.: Impact 22 15.49
Change Prop.: Effort Est. 3 2.11
Change Prop.: Traceability 6 4.23

Continued on next column

4.4. RESULTS

Continued from previous column

Possible Answers - Results

Studies Percentage
RQ1.4*
System not Available 106 74.65
System Available 40 28.17
Activeness: Reactive 103 72.54
Activeness: Proactive 43 30.28
Openness: Closed 0 0.00
Openness: Open 6 4.23
Safety: Static 2 1.41
Safety: Dynamic 4 2.82
RQ1.5%
Automation: Manual 58 40.85
Automation: Partially 43 30.28
Automation: Automated 41 28.87
Formality: Ad hoc 96 67.61
Formality: Formal 46 32.39
Change Type: Structural 42 29.58
Change Type: Semantics 50 35.21
RQ1.6*
Domain Eng.: Scoping 33 23.24
Domain Eng.: Requirement 100 70.42
Domain Eng.: Architecture 64 45.07
Domain Eng.: Realization 54 38.03
Domain Eng.: Test 7 4.93
App. Eng.: Requirement 25 17.61
App. Eng.: Architecture 34 23.94
App. Eng.: Realization 16 11.27
App. Eng.: Test 4 2.82

Continued on next column

83

Continued from previous column

Results
Studies Percentage

Possible Answers

RQ1.7

Not Evaluated 14 9.86
Feasibility Study 121 85.21
Controlled Experiments 2 1.41
Case Studies 4 2.82
Surveys 0 0.00
Other 1 0.70
RQ1.8

Automatic 65 45.77
Manual 77 54.23
RQ1.9%

Academia 133 93.66
Industry 12 8.45

*These Sub-RQs are not exclusive. A paper can be classified in one or more of

the answers. Thus, the sum of the percentages is over 100%.

The following sub-sections present the analysis of the results for each sub-research question.

4.4.1 Why SPL approaches need to deal with evolution? (RQ1.1)

The results for RQ1.1 revealed that around 15% of the papers deal with the evolution to build a
new product family (see Table 4.10). For instance, we found representative examples of these
approaches within the work from Acher et al. (S3), Kang et al. (S51) and Lopez-Herrejon et al.
(S131).

Acher et al. (S3) presented a comprehensive tool supported process for reverse engineering
architectural feature models. The tool can, in an automatic way, extract and combine different
variabilities of an architecture. However, the final document needs to be validated with a
document generated by a software architect.

Kang er al. (S51) described a re-engineering method for transforming, through feature-

oriented method, home robot applications into SPL. According to them, a feature-oriented

84

4.4. RESULTS

re-engineering approach may help robot builders to achieve some of the SPL benefits (i.e.,
decrease in development cost and increase in application flexibility). They start with a legacy
system, extract its architecture, and then extract the features. Following, they refine the feature
model according to the SPL and generate the SPL architecture/components.

Lopez-Herrejon et al. (S131) propose to apply reverse engineering in a set of system
variants to achieve an SPL. Their approach is iterative where all the involved stakeholders go
through multiple iterations and feature models, SPL architecture, and supporting platform are
successively refined. Thus, at the end of their approach they provide a first working feature
model.

Also, the results for sub-research question 1.1 identified that around 14% of the papers (see
Table 4.10) deal with evolution for introducing a new product into the SPL, for instance: Ajila
and Kaba (S4) and Borba er al. (S16).

Ajila and Kaba (S4) have presented some mechanisms to support the evolution of a software
product line in order to support a new product. According to them, traceability mechanisms are
essential to perform this evolution. Thus, to evaluate the impact of a change when adding a new
product in an existing SPL, they proposed operations and impact analysis functions.

Borba et al. (S16) proposed a theory for refactoring products into an SPL. However, the
refactoring that they consider is more than a just refactoting, is a refactoring considering quality.
Thus, they call it as a refinement. The main idea is to evolve an SPL by improving the design or
by adding new products, however, keeping the existing ones. This evolution is based on formal
language, proofs, theorems and lemmas.

The majority of the papers deal with evolution in SPL by adding new features (72.54%, as is
shown in Table 4.10). For instance, Alves et al. (57), Botterweck et al. (S17) and Quinton et al.
(S135).

Alves et al. (S7) extended the traditional notion of program refactorings for SPL, in
which feature models are refactored. They focused on feature model refactoring improving
(maintaining or increasing) the set of all possible configurations of the initial feature model.
Thus, they propose a catalog of feature model refactorings, allowing an increase within the
configurations.

Botterweck et al. (S17) presented an approach for extending model-driven product line
engineering to an automated technique for SPL evolution. Their approach deals with the feature
model variability over time and proposes a “Catalogue of evolution operators”.

Quinton et al. (S135) discuss edits in the feature model taking into account the cardinalities.
Thus, they proposed a formal approach to explain inconsistencies within cardinality-based

feature models. They claim that a tool is necessary to support the detection of inconsistencies

85

after adding, removing, or changing the feature model.

Only Axelsson’s work (S11) deals with the evolution of an SPL to extend standards support
(less than 1%, see Table 4.10).

Axelsson (S11) investigated changes applied into an existing SPL architecture, taking into
account what caused the change, quality attributes, and technical aspects.

Around 7.7% of the papers deal with evolution in SPL due to a new version of the infras-
tructure (see Table 4.10). Examples are the work from Bencomo ef al. (S15) and Weyns and
Michalik (S109).

The approach proposed by Bencomo et al. (S15) provides variability management by
systematically promoting software reuse and by using models. In their approach, they allow the
specification of structure and behaviour from a Dynamically Adaptive Systems (DAS).

Weyns and Michalik (S109) developed an automated approach to evolve deployed SPL
products. They proposed an architecture meta-model to store the necessary knowledge to evolve
an SPL and an algorithm to generate tasks that should be performed to evolve the SPL based on
the meta-model knowledge.

Around 9% of the papers evolve an SPL due to an improvement of quality attribute (see
Table 4.10). For example, Neves et al. (S70) and Schulze et al. (S95).

Neves et al. (S70) identified and described precisely a number of SPL safe evolution
templates. The templates include: split an asset; refine an asset; add a new optional feature; add
a new mandatory feature; replace a feature expression; add a new alternative feature; add a new
OR feature; and delete an asset. The proposed templates are based on refactoring an SPL, where
the behavior of the SPL remains the same after the evolution.

Schulze et al. (S95) proposed an extension of existing refactoring techniques for Feature-
Oriented Programming (FOP). They provide exemplary refactorings for feature-oriented SPL in
a catalogue-like manner. Additionally, they discuss the generalizability of their definition and

the actual refactoring towards annotative SPL implementation techniques.

4.4.2 When the SPL approaches perform the evolution? (RQ1.2)

The results for the sub-research question 1.2 shown that around 72% of the papers deal with
static SPL evolution (see Table 4.10). For instance, we found representative examples of these
approaches in the work from Anastasopoulos (S9), Thiim et al. (S104), and Acher et al. (S119).

The research question studied by Anastasopoulos (S9) addresses how configuration manage-
ment can be successfully used for managing the evolution in an SPL. Hence, the contribution

of this work lies in the reduction of steps SPL engineers have to perform in order to achieve

86

4.4. RESULTS

evolution control when dealing with branches in an SPL. These steps are performed in an static
way.

Thiim et al. (S104) presented and evaluated an algorithm to determine, in an static manner,
the relationship between two feature models (i.e., specialization/refactoring/generalization)
using satisfiability solvers.

Acher et al. (S119) presented a practical support for synthesising a Feature Model (FM)
from a set of configurations. They propose a tool support for performing static operations in
FMs, such as, reverse engineering, refactoring, merging, and slicing.

Around 3% of the papers deal with load time evolution in SPL (see Table 4.10). An example
is the approach presented by Hallsteinsen et al. (S44).

Hallsteinsen et al. (S44) proposed to adapt an SPL during compile time (launched system)
and also during run-time. The proposed adaptive systems are built with explicitly variability
being part of the architecture. In this way, they are able to relieve the developer from much of
the added complexity of adaptivity.

Run-time (dynamic) evolution in SPL corresponds to 31.69% of the papers (see Table 4.10).
For instance, the work from Cetina et al. (S21), Rosenmuller et al. (S85), and Cetina et al.
(S123).

Cetina et al. (S21) identified and addressed two challenges related to human subjects in Dy-
namic SPL (DSPL). The first one is to allow DSPL users to trigger the run-time reconfigurations,
and the second one is to understand the reconfigurations effects. They provided some guide-
lines for DSPL to: introduce user confirmations to reconfigurations; improve reconfiguration
feedback; and introduce rollback capabilities to reconfigurations.

The approach presented by Rosenmuller et al. (S85) allows to switch the feature binding
time through the same code base. Their approach statically allows the generation of dynamic
bindings, which reduces the overhead. Moreover, the approach also provides composition safety
of dynamic binding by using a transformed feature model. Thus, they provide transformation
rules for creating dynamic binding units.

Cetina et al. (S123) presented a DSPL case study in which they used a Smart Hotel for
performing run-time reconfigurations. They used real devices and human subjects to understand
the reliability-based risk of reconfigurations. Thus, they focus on two attributes of reliability-
based risk: probability of malfunctioning (Availability) and the consequences of malfunctioning
(Severity).

Around 10% of the papers deal with parallel evolution in SPL (see Table 4.10). For instance,
the work from Thao et al. (S103).

The tool proposed by Thao et al. (S103), called MoSPL, is a component-based Software

87

Configuration Management (SCM) system, which deals with product versioning, product
derivation, and the version management of an evolving SPL. MoSPL explicitly manages logical
constraints and derivation relationships among the core assets and products.

Sequential evolution in SPL represent less than 3.6% of the papers (see Table 4.10). An
example is the work from Chen et al. (S23).

Chen et al. (S23) presented a discrete event simulation which is used to provide a framework
for the simulation of SPL. This simulation can execute in alternative settings (i.e., sequential).
They have created an environment to make easy the strategic management and the long-term
forecasting, according to the SPL development and evolution.

The results also shown that around 7% of the papers deal with arbitrary evolution in SPL (see
Table 4.10). For instance, the approaches presented by Anastasopoulos et al. (S10), Anquetil et
al. (S102), and Dintzner et al. (S124).

The solution presented by Anastasopoulos et al. (S10) is based on configuration management,
which is an established management discipline for controlling the evolution of software systems.
Since traditional configuration management does not address special aspects pertaining to
product lines, a set of extensions are proposed to fill the respective gaps. The solution is made
up of two components: RIPLE-EM and PULSE. The study tries to bring them both together to
solve the problem with the management activity in evolving SPL.

Anquetil et al. (S102) proposed the AMPLE Traceability Framework (ATF). This framework
deals with SPL traceability issues and can be customized according to the SPL context. They
offer support for versioning (version/time links) using SVN in eclipse.

Dintzner et al. (S124) presented a classification of feature changes that occur in the Linux
kernel feature model based on the Kconfig language and a corresponding tool, called FMDiff, to
extract them. Their classification describes feature changes on several levels of granularity.

None approach deals with continuous evolution within SPL (see Table 4.10).

Around 2.1% of the approaches deal with periodically SPL evolution (see Table 4.10). For
instance, the approach from Lotufo et al. (S65).

Lotufo et al. (S65) identified some categories for changing the Linux model (called reasons
for edits): new functionality; retiring obsolete features; clean-up/maintainability; support to
changes in C code; build fix; and change variability. These edits are performed periodically
within the Linux model.

Finally, around 7% of the approches deal with antecipation in SPL evolution (see Table
4.10). Two examples are the approaches presented by Simon et al. (S100) and the approach
from White et al. (S141).

Simon et al. (S100) proposed a lightweight iterative process to re-engineering a legacy

88

4.4. RESULTS

system into SPL. This process has some guidelines on how to perform this re-engineering,
including the feature anticipation (where a market analysis is performed to anticipate possible
new features).

White et al. (S141) have proposed an automated approach for deriving configurations accord-
ing to a set of requirements. They called their technique the MUIti-step Software Configuration
probLEm Solver (MUSCLES). MUSCLES uses Constraint Satisfaction Problems (CSPs) to
foresee changes in the next versions of the feature model.

4.4.3 Where the SPL approaches perform the evolution? (RQ1.3)

The results for RQ1.3 revealed that around 28.1% of the papers deal with the evolution within
the whole core asset base (see Table 4.10). For instance, we found representative examples of
these approaches within the work from Dhungana et al. (S29), Inoki and Fukazawa (S49), and
Passos et al. (S134).

Dhungana et al. (S29) have developed a model-based approach that allows the SPL definition,
management, and utilization. They assume that is easier to maintain a small model than a larger
one. Thus, their approach proposes to create model fragments, which describes the variability of
the selected parts of the system, instead of a large model.

Inoki and Fukazawa (S49) proposed an approach for evolving core assets evolution based
on the kaizen approach. They defined kaizen patterns (patterns for evolving features and assets
from a core asset), composed of the SPL knowledge. The approach also allows the improvement
of current work standard.

Passos et al. (S134) inspected over 500 Linux kernel commits (around four years of
development) to get insights of how variability models and their related artifacts coevolve. Thus,
they identified a catalog of evolution patterns based on the Linux kernel variability model and
its related artifacts (Makefiles and source code).

Around 57.7% of the approaches deal with evolution within a core asset (see Table 4.10).
Examples are the approaches from Lee and Muthig (S60) and Savolainen and Kuusela (S90).

Lee and Muthig (S60) proposed an approach to perform the analysis and the specification of
features that vary as a part of reconfigurations at run-time. They focused on providing a formal
base that can be used as a basis for adding other new definitions and consistency rules.

The approach proposed by Savolainen and Kuusela (S90) deals with SPL specifications. It is
based on the definition hierarchy method - a model-based requirements engineering technique.
They consider the evolution during the requirements specification. Each requirement has an

entry on a table, and it is associated to products through a prioritization scheme. They call this

89

analysis volatility analysis.

The results shown that around 18.3% of the papers deal with SPL architecture (see Table
4.10). For instance, the approaches from Diaz er al. (S31), Gomaa and Hussein (S40), and
Gamez and Fuentes (S125).

The approach from Diaz et al. (S31) addresses change impact analysis when evolving a
Product Line Architecture (PLA). They propose to use traceability links and propagation rules
within PLA. Thus, since there is a need to handle the variability within the traceability and the
PLA, their approach supports the specification of the PLA variability, knowledge, and also it
allows to trace the variability between requirements and PLAs.

Gomaa and Hussein (S40) state that for each software architecture pattern, there must be
a reconfiguration pattern, which allows to adapt the architecture dynamically. This reconfigu-
ration pattern uses a state machine and orthogonal state-charts. Thus, they proposed a change
management model to describe this reconfiguration.

Gamez and Fuentes (S125) presented an SPL evolution approach to deal with the FamiWare,
which is a family of middleware for intelligence environments. In this approach, changes
performed in the feature model are automated and propagated to the architectural components
of the middleware. Moreover, the approach also calculates the effort when performing a change.

Around 7% of the approaches deal with evolution within the product architecture (see Table
4.10). For example, the approaches in Ajila and Kaba (S5) and Weyns and Michalik (S110).

Ajila and Kaba (S5) presented basic mechanisms to support SPL process evolution. These
mechanisms share four strategies: change identification, change impact, change propagation,
and change validation. This study also examines three kinds of evolution processes: architecture,
product line, and product.

The research presented by Weyns and Michalik (S110) is concerned to update one or more
deployed products of an SPL. Their particular focus is on updating SPL products that require
online updates with minimal interruption. Thus, they defined a framework for updating SPL
products.

Results revealed that around 14.7% of the approaches deal with product evolution (see Table
4.10). For instance, the approaches proposed by Heider et al. (S47) and Romanovsky et al.
(S84).

Heider ef al. (S47) presented an approach supported by a tool called VaMoRT (Variability
Modeling Regression Testing). It supports impact analyses during variability modeling by
determining the impact of changes on existing products.

The approach proposed by Romanovsky ef al. (S84) has the aim of documenting SPL
documents using a button-up approach (starting from the documentation of one product and

90

4.4. RESULTS

identifying reused documentation from the following products). They proposed a tool that uses
XML for documenting SPL.

Less than 1% of the approaches deal with evolution of other SPL artifact (see Table 4.10).
An example is the approach proposed by Chen et al. (S23).

To improve the SPL evolution (and also development), Chen et al. (S23) proposed a
simulation tool called DEVSJAVA and a life cycle cost estimation model (COMPLIMO).

Around 32.3% of the approaches deal with evolution of fine grained SPL artifacts (see Table
4.10). For instance, the approaches presented in Alves et al. (S8), Lopez-Herrejon et al. (S64),
and Kanda et al. (S128).

Alves et al. (S8) addressed the issues of structuring and evolving SPL in highly variant
domains. They proposed an approach that combines extractive and reactive SPL techniques
to extract the SPL variation from a current software, and adapt the new SPL to support other
products. Their approach uses refactorings derived from simple Aspect-Oriented Programming
(AOP) laws.

Lopez-Herrejon et al. (S64) identified eight refactoring patterns. According to them, these
patterns allow the extraction of code fragments that implement features.

Kanda et al. (S128) proposed to extract the evolution history of SPL products based on the
code. Their approach relies only on the source code, thus, it does not consider names, numbers,
or release dates. They proposed a Product Evolution Tree in which each node of the tree is a
product, the edges connect similar products, and the labels show the product similarity and the
evolution direction.

Results revealed that around 89.4% of the approaches deal with evolution of coarse grained
SPL artifacts (see Table 4.10). Examples are the approaches proposed by Deelstra et al. (S28),
Seidl et al. (S96), and Acher et al. (S120).

Deelstra et al. (S28) identified whether, when, and how variability in SPL should evolve
(COSVAM assessment method). The reasons are associated to a number of methodological and
knowledge issues. Methodological issues include: unstructured; reactive instead of proactive;
generalized instead of optimal decisions; lack of removing obsolete variability; and addressing
only one layer of abstraction. Knowledge issues include: implicit variability; neglecting
implementation dependencies; and insufficient number of alternative solutions.

Seidl et al. (S96) firstly presented a classification for evolutions which stores the effects of
changes performed within the feature model. Secondly, they presented a conceptual basis for
co-evolving models and the feature model.

Acher et al. (S120) presented a tool-supported process for reverse engineering and evolving

architectural feature models.They developed automated techniques to extract and combine

91

different variability descriptions of a software architecture.

Around 21.1% of the approaches have a local impact during the SPL evolution (see Table
4.10), such as the approaches presented by Abbas ef al. (S2) and Wu et al. (S113).

Abbas et al. (S2) proposed the Autonomic Software Product Lines (ASPL), where products
have online learning mechanism that continuously evolve a product’s internal knowledge and, in
addition, may trigger internal adaptations.

The study presented by Wu et al. (S113) examined the evolution in requirements and
architecture of 10 products, including 51 major releases. They address the highly complex inter-
relationship between SPL requirements, PLA, and product architectures. From the architectural
impact, they identified some requirement changes, such as: default requirement changes; urgent
requirement changes; tentative requirement changes; customer-specific requirement changes;
large scale requirement changes; and internal maintainability requirement changes. Moreover,
it was identified six typical architectural evolution patterns, namely linear evolution, clone,
derivation, merge, synchronization, and propagation.

The majority of the approaches, around 97.1%, have a global impact during the SPL evolution
(see Table 4.10). Examples of these approaches are the work from Cordy et al. (S24), Knodel et
al. (S56), and Benlarabi (S122).

Cordy et al. (S24) identified two special classes of features, the conservative and the
regulative features. They propose a formal method to define if a feature is conservative or
regulative in a given SPL. Thus, they formally define interesting classes of features, which allow
to model check only a subset of the products when a new feature is added.

The study presented by Knodel ef al. (S56) proposed to integrate existing assets into the SPL
core asset and also it relates reverse engineering techniques to recover assets from documents
and history analysis.

Benlarabi’s (S122) approach consists on building a co-evolution model using biological
co-evolution techniques, specifically Cladistics classification. This technique was extensively
used in biology and it demonstrated its efficiency in biological co-evolution analysis. The
approach started by collecting data from historical information about a SPL evolution, then these
data is saved into a subversion system with clear comments on the purpose of the change of the
whole SPL.

Results revealed that around 15.4% of the approaches deal with change impact analysis (see
Table 4.10). Examples are the approaches presented by Peng et al. (S77), Tizzei et al. (S105),
and Gaia et al. (S126).

The main contribution from Peng et al. (S77) work is threefold. First, they proposed to
analyze variability evolution from the prospect of context and requirement changes and presented

92

4.4. RESULTS

a set of evolution rules that relate changes of contexts and requirements to those of feature
variations. Second, they developed an algorithm to analyze the impact scope to classify context
or requirement changes in the variability evolution. Finally, they illustrated a systematic process
using these rules and the impact analysis algorithm to help identify possible changes in contexts
and requirements and rank their influences on features.

The study preseted by Tizzei et al. (S105) proposed techniques for PLA stabilization.
According to them, the design stability can be achieve by combining components and aspects.
This finding was based on the analysis of change impact and modularity.

Gaia et al.’s (S126) analysis on SPL evolution refer to interpretation of collected measures
related to stability and modularity. The change impact metrics were used for the analysis of
stability and separation of concern metrics were used by modularity.

Around 2.1% of the approaches deal with effort estimation (see Table 4.10). For instance, the
approach present in Chen et al. (S23). This approach is able to represent volatility in multiple
levels and has capacity to tie the volatility estimation to one SPL. member specification.

Around 5% of the approaches have traceability analysis (see Table 4.10). Examples are the
approaches proposed by Heider et al. (S41) and Guo et al. (S43).

Heider et al. (S41) presented the PUPLE (Product Updates in Product Line Engineering)
approach and discussed its implementation. PUPLE tries to update products in an automated
way by solving conflicts and it also helps users on manual conflict resolution when the automatic
update does not work.

The study presented by Guo et al. (S43) formalizes feature models by defining its primitive
elements, the syntactical and semantic consistency constraints as the well-formedness rules.
From this formalization, it is obtained a set of primitive operations which can represent any
modification of a feature model. They apply and extend techniques from ontology evolution to

propose a systematic approach to consistency maintenance for evolving feature models.

4.4.4 What type of Evolution (static or dynamic) does the approach sup-
port? (RQ1.4)

The results for sub-research question 1.4 revealed that around 74.6% of the approaches evolve
static SPL, which products are not always available during the evolution (see Table 4.10). For
instance, the approaches described by Kim ez al. (S53) Smith et al. (S101), and Krishnan et al.
(S130).

Kim et al. (S53) described their approach as a mix of forward and reverse engineering. Their

approach has principles and guidelines for designing an SPL platform and was evaluated within

93

the digital audio and video domain.

The study presented by Smith ez al. (S101) proposes Options Analysis for Re-engineering
(OAR) for SPL, which is a method that provides a systematic approach to make decisions on the
mining of components from legacy systems for use in SPL. They show some tasks for selecting
the existing components and re-engineering them into SPL.

Krishnan et al. (S130) investigated whether classification-based prediction of failure-prone
files improves as an statical product line evolves. They based their investigation on 4 Eclipse
products. According to them, the SPL matures and the learner performance improves signifi-
cantly.

On the other side, around 28.1% of the approaches evolve an SPL that is always available (see
Table 4.10). Examples are the approaches from Gomaa and Hashimoto (S38), and Adelsberger
etal (S121).

The study presented by Gomaa and Hashimoto (S38) addresses a dynamic SPL for Service
Oriented Architecture (SOA). They extended the PLUS method’s to support the dynamic
adaptation.

Adelsberger et al. (S121) proposed an approach to analyze the migration of objects within
Feature-Oriented Product lines (FOP), where an live object may move from one behaviour
configuration to another. They evaluated their approach using 9 SPLs from the Fuji repository.

The results revealed that 72.54% of the approaches are reactive (see Table 4.10), such as the
approaches from Loesch and Ploedereder (S62), and Schulze et al. (S137).

Loesch and Ploedereder (S62) proposed an approach that analyzes the SPL variability and
presents what is the real usage of the features within the SPL products. The method also looks
for unused features and remove them.

Schulze et al. (S137) presented a precondition-based approach for implementing variant-
preserving refactoring for feature-oriented SPLs. Furthermore, they provided details about the
implementation of their refactoring tool called VAmPiRE and how they realized decomposition
and reuse of refactorings. Finally, they only implemented one concrete refactoring (Pull Up
Method), thus, they considered that they provided a starting point for the implementation of
further refactorings with their tool.

Around 30.2% of the approaches are proactive (see Table 4.10). Examples are the approaches
proposed by Cetina et al. (S22), Pleuss et al. (S80), and Koscielny et al. (S129).

Cetina et al. (S22) proposed mixed DSPL as an intermediate solution that takes the benefits
of both connected and disconnected DSPL architectures.

The study shown by Pleuss et al. (S80) presents a model-driven approach to handle the
evolution of SPL on feature model level. Their work is geared towards the following goals:

94

4.4. RESULTS

documentation (of previous evolution); planning (of future evolution); abstraction (fragments);
automation; and analysis.

Koscielny et al. (S129) proposed a prototypical implementation of DELTAJ 1.5, which
supports JAVA object-oriented features. Furthermore, they improve the specification of the
product line declaration by providing a separate language.

According to the results, none approach was identified as closed (see Table 4.10).

The results reveal that around 4.2% of the approaches are open (see Table 4.10), such as the
approach presented by Wolfinger et al. (S111). They demonstrated the integration of product line
engineering and plug-in techniques. Together with their industrial partner they have identified
several usage scenarios for run-time adaptation in the Enterprise Resource Planning (ERP)
domain confirming the need of such an approach. The integrated approach allows the adaptation
of the system by the user according to the variability model.

Less than 2% of the approaches deal with static safety in SPL evolution (see Table 4.10). An
example is the approach from Liu et al. (S61).

Liu et al. (S61) developed a tool support in order to safe evolve SPL requirements through
a model-based approach. They use fault tree analysis to identify if a new requirement can be
safely included into the SPL.

Around 2.8% of the approaches deal with dynamic safety in SPL evolution (see Table 4.10),
such as the approach revealed by Rosenmuller et al. (S86).

Rosenmuller ef al. (S86) bridged the gap between feature-based variability modeling and
component-based run-time adaptation, by integrating generative SPL engineering and DSPL.

4.4.5 How SPL approaches support the evolution? (RQ1.5)

The results for RQ1.5 shown that around 40.8% of the revealed approaches are manual (see
Table 4.10). For instance, the approach presented by Niu et al. (S71).

Niu et al. (S71) dealt with the evolution and inconsistency of viewpoints from feature
models. They proposed several viewpoints (business user viewpoint, secure usage viewpoint,
HW platform viewpoint) from the feature model and evolve them in a manual way.

Around 30.2% of the approaches are partially automated (see Table 4.10), such as the
approaches revealed by Valente ef al. (S108) and Muschevici et al. (S133).

To speed up product line extraction, Valente et al. (S108) described a semi-automatic
approach which allows to annotate the code from optional features. This approach was based on
a tool for SPL development called Colored IDE (CIDE).

Muschevici et al. (S133) introduced a support for modelling dynamic variability in the

95

Abstract Behavioural Specification language (ABS). They designed an adaptive run-time envi-
ronment and an ABS compiler which generates Java code. These tools are implemented and
available as part of the proposed ABS tool framework.

The results reveal that around 28.8% of the approaches are automated (see Table 4.10).
Examples are the approaches from Ribeiro et al. (S82) and Schulze et al. (S138).

Ribeiro et al. (S82) proposed the idea of emergent interfaces. The idea is to capture depen-
dencies between the feature a programmer is maintaining and the others. These interfaces emerge
and give information about other features they might impact with their current maintenance task.

Schulze et al. (S138) provide a catalogue of 23 refactorings for Delta Oriented Programming
(DOP) which supports the efficient evolution of SPLs. They provide a tool support for most of
their proposed refactorings as an Eclipse Plugin.

Most of the approaches (67.6%) are applied in an ad-hoc manner (see Table 4.10), such as the
approach revealed according to Seidl and ABmann (S139). They presented a meta-model, which
allows the creation of models including software ecosystem elements and their relationships.
Moreover, this meta-model represents the changes over the time, however, they do not applied
any math formalisms.

Around 32.3% of the approaches have math formalisms (see Table 4.10). For instance,
the approach from Damiani and Schaefer (S27). They presented the Dynamic Delta-Oriented
Programming, an extension of DOP, as a flexible approach to realize dynamic SPL. Based on
math formalisms, it is possible to include/evolve a product of an SPL dynamically by adding the
code of the product in the code base, change the SPL declaration and the automaton.

The results reveal that around 29.5% of the approaches focus on re-engineering-structural
(see Table 4.10), such as the approaches from Bayer ef al. (S13) and Wu et al. (S112).

Bayer et al. (S13) based on wrapping Fortran code to achieve (re-engineering) C++ code.
They proposed the RE-PLACE approach. RE-PLACE stands for Re-engineering-Enabled
Product Line Architecture Creation and Evolution. Based on existing assets (components) they
build (or wrap) them into an SPL. They also use a knowledge base (with the documents, e.g.,
existing features, task scenarios, reusable components, and so on). Every change is confirmed
with a specialist.

Wu et al. (S112) proposed an semi-automatic approach to recovery an SPL based on legacy
products. Their approach considers a mapping among design elements from the different
products and the identification of the variability among the elements.

Around 35.2% of the approaches focus on refactoring-semantics (see Table 4.10). Examples
are the approaches revealed by Hanssen et al. (S45) and Patzke et al. (S76).

Hanssen et al. (S45) presented some problems that agile practitioners usually deal in SPL

96

4.4. RESULTS

long-term evolution. They also have shown how agile methods are affected by this software
entropy and proposed a combination of two strategies to address this issue.
The method presented by Patzke ef al. (S76) is the PULSE”-E (ProdUct Line Software

Engineering - Evolution), which deals with the evolution of SPL assets (infrastructure code).

4.4.6 What is the SPL life cycle and phase in which the evolution is ap-
plied? (RQ1.6)

The results for sub-research question 1.6 revealed that around 23.2% of the approaches are
applied within the domain engineering scoping (see Table 4.10), such as the approaches from
Elsner et al. (S33) and Seidl et al. (S140).

Elsner et al. (S33) approach deal with the “variability in space” and the “variability in time”.
To evolve an SPL, they proposed the following steps: proactive planning (scoping); tracking;
analysis; correction; and realignment.

According to Seidl et al. (S140), feature models do not capture the variability in time
(evolution), making impossible to deal with versions of variable assets. Thus, they deal with
feature models and propose Hyper Feature Models explicitly providing feature versions as
configurable units for product definition.

Around 70.4% of the approaches addressed domain requirements engineering (see Table
4.10). For instance, the approaches revealed by Kim et al. (S55) and Murguzur et al. (S132).

Kim et al. (S55) focused on dynamic change of quality requirements in an SPL. They
propose a goal and scenario driven approach, which treats dynamic quality requirements as
goals to be achieved in an SPL, and analyzes dynamic variabilities to meet the goals through
scenarios.

Murguzur et al. (S132) approach deals with context variability modeling for DSPLs. They
claim that their approach provides a way to anticipate changes when a new context feature is
required. They evaluated the approach through a wind farm use case.

The results reveal that around 45% of the approaches deal with evolution with domain
engineering architecture (see Table 4.10). Examples are the approaches by Gomaa and Hussein
(S39) and Trinidad et al. (S106).

Gomaa and Hussein (S39) proposed an approach relating software reconfiguration pattern
and SPL architecture patterns. Their approach reconfigures, in an automatic way, an SPL from
one state to another. They claim that the approach promotes software evolution because the SPL

could be modified after it becomes operational and then dynamically reconfigured.

97

The objective of Trinidad et al. (S106) is to generate a component architecture that supports

the dynamics of products and which is easily inferred from a feature model.

Around 38% of the approaches addressed the realization in the domain engineering (see
Table 4.10), such as the approach revealed by Kaistner et al. (S52).

In summary, Késtner et al. (S52) have presented a formal model for a programming language
called LJAR, which supports virtual (using #1i fdef or CIDE) and physical (using AHEAD or

FeatureHouse) separation of features. They also have implemented refactorings in CIDE.

The results reveal that around 4.9% of the approaches deal with test evolution for the domain
engineering (see Table 4.10). For instance, the approach from Abbas et al. (S1). This approach
provides an automatic support to reconfigure products. If new variants are added or existing

ones removed, they will be tested.

Around 17.6% of the approaches tackled requirements in the application engineering (see
Table 4.10). For instance, the approach revealed by Wu et al. (S113). They examined the
collection of requirements changes in 10 member products and 51 major releases. They identified
several requirement changes from the point of view of architectural impact, such as: default
requirement changes; urgent requirement changes; tentative requirement changes; customer-
specific requirement changes; large scale requirement changes; and internal maintainability

requirement changes.

The results reveal that around 23.9% of the approaches deal with architecture evolution for
the application engineering (see Table 4.10), such as the approach from Michalik et al. (S68).
They have developed an architecture-centric approach to support SPL products updates. Their
approach supports the definition of viewpoints, to capture the stakeholders’ concerns, and they

also proposed a tool support to assist the architecture reconstruction.

Around 11.2% of the approaches investigated realization in the application engineering
(see Table 4.10). For instance, the approach revealed by Mende et al. (S67). They proposed a
grow-and-prune model to identify similarities between two product functions. Based on this

model, SPL products refactoring can be performed.

The results reveal that around 2.8% of the approaches deal with test evolution for the
application engineering (see Table 4.10). An example is the approach from Ajila et al. (S5).
Besides dealing with evolution of product architecture artifacts, Ajila et al. (S5) also deals with

regression testing to validate a change in the SPL product.

98

4.4. RESULTS

4.4.7 What is the evaluation procedure from the approach? (RQ1.7)

The results for RQ1.7 revealed that around 9.8% of the approaches were not evaluated (see Table
4.10), such as the approach from Perrouin et al. (S78). They presented their contribution, which
is a modeling process supporting the definition of variability spaces, however, none evaluation

was conducted.

Most of the approaches, 85.2%, were evaluated through a feasibility study (see Table 4.10).
For instance, the approaches by Heider et al. (S46) and Montero et al. (S69).

The approach proposed by Heider ef al. (S46) uses simulation to understand the SPL
evolution (model maintenance effort and model complexity). However, they evaluated their

approach through what they called simulation experiment.

Since the focus from Montero ef al. (S69) is on Business-Driven Development and SPL,
they deal with run-time evolution of these kind of business systems. They call this proposal
Business Family Engineering. As most of the papers that fit in this answer (Feasibility study),
they said that they evaluated their approach through a case study. However, they do not follow a
systematic guide to conduct a case study as proposed by Runeson and Host (2009). Thus, these
studies were considered feasibility studies.

Less than 2% of the approaches are evaluated through controlled experiments (see Table
4.10), such as the approach from Michalik ez al. (S68). They performed a controlled experiment
to evaluate the effectiveness of the propose architecture-centric approach.

Around 2.8% of the approaches are evaluated using case studies (see Table 4.10). For
instance, the approaches revealed by Heider ef al. (S41) and Hellebrand et al. (S127).

Heider et al. (S41) conducted a case study to evaluate PUPLE. The aim of this case study was
to understand the impact of changes within the variability model (decision-oriented). Moreover,
they also analyzed the degree in which PUPLE supports updating partially or completely the
derived products.

Hellebrand et al. (S127) performed a case study to investigate the co-evolution of variability

models and the source code, based on a set of derived metrics and methods.
None approach was evaluated using surveys (see Table 4.10).

Less than 1% of the approaches used other type of evaluation (see Table 4.10). For instance,
the approach from Anastasopoulos (S9). The approach defined by Anastasopoulos was evaluated

through a quasi-controlled experiment and by a simulation study.

99

4.4.8 What type of tool support does the approach offer? (RQ1.8)

The results for sub-research question 1.8 revealed that around 45.7% of the approaches are
automatic (see Table 4.10). For instance, the approaches from Nunes et al. (S72) and Romero et
al. (S136).

Nunes et al. (S72) proposed an approach to check the evolution history of each product and
try to identify the common and variable features among those evolutions. The automation is
performed by a tool called RecFeat.

Romero et al. (S136) presented the framework SPLEmma, which deals with feature-oriented
SPL evolution. This framework follows a Model Driven Engineering approach to control the
evolution. Thus, since it is a controlled SPL evolution, the SPL maintainer defines the authorized
operations of evolution.

Around 54.2% of the approaches are manual (see Table 4.10), such as the approach revealed
by Pena et al. (S79). This approach deals with describing, understanding, and analyzing evolving
SPL without a tool support.

4.4.9 In which context the approach is applied? (RQ1.9)

The results for RQ1.9 shown that most of the approaches, around 93.6% are from academia (see
Table 4.10). For instance, the approach from Schmid and Eichelberger (S92). They performed an
academic study, which focus on difficulties that arise when migrating systems from development
time variability to run-time variability.

Finally, the results revealed that around 8.4% of the approaches are from industry (see Table
4.10). An examples is the approach from Zhang et al. (S117).

The industrial study presented by Zhang et al. (S117) presents an approach to re-engineering,
incrementally, an existing product family into an SPL following agile principles (refactoring
and continuous integration). However, they claim that the company does not need to migrate
towards agile software development.

The following Section presents the analysis of the results from the systematic mapping study,

created based on the combination of the different sub-research questions.

4.4.10 Mapping Results

In order to analyze the results, we combine each one of the research questions related to why,
when, where, what, and how SPL evolves with the research questions related to SPL life cycle,

evaluation procedure, tool support, and context which the approach was applied.

100

4.4. RESULTS

Figure 4.2 shows the mapping results obtained from RQ1.1 (why SPL evolve) in comparison
to RQ1.6 (SPL life cycle) and RQ1.7 (evaluation procedure). These results may indicate that:

RQ1.6
Life Cycle
Scop.
DE 4 6
- @ ® 0 o ®
DE 1 6
@ © @ o © e
DE 5 f
Real. @ @ @ © @
DE 1 2 6 2
Test * * © .
AE %l o° @ ol el
Req.
AE 4 5 4 1
Arch. © © @ hd ©
AE ° 1 4 o 1 ° 1
Real. » @
AE ° 1 o 1 03
Test
| New New Add Ext. New Improv.
[SPL Product Feature Std. Infra. Q.A.
RQ1l.1
Not Why
2 ¥
Eval. . @ *-t
Feas @
o@ o o
Contr, 02
Exp.
Case ol o3 el ol
Study
Survey
Other ol
RQ1.7
Validation

Figure 4.2: Bubble Chart for the combination of RQ1.1 (Why) by RQ1.6 (SPL Life Cycle) and
RQ1.7 (Evaluation)

* RQI.1 (why) by RQ1.6 (SPL life cycle): Most of the approaches (59.15%) focus on add,
remove or change features in the SPL domain requirements phase. Also, few approaches
(11.26%) deal with evolution within test in domain and application engineering and

few approaches (15.49%) deal with evolution within realization phase of the application

101

engineering. Moreover, few approaches (21.83%) deal with the evolution of requirements

within the application engineering.

* RQI.1 (why) by RQ1.7 (evaluation): Most of the studies (60.56%) focus on add, remove
or change features and were evaluated using a feasibility study. Also, few approaches were
evaluated through case studies and controlled experiments (5.63%) and none approach

was evaluated using survey.

Figure 4.3 shows the mapping results obtained from RQ1.1 (why SPL evolve) in comparison

to RQ1.8 (tool support) and RQ1.9 (context). These results may indicate that:

RQ1.8
Tool Support

e @ @ @ © @
Man. @ @ ol e @

New New Add Ext.std. New Improv.
SPL Product Feature Infra. Q.A.
RQ1.1
Why
@ @ - ® ®
Ind. ® ol @ ©?

RQ1.9
Context

Figure 4.3: Bubble Chart for the combination of RQ1.1 (Why) by RQ1.8 (Tool) and RQ1.9
(Context)

* RQI.1 (why) by RQ1.8 (tool): Most of the presented approaches (39.43%) are manual and
focus on add, remove or change features.

* RQI1.1 (why) by RQ1.9 (context): Most of the studies (69.71%) were developed in the

academia and focused on add, remove or change features.

The combination of RQ1.1 by RQ1.6, RQ1.7, RQ1.8, and RQ1.9 revealed that there is a lack
of approaches dealing with extend standards, new version of infrastructure and improvements in

quality attributes.

102

4.4. RESULTS

Figure 4.4 shows the mapping results obtained from RQ1.2 (when SPL perform the evolution)
in comparison to RQ1.6 (SPL life cycle) and RQ1.7 (evaluation procedure). These results may

indicate that:

RQ1.6
Life Cycle
DE @ ol 8 O ©3 4 ol @3
Scop. ©& o *
DE o2 @ o @ ol - @F
Req.
DE
o @@ 0 e
DE 1 5 2
Real. @ " @ 0 °1 © » 02
DE
1 2 H 1
Test ® * . *
AE ol 04 ' 02
Req. @ @
AE { 4 1 1 3
Arch. @ @ © * ¢ g
AE 01 05 ! ,03 01
Real. @ ®
AE 04 o2 ol
Test
static Load Run para)l, Seq. Arbit. Cont. Period. Ant.
Time Time RQ1.2
Not . 2 1 When
Eval. @ © ® *
Feas | | 4 5 8 . o3
Study ‘D g ‘D ©* 0 @
Contr. 02 02
Exp.
Case 4
Study b
Surve#
Other‘ ol . . ol . ol
RQ1.7
Validation

Figure 4.4: Bubble Chart for the combination of RQ1.2 (When) by RQ1.6 (SPL Life Cycle) and
RQ1.7 (Evaluation)

* RQ1.2 (when) by RQ1.6 (SPL life cycle): Most of the approaches (49.29%) focus on
domain requirements phase with a static SPL evolution. Moreover, few studies (11.97%)

deal with test for SPL. Domain and Application engineering.

103

* RQI1.2 (when) by RQ1.7 (evaluation): Most of the studies (60.56%) deal with SPL
static evolution evaluated through a feasibility study. Also, few approaches (5.63%)
were evaluated through case studies and controlled experiments and none approach was

evaluated using survey.

Figure 4.5 shows the mapping results obtained from RQ1.2 (when SPL perform the evolution)
in comparison to RQ1.8 (tool support) and RQ1.9 (context). These results may indicate that:

RQ1.8
Tool Support

}»Static Load Run Parall. Seq. Arbit. Cont. Period. Ant.

Time Time
RQ1l.2
When
Acad. @ @@ © @ o ®
Ind. @ ol ol ol

RQ1.9
Context

Figure 4.5: Bubble Chart for the combination of RQ1.2 (When) by RQ1.8 (Tool) and RQ1.9
(Context)

* RQI1.2 (when) by RQ1.8 (tool): Most of the approaches (36.61%) are automated and focus
on static SPL evolution. We could realize that the number of automatic approaches is

slight greater than manual ones.

* RQ1.2 (when) by RQ1.9 (context): Most of the approaches (65.49%) are on SPL static
evolution and were applied within the academia. Also, there are more studies focusing on

the academia than industry.

The combination of RQ1.2 by RQ1.6, RQ1.7, RQ1.8, and RQ1.9 shown that there is a lack
of approaches for sequential, periodically and load time evolution in SPL. None approach deals

with continuous evolution.

104

4.4. RESULTS

Figure 4.6 shows the mapping results obtained from RQ1.3 (where SPL perform the evolu-

tion) in comparison to RQ1.6 (SPL life cycle) and RQ1.7 (evaluation procedure). These results

may indicate that:

RQ1.6

Life Cycle

DE
Scop.

DE
Req.
DE
Arch.

DE
Real.

DE
Test

AE
Req.
AE
Arch.

AE
Real.

AE
Test

Not
Eval.

Feas
Study

Contr.
Exp.

Case
Study

Survey

Other ‘

RQ1.7

@ 00

03 o1 {jl@ 04@ ©5 02 ol

@@ o792 .019 @@@967 62 @5
@o@e -

C@®e oo
@

ot 03!

09

4
©

QS.@ 02 §2 .‘)17

11 15
o°'® © 00O
o 012 .

09‘

02 o2 o

Core Core SPL Prod Prod O. Fine Coar. ocal Glob. Imp. Eff.

@) @ 013® ©?

0% ©7 01 ©7 o2
OP ®@ © o
05@ @ @ o7

2 15 112 16

© 0 0 @

9

o2 0% 0% ot o2

02 |

RQ1.3
Where

e5-@9%--! ¢l @5

@@ ® o

ol

15

© -
02

© 1 -02 01

Validation

Grain. Grain.

ot g1 ot 64 03

1@@)@@66 e
02 o2

o1 04 !

Anal.Est.

o1

4

Figure 4.6: Bubble Chart for the combination of RQ1.3 (Where) by RQ1.6 (SPL Life Cycle)

and RQ1.7 (Evaluation)

* RQI.3 (where) by RQ1.6 (SPL life cycle): Most of the approaches (69.71%) have a global

effect during the evolution and focus on coarse grained artifacts of domain requirements.

Also, few studies (16.9%) support evolution of tests within the application engineering.

105

* RQ1.3 (where) by RQ1.7 (evaluation): Most of the approaches (83.8%) have a global
effect during the evolution and were evaluated through feasibility studies. Few approaches
(16.19%) were evaluated through case studies and controlled experiments and none

approach was evaluated using survey.

Figure 4.7 shows the mapping results obtained from RQ1.3 (where SPL perform the evo-
lution) in comparison to RQ1.8 (tool support) and RQ1.9 (context). These results indicate
that:

RQ1.8
Tool Slupport

Aut | @) © o2 @8 ol {2)2@ 010@ ©1203 o3

Man. 018@ 017 o8 (%3 024@ 60@ ©0 03

RQ1.3
Where

| Core Core SPL Prod.Prod O. Fine Coar.LocalGlob. IMP- Eff. Trac.
Base Asset ArchArch. Grain.Grain. Anal. Est. Anal.

Acad. 63@ 64 010020 d@@du 03 @b

Ind. o8 o3 o2 o1 05 @0 63 @2 o2

RQ1.9
Context

Figure 4.7: Bubble Chart for the combination of RQ1.3 (Where) by RQ1.8 (Tool) and RQ1.9
(Context)

* RQ1.3 (where) by RQ1.8 (tool): Most of the approaches (52.11%) are manual and they
have a global effect on the SPL during the evolution.

* RQI1.3 (where) by RQ1.9 (context): Most of the approaches (90.84%) were performed in
the academia and they deal with the global impact on SPL when it is evolving.

In general, the combination of RQ1.3 by RQ1.6, RQ1.7, RQ1.8, and RQ1.9 presented a
lack of approaches dealing with traceability analysis, effort estimation and evolution in product

architecture.

106

4.4. RESULTS

Figure 4.8 shows the mapping results obtained from RQ1.4 (what type of evolution) in

comparison to RQ1.6 (SPL life cycle) and RQ1.7 (evaluation procedure). These results may

indicate that:

RQ1l.6
Life cycle
DE e 1 1
8 8 [} o
Scop. © ©
DE 2 3
Req. ‘D 0 ‘D e @920
DE
3
o @O@® o
DE 4 o3 1 3
Real. 9 @ e @ © . o
DE 6 ol 6 ol ol
Test
AE ol ol g2
| ® ® ©® ©
AE 1
Arch. @ @ @ 9 ®
AE , ol ol a2
Real. @ ® @ ®
AE 4 v 1 RQl.4
Test ® © * What
S.not S. Re- Pro- Closed Open Static Dynamic
Avai. Avai. act. act.
Not
Eval. @ ot @ ot ol ol
Feas i 5 o2 o3
Study ®®®® ©
Contr @2 2 02 ©2
Exp.
Case o o
Study
Surve‘{
0ther} ol ol
RQ1.7
Validation

Figure 4.8: Bubble Chart for the combination of RQ1.4 (What) by RQ1.6 (SPL Life Cycle) and

RQ1.7 (Evaluation)

* RQ1.4 (what) by RQ1.6 (SPL life cycle): Most of the approaches (49.29%) deal with

domain requirements engineering evolution in systems that are not always available during

the evolution process. Few studies (16.9%) deal with evolution of tests for SPL domain

and application engineering.

107

* RQI1.4 (what) by RQ1.7 (evaluation): Most of the approaches (62.67%) deal with evolution
of systems that are not always available during the evolution process and they are evaluated
using feasibility studies. Moreover, there is a lack of approaches (11.26%) evaluated
through case studies and controlled experiments and none approach was evaluated using

survey.

Figure 4.9 shows the mapping results obtained from RQ1.4 (what type of evolution) in
comparison to RQ1.8 (tool support) and RQ1.9 (context). These results may indicate that:

RQ1.8
Tool Support

w @@ e
|
Man. @@@@ o ol @3

RQ1.4

What

| S.not S Re- Pro- Closed Open Static Dynamic
Avai. Avai. act. act.

Acad. @@@ ¢ o2 ot

Ind. @ @ ol

RQ1.9
Context

3 6l ol

¢]

Figure 4.9: Bubble Chart for the combination of RQ1.4 (What) by RQ1.8 (Tool) and RQ1.9
(Context)

* RQI1.4 (what) by RQ1.8 (tool): Most of the approaches (38.02%) are manual and they deal
with systems that are not always available during the evolution process.

* RQ1.4 (what) by RQ1.9 (context): Most of the approaches (68.3%) are from academia
and they deal with evolution of systems that are not always available during the evolution

process.

We could realize by combining RQ1.4 by RQ1.6, RQ1.7, RQ1.8, and RQ1.9 that few studies
support safe dynamic and static evolution and also few approaches have an open framework.

Moreover, none approach deals with the evolution of closed frameworks.

108

4.4. RESULTS

Figure 4.10 shows the mapping results obtained from RQ1.5 (how SPL approaches support
the evolution) in comparison to RQ1.6 (SPL life cycle) and RQ1.7 (evaluation procedure). These

results may indicate that:

RQ1.6
Life Cycle
.| ® © ® © ® @ o
. 00000 e e
S 00 0@ e @ @
- ® ® @@ © © @
T':it @‘---@3 @0l 9--@
k. @ @ ¢ @ © 0 ©
e ® @ © @ © © ©
L @ e o @ © @ ©
Lo e e
Manual Part. Auto. AdHoc Formal. Re-eng. Refact.
RQ1.5
Nt @ e e @ ©F ©5 €
= 00000 e e
ol ol @2 02

Contr.
Exp.

Case

©? o1 ol 0u , ol
Study

Survey

Other ol ol ol

RQ1.7
Validation

Figure 4.10: Bubble Chart for the combination of RQ1.5 (How) by RQ1.6 (SPL Life Cycle) and
RQ1.7 (Evaluation)

* RQ1.5 (how) by RQ1.6 (SPL life cycle): Most of the approaches (42.95%) focus on the
evolution of domain requirements engineering in an ad-hoc way. Few studies (22.94%)

deal with evolution of tests for domain and application SPL engineering.

* RQI1.5 (how) by RQ1.7 (evaluation): Most of the approaches (57.04%) are ad-hoc and they

are evaluated through feasibility studies. There is a lack of approaches (10.56%) evaluated

109

through case studies and controlled experiments and none approach was evaluated using
survey.

Figure 4.11 shows the mapping results obtained from RQ1.5 (how SPL approaches support
the evolution) in comparison to RQ1.8 (tool support) and RQ1.9 (context). These results may
indicate that:

RQ1.8
Tool Support

w @@ 6
- @e c@e e e

Mgnual Part. Auto. AdHoc Formal.Re-eng. Refact.

RQ1.5
How

- @0 0QO ©

Ind. @ o o2 @® oo

RQ1.9
Context

Figure 4.11: Bubble Chart for the combination of RQ1.5 (How) by RQ1.8 (Tool) and RQ1.9
(Context)

* RQ1.5 (how) by RQ1.8 (tool): Most of the approaches (40.14%) are manual and do not
have tool support.

* RQI1.5 (how) by RQ1.9 (context): Most of the approaches (61.26%) are ad-hoc and from
academia. There is a lack of industry studies.

The main findings, herein represented by F(number), from this mapping shown a lack of
approaches that deal with:

* F(1). evolution of requirements within SPL application engineering

* F(2). evolution of the code within SPL application engineering

110

4.4. RESULTS

* F(3). evolution of tests within the SPL. domain and application engineering

* F(4). evolution of standards support

* F(5). effort estimation and traceability analysis (mainly for code of the SPL domain and
application engineering)

¢ F(6). evolution of closed frameworks

* F(7). static and dynamic SPL safety evolution

* F(8). evaluation through case studies

* F(9). controlled experiments and surveys

* F(10). approaches applied within the industry context
In addition, the findings also show that most of the approaches deal with:

¢ F(11). evolution in an ad-hoc manner

* F(12). coarse grained artifacts

* F(13). global evolution (affecting the whole SPL)

* F(14). evolution within the requirements phase (in an ad-hoc manner and through feasi-
bility studies)

* F(15). static evolution (evolution within systems that do not need to stay always available)

¢ F(16). reactive evolution

* F(17). evaluation through feasibility studies

* F(18). manual (without tool support) evolution

¢ F(19). academic context

We built Table 4.11 to summarize our findings by associating each finding with why, when,

where, what, and how SPLs evolve.

4.4.11 Threats to Validity

It was identified some threats to the validity of our study. They are presented as follows: 1.
Research questions: The defined research question (and sub-research questions) might not
cover the whole SPL evolution field. As we considered this as a feasible threat, we had several
discussion meetings with project members from our research group® and experts in the area in
order to calibrate the questions. Thus, we attempted to address the most considered issues in
the field, based on an previous defined taxonomy for software change (Buckley et al., 2005)
and based on possible evolution scenarios for SPL (Bosch, 2000); IL. Publication bias: Within

3http://rise.com.br

111

Table 4.11: Association of the main findings with Why/When/Where/What/How SPLs Evolve.

Finding Why When Where What How
F(1)
F(2)
F@3)
F4)
F(5) X
F(6)
F(7)
F(8)
F©9)
F(10)
F(11)
F(12)
F(13)
F(14)
F(15)
F(16)
F(17) X
F(18) X
F(19) X

el

ol

ol olole

el le TR XXX
KRR XK PR KR X

e il

X
X
X X

this systematic mapping study, we cannot assure that all papers addressing SPL evolution were
selected. It is possible that we might have missed some relevant paper over the searching process.
However, we mitigated this threat by performing a manual search on relevant journals and
conferences in the area; IIL. Period of the Selected Studies: Before 1996, the community may
have used the term domain engineering as a synonym to SPL. Moreover, since the last search
for papers was performed in January of 2015, some relevant papers published after this date
were not included in this systematic mapping study. To mitigate these threats, we presented
a well-defined review protocol which allows to efficiently update and extend this systematic
mapping study within papers published before 1996 and after 2015; IV. Unfamiliarity with other
fields: Since the terms that were chosen in search strings might have synonyms, such as SPL, it

is possible that we overlooked some papers, including papers from other areas.

4.5 Chapter Summary

As shown in this systematic mapping study, several approaches have been proposed to evolve

SPL. However, so far, there is no systematic mapping study summarizing the whole existing

112

4.5. CHAPTER SUMMARY

approaches that deal with SPL evolution.

This systematic mapping study summarized the existing information regarding SPL evolution.
From an initial set of 1,940 papers, a total of 142 research papers were selected for the systematic
mapping study, and the results obtained allowed to extract some conclusions regarding the state-
of-the-art in the field.

This systematic mapping study summarized the existing information regarding SPL evolution.
We started with an initial set of 1,940 papers after the first search. Later, after the filtering process,
a total of 142 research papers were selected for the systematic mapping study. The systematic
mapping study results allowed us to understand the state-of-the-art within SPL evolution.

The consolidation of the main findings from both industrial empirical studies evaluating the
applicability of LL within SPL and the the systematic mapping study are presented in Table
4.12.

The 1* finding (“Most of the SPL Evolution is Target to the Domain Engineering Assets’)
was revealed and confirmed in all of the three studies. The first and second industrial empirical
studies revealed that most of the evolution activities are focused on common and variable assets.
The systematic mapping study revealed that most of the SPL evolution approaches deal with the
evolution of domain coarse grain artifacts.

The 2" finding (“There is a Need to Keep Constant or Improve the Quality”) was revealed
by the first industrial empirical study, partially confirmed within the second industrial empirical
study, and confirmed within the systematic mapping study. The first industrial empirical study
confirmed through the KPSS test and regression analysis that there is a decrease of quality
within the SPL assets. The second industrial empirical study partially did not confirmed this
finding through the KPSS test, but it confirmed through the regression analysis. The systematic
mapping study confirmed this finding by revealing that there is a lack of approaches dealing
with tests for domain and application engineering. Tests can improve the SPL quality (Young
and Pezze, 2005), thus, there is a need to improve the SPL quality during the evolution.

The 37 finding (“There is a Need to Systematize the SPL Evolution Process”) was revealed
by the systematic mapping study. It revealed that most of the SPL evolution approaches are
ad-hoc. The first and second industrial empirical studies also confirmed this finding, since both
companies did not systematize their SPL evolution processes.

The 4" finding (“There is a Need to Systematize Evolution of Requirements”) was also
revealed by the systematic mapping study. The systematic mapping study revealed that most
approaches deal with the SPL requirements evolution in an ad-hoc manner. The first and second
industrial empirical studies also confirmed this finding, since both companies did not systematize

their SPL requirements evolution processes.

113

The 5 finding (“There is a Need to Improve Tests within SPL”) was also revealed by
the systematic mapping study. The systematic mapping study revealed that there is a lack of
approaches dealing with the evolution of SPL tests. The first and second industrial empirical
studies also confirmed this finding, since both companies did not evolve their tests within their
SPLs.

The 6" finding (“There is a need for a tool support”) was revealed by the systematic mapping
study. The systematic mapping study revealed that there is a lack of tool support for the SPL
evolution approaches. The first and second industrial empirical studies also confirmed this
finding, since both companies did not use any kind of tool support to evolve their SPL assets.

All the findings from Table 4.12 are important and need to be treated to improve the SPL
evolution process. In this Thesis, we decided to cope with the findings numbers 3 and 4, which
led to the systematization of the SPL evolution processes, more specific, the SPL requirements.
By systematizing the SPL evolution process we believe that we will also cope, indirectly, with
the SPL quality (finding number 2).

Table 4.12: Findings Consolidation

Main Findings 1" Industrial Empirical 2"? Industrial Empirical Systematic Mapping
Study Study Study
1. Most of the SPL Evolution Source / Confirmed Source / Confirmed Source / Confirmed

is Target to the Domain Engi-
neering Assets

2. There is a Need to Keep Source Partially Confirmed Confirmed
Constant or Improve the Qual-

ity of the SPL

3. There is a Need to System- Confirmed Confirmed Source

atize the SPL Evolution Pro-
cess

4. There is a Need to Sys- Confirmed Confirmed Source
tematize Evolution of Require-
ments

5. There is a Need to Improve Confirmed Confirmed Source
Tests within SPL

6. There is a need for a tool Confirmed Confirmed Source
support

In order to cope with the mentioned gap and deal with the SPL RE evolution in an systematic
way, it was proposed guidelines for specifying and evolving the SPL requirements as shown in
the next Part of this Thesis.

114

PART IV

Guiding Software Product Lines Evolution
based on Requirements Engineering

Activities

Feature-Driven Requirements Engineering
(FeDRE) Approach

Defining requirements to determine what is to be developed is generally accepted as a vital but
difficult part of software development. Establishing the driving architectural requirements not
only simplifies the design and implementation phases but also reduces the number of errors
detected in later stages of the development process, thus reducing the risk, duration and budget
of the project (Jones, 1991).

The specification of requirements in SPL (Clements and Northrop, 2002) development faces
some challenges, since it is necessary to deal with common, variable, and product-specific
requirements, not only for a single product but also for the whole set of products in the family.
Thus, to deal with these challenges, this Chapter presents the Feature-Driven Requirements
Engineering (FeDRE) approach for specifying SPL requirements. This approach helps the
requirements engineer to specify, in an systematic way, the SPL requirements driven by the
feature model.

The remainder of this Chapter is organized as follows: Section 5.1 introduces the main
challenges in the SPL requirements specification. Section 5.2 discusses related work. Section
5.3 presents our feature-driven requirements engineering approach. Section 5.4 evaluates the
feasibility of the approach through an empirical study conducted to develop an SPL of mobile
applications for emergency notifications. Finally, Section 5.5 presents the Chapter summary.

5.1 Introduction

One fundamental aspect of engineering SPLs is to apply RE practices to deal with the scoping
and specification of the SPL in both the Domain Engineering and Application Engineering

117

processes.

In the Domain Engineering process, the RE activities are intended to define the extent of the
SPL in order to determine its products (scoping), and also to identify common, variable, and
product-specific features throughout the SPL. The specification of the requirements needed to
deploy features must also be specified in a systematic manner by establishing explicit traceability
between features and requirements. In the Application Engineering process, the RE activities
are intended to specify the requirements for a particular product in the product family. It is
therefore important to determine which requirements from the SPL are relevant to the product to
be developed (common and variant feature selection), and also to refine or to add new specific
requirements, not present in the SPL (delta requirements).

Most of the approaches that deal with RE in SPL development tend to include variability
information in traditional requirements models (e.g., use case diagrams) (Moon et al., 2005)
or to extract feature models (Kang et al., 1990) from requirements specifications by following
a bottom-up strategy (Asadi et al., 2011; Mussbacher et al., 2012), which may increase the
complexity within this activity. Some limitations of these approaches arise from the possibility
of a large number of requirements and features making the specification of requirements hard to
understand, maintain and prone to inconsistencies. The contribution of the proposed approach is
that it circumscribes the requirements specifications in order to deal with complexity in a more
effective way. Effectiveness is achieved by chunking the requirements activity based on areas of
the feature model. It constrains the extent of the requirements specification at any one time to a
more specific area of the SPL. The feature model is used as a basis principally because in the
SPL community, features are first-class citizens, which are easily identifiable, well-understood,
and more clear for SPL developers and domain experts to communicate. There is thus a strong
need to define traceability links between these features and requirements, and whenever possible,
to maintain the model and specification synchronized and consistent (Anquetil ez al., 2010;
Heidenreich et al., 2010; Alférez et al., 2011).

In order to improve the SPL requirements phase, which was one of the gaps pointed from
the previous studies (Alves er al. (2010) and Oliveira et al. (2015d)), the Feature-Driven
Requirements Engineering (FeDRE) approach (Oliveira et al., 2013, 2014) was defined and
evaluated to aid developers in the Requirements Engineering (RE) activity for SPL development.
This approach focuses on the specification of requirements at early stages, taking as input the
scoping artifacts. Thus, the approach proposes a set of artifacts, activities, roles, and guidelines
on the basis of the features to be developed. The focus is the requirements specification in the
Domain Engineering activity. We further focus our description of FeDRE by starting once a

feature model has been defined (in the scoping activity). The feature model is used as the main

118

5.2. RELATED WORK

artifact for the specification of the SPL requirements. However, the approach does not deal
with Quality Attributes (QAs) (Montagud et al., 2012) in the feature model. FeDRE has an
activity to systematize the realization of features in terms of use cases. This activity specifies
requirements but also establishes traceability between the features and the requirements. This
allows us to provide variability mechanisms at the requirements level (by using use cases and
alternative scenarios) according to the chunk of the feature model that these requirements specify.
The main contributions of FeDRE is an RE approach that: 1) systematically realizes features
into requirements by considering the variability captured in the feature model; and 2) breaks
the top-down driven paradigm through use of the feature model in order to prioritize features
according to significant areas of the SPL. A first evaluation of FeDRE was performed through
an empirical study within an SPL project, where the perceived ease of use, perceived usefulness,

effectiveness and efficiency of the approach were evaluated.

5.2 Related Work

Several models and techniques that deal with the specification of requirements in SPL devel-
opment have been proposed over the last few years. Some of these proposals were analyzed
by using a comparison criteria in order to discover how the current approaches cover the RE
activity to model SPL requirements. The comparison criteria were formed of four main criteria.
The first analysis the SPL activities supported in the development (Domain Engineering, and
Application Engineering). The second criterion encompasses the RE activities that were used
in the RE approaches according to the disciplines (elicitation, specification, analysis, verifica-
tion and management) that guide an RE process (Clements and Northrop, 2002). In the third
criterion, we analyzed which artifacts where employed to model the requirements. Finally, it
was analyzed how the process was defined. The analysis of “how the process was defined” was
performed analyzing three sub-criteria: whether the approach provides guidelines, whether the
approach defines roles, and whether the approach has well defined inputs and outputs. These
three sub-criteria were selected since they help in the systematization of the process.

It was analyzed several RE approaches for SPL development, and we found a distinct
set of approaches and techniques (Table 5.1). Summarizing, in many cases, the scoping and
requirements specification activities are considered as independent activities. According to
John and Eisenbarth (2009), well-defined relationships and interfaces between scoping and
requirements artifacts should be defined in order to reduce rework. To mitigate this problem,

FeDRE considers the scoping artifacts as the starting point and defines guidelines to conduct the

119

SPL requirements specification driven by the scoping artifacts. Another important aspect is the
strategy followed to specify the requirements. Several approaches, such as use cases (i.e., (Griss
et al., 1998; Eriksson et al., 2005)) or goal models adapted to the SPL. domain (i.e., (Asadi et al.,
2011; Mussbacher et al., 2012)), extend RE models and extract feature models from these RE
models. In our view, SPL developers and domain experts are more familiar with the concept of

features and variability modeling.

Table 5.1: Comparative among current RE proposals from SPL.

Approach | SPL Processes | RE Disciplines Artifacts Process Definition
FeatuRSEB | Domain en- Elicitation, Use case model, | Partially
(Griss et al., | gineering modeling, feature model (guidelines,
1998) analysis inputs and

outputs)
PLUSS Domain en- Elicitation, Feature model, | Partially
(Eriksson gineering, modeling, use case, change | (guidelines,
et al., 2005) | application analysis, case inputs and
engineering manage- outputs)
ment
VMLARE | Domain en- Elicitation Feature model, | Partially
(Alférez gineering, modeling, use cases, activity | (inputs and
etal.,2011) | application analysis, diagrams outputs)
engineering manage-
ment
MSVCM Domain en- Modeling, Use case model, | Partially
(Boniféacio | gineering, analysis, feature model, | (inputs and
and Borba, | Application manage- product con- | outputs)
2009) engineering ment figuration,
configuration
knowledge
continued on next page

120

5.3. FEATURE-DRIVEN REQUIREMENTS ENGINEERING APPROACH FOR SPL

continued from previous page
Approach | SPL Processes | RE Disciplines Artifacts Process Definition
Pulse-CDA | Domain en- Elicitation, Domain analysis | Partially
(Bayer gineering modeling, model, use cases | (inputs and
et al., analysis outputs)
1999a)
DREAM Domain en- Elicitation, PR-Context ma- | Partially
(Moon gineering modeling, trix, use cases (guidelines,
et al., 2005) analysis inputs and
outputs)

AoURN Domain en- Elicitation, Stakeholder goal | Partially
(Muss- gineering, modeling, model, feature | (inputs and
bacher application analysis model, feature | outputs)
etal.,2012) | engineering impact model,

feature scenario

model
FORML Domain en- Modeling Feature model, be- | Partially
(Shaker gineering havior model (inputs and
etal.,2012) outputs)
FeDRE Domain en- Elicitation, Feature = model, | Complete
(Oliveira gineering modeling, feature specifica- | (guidelines,
etal.,2013) manage- tion, product map, | inputs and
(Oliveira ment glossary, trace- | outputs)
etal.,2014) ability matrix, use

cases

5.3 Feature-Driven Requirements Engineering Approach For
SPL

The Feature-Driven Requirements Engineering (FeDRE) approach for SPL has been defined
by considering the feature model as the main artifact for specifying SPL requirements. The
aim of the approach is to perform the requirements specification by systematically utilizing the
features identified in the SPL domain through the use of guidelines that establish traceability

links between features and requirements. By domain, we mean the context in which the family

121

of products or functional areas across the products exhibits common, variable or specific
functionalities.

The main activities of the FeDRE approach are: Scoping and Requirements Specification for
Domain Engineering. The Requirements Specification for Application Engineering is not yet
handled by the approach. Figure 5.1 shows the first two activities in FeEDRE, which are detailed
in this Chapter. The following roles are involved in these activities: Domain Analyst, Domain
Expert, Market Expert and the Domain Requirements Analyst. FeDRE uses the Software and

Systems Process Engineering Meta-model (SPEM)' for presenting its overview and guidelines.

E:t

Guidelines for

o Domain Analyst, | Existing - Domain el]
gy Domain Expert, Assets /=, Requirements Spemfvmg sP
Market Expert Analyst Requlrelments
I I I
| D [J | [in
G5 | e E5] -
;opTg_ Requiremgts_Sp.(;ification
| for Domain Engineering
out OL'R
v v
Legend:
%J\ J\, J\“ TJ\ Guid
ﬂ) t|) x| tl, uidance
Feature Feature Glossary Fuqctlonal
Model Specification Requirements \;{ﬁ' Work Product Use

’k‘ ot Role Use
’ L 1p i
Traceability)

| ’H-ﬂ Activity

E:t

Product
Map Matrix

Figure 5.1: Overview of the FeDRE approach.

5.3.1 Scoping

The first activity performed in FeDRE is the Scoping. This determines not only what products to
include in an SPL but also whether or not an organization should launch the SPL. According to
Bosch (2000), the Scoping activity consists of three levels: product portfolio Scoping, domain

Scoping, and asset Scoping. Product portfolio Scoping determines which products and features

Thttp://www.omg.org/spec/SPEM/2.0/
SPEM allows modeling an approach based on predefined profiles.

122

5.3. FEATURE-DRIVEN REQUIREMENTS ENGINEERING APPROACH FOR SPL

should be included in an SPL. Domain Scoping defines the functional areas and subareas of the
SPL domain, while Asset Scoping identifies assets with costs and benefits estimated for them.

In FeDRE, the Domain Expert and the Market Expert perform the product portfolio Scoping.
The Domain Expert and Domain Analyst perform the Domain Scoping. Finally, all the roles in
the Scoping activity perform the Asset Scoping.

Three main artifacts are produced as a result of the Scoping activity: the Feature Model,
the Feature Specification, and the Product Map, using the Existing Assets (if any) as the
input artifact. These three artifacts will drive the SPL requirements specification for domain
engineering. Details of the Scoping activity are shown in Figure 5.2. Each of these artifacts

(input and outputs) is detailed below.

L2 Lo L2 -,
Do[nain Expert Market Expert Domain Analyst b
= =~ N Feature Model
<<performs, <<performs, <performs, P
: i : o> P
i t{;]\’ pnmary>< addltlonal?\>\ primary > «m?ndggw’
Xisting o= K outpu
Assets ‘: S SCOP'”Q) //7'\\ TN P P 7 d\’
. . o Identify \ [Createthe | ~ T t_i'.
<<optional, \\ Features /| ~ \Feature Model/ <<mandatory, Feature
input>> - -~ ~ output>> Specification

- N | “<<mandatory,
Define \ Y

‘en [Createthe _ / /Create Feature
(. = = | Siavankd output>>
N \Flroduct MaP/ \\VProducts// «\Epemﬂcatl(in/ : t:l})

/

Product Map

Figure 5.2: Detailed Scoping Activity.

5.3.1.1 Existing Assets

FeDRE supports the extractive, reactive, and proactive SPL adoption approaches. When per-
forming an extractive or reactive SPL adoption (Krueger, 2002b), existing assets (e.g., user
manual or existing systems) help the Domain Analyst and the Domain Expert to identify the
features and products in the SPL. Otherwise, a proactive approach can be followed to build the
SPL from scratch.

5.3.1.2 Feature Model

Feature modeling is a technique that is used to model common and variable properties, and can

be used to capture, organize and visualize features in the SPL. The Domain Analyst and the

123

Domain Expert identify features using existing assets as input or by eliciting information from
experts and from the Market Expert. A Feature Model diagram (Kang ez al., 1990) identifies

features, SPL variations, and constraints among the features in the SPL.

5.3.1.3 Feature Specification

The Domain Analyst is responsible for specifying the features using a feature specification
template. This template captures the detailed information of the features and maintains traceabil-
ity with all the artifacts involved. According to the template, each feature must have a unique
identifier Feat id and a Name. The values for the Variability field can be Mandatory, Optional,
or Alternative, according to the feature specified (Table 5.2). The Priority of the feature should
be High, Medium or Low. If the feature requires or excludes another feature(s), the Feat id(s)
from the required or excluded feature(s) must be specified. If the feature has a Parent feature,
the Feat id from the parent feature must be specified. The Binding Time can be compile time or
runtime, according to the time that the feature will be included in a concrete product (Czarnecki
and Eisenecker, 2000). The Feature Type can be concrete or abstract, and the Description is a
brief explanation of the feature. Each one of these fields is necessary to represent a feature in

FeDRE and to capture, mainly, the feature variability.

Table 5.2: Features Variability.

Mandatory Feature
Optional Feature
Alternative Feature (OR) (one or more feature(s) can be selected)
Alternative Feature (XOR) (only one feature can be selected)

> » 0@

5.3.1.4 Product Map

Each of the identified features is assigned to the corresponding products in the SPL. The set of
relationships among features and products produces the Product Map artifact, which describes
all the features that are required to build a specific product in the SPL. It is usually represented
as a matrix in which columns represent the products and rows represent the features. The Market
Analyst, the Domain Analyst and the Domain Expert produce this artifact. An example of a
product map is shown in Figure 5.3.

All these artifacts are the input for the Requirements Specification for Domain Engineering

activity, which is described next.

124

5.3. FEATURE-DRIVEN REQUIREMENTS ENGINEERING APPROACH FOR SPL

E &

NEIEINE-

Features / Products 21 E8l8|8|k
HEEIEE

Access_Control X|X[X
Web_Access_Control X| X |X
Mobile_Access_Control X| X |X

Contact X X|X|X
Add_Contact X|X[X | X|X

Import_Contact X|X|X | X

Facebook_Import X| X |X

Twitter_Import X|X | X

Phone_Import X| X |[X|X

Destination X|X|[X|X|X
SMS_Destination X|X|X|[X|X

Twitter_Destination X|X | X
Facebook_Destination X| X |X

Email_Destination X| X |X

Figure 5.3: Product Map Example.

5.3.2 Requirements Specification for Domain Engineering

This activity specifies the SPL requirements for domain engineering. These requirements
allow realization of the features and desired products identified in the Scoping activity. The
steps required to perform this activity are described in the Guidelines for Specifying SPL
Requirements, Sub-Section 5.3.3 below.

The FeDRE approach was defined using (types of variabilities) and extending (through guide-
lines) the PLUSS approach (Eriksson et al., 2005), which represents requirements specifications
as use case scenarios. The use case scenarios “force requirements analysts to always think about
interfaces since separate fields exist for describing actor and system actions”. The approach
supports the relationship between features and use cases. The feature variability is expressed
within the use cases. FeDRE uses two types of variability from PLUSS: 1) use case variability,
considering the whole use case as a variant; and ii) scenario variability, in which the variants are
alternative scenarios of a use case. Within FeDRE these two types of variability are sufficient to
capture the variations within SPL requirements. We have experienced in general that in SPLs
the variability does not go beyond use case variability and scenario variability. The empirical
study was also performed to evaluate this fact. It was also analyzed the Software Product Line
Conference (SPLC), and in the majority of the approaches, the variability of the examples
and industry projects could be solved with these two levels of requirements variability. So far,
FeDRE is responsible for specifying requirements with a high level of abstraction, nevertheless,

in the future, if we need more expressive variability mechanisms (i.e., fine-grained variability)

125

we will consider to incorporate them. Moreover, FeDRE propose full guidelines for specifying
the SPL requirements based on the features from the feature model. PLUSS does not propose
full guidelines for the SPL requirements specification.

When a requirement is identified or refined, it is necessary to determine whether it is a
shared requirement for different products in the SPL, or whether it is a specific requirement
of a single product. Shared requirements must also be classified into common and variable
requirements. Common requirements are used throughout the SPL and variable requirements
must be configured or parameterized in the specification of different variants of the SPL. In
addition, some requirements may require or exclude other requirements, or may restrict possible
configurations of other requirements. Feature models may help in handling the different types
of dependencies among requirements, which can be complex and must be properly addressed.

The Requirements Specification for Domain Engineering activity is usually performed in
an iterative and incremental manner. Sets of selected features from the Feature Model can
therefore be defined as units of increments for the specification (different criteria may be used to
choose features in a unit of increment, e.g., priority of implementation, cost, QAs). This activity
(Figure 5.4) uses the Feature Model, Feature Specification and Product Map as input artifacts
and produces the Glossary, Functional Requirements and Traceability Matrix as output artifacts.

Each of these output artifacts is detailed below.

5.3.2.1 Glossary

One important characteristic of an SPL is the presence of multiple stakeholders, domain experts,
and developers. Thus, it is therefore necessary to have a common vocabulary for describing the
relevant concepts of the domain. The Glossary describes and explains the main terms in the
domain in order to provide the stakeholders with a common vocabulary and avoid misconceptions.
It is represented as a two-column table containing the term to be defined and its description (see
Table 5.4 in Section 5.4).

5.3.2.2 Functional Requirements

This artifact contains all the functional requirements identified (common or variable), for the
family of products that constitute the SPL. Use cases are used to specify the SPL functional
requirements (each functional requirement is represented as a use case), and the variations
required can be related to the use case as a whole or to alternative scenarios inside a use
case. FeDRE adapts the template used in (Eriksson et al., 2005) in order to specify functional
requirements as use cases, thus supporting both types of variability. The specification of

126

5.3. FEATURE-DRIVEN REQUIREMENTS ENGINEERING APPROACH FOR SPL

(D
‘_{t" Bomain Requirements Analyst l_{)l\"

Feature Model N = p
<<mandatory, <<performs, <<mandatory, Glossary
input>> glmary>> output>>
\\ |— N _] Requirements Specification / .
\ /~ /754 for Domain Engineering / 7
T \ [&= P VA = 1
N\ e e O\ L/ /" Functional
Feature <<mandatow,) -/ Identify / Create | /,,/ Requirements
Specification ~ INput>> ® \Domain Ternﬁ" _ Glossary /|<<mandatory,
E— - ~ | output>>
<<mandatory, —
— input>> e P — |/
\» r N\]
l_t.b [c et:_:\te | e / Identify Use\\‘ < H‘/ Apply the "I\’
Product Map | _runctional =T soces _Guidelines adh
\Requirements /. "7 S _Traceability
7 71" Matrix
<<mandatory, , /
input>> V. <<mandatory
. /~ Create ™
,// / \ / , output>>
7 \ Traceability | 7A. //
Guidelines For N Matrix ~—
Specifying SPL

Requirements

Figure 5.4: Detailed Requirements Specification Activity.

functional requirements follows the functional requirements template shown in Table 5.6 (Section
5.4). Each functional requirement has a unique Use case id, a Name, a Description, Associated
Feature(s), Pre and Post-Conditions, and the Main Success Scenario. A functional requirement
can also be related to an Actor and may have Include and/or Extend relationships with other use

case(s). Extends relationships should describe a condition for the extension.

5.3.2.3 Traceability Matrix

The Traceability Matrix is a matrix that contains the links among features and the functional
requirements. The rows in the matrix show the features and the columns show the functional
requirements, as shown in Table 5.5 (Section 5.4). This matrix is also useful as regards helping
in the evolution of the requirements since each change in the feature model will be traced up to

the requirements through the traceability matrix (and vice versa).

5.3.3 Guidelines for Specifying SPL Functional Requirements

The purpose of the guidelines is to guide the Requirements Analyst in the specification of SPL.

functional requirements for domain engineering. The guidelines are based on a meta-model (see

127

Figure 5.5) that represents the concepts involved when specifying use cases with alternative
scenarios and the relationships among them.
The meta-model is used to maintain the traceability among all the elements and to facilitate

understanding. The meta-model comprises the following elements:

* RequirementsSpecification: Is the container of all the elements in the specification

» Feature: This represents a feature from a variability model. Although it is not defined in
this model, it is related to zero or many requirements

* Requirement: It is an abstract metaclass used to represent functional requirements

» UseCase: Represents a functional requirement. A UseCase is associated with a Feature,
other UseCases through the include, extend or inheritance relationships, or with Actors.
It contains a Main Scenario and zero or many Alternative Scenarios

» UseCasePackage: This is the container for a UseCaseDiagram

» UseCaseDiagram: This is a view for Actors, UseCases and Relationships

* Actor: Is an actor and can be related to other Actors or associated with UseCases

* Relationship: Represents the different types of relationships among UseCases, which are
Include, Extend and Inheritance

* Scenario: This is an abstract metaclass used to represent the two types of scenarios for the
UseCase, which are MainScenario and AlternativeScenario

* MainScenario: Represents the “normal flow” of steps for a UseCase

* AlternativeScenario: Represents an alternative set of steps for a UseCase. It can be
associated with a Feature to represent the variability in the scenario

* Step: Represents a step in the MainScenario or AlternativeScenario.

The guidelines have been structured to specify functional requirements by addressing the
following questions: i) Which features or set of features will be grouped to be specified by use
cases? i1) What are the specific use cases for the feature or set of features? iii) Where should
the use cases be specified? (when there is a set of features in a hierarchy, do we specify the use
cases for each individual feature or only for the parent features?) and iv) How is the use case
specified in terms of steps?

The guidelines consider four types of feature variability that may be present in the feature
model, as shown in Table 5.2. Activities, tasks and steps are used in the process of specifying
requirements for SPL as is shown in Figure 5.6. The first activity, Identify Use Cases, uses the
Feature model as an input and generates two artifacts as an output, Traceability Matrix and Use
Case Diagram. The second activity, Specify Use Cases, uses the two outputs from the previous

activity plus a Use Case Template to generate the Use Case Specification. Figure 5.7 shows the

128

5.3. FEATURE-DRIVEN REQUIREMENTS ENGINEERING APPROACH FOR SPL

C.l.!
E Feature [
from VariabilityMode| 1
H Requiement
1 a g
B Requirementsipecification.g, L/ ES
o pame : EString
' [:_-7 D Scenano
. E useCase BTG ey
=== = name : EString
T | I L+ H Step
N ! |—J—| = description : EString
| MainScenario | |H AlternativeScenarig |
H UseCasePackag |
; L J
s, = name | EString o, *
/} al - +|:_.'
0.."% l] Ralatonship
D.*| S name ESinng
0 0.*
¥ ..
E Actor 1.* A
children 1 0. I
~ = name : EString | .

= | . | 1
0+ |5 UseCaseDiagra H Include B Extend & Inheritance
= name ; EString !

Figure 5.5: Meta-Model for SPL Requirements.

guidelines with the detailed steps of each task for specifying SPL functional requirements.

Next, we clarify some steps of the guidelines. According to the guidelines, Root feature is
the first feature from a feature model hierarchy, leaf feature is the last feature from a feature
model hierarchy, and intermediate feature is a non root feature neither a leaf feature. The Step
1.1 says that “root mandatory features or intermediate mandatory features must have use cases”.
They must have use cases to handle the variability of children features. This variability is handle
through their use cases alternative scenarios. The Step 1.2 says that “Mandatory leaf features
may have use cases, or can be specified as alternative scenarios from use cases in the parent
feature”. The guidelines leave this step as an optional step, where the requirements engineer
can define use cases for these features, or the use cases will not exist and they will be specified
as alternative scenarios from use cases identified within parent features. The Step 1.4 says
that “Use cases identified for leaf optional features should be specified as alternative scenarios
from use cases in the parent feature”. The guidelines also leave this step as an optional step,
where the requirements engineer can define use cases for these features, or the use cases will not
exist and they will be specified as alternative scenarios from use cases identified within parent
features. The Step 3.1 says that “Use cases identified for children features (that have the same
parent) with similar behavior must be specified just once in the parent feature”. This happens

when a feature has children features that have similar behaviors. When these children features

129

share most of their steps from their use cases, they must be specified as alternative scenarios
from use cases identified within the parent feature. The other steps from the guidelines are self

explained in Figure 5.7.

|__ :.I Identify Use CasesJ

!
<<task use>> M
Fegjtf:::;y o:vg:.ggp of <<lask use>> out Traceatity
2. Identify what Matrix
] in Features that share out —in > specific UseCases for .
|_ ‘ F\b functionality. e o {}’ each Feature or group | out
LIh For each Feature or ath of Features are I ‘J|\.
Feature group of Features, Features that share needed < —
Madel identify if it needs functionality and need to List of Use
UseCases be specified as Use Case Cases

\;_ r <<task use>> ; \ . <<task use>> 1 |
in ™4 3. [dentify where the Use u 9‘_ —In 4. Create Use Case u *9‘_
{}* Case Should be Specified 'd}' F\" Graphical Representation 'd}'
List of Use qu Case

Cases Diagram

|; ::I Specify Use CasesJ

<<task use>>

<<task use>> <<task use>>

6. Define
. 5. Complete the |- | 7. Create |
| =, Use Cass 0 Ut%]_A\.—IH —\' Use Case utél_.J\. in r"\, ut =\,
L in % Template (how) 2 3h 2 1h adh
aih Use Case Use Case Use Case
Use Case Specification Specifil Specification
Template

Figure 5.6: Overview of Activities, Tasks and Artifacts from the Guidelines.

5.4 Empirical Study

An exploratory empirical study to assess the usefulness of FeDRE was performed by following
the guidelines presented in Wohlin ef al. (2012). Besides this is a first evaluation of FeDRE
for Domain Engineering, the obtained results make us to appreciate FeDRE as a promising
approach. The stages of the empirical study are: design, preparation, collection of data, and

analysis of data. Additionally it was included a subsection for the threats to validity.

5.4.1 Design of the empirical study

Firstly, the objectives and empirical study are planned. In order to define which objectives the
empirical study would have, we applied the Goal-Question-Metric (GQM) (Basili et al., 1994).
After applying this approach, we stated that the goal of the empirical study was: to analyze

130

EMPIRICAL STUDY

5.4.

ainesq (uonoe waysAs e) waysks papuaixe N Piay suni eseasy] splal sjeidway
€ 0} pajejoosse aU) Wouj a5Uodsay 9q 0} UORIPUCO 0] BSBOSS() UOISUBIXS O.L SopMou| sulJeye Ul esepasn uojduosag auyy buisn
Areuouppe oq uea xog yoeig e pue uoiy aw_ww%cw;uh”m auo woy diysuoejas S8 ¢diysuoneyal Huﬂ.ﬁwﬂw Quawooe ese0esn o w2 Aaesegesn
—“_uwm m_.tm&.w mmmc ._mwﬁﬂ_w”._h wcsm_a._wﬂﬂo o w..: _.__u\m:wmz 3 U0y SpuBIXe, UBBABY pueq (O} S8PNIOUL, UBBABY| | giqssodoy Auesseosu ase ajeidwe) oy mmR ‘al o ._ow._ spioy
PINOYS 0LEUBDS pajuasaidal ‘dajs yoeg pue @/ eseQ 9SBDIs) Y} s80Q 8B 8SN) BSBQAS() BY} SB0(| | UMOP SJUM PIRY dy) UM PRY JBY) SI0RY ul seinjee esepesn Alessadsu
aAeUIBYY ‘0L/BUBIS Uleyy BSED asnayind 2’9 ayind L9 uonIpuod-}sod uoppuod-aid 8y} Jo sweu pajenosse ay} umop ay
yoea ‘z'2 asn 8y} oRaID L) soAl D fsoAl Ay u g’ |yl u|'g'g ayind ‘'S ayind '€'g QM TG QUM LG
Cs @s [oN] [on] O@ '@ 0@ 'c OC U
SOLEUSOS
asBD) 98 BRI ') @ diysuonejey 8ses 98N suLsqd ‘9 Qm_ (moy) sjeidwa | esep asn sy} sje|dwo) g @

1 Requirements.

ona

131

SPL Funct

ing

A ton

e

[oN]

§e—40

papaau aie sainjea jo dnoib Jo aunjeay

yoea 1o} sase)es) oyoads jeym Apmusp| 'z QG

q a

weibeigase)ssn (o10uym)
asenasn 100y ase 2 9ABY pINoYs ainjea yuaied ay) ul
aseq ay} asepes wc_“ am \eo@ asbexyoegasegesn 80U0 18Nl payvads eq
0} ase08s/) uoisnjoul esegas) pozienads . yoe3 1SNW JOIABYS] Jejiwis
uoisuaxe ¢(eseq) aseDasn oy o) ssenasn) BEWM.._%«EQ 8580880 oy} woyy 010y Jayjoue mmmxwwmwmm”ommb yim (uesed swes ayy
ay} woly Jayjoue Jo JolABYSQ eseqayywoy ¢ (uoishjoul) asenas, 4 diysuonels, . 9ABY jeLy}) saimes
dusuoneiay o .Ecmuxw Eo_mcu%wv diysuone/oy M oue _w njouy Mwmmav dusuo®ey & uj sjedionied ‘saepeyy 0, ONCAIBI00S SRy BoR) PInous eseossn NeiH o P
puopg . M P ! o sapnoyy OH pnduL (8SBA) 0,p0085 500 U6 P o € 100y 3} S| /gased: payyuap! B10w easeooEn 16
. o asenasn ay) saoq g aseDas ay) seoQg e ppY 1Y Jojoy ay} seog PPY €Y yoes 104 ‘'z'y 10 BUO SBY YIIYM
PPV 9% B ppy 'Sp ‘ainjead Yoes |y
[soAl N { @ [saAl @ @ @ @ @
Aﬂ@ @ @ @ @ ’ O T@ D O
payoads aq
fond (on] ~ PINOUS 8SED 473
uonejussaiday [ediydel) ased asn sjeald v G asN ay) aseym G
Auap| ‘g
ainjea yuaied aInjes uased ainjea uaied aimead uased
mwmmﬂwh Mmh_.%._:mu_ (s)oweN 8y} uI sasenasn ay) _“_ wmuwomw: 8y} ul sesepes) ayyuisasepes SOSEOISN
Xy ou1ind swen ose ainjead ay) WOJj SOLBUIIS W01} SOUBUSDS woy soueusos SOSBOSSM] BABY o) soueusds OABYISNW
Auqesdes) i NSSED i xuepy anjewae anjewsyE omjewoye 1SNW saimeay anjeuIsyE saunjes
B ul (190 ¢(uwnjoo) aimeaq 38N :ﬁ:_n.ﬁ SU Ul fuigesoes) se payoads sesepos/ se paywads sesepas se payoads aq leuondo se payads Aiojepuew
juspuodsauco aUO yym pajeal xsmh: 1 R.ﬁw_uﬁ.\. B} Ul uwnjoo 2q pinoys (JOX) aAey jsnw aq pinoys (MO) oAeY jsnw pinoys sainjeay iEIpaLLail aq ueo Jo ejelpaulislu
WO - (mol) eseDesn aur S| e mc_uoms ojepdn S PPE'dnoiS || sainjea sanewalie (yox) samess saimeed oAneusye (HO) Seiness feuondo KO Someod saseoasy aney Lo Sainjedy
X, UBiINd ‘€2 sse0s/) paLULP! 3y} Ul ainjess Jea) Joj paynusp! aAljeuIa)e e8] 10} payHUBP! aAneUIB) R B3] 10§ PalHUSPI [euogdo Kew sainjead yes) Aiojepuew
r_wwmmo 4 .MN © yoealoqL'z $8SBOOSN '@'L ejelpeUNdIU| L) sasepesn |9 OIRIPAULBI| ‘Gl SeseDssn bk jooy €' Kioyepuep 'Z'L 00y “L°)

o 9

J4—g0—g0—g8—4d

i

sese)as) spasu i Ji Ajjuspl 'sainjes jo dnoib 1o ainjeay yoea Jo4
Ajjeuonouny aseys jey sainjes jo dnoub Jo saimea yaiym Ayusp) *|

@

For Specify

ines

Guidel

Figure 5.7

FeDRE for the purpose of evaluating it with regard to its perceived ease of use, and perceived
usefulness from the viewpoint of a set requirements engineers.

The context of the empirical study is the requirements modeling of an SPL project. The
SPL selected is for the mobile software called SAVi, which is an application that notifies and
allows a mobile contact list to track a user in an emergency situation, sending a code by SMS
and email to the contact list. We chose SAVi in order to apply FeDRE in an SPL project using
an extractive / reactive SPL adoption.

There are two subjective dependent variables: perceived ease of use and perceived usel-
fulness. To measure both variables after applying the FeDRE approach, it was used an existing
measurement instrument proposed for the evaluation of requirements modeling methods based
on user perceptions (Abrahdo et al., 2011). More specifically, the two perception-based variables
were adapted from the aforementioned instrument, which were based on two constructs from
the Technology Acceptance Model (TAM) (Davis, 1989):

* Perceived Ease of Use (PEOU): the degree to which a person believes that using FeDRE
will be effort-free. This variable represents a perceptual judgment of the effort required to

learn and use the FeDRE approach;

* Perceived Usefulness (PU): the degree to which a person believes that FeDRE will achieve
its intended objectives. This variable represents a perceptual judgment of the FeDRE

approach’s effectiveness.

It was defined a set of items to measure these perception-based variables. These items
were combined in a survey consisting of 7 statements. The items were formulated by using a
5-point Likert scale, using the opposing-statement question format. Various items within the
same construct group were randomized to prevent systemic response bias. PEOU and PU were
measured by using three and four items in the survey, respectively 2.

We formulated the following hypotheses:

* H1y: FeDRE is perceived as difficult to use, H1,: FeDRE is perceived as easy to use.

* H2y: FeDRE is perceived as not useful, H2, FeDRE is perceived as useful.

In addition, before the empirical study session, a requirements specification considered as
the correct solution was defined. This requirements specification was created by three Ph.D.

students. The aim of this agreed solution was to compare the subjects’ solutions with the agreed

2The survey statements are available in Appendix C.1

132

5.4. EMPIRICAL STUDY

solution in order to analyze the degree in which the subjects applied FeDRE in an effective and

efficient way. Four objective dependent variables were defined with this aim in mind:

» Effectiveness_UC, which is calculated as the ratio between the number of right use cases
that the subject identified and the total number of right use cases.

» Effectiveness_SCEN, which is calculated as the ratio between the number of right al-
ternative scenarios that the subject identified and the total number of right alternative
scenarios.

* Efficiency_UC, which is calculated as the ratio between the number of right use cases that
the subject identified and the total time spent on the use cases identification.

» Efficiency_SCEN, which is calculated as the ratio between the number of right alternative
scenarios that the subject identified and the total time spent on the alternative scenarios
specification.

Table 5.3 shows the empirical study planning. Before the case study session, there was a 30
minutes training session to present an introduction of RE from SPL, and the use cases main
concepts and notation (i.e., use cases, actors, types of relations, etc.), the FeDRE method, and
the objectives and procedures of the study. After the training session, the empirical study was
performed. This session was composed of two tasks. When the subjects finished, they filled in a

questionnaire about FeDRE.

Table 5.3: Planning.

Group

Introduction to FeDRE
Exercise explanation

Task 1: Identify Use Cases
Task 2: Specify Use Cases
FeDRE Questionnaire

Training (30 min)

Session (90 min)

Several documents * were designed as instrumentation for the empirical study: slides for
the training session, an explanation of the method, a data gathering form, and a questionnaire.
These documents were used by the subjects, which were chosen for convenience from a group
of software engineering research associates. The subjects were asked about their experience in
the area, and the results showed that none of them had a previous background in this context. In

consequence, it was not established a classification of subjects based on their experience in SPL

3The material is available at: http://g00.gl/SwImTO

133

RE and it was not applied a levering questionnaire. The first session was composed of 8 Ph.D.
students from the Universitat Politecnica de Valéncia, Spain, and the second was composed of 6
Ph.D. students from the Federal University of Bahia, Brazil.

5.4.2 Preparation of the empirical study

With regard to the Scoping activity, all the artifacts (i.e., Feature Model, Feature Specification
and Product Map) were created by one domain analyst and one domain expert, who were also
assisted by a scoping expert with more than 6 years of experience in SPL scoping activities.
The marketing analysis was carried out on the basis of other products, with a similar purpose to
that of SAVi, which are available at the AppStore *. The functionalities of these products were
included in the SAVi feature model, in which 27 features were identified.

Since the FeDRE approach is flexible to support the incremental requirements specification,
a set of features was selected for the empirical study. The selection of these features was made
on the basis of which features are present in most of the products in the Product Map and are
easier to be implemented. Figure 5.8 shows an excerpt of the Feature Model and the features
selected for the empirical study.

Each of the 27 features from the feature model was specified according to the feature
specification template. In addition, during the Scoping activity, a list of products for the mobile
application for the emergency notifications domain was defined, thus allowing the creation of the
Product Map artifact. With regard to the Requirements Specification for Domain Engineering
activity, two requirements analysts from the team created the Glossary artifact based on the
artifacts that had been created in the Scoping activity. A total of 16 relevant terms were identified

for the domain. An excerpt of this artifact is shown in Table 5.4.

Table 5.4: Excerpt from the Glossary.

Term Definition
Contact It represents a person to be contacted in an emergency situation. It
includes relevant information like e-mail, phone number, Facebook 1D,
Twitter ID.
Contact List | Collection of contacts sorted in an alphabetical order.
Twitter Micro blogging service. It is a site on which the user can share small
messages and retrieve contacts to SAVi.
User It represents the person who uses the application.

“Help.me: http://g00.gl/hSWpq | Rescue Button: http://goo.gl/asli3 | Red Panic Button: http://goo.gl/FpVsk |
RescueMe Now: http://goo.gl/pDY9%0

134

5.4. EMPIRICAL STUDY

Twitter_mport = Twitter_Destination
Info = - User_info
User_info = Access Control

Legena

‘ IMardaiony
d opsonal
[Absiract
[] Concrete

Figure 5.8: Selected Features from the Feature Model for the Case Study.

135

The artifacts created by the Scoping activity (Feature Model, Feature Specification and
Product Map) and the Glossary artifact created by the Requirements Specification for Domain
Engineering activity made it possible to create the Functional Requirements and the Traceability

Matrix artifacts by applying the guidelines for specifying SPL requirements.

5.4.3 Collection of the data

The data for this empirical study was collected during the Requirements Specification for
Domain Engineering activity. The SPL Functional Requirements were specified by recruiting
fourteen Ph.D. students, from both universities (Spain and Brazil), who were asked to apply the
guidelines for specifying SPL functional requirements (shown in Sub-Section 5.3.3) in order to
answer the following questions: i) Which features can be grouped to be specified by Use Cases
(UC)?; i1) What are the specific use cases for the feature or set of features?; iii) Where should
the use case be specified?; and iv) How is each use case specified in terms of steps? These
subjects had a background in SPL and half of them have a background in SPL RE.

5.4.3.1 Which features can be grouped to be specified by UC?

This step analyzes all the features included in the increment unit for the current iteration. The
subjects had to decide which of these features (see Figure 5.8) would be specified by use
cases. According to the first task of the guidelines, most of the requirements analysts (subjects)
started the iteration with the feature Access_Control and its children, because they are a group
of features that share functionality (Task 1 from the guidelines). Since there are two ways
of implementing an import contact (one optional: Web_Access_Control; and one mandatory:
Mobile_Access_Control) some requirements analysts followed the guidelines (Steps 1.2 and 1.4
from the guidelines) and decided that those features would not be specified as use cases. Thus,
they were specified as alternative scenarios in the use case related to the feature Access_Control.
In a similar way, some subjects specified the features Facebook_Import, Twitter_Import as alter-
native scenarios from a use case of the Import_Contact feature, and some subjects specified the
features SMS _Destination, Twitter_Destination, Facebook_Destination and Email_Destination
as alternative scenarios in use cases related to the Destination feature. Following the guidelines,
most of the subjects decided that the features: Contact, Import_Contact, Add_Contact, Destina-
tion and Emergency_Numbers would be specified as use cases. Unfortunately, there were some
subjects that decide not to specify alternative scenarios as the guidelines recommend, ignoring

the variability from the feature model.

136

5.4. EMPIRICAL STUDY

5.4.3.2 What are the specific UC for the feature or set of features?

After deciding which features need to be specified as use cases, the subjects had to identify
which use cases should be associated to each feature. Moreover, the Traceability Matrix was
incrementally filled in with traceability information between the use case and the feature. An

excerpt of the traceability matrix (features X UC) is shown in Table 5.5.

Table 5.5: Excerpt from the Traceability Matrix.

UCo012
Access_Control X
Mobile_Access_Control X
Web_Access_Control X

The most common identified use cases by the subjects for the selected features are presented
next®. The following use cases were identified for the Access_Control feature: Create_User,
Login, Show_Profile, Remember_Password and Send_E-mail. The following use cases were
identified for the Web_Access_Control feature: Update_User, and Delete_User. The following
use cases were identified for the Contact feature: Show_Contact, Delete_Contact and, Update
Contact. The following use case was identified for the Add_Contact feature: Add_Contact.
The following use cases were identified for the Import_Contact feature: Retrieve_Contacts and
Import_Contacts. The Destination feature contains the use case Send_Notification. The follow-
ing use cases were identified for Emergency_Numbers feature: Create_Emergency_Number,
Delete_Emergency_Number and Update_Emergency_Number. The corrected number of use
cases to be identified by the subjects should be seventeen use cases for the selected features
(Figure 5.8).

5.4.3.3 Where the UC should be specified?

Since some use cases with similar behavior may be identified for different features that have the
same parent, the subjects should decide where to relocate the specification for this use case (this
is to avoid the redundant specification of similar behavior). When this happens, the use case was
specified once only at the parent feature level. As soon as all the use cases have been identified
for each feature, it is possible to start modeling the use cases. A use case package is created
for each feature that will have use cases, and a use case diagram is created to include the use
cases, actors and relationships among them. An example for the Access_Control feature (use

case diagram) is shown in Figure 5.9.

> An additional table with the list of identified Use Cases for each Feature is available in Appendix C.2

137

Send E-mail
Create User p —

¥
.—''_._._._._._._'_._. !
.) E-mail System
\“"-»-..R_H_‘_‘ S wincludes

i

User Remember Passward

D

Loagin

Q Show Profile

Reqgistered User

Figure 5.9: UC Diagram (Feature Access Control).

5.4.3.4 How each UC is specified in terms of steps?

After identifying the use cases and relating them to the features, the subjects specified each
use case by taking into account the variations from the Feature Model. Table 5.6 shows the
Functional Requirement specification for one of use case related to the Access_Control feature,
which is the Login use case.

This use case specification has the optional feature Web_Access_Control, which is specified
as an alternative scenario. This use case specification thus handles the variability expressed
in the Feature Model in which, depending on the selected feature, an alternative scenario can
be included in the use case specification. Another advantage of using alternative scenarios to
represent the variability is that of reuse. Since the alternative scenarios are specified once only
within a use case, several products can be instantiated by reusing the same use case. Different
behaviors may thus appear in the same use case for different products, depending on the selected

features.

5.4.4 Data Analysis

It was performed two quantitative analyses for the collected data. The first analysis was related
to the objective variables (effectiveness, efficiency) observed during the execution of both
tasks. Since we did not have a control group, this analysis was performed in order to identify
deficiencies in the guidelines and improve the redaction in a qualitative manner. The second
quantitative analysis was performed by using closed questions, which were filled in by the

subjects after the empirical study execution. This information was analyzed in a quantitative

138

5.4. EMPIRICAL STUDY

Table 5.6: Retrieve Contacts Use Case Specification.

*Use case id: uco12
*Name: Login
*Description: It allows a registered user to access the system
*Associated feature: | Access_Control Actor(s) [0..%]: User
*Pre-condition: The User is not logged | *Post-condition: | The User accesses
in the system
Includes To: - Extends From: -
*Main Success Scenario
Step Actor Action Blackbox System Response
1 The user asks to login | The System shows the username and
using the mobile password fields to be filled in
2 The User fills in the | The System validates the username
username and password | and password and allows the user
fields access
Alternative Scenario name: Web Access Control Login
Condition: The user must be using a computer
Associated feature [0..1]: Web Access Control
Step Actor Action Blackbox System Response
2.1 Requires the login | The System shows a form to be filled
through a computer in
22 The User fills in the | The System login in to Savi by using
username and password | the Web Access for computers
and confirm
* Mandatory Field

manner in order to check the results of the subjects’ perception of ease of use and usefulness,

and their statistical relevance.

5.4.4.1 First Quantitative Analysis

Regarding effectiveness in task 1 of the empirical study, we measured the quotient of the
right number of uses cases identified by the total number of use cases modeled in the solution
(Effectiveness_UC). The users were able to identify correctly 62.1% of the total use cases in
the task 1. In order to check the effectiveness in task 2 of the empirical study, we compared the
specified alternative scenarios with the scenarios modeled in the solution (Effectiveness_SCEN).
The results show that this variable has a mean of 0.523, meaning that the users were able to
correctly specify 52.3% of the total use cases (see Table 5.7).

Additionally, for each task we measured the time used and the efficiency estimation. The
results show that the subjects took around 51 minutes to complete the task 1, with an Effi-
ciency_UC value of 0.216 (number right use cases / time). The subjects took around 39 minutes
to complete the task 2, with an Efficiency_SCEN value of 0.048 (number of right alternative
scenarios / time). We believe that this time for identifying the use cases and their alternative

139

scenarios is still high. A tool support may decrease the overall time spent in these activities.

Table 5.7: Mean and Standard Deviation for the analyzed variables.

Mean SD*
Effectiveness_ UC 0.621 0.182
Effectiveness_ SCEN | 0.523 | 0.447

Time task 1 51.86 | 13.091
Efficiency_UC 0.216 | 0.085
Time task 2 39 19.247

Efficiency_SCEN | 0.0484 | 0.048
*SD: Standard Deviation

Finally, a qualitative analysis was performed by analyzing the open questions that were
included in the questionnaire. For example, some subjects suggested reformulate some guideline
rules to avoid ambiguities during the use cases identification (e.g., identifying group of features
that share functionality), or during the use case specification (e.g., defining alternative scenarios).
Other subjects suggested including in the guidelines rules for dealing with relationships among
features (includes / extends). The analysis of these qualitative data revealed several important

issues that have to be considered to improve FeDRE.

5.4.4.2 Second Quantitative Analysis

In this section, it is discussed the results of the empirical study by quantitatively analyzing the
data according to the hypotheses stated. All the results presented were obtained by using the
SPSS v20 statistical tool with an alpha value of 0.05. The subjective variables were analyzed
by comparing whether the mean of the responses to the questions related to each variable were
significantly greater than the Likert neutral value® (equal to 3). In our case, the mean variable
ranging from 1 to 5 for the measurement of both subjective variables has been considered as an
interval scale (Carifio and Perla, 2007). Both variables have a mean over the neutral value 3 (see
Table 5.8).

In order to verify the hypotheses with this data, we first selected which test was most
appropriate for the data. It was first necessary to check whether the data was normally distributed.
Since the sample size is smaller than 50, we applied the Shapiro-Wilk test to verify whether
the data is normally distributed. The results of the normality test (Table 5.8) show that both

variables are normally distributed in this evaluation method since the results are greater than 0.05.

The subjects’ responses are available in Appendix C.3.
"The box plots for the subjective PEOU and PU variables are shown in Appendix C.4

140

5.4. EMPIRICAL STUDY

As consequence, we check the hypotheses by performing a one-tailed t-test for independent
variables with a test value of 3. The p-values obtained (Table 5.8) were < 0.05 (p <). As

consequence we reject both null hypotheses; accepting that FeDRE is perceived as easy to use

and useful.
Table 5.8: Analysis of the PEOU and PU variables.
Mean | SD | Shapiro-Wilk | Alpha Cronbach | t-test*
Perceived Ease of Use | 3.857 | 0.813 0.696 0.833 0.002
Perceived Usefulness | 3.880 | 0.771 0.066 0.722 0.001

* P-values from the one-tailed t-test

5.4.5 Threats to validity

The main threats to the internal validity of the empirical study are: empirical study design,
evaluation design, subject experience, information exchange among evaluators, and the under-
standability of the documents. It was selected the empirical study design based on the methods
proposed by Abrahdo et al. (2011) and Davis (1989) (TAM) to evaluate FeDRE. There are
some drawbacks related to TAM, as presented by Turner et al. (2008). However, since there is
no approach with similar objectives such as the ones from FeDRE, it was used these methods
(Davis, 1989; Abrahdo et al., 2011) to evaluate FeDRE. It is important to highlight that these
methods are still been used nowadays to evaluate new proposed approaches (Oliveira et al.,
2013; Fernandez et al., 2013; Molina et al., 2013, 2014; Asadi et al., 2015). The evaluation
design can have affected the results owing to the selection of features to be taken as input to
extract the requirements when applying FeDRE. We attempted to alleviate this threat by consid-
ering a subset of features, which implied applying the complete set of the FeDRE guidelines
rules. Subject experience was alleviated owing to the fact that none of the subjects had any
experience in requirements modeling in SPL development. Information exchange was mitigated
by monitoring the participants while they performed the tasks. We performed the experiment in
two sessions but no relationships were established between Spanish and Brazilian subjects and
no information was exchanged among them. We alleviated the understandability of the material
by clearing up all the misunderstandings that appeared in each session.

The main threat to the external validity of the experiment is the representativeness of the
results. To alleviate this threat and make the tasks enough representative, the complexity of the
exercise was adjusted for the subjects to be able to apply every single rule of the guidelines at

least once, considering that the duration of the experiment was limited to 90 minutes.

141

The main threat to the construct validity of the experiment was the reliability of the
questionnaire, related to the two empirical study hypotheses. This reliability was tested by
applying the Cronbach’s alpha test to each set of closed questions which measured the PEOU
and PU variables, obtaining a value of 0.833, and 0.722 respectively (higher than the minimum
acceptance threshold a=0.70) (Maxwell, 2002).

The main threat to the conclusion validity of the experiment was the pattern recognition
(recall and precision) for the effectiveness and efficiency of FeDRE activities, and the validity of
the statistical test applied. For this empirical study we used only the recall pattern to evaluate
the effectiveness and efficiency of FeDRE activities, however, this is a well know and used
pattern. The validity of the statistical test applied was alleviated by applying the most common
test that is employed in the empirical software engineering field (Maxwell, 2002).

5.5 Chapter Summary

This Chapter introduced the FeDRE approach to support the requirements specification of
SPL. In this approach, chunks of features from a feature model are realized into functional
requirements, which are then specified by use cases. The required requirements variations can be
related to the use case as a whole or to alternative scenarios inside a use case. A set of guidelines
was provided to help SPL developers to perform these activities and as a means to systematize
the process and ensure a correct traceability between the different requirements artifacts. We
believe that this approach provides a solution that is capable of dealing with the complexity
involved in SPLs with a large number of requirements and features.

The feasibility of FeDRE was evaluated using an empirical study involving a mobile applica-
tion for emergency notifications. The results show that the analysts perceived the approach as
easy to use and useful for specifying the functional requirements in this particular SPL. However,
the approach needs further empirical evaluation with larger and more complex SPLs. Moreover,
guidelines for dealing with the evolution of the specification created by FeDRE are needed, since
there is a need for evolving the requirements according to the user needs and the environment.

The evolution of the requirements specification created by FeDRE is presented in the next
Chapter.

142

Feature-Driven Requirements Engineering
Evolution (FeDRE?) Approach

This Chapter presents the Feature-Driven Requirements Engineering Evolution (FeDRE?) ap-
proach, which is an approach for dealing with the evolution of SPL requirements specified by
the FeDRE approach.

The Chapter is organized as follows: Section 6.1 presents an introduction to SPL evolution
and shows the motivation to propose this approach. Section 6.2 presents the background concepts
and the related work. Section 6.3 describes FeDRE? approach for evolving SPL requirements
in a systematic way, through guidelines. Section 6.4 presents the performed empirical study,
including the defined design, the preparation of the study, the data collection, the analysis, and

threats to validity of this work. Finally, Section 6.5 presents the Chapter summary.

6.1 Introduction

Clements and Northrop (2002) firstly pointed out that the nature of an SPL is to manage the com-
monality and variability of products by means of a “Requirements Engineering (RE) — change
management” process. Within their book (Clements and Northrop, 2002), they highlighted the
importance of RE change management for SPL. However, since their book covers the whole SPL
process in general, they did not discuss in details how the RE change management is performed
in SPL.

Later, other work tried to improve the evolution of features (Ye and Liu, 2005; Gomaa, 2013;
White er al., 2014) and use cases (Gomaa and Shin, 2008) in SPL. Ye and Liu (2005) deal
with the evolution of features and their approach can detect a conflict in a feature dependency.

Gomaa (2013) proposed an evolutionary development approach where feature modeling and

143

SPL concepts are used to evolve software requirements and architectures. White et al. (2014)
presented a systematic approach for evolving feature models and performed an experiment to
evaluate their approach. Gomaa and Shin (2008) proposed a multiple-view meta-modeling
approach for SPL, using the Unified Modeling Language (UML), which allows the evolution of
an SPL by explicitly modeling the variation points. However, none of these approaches perform
the evolution of features and use cases in a systematic way, through the use of guidelines. We
claim that the use of guidelines can make SPL RE evolution process easier and more effective.

Alves et al. (2010) performed a systematic literature review on SPL Requirements Engineer-
ing (RE). They discovered that the majority of the papers relies on a low level of evidence and
evaluation (i.e., using toy examples) and also, the majority of the papers lack of guidance for
performing the requirements engineering activities within SPL.

SPL artifacts must evolve (Oliveira ef al., 2015a), mainly the requirements. Requirements
are considered the first artifacts from an SPL project, if they do not support well the evolution,
the artifacts from the following activities (architecture, implementation, test, and so on) can
be outdated, making harder the creation of new SPL products. Moreover, since the user needs
within SPL are represented through requirements, they also must have the ability to evolve.

Thus, this Chapter presents the Feature-Driven Requirements Engineering Evolution (FeDRE?)
approach to evolve SPL requirements in a systematic way, using guidelines, driven by features.
Based on a change request, the requirements engineer selects one of the FeDRE?’s evolution
scenarios and performs the evolution of the SPL requirement according to a set of guidelines,
including updating the traceability matrix. Since there is a lack of work dealing with the SPL
requirements evolution in a systematic way, there is also a lack of empirical evaluation in this
area (Alves et al., 2010). Hence, it was conducted an empirical study, composed of two sessions,
to evaluate the proposed approach. Both sessions were performed by post graduate subjects (with
Bachelor, Master, and Ph.D. degrees in Computer Science). The first session was performed
with Brazilian students from Federal University of Bahia and the second one was performed

with Spanish students from Polytechnic University of Valencia.

6.2 Background

Earlier in Chapter 5, it was presented the approach for specifying the SPL requirements, called
Feature-Driven Requirements Engineering (FeDRE) (Oliveira et al., 2014). However, FeDRE
is responsible only for creating features, use cases, and the traceability matrix. FEDRE does not

deal with their evolution. Thus, this Chapter proposes Feature-Driven Requirements Engineering

144

6.2. BACKGROUND

Evolution (FeDRE?) approach, which uses some guidelines of FeDRE, and it also has new
guidelines for evolving the SPL features, use cases, and the traceability matrix.

FeDRE? guidelines use the Safe Evolution Templates, proposed by Neves et al. (2011).
They defined a total of 8 templates and they were evaluated by analyzing the evolution history of
two different SPL. Neves et al. also demonstrated that the safe evolution templates can express
the corresponding modifications and may help to avoid the mistakes during the SPL evolution.
Thus, FeDRE? adapted the safe evolution templates for dealing with features and use cases.
Moreover, FeDRE? approach identified two new safe evolution templates that may be used to
evolve features and use cases.

FeDRE? overview and its guidelines were also built based on the Software and Systems
Process Engineering Meta-model (SPEM)'. Figure 6.1 shows the SPEM profiles used by
FeDRE>.

| :4 Activity: Activity represents a Process in SPEM 2.0

- O Task: Specifies one specific activity

:])/ Step: Describes a meaningful and consistent part of
W O the overall work described for a Task

Work Product: Represents an input and/or output

m type for an Activity

Figure 6.1: SPEM Profiles used by FeDRE?

6.2.1 Related Work

To the best of our knowledge, FeDRE? is the only approach for dealing with the evolution of
SPL features and use cases conducted by guidelines in a systematic way. Moreover, FeDRE?
approach was evaluated through a rigorous empirical study. However, there are other approaches

dealing with the evolution of SPL features and/or use cases.

Thttp://www.omg.org/spec/SPEM/2.0/

145

Gomaa and Shin (2008) proposed a multiple-view meta-modeling approach for SPL using
the Unified Modeling Language (UML). This meta-modeling defines several SPL artifacts, such
as: use case model; static model (class diagrams); collaboration model; state-chart model; and
feature model, including the commonality and variability. They state that a strong point of the
multiple-view modeling approach is to allow the evolution of SPL by explicitly modeling the
variation points in each view where evolution can take place and by defining the relationships
between these variation points. Nonetheless, they deal with low level of SPL requirements

evolution (meta-modeling) and evaluated their approach through a proof of concept tool.

The approach proposed by Ye and Liu (2005) focuses on modeling variability and depen-
dencies, within the feature model, through dependency view. A matrix and a set of dependency
diagrams is used to accommodate the feature dependencies. Their approach can deal with the
evolution of SPL features and it also can detect a conflict in a feature dependency. However,
besides dealing only with the evolution of features, the approach was evaluated through a

feasibility study.

White et al. (2014) presented a systematic approach for evolving feature models through a
multi-step configuration. They claim that a multi-step is necessary because an evolution may
need to be broken in multiple steps to satisfy evolution constraints. Also, they present how
a multi-step configuration can be mapped to a Constraint Satisfaction Problem (CSP). They
evaluated their approach through two experiments. Besides all the systematization within the

proposed approach, they only deal with feature models.

Gomaa (2013) proposed an evolutionary development approach where feature modeling
and SPL concepts are used to evolve software requirements and architectures. He considers
as an SPL the different versions of a software systems, and he tried to understand how feature
modeling can be used to characterize variability due to requirements evolution and what is the
impact in the architecture. However, in order to evolve the software requirements, he does not

propose any kind of guidelines. Moreover, the approach was not evaluated.

As shown previously, there is still a lack of approaches that propose guidelines for performing
the SPL evolution of features and use cases in a systematic way. The current approaches do not
present clear steps for performing the evolution of features and use cases in a systematic way.
Moreover, most of the presented approaches were not empirically evaluated. Thus, FeDRE?
was proposed and evaluated following the guidelines presented by Wohlin ez al. (2012), where

statistical tests could be applied to evaluate the hypotheses.

146

6.3. FEDRE? APPROACH

6.3 FeDRE? Approach

In order to safe evolve the SPL requirements, it was proposed the Feature-Driven Requirements

Engineering Evolution (FeDRE?) approach. This approach considers the requirements specified

by FeDRE approach and deals with their evolution. FeDRE? is an approach

for SPL domain

engineering which deals with the evolution of features and requirements. The aim of the approach

is to perform the requirements evolution by systematically utilizing the features identified in the

SPL domain through the use of guidelines that establish traceability links between features and

requirements, represented herein by use cases”. An overview of the approach, using SPEM, is

shown in Figure 6.2.

Evolve SPL Domain Requirements aL’
a3k

Feature

.l\\ %Model to be \
updated
c,,a,,ge <<task use>>
Request r 1 ientify what . out71 .k’\ l_— <<task use>>
, in y
=, IS the evolution scenaric, “Ny 2. Evolve the SPL
2 according to the Use Case o domain Requirements (How),

predefined evolution

) \. Specification
scenarios

out to be updated ;|

‘ /in
=/]
Model

/ out U\sfiﬁtj%‘iagram
L’k L ,k' ‘ to be update/
Use Case . / _ {ﬁ’ J\

in

Specificatio Product
Map Updated Feature Product Map to
Modeli

ULT‘E;se Updatett;il\;e LJ\’

/
Diagram L
Specci?iiztion Updated Use adh
Case Diagram Traceability

Matrix

e Updated,

’__ <<task use>>
O 3. Update the Traceability
Matrix

out Specification

D

Updated
Feature Model

i

Updated Use
Case

2

Updated Use
Case Diagram

)

Updated
Product Map

outﬁL{L\

Updated
Traceability
Matrix

Figure 6.2: FeDRE? Approach Overview.

The approach is composed of three main tasks: 1) Identify the evolution

2) Evolve the SPL requirements (how); and 3) Update the traceability matrix.

scenario (what);
Each one of the

activities has a set of steps to be followed according to the guidelines. These tasks are defined in
FeDREZ, not in FeDRE. However, task 2 (Evolve the SPL requirements) may invoke FeDRE

approach depending on the sub-task to be performed. The tasks are detailed next.

>The metamodel representing the relationships among features and use cases was presented in Figure 5.5

147

6.3.1 Task 1: Identify the Evolution Scenario

Within this first task of FeDRE? approach, the requirements engineer has to identify what is the
evolution scenario. The evolution scenarios supported by FeDRE? approach were defined based
on the safe evolution templates for SPL proposed by Neves et al. (2011). Table 6.1 shows the
safe evolution templates proposed by Neves et al. and also their relationship with the FeDRE?

evolution scenarios.

Table 6.1: Safe Evolution Templates, Evolution Scenarios and Evolution Scenarios Description.

Safe Evolution Template | FeDRE? Evolution Scenario Evolution Scenario Description

(Neves et al., 2011)

Split Asset 1.1. Split an Use Case Split the use case alternative scenarios into new
use cases

Refine Asset 1.2. Refine an Use Case Improve the use case steps (main scenario and/or
alternative scenarios)

Add New Optional Feature 1.3. Add New Optional Feature Add a new optional feature into the feature
model

Add New Mandatory Feature | 1.4. Add New Mandatory Feature Add a new mandatory feature into the feature
model

Replace a Feature Expression | 1.5. Replace a Feature Expression Update the relationship between the feature and
the use case in the traceability matrix

Add New Alternative Feature | 1.6. Add New Alternative (XOR) Feature Add a new alternative (XOR) feature into the
feature model

Add New OR Feature 1.7. Add New Alternative (OR) Feature Add a new alternative (OR) feature into the fea-
ture model

Delete Asset 1.8. Deletion Delete a feature, or an use case, or an use case
alternative scenario

- 1.9. Transform a Mandatory Feature into an | Transform a mandatory feature into an optional

Optional Feature feature in the feature model
- 1.10. Transform an Optional Feature into a | Transform an optional feature into a mandatory
Mandatory Feature feature in the feature model

To identify which is the evolution scenario, the requirements engineer needs the input
artifacts of this task: the change request; the feature model; the use case textual specification;

the use case diagram specification; and the product map.

6.3.1.1 Change Request Artifact

The Change Request (CR) artifact is responsible for registering the evolution requisition accord-
ing to the users’ need. An example of such artifact is shown in Figure 6.3.

When registering a CR, the user should fill in these main fields: the Summary, which is
the CR brief description; Description, which contains the full description of the CR; the Type,
which indicates if the CR is an enhancement, an error, or a suggestion; the Priority, which could
be minor, normal, or major; the Document, which indicates what kind of document the CR

is related to, for example the feature model document or the requirement document; and the

148

6.3. FEDRE? APPROACH

Related Feature indicating to which feature the CR is related to. These are the main fields in
the CR that need to be filled in. The next artifact of the approach to be presented is the feature
model. Each CR has an unique identification (ID), which is called ticket (not visible to the end

user).

Summary: Upload a photo for the user profile
Reporter: raphaeloliveira
Description: B 1 A) . ﬂ - You may use WikiFormatting here.

Allow the user to upload a photo for his/her profile. In this case, the system should ask for a photo
(optional) during the edition screen.

Type: | enhancement + Priority: | major =+ |
Milestone: | 2.0 - Component: | Client-side component =+
Version: | 3 Keywords:
fEC: Document: | feature -
Related Feature: | 25-Web Access Control : Owner: | < default > s

Figure 6.3: Change Request Example.

6.3.1.2 Feature Model Artifact

As shown in Section 5.3.1.2 and Section 5.3.1.3, the feature model artifact comprises the features
of the domain, being responsible for identifying features, SPL variations, and constraints among

the features of the SPL. An example of an feature model artifact is shown in Figure 6.4.

Web_Access_Control, Legend:
Access_Control
Mobile_Access_Control @ Mandatory
O/ Optional
Phone_Import
Import_Contact. < A o
Contact Google_PLUS_Imporl A Alternative
Savi | Abstract
v Add_Contact
] Concrete

SMS_Destination
Destination <

Email_Destination
Emergency_Numbers

Figure 6.4: Feature Model Example.

149

6.3.1.3 Use Case Textual Specification Artifact

The use case textual specification contains the textual use cases specified using FeDRE approach.
Its description was previously presented in Section 5.3.2.2. An example of such artifact repre-
senting two variations from an OR relationship of the feature model (Figure 6.4) is shown in
Table 6.2.

Table 6.2: Send Message Use Case Textual Specification Example.

*Use case id: UcCo1s
*Name: Send Message
*Description: It sends a message to the user’s contacts
*Associated feature: | Destination Actor(s) [0..%]: Logged User
*Pre-condition: The logged user must | *Post-condition: The system sends a mes-
press the Savi button sage to the contacts of
the user
Includes To: - Extends From: -
*Main Success Scenario
Step Actor Action Blackbox System Response
1 The Logged user press | The system sends a message to the
the Savi button contacts of the user
Alternative Scenario name: SMS Message
Condition: An SMS message should be sent to the user’s contact list
Associated feature [0..1]: SMS_Destination
Step Actor Action Blackbox System Response
1.1 - The system sends an SMS message
to the user’s contact list
Alternative Scenario name: Email Message
Condition: An Email message should be sent to the user’s contact list
Associated feature [0..1]: Email_Destination
Step Actor Action Blackbox System Response
1.1 - The system sends an Email message
to the user’s contact list

* Mandatory Field

6.3.1.4 Use Case Diagram Artifact

The use case diagram is the artifact that contains the use case elements, such as actors, use cases,
and their relationships. An example of such artifact is shown in Figure 6.5.

6.3.1.5 Product Map Artifact

Finally, the product map is the artifact that contains the relationships among features and the

products from the SPL. An example of such artifact is shown in Figure 6.6.

150

6.3. FEDRE? APPROACH

Show Contacts

-~ "dnclude»
T Delete Contact /

Logged User /

Update Contact

Figure 6.5: Use Case Diagram Example.

- @

s 8| §| g| E

Features / Products % g § % g

Al 3 g @ =

wy w

Access_Control X| X | X
Web_Access_Control X X X
Mobile_Access_Control X X X
Contact X| X[X | X | X
Add_Contact X | X [x| X | X
Import_Contact X X X X
Facebook_Import X X X
Twitter_Import X | X | X
Phone_Import X[x| X | X
Destination X X X X X
SMS_Destination X| X | X | X | X
Twitter_Destination X | X | X
Facebook_Destination X| X | X
Emergency_Numbers X X X X

Figure 6.6: Product Map Example.

151

With the input artifacts, the requirements engineer will follow the steps from sub-task number
1 of the FeDRE? guidelines (Figure 6.7) to identify the evolution scenario. Once identified the
evolution scenario, the requirements engineer has to know what should be updated within the

feature model, the use case specification, the use case diagram artifacts, and the product map.

6.3.2 Task 2: Evolve the SPL Requirements

The next task of the approach consists of evolving the SPL requirements. To evolve the feature
model and use case (textual and diagram specifications), the requirements engineer has as input
following artifacts to be updated: feature model; use case specification, the use case diagram,
and the product map.

The requirements engineer needs to follow once again the FeDRE? guidelines (Figure 6.7)
to evolve the requirements. The sub-tasks starting with the number 2 within the guidelines are
responsible for performing the SPL requirement evolution. There are 10 sub-tasks for evolving
SPL requirements. Each one has a set of steps to evolve the SPL requirements according to the
identified evolution scenario, as follows:

- 2.1. Split a Requirement: First, it 1s necessary to confirm that the use case to be split has at
least 1 alternative scenario, and each alternative scenario must be associated to a feature. Then,
for each alternative scenario to be split, the requirements engineer will create an new optional
use case, following FeEDRE guidelines (Figure 5.7). Finally, the alternative scenarios from the
split use case must be removed.

- 2.2. Refine a Requirement: The requirements engineer needs to select the steps in the main
scenario or in the alternative scenario to be improved and perform the update.

- 2.3. Add a New Optional Feature: It is necessary to start adding the new optional feature
into the feature model. After this step, the requirements engineer needs to follow the FeDRE
guidelines for specifying the new optional use case(s) or the new alternative scenario(s). The
requirements engineer also need to update the product map according to the new optional feature.

- 2.4. Add a New Mandatory Feature: The first step is to add the new mandatory feature into
the feature model. Afterwards, the requirements engineer needs to follow the FeDRE guidelines
for specifying the new mandatory use case(s). The requirements engineer also need to update
the product map according to the new mandatory feature.

- 2.5. Replace a Feature Expression: First, the requirements engineer needs to update the
feature associated to the use case. Then, it is required to follow FeDRE guidelines to update the
requirement(s) (diagrams and textual specifications).

- 2.6. Add New Alternative (XOR) Feature: It is necessary to add the new alternative (XOR)

152

6.3. FEDRE? APPROACH

Kessaoau AKesseoau ase
eJe mwmﬂumwmzd_ Mwm_hw SOSBO 9SN MAU 1 %0ayo 1
Luonole ¢ uon| 1138y Ijap! SOUBUBS SRS)
(S)dusuoneres o LA, & U st b @84 8U) MO0} ;uon|ep oueusos 100555 G116 586 cuonareq
leadesi ‘g€ ON 12 pay sy 0
Jiay} pue 9sed ‘Janamoy ‘feuogdo euondo 0} Alojepeus BAJBLIBIE UE SI ‘€8T s pajeroosse eimesd B S| °L'gT
mw:mwur M.:..@ 0} Kiojepew woy woyy W4 8y} Ul ainesy oee onay %E ainjead 8y} ajejed ‘Z' N
ay m 6€ W4 8y} ul ainjea) sy a1epdn 167 Gon 819|180 '§'8'C
ayjejepdn 1012 Kiessaosu G
a Pped e () o <@
i F) aiepdn oned J @
(s)oueuaos % mes; e 0} . J R4 rgz oepdn-ogz (o &
sAjeIS}e O Y} pue pojelel OUeUBDS)
o) Ul USeMIBq el BEES guonerep ;
diysuoneias au) pue oL 5 20 8y woy foN]
(s)oLBUSDS BAjRWISYE anjeussye 0H) aunjeay (mop) aimjeay OUBUSOS BAEUISE
DN U} aAoWaY 'g'E :M L.w uowmwu Aioyepuepy [euopdQ ue 8y} aAoWeY ¥'8'Z [saAl
0ju| ainjes.
= = [seAl [soAll uonerep on ue e S:__M_N%%M wc.ogmvu:m —w,__ D WoH)
. sive e ::EQ..E...}MM e E.&m:m_._../\.ld Q uonajeq g’z
xupepy Aiqesoeiy ouy up o'z b 62 < &
(s)i190 (s)uapuodsasion
) olul 8,X, 8y} pue
ON 8y eA0WaY G'E
.\ 1} [soAl oueusdg
P) (uoneoypeds anjeuIB)Y MaU
& pue sueitep) Kobposuomy waou
(s)omyeay Juswaunbe: (8O) Jswaunbas (HOX) ﬁw“_muwuuwm o580 08N 0 o buikyoeds oyl uniesy
8y} pue (s)oN 8w ;oueusdg uoissaldxg @ABUIS}E MU A 8y ol d BAjeUIS)E MU W4 ay) ojul o1 5 0} pajeioosse joBype dew oy sauljepinG Kiojepuew
(Buowe)usemaq ainjeaq eoeidey E S| Z'E fon] veedeN gy bukoads oy eunies) (HO) woeie dew gy Buifyoads o) 8INJES) (HOX) o ainjes) oy} 1NpoId 8l 3y@ed eyl Mau
(s)dwsuonejes N PNpoId 3 spuapin 3y@ed SARUIB)E MaU 1NPoId 34} sauipING JyQe4 OARBWSHE MOU oGS m_ . oipdn 1’57 | | S1ePAN €T MONOd £ pZ oU PPY bbZ
ay) ajepdn "g'e oepdN€LT oy molod TLZ ow PP hLT 1epdN '€'9Z ey moliod 29T SUIPPY LT liod wm £x4 q .
e \) \ |)) H
! |) @ { <1 g <— <9<
/ < < <— J J J
@@ oA @ @@ o @ O Okt . Ok OIS Ohd
\J \J \J
0 (mon)
(mo) ainjeaq 0H) uoissaudx3 (moH) ainjeay
ainjea4
o (0) onjEWONY #2Y (MOX) eAtewayy)/.‘\J|I_ ameed o~ Alojepueyy)/ﬂu|l_
2 PPV /" ‘9’ G om MON B PPY v’
xujep Anniqesoel) auy ajepdn ‘g)\.W MaN B ppy L2 /u M3N B PPV ‘97 eoe(dey '5'C
OUBUadS pajelep naon e
" oyl pappe ojul pappe
anjeuIBlY panoudwi aq ainmes) auo 1 OLBUBDS m«_ Ev mw siaines; xuey esoe] SON Mau ol
OLEUSOS ! 2dmes) " i oudwi peuLojsuen
Mmau @ o 0} pajerosse antewa)E (x0) (40X) parodw e
o 10 (10N - anjewaye souepinG a0 Loea OoNUBUSUM grpeulaye aneLIsYE U} ojur pappe W4 (oo soueusos
feuondo meu N o ders sy u 3yaed ‘SoLBUBIS W4 W4 1o pajejop MU B UBUM MOU B UBUM BInjes) Usemiaq S| aInjea} ay) ojul peppe (solieueds Porngpend
oy Buikyoads Ol ISy Kiessaoeu Jo Oueuads on wids oy Bumoljo} 0N eAeuIBe oy uleimes; oy ujaInzesy s ainea) “euneod ‘aimesd diusuonelel Kioepuews s aimea) onjeuB)E jeussy|
Weie dBN o) soujopin 12u0nd0 Yoeo UBLAW ||) soueusos [BUONdOMBUUE | jseo) e Aiojepuew [euopdo & Uaym (40) (40X B uauM moueUSUM feuopdomeue /UIBW) Sdols son
10NP0oId 8 " 3y By MaU 8y} onodu) 77z UL sdays ay) onjeuoye oy, OISO OLBUSOS oaey jids 8q BOJUj BINJESY U OJuI BIMES; 10 PEIBIAP S| P d -ainjeod Usym ‘esmeay SN UBUM ou ueum
®epdN"EEZ pojoy ez PPV LEZ weRS 1T || gona el SATBUWRIE 0} 0N 8U) 1eU} jeuopdoue fiojepuew e on ue uaym ‘moN “MaN aumesy Aiojepuepy Jeuondo ueuainbey Justiie/inbey
Q Q @ D ﬁﬂ YoBe 404 'Z'L'T uuyuod 'Lz iojsuel] 0L} uwuojsuell 6L uopsfed ‘gL PPV L' PPY ‘9L eoopidey Gl MONPPY V'L MBNPPY €L eauysy 7' Bds Ly
) |
¢ 7 ¢ 7 ?]
J J
@@ @@ @ b 9 M¢o M¢o mp_o M¢o Mzo M¢o M¢o M¢o M¢o
(MoH) einesd (mon)
feuondo % Wawaunbay & 473 oLiEUBOS UONNIOA oLy S JEyM Anuap] ‘| Kt
MON B ppY €2 om_ [uydy 2T /||_ 1 nny Uy s1jeym Aynuap *| /u

irements.

1 Requ

ona

SPL Funct

ing

Guidelines For Evolvi

Figure 6.7

153

feature into the feature model and then follow the FeDRE guidelines for specifying the new
alternative (XOR) use case(s). The requirements engineer also need to update the product map
according to the new alternative (XOR) feature.

- 2.7. Add New Alternative (OR) Feature: The requirements engineer should add the new
alternative (OR) feature into the feature model and follow the FeDRE guidelines for specifying
the new alternative (OR) use case(s). The requirements engineer also need to update the product
map according to the new alternative (OR) feature.

- 2.8. Deletion: Firstly, the requirements engineer needs to check if the evolution is a feature
deletion. If so, it is necessary to delete the feature and its associated use case(s) or its associated
alternative scenario(s). If the evolution is the deletion of an alternative scenario, the requirements
engineer needs to remove the alternative scenario from the use case. Finally, if the evolution
is the deletion of an use case, the requirements engineer must delete only the use case. After
each one of these evolutions, if necessary, the use case diagram and the product map should be
updated.

- 2.9. Transform a Mandatory Feature into an Optional Feature: Within this evolution,
the requirements engineer needs to update the feature in the feature model from mandatory to
optional. However, it is necessary to follow the FeDRE guidelines to check if new use cases are
necessary.

- 2.10. Transform an Optional Feature into a Mandatory Feature: It is necessary when
the requirements engineer updates the feature in the feature model from optional to mandatory.
However, it is necessary to follow the FeDRE guidelines to check if new use cases are necessary.

Thus, after performing the evolution within the SPL requirements, the outputs of this task
will be the following artifacts: the updated feature model; the updated use case specification; the

updated use case diagram; and the product map.

6.3.3 Task 3: Update the Traceability Matrix

The final task of the approach is to update the traceability matrix, which stores the relationships

among features and requirements.

6.3.3.1 Traceability Matrix Artifact

The traceability matrix, which stores the relationships among features and requirements, and
was presented previously in Section 5.3.2.3, is shown in Figure 6.8.
To update the traceability matrix, the requirements engineer has as input the following

artifacts: the updated feature model; the updated use case specification; the updated use case

154

6.3. FEDRE? APPROACH

Use Cases \ Features

(Alternative Scenario from

Show Profile)

(Alternative Scenario from

Show Profile)
- Mobile Access_Control

- Web_Access Control
Import_Contact

Contact
Add_Contact

Create User

Login

Show Profile
Remember Password

Send E-mail
Update User Profile X
Delete User X
Show Contacts X
Delete Contact X
Update Contact X
Show Messape Language
Add Contact X
Retrieve Contacts
Import_Contact X

»
4

pa | pet| pa| pa| »e|Access Control

»e

o4

Figure 6.8: Excerpt of a Traceability Matrix.

diagram; and the traceability matrix.

The requirements engineer needs to follow the FeDRE? guidelines (Figure 6.7) to update
the traceability matrix, which steps are inside the sub-task number 3. The main questions that
the requirement engineer should answer is if the evolution is a feature deletion, or an use case
deletion, or an use case alternative scenario deletion.

If the evolution is an feature deletion, the requirements engineer needs to remove from the
traceability matrix the feature, the use case(s) associated to the feature, and their relationship(s).
If the evolution is a deletion of an use case alternative scenario, the requirements engineer
has to remove from the traceability matrix the relationship between the feature and the use
case alternative scenario(s). If the evolution is an use case deletion, the requirements engineer
should remove from the traceability matrix the use case and its relationships. Otherwise, if the
evolution is a replace feature expression scenario, the requirements engineer needs to update the

relationship between (among) the use case(s) and the feature(s). After updating the traceability

155

matrix, the SPL requirement evolution is completed. Next, it is presented the empirical study

performed to evaluate FeDRE? approach.

6.4 Empirical Study

It was performed an empirical study, following the guidelines presented by Wohlin et al. (2012),
to assess the easy of use and the usefulness of FeDRE? approach. Besides this is its first

evaluation, the obtained results have shown FeDRE? as a promising approach.

6.4.1 Design of the Empirical Study

In order to evaluate FeDRE?, we firstly planned the objectives of our empirical study. To define
which objectives the empirical study would have, it was applied the Goal-Question-Metric
(GOM). After applying this technique, it was stated the goal of the empirical study, as follows:
to analyze FeDRE? for the purpose of evaluating it with regard to its perceived ease of use
and perceived usefulness from the viewpoint of a set requirements engineers in the context of
an SPL project.

The context of the empirical study is the requirements evolution of an SPL project. The
selected SPL, for the mobile domain, was the same used in FeDRE evaluation, SAVi SPL.

It was defined two subjective dependent variables: perceived ease of use and perceived
usefulness. To measure both variables after applying the FeDRE? approach, it was used an
existing measurement instrument proposed for the evaluation of requirements modeling methods
based on user perceptions (Abrahdo et al., 2011). The method proposed by Abrahdo et al.
(2011) allows to evaluate the likelihood of acceptance of a particular method in practice or to
compare two or more requirements modeling methods to assess which is the most effective.
Since there is no such approach as FeDRE?, we used the method to evaluate the likelihood of
acceptance of FeDRE?, without comparing it to another approach. More specifically, we adapted
two perception-based variables from the aforementioned instrument, which were based on two
constructs from the Technology Acceptance Model (TAM) (Davis, 1989):

- Perceived Ease of Use (PEOU): the degree to which a person believes that using FeDRE?
will be effort-free. This variable represents a perceptual judgment of the effort required to learn
and use the FeDRE? approach;

- Perceived Usefulness (PU): the degree to which a person believes that FeDRE? will
achieve its intended objectives. This variable represents a perceptual judgment of the FeDRE?

approach’s effectiveness.

156

6.4. EMPIRICAL STUDY

It was defined a set of items to measure these perception-based variables. These items
were combined in a survey consisting of 10 statements. The items were formulated by using a
5-point Likert scale, using the opposing-statement question format. Various items within the
same construct group were randomized to avoid systemic response bias. PEOU and PU were
measured by using six and four items in the survey, respectively-.

The following hypotheses were formulated:

* HIy: FeDRE? is perceived as difficult to use,
H1,: FeDRE? is perceived as easy to use.

e H2y: FeDRE? is perceived as not useful,
H2,: FeDRE? is perceived as useful.

In addition, it was also defined a correct solution for a requirements evolution. The aim was
to compare the subjects’ solutions with the corrected solution in order to analyze the degree in
which the subjects applied FeDRE? in an effective and efficient way.

Thus, six objective dependent variables were defined:

- Effectiveness_EVOSCEN, which is calculated as the ratio between the number of right
evolution scenarios that the subject identified and the total number of right evolution scenarios.

- Effectiveness_EVO, which is calculated as the ratio between the number of right require-
ments evolutions that the subject identified and the total number of right requirements evolutions.

- Effectiveness_UPTRACE, which is calculated as the ratio between the number of right
updates in the traceability matrix that the subject performed and the total number of right updates
in the traceability matrix.

- Efficiency_EVOSCEN, which is calculated as the ratio between the number of right evo-
lution scenarios that the subject identified and the total time spent on the evolution scenarios
identification.

- Efficiency_EVO, which is calculated as the ratio between the number of right requirements
evolutions that the subject performed and the total time spent on the requirements evolutions.

- Efficiency_UPTRACE, which is calculated as the ratio between the number of right updates
in the traceability matrix that the subject performed and the total time spent on the updates in
the traceability matrix.

Table 6.3 shows the empirical study design. This design was used within both sessions
(Brazil and Spain). It took us 3 days, with a total of 3 hours per day, to perform the empirical
study for each session. In the first day, it was performed a 3 hour training session, which included

3The relationship between the survey statements with the dependent variables is presented in Appendix D.1

157

Table 6.3: Empirical Study Design.

Day | Topic Activity

First FeDRE Training - Introduce FeDRE
(3 hours) - Perform an Exercise
FeDRE? Training - Introduce FeDRE?

Second .

(3 hours) - Perform an Exercise
(Cl(;lici;l§)UbJ ect Background -Apply the Background Questionnaire
Perform the Empirical Study | - Identify Evolution Scenarios

Third | (2h30min.) - Perform SPL RE Evolution

- Update the Traceability Matrix

Collect Subject Feedback

(15 min) - Apply the Survey

the presentation of FeDRE approach to specify SPL requirements and a set of exercises to use
FeDRE. The next day, it was presented FeDRE? to evolve SPL requirements and also executed
some exercises to practice the approach. Finally, in the last day, we performed the empirical
study. In the first 15 minutes we asked the subjects to answer a background form, and then,
they were asked to perform the 3 tasks of FeDRE?. After performing the 3 tasks, the subjects

answered a survey about FeDRE?,

6.4.2 Preparation of the Empirical Study

Several documents were designed as instrumentation for the empirical study: slides for the
training session, an explanation of both methods, a data gathering form, and a questionnaire.
These documents were used by the subjects, which were chosen for convenience from a group
of software engineering research associates. The subjects were asked about their experience in
the area, and the results showed that none of them had a previous background in this context.
As a consequence, we did not establish a classification of subjects based on their experience
in SPL requirements evolution. The first session was composed of 3 Bachelors and 6 Masters,
totalizing 9 subjects from the Federal University of Bahia (UFBA, Brazil). The second session
was composed of 6 Masters and 1 Ph.D, totalizing 7 subjects from Universitat Politecnica de
Valéncia (UPV, Spain). Thus, the total of subjects for the empirical study was 16.

For training FeDRE and FeDRE? approaches, it was built an SPL in the car domain. With
regard to the training of FeDRE approach, all the artifacts* (i.e., Feature Model, Feature
Specification and Product Map) were created by a Ph.D. student. The feature model had 15

“FeDRE training artifacts are available at: http://goo.gl/rMdXKi

158

6.4. EMPIRICAL STUDY

features in its specifications, the glossary had 5 terms, and the product map had 4 products.
After the FeDRE training, the subjects were asked to specify the requirements for a sub-set
of 3 features from the feature model. With regard to the training of FeDRE? approach, all
the artifacts® (i.e., Change Request, Feature Model, Feature Specification, Glossary, Use Case
Specification, and Traceability Matrix) were created by the Ph.D. student. The change request
artifact had 2 tickets®, feature model had 15 features with its specifications, the glossary had
5 terms, the use case specification included 2 textual use case specifications plus its use case
diagram specification, and the traceability matrix had the relationships among the 2 use cases and
its features. After the FeDRE? training, the subjects were asked to evolve the SPL requirements

according to the 2 change requests.

Before starting the empirical study, the subjects were asked to answer a background form’,
which was elaborated with 16 questions including the subject’s experience within SPL, require-

ments engineering, and software evolution.

The SAVi SPL was used for the FeDRE? empirical study. The artifacts® (i.e., Change Request,
Feature Model, Feature Specification, Glossary, Use Case Specification, and Traceability Matrix)
were created by Master/Ph.D. students of RiSE Labs’, one domain analyst and one domain
expert, who were also assisted by a scoping expert with more than 6 years of experience in SPL.
scoping activities. Thus, the change request had 4 tickets, the feature model had 12 features with
its specifications, the glossary had 16 terms, the use case specification included 19 textual use
case specifications plus its use case diagrams specifications, and the traceability matrix had the
relationships among the 19 use cases its features. It was performed an empirical study using
features with a high level of granularity. For example, the Access_Control feature is responsible
for Creating an user, Performing the login, Showing the user Profile, Remembering the user

password, and finally Sending a email with the new password to the user.

After finishing the empirical study, the subjects were asked to answer a survey'?, which was

elaborated with 14 questions (open and closed) about the subject’s opinion of the approach.

SFeDRE? training artifacts are available at: http://goo.gl/xS1QDw
®Each Ticket corresponds to a change request with an unique ID.

"The background form is shown in Appendix D.2

8FeDRE? empirical study artifacts are available at: http://goo.gl/nRZC7]
°RiSE Labs: http://www.rise.com.br

10The applied survey is presented in Appendix D.3

159

6.4.3 Data Collection

The SPL functional requirements were evolved by sixteen subjects (Bachelors, Masters, and
Ph.D.) from both universities (Brazil and Spain). The data was collected before, during, and
after the empirical study.

Before the empirical study, it was collected data from the subject’s background. During the
empirical study, the SPL functional requirements were evolved by applying the guidelines for
evolving SPL functional requirements in order to deal with the following tasks: 1) identify the
evolution scenario (what); 2) evolve the SPL requirements (how); and 3) Update the traceability
matrix. After the empirical study, we were able to collect data from the subjects through a

survey.

6.4.3.1 Background Form

It took us around 15 minutes, for each session (Brazil and Spain), to collect the information
about the subject’s experience on SPL, requirements engineering, and software evolution. Most
of the subjects knew what SPL are and they have, in general, less than 1 year of experience
within SPL. Moreover, the majority of the subjects knew what requirements engineering and

software evolution are and have between 1 and 5 years of experience within them.

6.4.3.2 Empirical Study

It took around 2 hours and 30 minutes, for each session (Brazil and Spain), to collect the subject’s
answers about the evolution of the SPL requirements. The data was collected for each one of the
following tasks:

- Identify the Evolution Scenario (what). All the subjects received 4 change requests to
perform the SPL requirements evolution. These change requests were created by one of the
authors of the approach. The first change request (Update a photo for the user profile) was
a Refine an Use Case evolution scenario. The second change request (Import Contacts from
Facebook) was an Add New Alternative (XOR) Feature evolution scenario. The third change
request (Notification on Facebook) was an Add New Alternative (OR) Feature evolution scenario.
Finally, the fourth change request (Tracking the User) was an Add a New Optional Feature
evolution scenario. Based on the change requests, around 76% of the subjects identified the
correct evolution scenarios.

- Evolve the SPL Requirements (how). Once identified the evolution scenarios, the subjects

should evolve the SPL requirements, textual and diagram specifications. For the Refine an

160

6.4. EMPIRICAL STUDY

Use Case evolution scenario, the subjects should evolve the Update User Profile textual use
case specification by improving its steps within the main scenario. According to the Add New
Alternative (XOR) Feature evolution scenario, the subjects should include a new XOR feature
(Facebook_Import) in the feature model and evolve the Retrieve Contacts textual use case
specification by adding a new alternative scenario associated with the new feature. For the
Add New Alternative (OR) Feature evolution scenario, the subjects should include a new OR
feature in the feautre model (Facebook_Destination) and evolve the Send Message textual use
case specification by adding a new alternative scenario associated with the new feature. Lastly,
according to the Add a New Optional Feature evolution scenario, the subjects should create
a new feature in the feature model (Tracking User) and specify a new textual use case (for
example: Track User) associated with the new feature. Within this last evolution, it is also
necessary to specify the use case diagram for the Track User textual specification. Based on
the SPL requirements evolution, around 91% of the subjects evolved the SPL requirements
correctly.

- Update the Traceability Matrix. Last but not least, the subjects should update the traceabil-
ity matrix. They should include 3 new features and 1 use case within the traceability matrix. The
first new feature (Facebook_Import) should be associated with the Retrieve Contacts use case.
The second new feature (Facebook_Destination) should be associated with the Send Message
use case. Finally, the third new feature (7Tracking User) should be associated with the Track
User use case. Based on the update within the traceability matrix, around 91% of the subjects

updated it correctly.

6.4.3.3 Survey

To collect the survey information, for each session (Brazil and Spain), it took around 15 minutes.
The open questions of the survey revealed that 12.5% of the subjects believe that the guidelines
has lots of steps, which could be reduced, and 18.75% of the subjects suggested a tool support for
the approach. Around 6.25% of the subjects also complained about too much natural language
within the change requests, which may introduces ambiguity and sometimes it can make difficult
the identification of the scenario to be evolved (i.e., deciding if it is necessary to add new features
or new uses cases). Thus, 6.25% of the subjects suggested an application for specifying these
change requests in a rigorous way, allowing the automatic identification of the evolution scenario.
Moreover, 6.25% of the subjects suggested that there is a need for supporting the evolution
of features that have dependency (requires and excludes) with other features in the feature

model; 6.25% complained about the feature description, which should be better explained; and

161

6.25% suggested that the approach should deal with the merge evolution of use cases. Besides
the related difficulties, 37.5% of the subjects explicitly reported that the guidelines are well

explained and easy to follow representing a systematic way to evolve SPL requirements.

6.4.4 Data Analysis

It was performed two quantitative analyses for the collected data. The first analysis was related
to the objective variables (effectiveness, efficiency) observed during the execution of the tasks.
This analysis was performed in order to identify deficiencies in the guidelines and improve the
redaction in a qualitative manner. The second quantitative analysis was performed by using
closed questions, which were filled in by the subjects after the empirical study execution. This
information was analyzed in a quantitative manner in order to check the results of the subjects’

perception of ease of use and usefulness, and their statistical relevance.

6.4.4.1 First Quantitative Analysis

The first quantitative analysis was performed based on the 3 tasks that the subjects performed
within the empirical study. The results of the quantitavite analysis is shown in Table 6.4.
Regarding effectiveness in task 1 of the empirical study, we measured the quotient of the right
number of evolution scenarios identified by the total number of evolution scenarios written in the
solution (Effectiveness_ EVOSCEN). The users were able to identify correctly 76.5% of the total
evolution scenarios within task 1. In order to check the effectiveness in task 2 of the empirical
study, we compared the evolved SPL requirements with the evolved SPL requirements written
in the solution (Effectiveness_EVO). The results show that this variable has a mean of 0.9179,
meaning that the users were able to correctly evolve 91.7% of the total requested evolutions.
To check the effectiveness within task 3, we compared the updated traceability matrices with
the updated traceability matrix written in the solution (Effectiveness_ UPTRACE). The results
show that this variable has a mean of 0.9166, meaning that the users were able to correctly
update 91.6% of the total updates in the traceability matrix. One may complain about the
total percentage of the corrected evolution scenarios (76.5%) is lower than the total percentage
of corrected evolved SPL requirements (91.7%) and also lower than the total percentage of
corrected updates in the traceability matrix (91.6%). These percentages should vary at same level
since a correct evolution scenario would lead to a correct evolution within the SPL requirements
and traceability matrix and vice versa. However, since our results showed that the percentage of
correct evolution scenarios is lower than the others, we made a deep investigation within our data

and realized that some subjects misunderstood two evolution scenarios (Add New Alternative

162

6.4. EMPIRICAL STUDY

Table 6.4: Mean and Standard Deviation for the Analyzed Objective Dependent Variables.

Objective Dependent Variable | Mean | Standard Deviation (SD)
Effectiveness_ EVOSCEN 0.7656 0.2953
Efficiency_EVOSCEN 0.2088 0.1591
Time Task 1 (minutes) 24.1875 20.4065
Effectiveness_EVO 0.9179 0.1223
Efficiency_EVO 0.2845 0.0919
Time Task 2 (minutes) 28.1875 8.7880
Effectiveness_UPTRACE 0.9166 0.2277
Efficiency_UPTRACE 1.1364 0.7955
Time Task 3 (minutes) 3.0625 1.3400

(XOR) Feature and Add New Alternative (OR) Feature). These two evolution scenarios have
very similar steps for evolving the SPL requirements and updating the traceability matrix. Thus,
even though the subjects have chosen the wrong evolution scenario (Add New Alternative (XOR)
Feature or Add New Alternative (OR) Feature), they made the right evolutions within the SPL
requirements and traceability matrix.

Additionally, for each task it was measured the time used and the efficiency estimation.
The results show that the subjects took around 24 minutes to complete the task 1, with an
Efficiency_EVOSCEN value of 0.2088 (number of right evolution scenarios / time). The
subjects took around 28 minutes to complete the task 2, with an Efficiency_EVO value of 0.2845
(number of right SPL requirements evolutions / time). And finally, the results show that the
subjects took around 3 minutes to complete the task 3, with an Efficiency_ UPTRACE value of
1.1364 (number of right updates in the traceability matrix / time).

6.4.4.2 Second Quantitative Analysis

This Section discusses the results of the empirical study by quantitatively analyzing the data
according to the stated hypotheses. All the results presented were obtained by using the SPSS
v20 statistical tool with an alpha value of 0.05. The subjective variables were analyzed by
comparing whether the mean of the responses!! to the questions related to each variable were
significantly greater than the Likert neutral value (equal to 3). In our case, the mean variable
ranging from 1 to 5 for the measurement of both subjective variables has been considered as
an interval scale (Carifio and Perla, 2007). Both variables have a mean over the neutral value

3 (see Table 6.5). In order to verify the hypotheses with this data, we first selected which test

Subjects responses are available in Appendix D.4

163

Table 6.5: Analysis of PEOU and PU Variables.

Subjective Dependent | Mean SD Shapiro-Wilk | Cronbach’s | Wilcoxon
Variable Alpha Test
PEOU 4.1250 | 0.9159 0.0065 0.9254 0.003

PU 4.0781 | 0.9251 0.0221 0.8234 0.002

was most appropriate for the data. It was first necessary to check whether the data was normally
distributed. Since the sample size is smaller than 50, we applied the Shapiro-Wilk test (Shapiro
and Wilk, 1965) to verify whether the data is normally distributed. The results of the normality
test (Table 6.5) show that both variables are not normally distributed in this evaluation method
since the results are smaller than 0.05. Thus, we check the hypotheses by performing a Wilcoxon
Signed-Rank Test with a hypothesized median value of 3 (one sample nonparametric test). The
p-values obtained for Wilcoxon Test (Table 6.5) were < 0.05 (p < «). As a consequence, we
reject both null hypotheses; accepting that FeDRE? is perceived as easy to use and useful.

The box plots for the two subjective dependent variables (PEOU and PU) were also ana-
lyzed. Thus, for each box plot, it was analyzed the medians, the interquartile ranges (the box
lengths), the overall spreads (distances between adjacent values), and the skewness to draw more
conclusions.

Within the first box plot (Figure 6.9) it was analyzed the two variables in general for both
empirical studies sessions (Brazil and Spain). Both medians are above the neutral value of 3
(PEOU =4.3333 and PU = 4.5000). The length of the PU box is bigger than the PEOU box,
thus, the range of the answers for PU variable vary more than PEOU. The overall spreads are
similar considering the outlier (subject 13) from PEOU box plot. The box plot for PEOU shows
a slight lower-skew: the lower whisker is longer than the upper one. The same happens for PU
box plot where a lower-skew is observed: the lower whisker is longer than the upper. This shows
that most of the answers for PEOU and PU are below their medians.

In the box plot from Figure 6.10, it was compared the PEOU subjective dependent variable
between both empirical studies sessions (Brazil and Spain). Both medians are above the
neutral value of 3 (PEOU_Brazil = 4.6666 and PEOU_Spain = 3.8333). The length of the
PEOU_Spain box is slight bigger than the PEOU_Brazil box, thus, the range of the answers for
PEOU_Spain variable vary more than PEOU_Brazil. Moreover, the overall spreads are different,
the PEOU_Spain variable has a larger spread of the results. The box plot for PEOU_Brazil
shows a lower-skew: the lower whisker is longer than the upper one. The same happens for
PEOU_Spain box plot where a lower-skew is also observed: the lower whisker is longer than

the upper. This fact shows that most of the answers for PEOU_Brazil and PEOU_Spain are

164

6.4. EMPIRICAL STUDY

T T
PECU PU

Figure 6.9: Perceived Ease of Use and Perceived Usefulness Box Plot.

below their medians. It is worth to notice that the outlier (subject 13) for PEOU subjective
dependent variable is a subject from Spain and made some useful comments about the approach.
According to this subject survey answers, this subject had some difficulties within identifying
the SPL evolution scenario from task 1 and suggested to turn this task more rigorous, avoiding

misunderstandings within the natural language.

5.007]

ca0] L

PEOU
:

T
Brazil Spain

Session

Figure 6.10: Perceived Ease of Use Box Plot, for each Session (Brazil and Spain).

Within the box plot from Figure 6.11, it was compared the PU subjective dependent variable
between both empirical studies sessions (Brazil and Spain). Both medians are above the neutral
value of 3 (PU_Brazil = 4.5000 and PU_Spain = 3.7500). The length of the PU_Spain box is
bigger than the PU_Brazil box, thus, the range of the answers for PU_Spain variable vary more

165

than PU_Brazil. Moreover, the overall spreads are different, the PU_Spain variable has also
a larger spread within the results. The box plot for PU_Brazil shows a slight lower-skew: the
lower whisker is slight longer than the upper one. The same happens for PU_Spain box plot
where a slight lower-skew is also observed: the lower whisker is slight longer than the upper
one. Thus, the box plots show that most of the answers for PU_Brazil and PU_Spain are below
their medians. Moreover, there is an outlier (subject 1) for PU subjective dependent variable
within the Brazil Session. According to this subject survey answers, FeDRE? can increase the

time for evolving SPL requirements.

We could realize, based on box plots (from Figures 6.10 and 6.11) that the Spanish group
perceive FeDRE? less easy to use and useful than the Brazilian one. We believe that this
happened because the empirical study was applied by another researcher in Spain, and in Brazil

the empirical study was applied by one of the authors of the approach.

3.007

PU

2.00

1.007

Session

Figure 6.11: Perceived Usefulness Box Plot, for each Session (Brazil and Spain).

In order to check if there is a significant difference among the data from PEOU and PU
variables for each Session (Brazil and Spain), we also test our data, which has a non-normal
distribution, with the Mann-Whitney U Test (Table 6.6). The results of this statistical test shows
if there is a significant difference between two groups of data. For PEOU variable (Figure 6.10),
the Mann-Whitney U Test result was <0.05, indicating a significant difference between the two
sessions. This difference happened because of the Spanish outlier (subject 13). Within the PU
variable (Figure 6.11), the Mann-Whitney U Test result was > 0.035, indicating that there was no

significant difference between the two sessions.

166

6.4. EMPIRICAL STUDY

6.4.5 Threats to Validity

The main threats to the internal validity of the empirical study are: empirical study design,
evaluation design, subject experience, information exchange among evaluators, and the under-
standability of the documents. It was selected the empirical study design based on the methods
proposed by Abrahao et al. (2011) and Davis (1989) (TAM) to evaluate FeDREZ?. There are
some drawbacks related to TAM, as presented by Turner et al. (2008). However, since there is
no approach with similar objectives such as the ones from FeDRE?, it was used these methods
(Davis, 1989; Abrahio et al., 2011) to evaluate FeDRE?. It is important to highlight that these
methods are still been used nowadays to evaluate new proposed approaches (Oliveira et al.,
2013; Fernandez et al., 2013; Molina et al., 2013, 2014; Asadi et al., 2015). The evaluation
design might have affected the results owing to the creation of the change requests taken as
input to evolve the SPL requirements when applying FeDRE?. We attempted to alleviate this
threat by considering change requests, which implied applying most of the FeDRE? guidelines
rules. Subject experience was mitigated owing to the fact that none of the subjects had any
experience in SPL requirements evolution. Moreover, we assume that using students as subjects
do not affect the overall results of software engineering experiments, since the perform of
students and practitioners are similar when applying a new approach (Salman et al., 2015).
Information exchange was mitigated by monitoring the participants while they performed the
tasks. The empirical study was performed in two sessions but no relationships were established
between Brazilian and Spanish subjects, and no information was exchanged among them. The
understandability of the material was alleviated by clearing up all the misunderstandings that
appeared in each session.

The main threat to the external validity is the generalizability of the results. To alliviate this
threat, the empirical study was performed in Brazil and replicated in Spain. We had different
results from both countries, were the Brazilian group perceived FeDRE? as more easy to use
and useful than the Spanish group. Although the results have shown FeDRE? as a promissing
approach, it needs a broader evaluation in order to try to generalize the results.

The main threat to the construct validity of the empirical study was the reliability of the

questionnaire, related to the two empirical study hypotheses. This reliability was tested by

Table 6.6: Mann-Whitney U Test Analysis of PEOU and PU Variables for Each Session.

Subjective Dependent Variable | Mann-Whitney Test
Perceived Ease of Use (PEOU) 0.0104
Perceived Usefulness (PU) 0.1334

167

applying the Cronbach’s alpha test (Table 6.5) to each set of closed questions which measured
the PEOU and PU variables, obtaining a value of 0.9254, and 0.8234 respectively (higher than
the minimum acceptance threshold a=0.70) (Maxwell, 2002). Moreover, there is a threat related
to the representativeness of the results. To alleviate this threat and make the tasks enough
representative, the complexity of the exercise was adjusted for the subjects to be able to apply
most of the guidelines rules, considering that the duration of the experiment was limited to 150
minutes.

The main threat to the conclusion validity of the experiment was the pattern recognition
(recall and precision) for the effectiveness and efficiency of FeDRE? activities, and the validity
of the statistical test applied. For this empirical study we used only the recall pattern to evaluate
the effectiveness and efficiency of FeDRE? activities, however, this is a well know and used
pattern. The validity of the statistical test applied was alleviated by applying the most common

test that is employed in the empirical software engineering field (Maxwell, 2002).

6.5 Chapter Summary

This Chapter introduced the FeDRE? approach to support the evolution of SPL requirements.
Within this approach, the evolution of SPL requirements is performed in a systematic way
through a set of guidelines. The guidelines are composed by three main tasks (1. Identify the
Evolution Scenario, 2. Perform the Evolution, and 3. Update the Traceability Matrix), which
have several steps to be executed in order to evolve the SPL requirements. Thus, through the
proposed approach, the SPL requirements can be evolved in a safe way keeping its traceability
within other artifacts. We believe that this approach provides a solution to make easier and
achieve the intended SPL RE evolution.

The feasibility of FeDRE? was evaluated using an empirical study involving a mobile
application for emergency notifications. The results show that the subjects perceived the
approach as easy to use and useful for evolving the functional requirements in this particular
SPL. However, the approach needs further empirical evaluation with larger and more complex
SPL. Moreover, some steps may be taken to improve the approach, such as: reducing the
number of steps within the guidelines; building a tool support, which was also a need found
by Alves et al. (2010); reducing the natural language within the identification of evolution
scenarios, which will require a more rigorous process; supporting the evolution of features with
dependencies (requires and excludes) in the feature model; and dealing with the merge evolution

of use cases. Next Chapter presents the conclusions and future work for this Thesis.

168

PART V

Conclusions and Future Work

Conclusions

As stated in previous work (Lehman (1996); Lehman et al. (1997); Chapter 3; and Chapter 4),

the system must support changes, otherwise it will gradually lapse into uselessness.

These changes in Software Product Lines (SPL) are firstly represented by requirements.
Thus, SPL needs to provide mechanisms to deal with the changes that may occur within the
requirements. However, so far, there is a lack of approaches dealing in a systematic way within
the SPL requirements specification and evolution, as stated by Alves et al. (2010) and Oliveira
et al. (2015d). Thus, the contribution of this Thesis was to understand how SPL evolves during
the time and to propose two approaches to deal with the SPL requirements specification and

evolution, respectively.

Part III of the Thesis (Chapter 3) improved the SPL evolution knowledge by performing
three studies to understand the SPL evolution: two studies evaluating the Lehman’s Laws of
software evolution within two industrial SPL projects; and one systematic mapping study on

SPL evolution, describing approaches that deal with SPL evolution and gaps for future research.

Latter, in Part I'V of the Thesis, it was proposed two approaches to deal with SPL requirements
specification and evolution, FeDRE and FeDRE? approaches respectively (Chapter 5 and Chapter
6). Both approaches were empirically evaluated and the results shown that, besides being a first

evaluation, they were perceived as easy to use and useful by the subjects from Brazil and Spain.

The work performed here was a first step within improving the SPL evolution, since it
is based on requirements engineering activities. Based on the performed studies and on the
proposed approaches there are some gaps identified for future research as shown on the next
Section 7.1. Next, Section 7.2 discusses the main related work. Finally, Section 7.3 presents the

main contribution of this Thesis.

171

7.1 Future Work

The investigation performed so far revealed some gaps for future research. They can be

summarized as shown next.

7.1.1 Evaluating Lehman’s Laws (LL) of Software Evolution

* Measurements within the SPL. common, variable and product-specific assets (including
requirements, architecture, code, and so on) should be part of the SPL evolution process.
Thus, after evolving the SPL assets, measurements may be applied to check if the new
change increased or not the complexity and quality of the SPL.

* The management team should be aware of the clients’ needs in order to keep adding/removing
functionalities within the SPL. However, this should be performed in a systematic way,
paying attention to not increase LOCs of the assets, which may lead to increase in com-
plexity.

* More studies evaluating the LL within industrial SPL projects should be performed to
strengthen the results obtained so far. Thus, the guideline for evolving SPL assets should
be updated based on the results of the new studies. For example, the guideline should
incorporate steps for dealing with the declining quality and increase complexity laws
during the SPL evolution, if these laws were confirmed within the new studies.

» Within the laws not supported in SPLs, it is important to understand the reason why and

maybe propose new laws of evolution for SPLs.

7.1.2 Systematic Mapping Study on SPL Evolution

* Since this study is based on a taxonomy for software change (Buckley et al., 2005), a
future work may be the proposing of a taxonomy for SPL evolution. This taxonomy
should take into account where most of the studies fitted according to the data extraction
form and try to identify what is specific to SPL.

* This study revealed several gaps for future research (as shown in Table 4.11). One of
findings is related to the lack of approaches dealing with the evolution of requirements
within SPL application engineering. This finding is complementary to the work performed
in this Thesis. Since the investigation performed in this Thesis focused on the SPL
domain engineering, it is also important to propose an approach to deal with the evolution

of SPL products requirements for the SPL application engineering. Moreover, another

172

7.2. RELATED WORK

finding of the systematic mapping study was to perform evaluations through case studies
in the industry. Thus, such approach for evolving SPL requirements in the application

engineering may be evaluated through an industry case study.

7.1.3 Feature-Driven Requirements Engineering (FeDRE) Approach

* The approach needs further empirical evaluation with larger and more complex SPLs.

e It is interesting that the guidelines proposed by FeDRE incorporates how to deal with
feature dependencies (requires and excludes). Moreover, the guidelines should deal with
quality attributes (i.e., the complexity of an use case and the complexity of an use case
diagram, as stated by Montagud et al. (2012)).

* There is a need for building a tool to support the specification proposed by FeDRE and

also its guidelines, which was a need also found by Alves et al. (2010).

7.1.4 Feature-Driven Requirements Engineering Evolution (FeDRE?) Ap-

proach

* The approach needs further empirical evaluation with larger and more complex SPLs.

* Moreover, the approach may be improved by following these suggestions: reducing the
number of steps within the guidelines; reducing the natural language within the identifica-
tion of evolution scenarios, which will require a more rigorous process; supporting the
evolution of features with dependencies (requires and excludes) in the feature model; and
dealing with the merge evolution of use cases.

* There is a need to deal with the evolution within the next phases of the SPL life cycle (i.e.,
architecture, code, tests). Thus, a next step should be the extension of the approach to
support the evolution of the whole artifacts SPL (mainly, how they co-evolve over time).

« There is a need for building a tool to support the evolution guidelines proposed by FeDRE?.

7.2 Related Work

In literature, there are several proposals to improve the SPL evolution. We systematically
analyzed the literature on SPL evolution, as earlier addressed in Chapter 4. Moreover, the
most important publications in the SPL field, related to SPL requirements specification and
evolution, have been discussed in this Thesis (Chapter 5 and Chapter 6). However, the key

difference between the investigation of this Thesis and others work is the attempt to systematize

173

the SPL requirements specification and evolution through the use of guidelines and the empirical

evaluation of the proposed approaches within two different countries (Brazil and Spain).

7.3 Main Contributions

This Thesis described earlier, in the Section 1.5, the main contributions expected from this
investigation. Some of the results have been already published. Others were submitted to
relevant conferences and journals of the field. Next, it is listed the set of papers resulting from
this investigation.

Published:

¢ Oliveira, R. P, Insfran, E., Abrahao, S., Gonzalez-Huerta, J., Blanes, D., Cohen, S., and de
Almeida, E. S. (2013). A feature-driven requirements engineering approach for software
product lines. In VII Brazilian Symposium on Software Components, Architectures and
Reuse (SBCARS), pages 1-10.

e QOliveira, R. P, Blanes, D., Gonzalez-Huerta, J., Insfran, E., Abrahao, S., Cohen, S., and
Almeida, E. S. (2014). Defining and validating a feature-driven requirements engineering
approach. Journal of Universal Computer Science (JUCS), 20(5), 666—-691.

* Oliveira, R. P, Almeida, E. S., and Gomes, G. S. S. (2015). Evaluating lehman’s laws
of software evolution within software product lines: A preliminary empirical study. In
Proceedings of the 14th International Conference on Software Reuse (ICSR), pages 42-57.

* Oliveira, R. P. and Almeida, E. S. (2015). Requirements evolution in software product
lines: An empirical study. Submitted to Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), pages 1-10.

Submitted:

e Oliveira, R. P, Santos, A. R., Almeida, E. S., and Gomes, G. S. S. (2015). Lehman’s laws
of software evolution and software product lines: Empirical studies. Submitted to Journal
of Systems and Software (JSS), ICSR Special Issue.

* Oliveira, R. P, Santos, A., Almeida, E. S., Abrahao, S., and Insfran, E. (2015). Software
product lines evolution: A systematic mapping study. Submitted to ACM Computing
Surveys Journal.

e QOliveira, R. P, Santos, A. R., Almeida, E. S., and Gomes, G. S. S. (2015). Lehman’s laws
of software evolution and software product lines. Submitted to IEEE Software Journal.

174

7.3. MAIN CONTRIBUTIONS

e QOliveira, R. P. and Almeida, E. S. (2015). Guiding software product line evolution
based on requirements engineering activities. Submitted to Information and Software
Technology (IST) Journal.

Finally, it is presented other important publications, not directly related within this Thesis,
but still relevant to the SPL field.
Published:

e Souza, I. S., de Oliveira, R. P., da Silva Gomes, G. S., and de Almeida, E. S. (2012). On the
relationship between inspection and evolution in software product lines: An exploratory
study. In Brazilian Symposium on Software Engineering (SBES), pages 131-140.

e Souza, I. S., Fiaccone, R., de Oliveira, R. P., and de Almeida, E. S. (2013). On the
relationship between features granularity and non-conformities in software product lines:
An exploratory study. In Brazilian Symposium on Software Engineering (SBES), pages
147-156.

* Santos, A. R., de Oliveira, R. P., and de Almeida, E. S. (2015). Strategies for consistency
checking on software product lines: A mapping study. In Proceedings of the 19th Interna-

tional Conference on Evaluation and Assessment in Software Engineering (EASE), pages
1-14.

175

References

Abrahio, S., Insfran, E., Carsi, J. A., and Genero, M. (2011). Evaluating requirements modeling
methods based on user perceptions: A family of experiments. Information Sciences, 181(16),
3356-3378.

Ajila, S. and Kaba, A. (2004). Using traceability mechanisms to support software product line
evolution. In Proceedings of the IEEE International Conference on Information Reuse and

Integration (IRI), pages 157-162.

Alférez, M., Lopez-Herrejon, R. E., Moreira, A., Amaral, V., and Egyed, A. (2011). Supporting
consistency checking between features and software product line use scenarios. In Proceedings
of the 12th International Conference on Software Reuse (ICSR), pages 20-35.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lucena, C. (2006). Refactoring
product lines. In Proceedings of the 5th International Conference on Generative Programming
and Component Engineering (GPCE), pages 201-210.

Alves, V., Niu, N., Alves, C., and Valenca, G. (2010). Requirements engineering for software
product lines: A systematic literature review. Information and Software Technology (1ST),
52(8), 806—-820.

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A., and Sousa, A.
(2010). A model-driven traceability framework for software product lines. Software Systems
Modeling, 9(4), 427-451.

Asadi, M., Bagheri, E., Gasevi¢, D., Hatala, M., and Mohabbati, B. (2011). Goal-driven software
product line engineering. In Proceedings of the 2011 ACM Symposium on Applied Computing
(SAC), pages 691-698.

Asadi, M., Soltani, S., Gasevic, D., and Hatala, M. (2015). The effects of visualization and
interaction techniques on feature model configuration. Empirical Software Engineering, pages
1-38.

Assuncdo, W. K. G. and Vergilio, S. R. (2014). Feature location for software product line
migration: A mapping study. In Proceedings of the 18th International Software Product Line
Conference (SPLC), pages 52-59.

177

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech,
B., Wust, J., and Zettel, J. (2002). Component-based Product Line Engineering with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bailetti, A., Ajila, S., and Dumitrescu, R. (2004). Experience report on the effect of market
reposition on product line evolution. In Proceedings of the IEEE International Conference on

Information Reuse and Integration (IRI), pages 151-156.

Barry, E. J., Kemerer, C. F., and Slaughter, S. A. (2007). How software process automation
affects software evolution: a longitudinal empirical analysis: Research articles. Journal of

Software Maintenance and Evolution: Research and Practice, 19, 1-31.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). Goal Question Metric Paradigm, pages
528-532. Wiley-Interscience.

Bayer, J., Muthig, D., and Widen, T. (1999a). Customizable domain analysis. In Generative and
Component-Based Software Engineering (GCSE), pages 178—194.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and DeBaud,
J.-M. (1999b). Pulse: A methodology to develop software product lines. In Proceedings of
the 1999 Symposium on Software Reusability, pages 122—131.

Birk, A., Heller, G., John, L., Joos, S., Muller, K., Schmid, K., and Massen, T. (2003). Report of

the gi work group "requirements engineering for product lines". technical report.

Bohner, S. and Arnold, R. (1996). Software Change Impact Analysis. IEEE Computer Society

Press.

Bonifécio, R. and Borba, P. (2009). Modeling scenario variability as crosscutting mecha-
nisms. In Proceedings of the 8th ACM International Conference on Aspect-oriented Software
Development (AOSD), pages 125-136.

Borba, P., Teixeira, L., and Gheyi, R. (2012). A theory of software product line refinement.
Theoretical Computer Science, 455(0), 2-30.

Bosch, J. (2000). Design and use of software architectures - adopting and evolving a product-line

approach. Addison-Wesley.

Bosch, J. and Ran, A. (2000). Evolution of software product families. In International Workshop
Software Architectures for Product Families (IW-SAPF), pages 168—183.

178

REFERENCES

Botterweck, G. and Pleuss, A. (2014). Evolution of software product lines. In Evolving Software
Systems, pages 265-295. Springer Berlin Heidelberg.

Botterweck, G., Pleuss, A., Dhungana, D., Polzer, A., and Kowalewski, S. (2010). Evofm:
Feature-driven planning of product-line evolution. In Proceedings of the Workshop on Product
Line Approaches in Software Engineering (PLEASE), pages 24-31.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. (2005). Towards a taxonomy
of software change: Research articles. Journal of Software Maintenance and Evolution:
Research and Practice, 17(5), 309-332.

Budgen, D., Turner, M., Brereton, P., and Kitchenham, B. (2008). Using mapping studies
in software engineering. In PPIG 2008: In 20th Annual Meeting of the Psychology of
Programming Interest Group, pages 195-204. Lancaster University.

Carifio, J. and Perla, R. J. (2007). Ten common misunderstandings, misconceptions, persistent
myths and urban legends about likert scales and likert response formats and their antidotes.
Journal of Social Sciences, 3(3), 106—116.

Carver, J. (2010). Towards reporting guidelines for experimental replications: A proposal.
In Proceedings of the Ist International Workshop on Replication in Empirical Software

Engineering Research, International Conference on Softawre Engineering (ICSE).

Chastek, G., Donohoe, P., Kang, K. C., and Thiel, S. (2001). Product line analysis: A practical

introduction. technical report cmu/sei-2001-tr-001.

Cheng, B. H. C. and Atlee, J. M. (2007). Research directions in requirements engineering.
In 2007 Future of Software Engineering, Future of Software Engineering (FOSE), pages
285-303.

Clements, P. C. and Northrop, L. (2002). Software Product Lines: Practices and Patterns. SEI

Series in Software Engineering. Addison-Wesley.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3), 319-340.

179

Deelstra, S., Sinnema, M., Nijhuis, J., and Bosch, J. (2004). Cosvam: a technique for assessing
software variability in software product families. In /IEEE International Conference on
Software Maintenance (ICSM), pages 458—462.

Eriksson, M., Borstler, J., and Borg, K. (2005). The pluss approach - domain modeling with

features, use cases and use case realizations. pages 33—44.

Fenske, W., Thiim, T., and Saake, G. (2014). A taxonomy of software product line reengineering.
In Proceedings of the Eighth International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS), pages 1-8.

Fernandez, A., Insfran, E., and Abrahdo, S. (2011). Usability evaluation methods for the web: A
systematic mapping study. Information and Software Technology (IST), 53(8), 789-817.

Fernandez, A., ao, S. A., and Insfran, E. (2013). Empirical validation of a usability inspection
method for model-driven web development. Journal of Systems and Soft. (JSS), 86(1),
161-186.

Fricker, S. and Stoiber, R. (2008). Relating product line context to requirements engineering

processes using design rationale. In Software Engineering (Workshops), pages 240-251.

Godfrey, M. W. and German, D. M. (2014). On the evolution of lehman’s laws. Journal of
Software: Evolution and Process, 26(7), 613-619.

Godfrey, M. W. and Tu, Q. (2000). Evolution in open source software: A case study. In IEEE
International Conference on Software Maintenance (ICSM), pages 131-142.

Gomaa, H. (2013). Evolving software requirements and architectures using software product
line concepts. In International Workshop on the Twin Peaks of Req. and Arch. (TwinPeaks),
pages 24-28.

Gomaa, H. and Shin, M. (2008). Multiple-view modelling and meta-modelling of software
product lines. IET Software, 2, 94—122.

Gonzalez-Barahona, J. M., Robles, G., Herraiz, 1., and Ortega, F. (2014). Studying the laws of
software evolution in a long-lived floss project. Journal of Software: Evolution and Process,
26(7), 589-612.

180

REFERENCES

Griss, M. L., Favaro, J., and Alessandro, M. d. (1998). Integrating feature modeling with the
rseb. In Proceedings of the 5th International Conference on Software Reuse (ICSR), pages
76-85.

Gupta, A., Cruzes, D., Shull, F, Conradi, R., Rgnneberg, H., and Landre, E. (2010). An
examination of change profiles in reusable and non-reusable software systems. Journal of
Software Maintenance and Evolution: Research and Practice, 22, 359-380.

Heidenreich, F., Sdnchez, P., Santos, J. a., Zschaler, S., Alférez, M., Aratjo, J. a., Fuentes, L.,
Kulesza, U., Moreira, A., and Rashid, A. (2010). Transactions on aspect-oriented software
development vii. chapter Relating Feature Models to Other Models of a Software Product
Line: A Comparative Study of Featuremapper and VML, pages 69—114.

Herraiz, 1., Rodriguez, D., Robles, G., and Gonzalez-Barahona, J. M. (2013). The evolution of
the laws of software evolution: A discussion based on a systematic literature review. ACM
Computing Surveys, 46(2), 1-28.

Hesse-Biber, S. N. (2010). Mixed methods research: merging theory with practice. The Guilford
Press, New York, NY, USA.

Israeli, A. and Feitelson, D. G. (2010). The linux kernel as a case study in software evolution.
Journal of Systems and Software (JSS), 83, 485-501.

Jedlitschka, A., Ciolkowski, M., and Pfahl, D. (2008). Reporting experiments in software
engineering. In F. Shull, J. Singer, and D. 1. K. Sjbgerg, editors, Guide to Advanced Empirical
Software Engineering, pages 201-228. Springer London.

John, I. and Eisenbarth, M. (2009). A decade of scoping: A survey. In Proceedings of the 13th
International Software Product Line Conference (SPLC), pages 31-40.

Jones, C. (1991). Applied Software Measurement: Assuring Productivity and Quality. McGraw-
Hill, Inc.

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering. Addison-Wesley, 2nd

edition.

Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. (1990). Feature-Oriented Domain
Analysis (FODA) Feasibility Study.

181

Kemerer, C. and Slaughter, S. (1999). An empirical approach to studying software evolution.
IEEFE Transactions on Software Engineering (TSE), 25(4), 493-509.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews

in software engineering. Technical Report EBSE 2007-001.

Krueger, C. (2002a). Variation management for software production lines. In G. Chastek, editor,
Software Product Lines, volume 2379 of Lecture Notes in Computer Science, pages 37—48.
Springer Berlin Heidelberg.

Krueger, C. W. (2002b). Easing the transition to software mass customization. In Revised Papers
from the 4th International Workshop on Software Product-Family Engineering (VaMoS), pages
282-293.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis
of stationarity against the alternative of a unit root : How sure are we that economic time

series have a unit root? Journal of Econometrics, 54(1-3), 159—-178.

Laguna, M. A. and Crespo, Y. (2013). A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Science of Computer
Programming, 78(8), 1010-1034.

Lehman, M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE, 68(9), 1060-1076.

Lehman, M. M. (1996). Laws of software evolution revisited. In Proceedings of the 5th
European Workshop on Software Process Technology (EWSPT), pages 108—124.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. M. (1997). Metrics
and laws of software evolution - the nineties view. In Proceedings of the 4th International

Symposium on Software Metrics, pages 20-33.

Lientz, B. P. and Swanson, B. E. (1980). Software Maintenance Management: A Study of

the Maintenance of Computer Application Software in 487 Data Processing Organizations.
Addison-Wesley.

Lotufo, R., She, S., Berger, T., Czarnecki, K., and Wkasowski, A. (2010). Evolution of the linux
kernel variability model. In International Conference on Software Product Lines (SPLC),
pages 136-150.

182

REFERENCES

Maxwell, K. (2002). Applied Statistics for Software Managers. Software Quality Institute Series,
Prentice Hall.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering
(TSE), 2(4), 308-320.

McGregor, J. D. (2003). The Evolution of Product Line Assets. Technical report.

Mende, T., Beckwermert, F., Koschke, R., and Meier, G. (2008). Supporting the grow-and-prune
model in software product lines evolution using clone detection. In European Conference on

Software Maintenance and Reengineering (CSMR), pages 163—172.
Mens, T. and Demeyer, S. (2008). Software Evolution. Springer.

Molina, A. 1., Gallardo, J., Redondo, M. A., Ortega, M., and Giraldo, W. J. (2013). Metamodel-
driven definition of a visual modeling language for specifying interactive groupware applica-
tions: An empirical study. Journal of Systems and Soft. (JSS), 86(7), 1772—1789.

Molina, A. I., Redondo, M. A., Ortega, M., and Lacave, C. (2014). Evaluating a graphical
notation for modeling collaborative learning activities: A family of experiments. Science of

Computer Programming, 88(0), 54-81.

Montagud, S., Abrahao, S., and Insfran, E. (2012). A systematic review of quality attributes and
measures for software product lines. Software Quality Journal, 20(3-4), 425-486.

Moon, M., Yeom, K., and Chae, H. S. (2005). An approach to developing domain requirements
as a core asset based on commonality and variability analysis in a product line. IEEE
Transactions on Software Engineering, 31(7), 551-5609.

Mussbacher, G., Aradjo, J. a., Moreira, A., and Amyot, D. (2012). Aourn-based modeling and
analysis of software product lines. Software Quality Control, 20(3-4), 645-687.

Naur, P. and Randell, B., editors (1969). Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,
Scientific Affairs Division, NATO.

Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., and Borba, P. (2011). Investigating
the safe evolution of software product lines. In Proceedings of the 10th ACM international

conference on Generative programming and component engineering (GPCE), pages 33—42.

183

Northrop, L. M. (2002). Sei’s software product line tenets. IEEE Software, 19(4), 32—40.

Oliveira, R. P. and Almeida, E. S. (2015a). Guiding software product line evolution based on
requirements engineering activities. In the Review Process. Submitted to the Information and
Software Technology (IST) Journal.

Oliveira, R. P. and Almeida, E. S. (2015b). Requirements evolution in software product lines: An

empirical study. In Accepted at Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), pages 1-10.

Oliveira, R. P., Insfran, E., Abrahao, S., Gonzalez-Huerta, J., Blanes, D., Cohen, S., and
de Almeida, E. S. (2013). A feature-driven requirements engineering approach for software
product lines. In VII Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS), pages 1-10.

Oliveira, R. P., Blanes, D., Gonzalez-Huerta, J., Insfran, E., Abrahao, S., Cohen, S., and Almeida,
E. S. (2014). Defining and validating a feature-driven requirements engineering approach.
Journal of Universal Computer Science (JUCS), 20(5), 666—691.

Oliveira, R. P., Almeida, E. S., and Gomes, G. S. S. (2015a). Evaluating lehman’s laws
of software evolution within software product lines: A preliminary empirical study. In
Proceedings of the 14th International Conference on Software Reuse (ICSR), pages 42-57.

Oliveira, R. P,, Santos, A. R., Almeida, E. S., and Gomes, G. S. S. (2015b). Evaluating lehman’s
laws of software evolution within software product lines industrial projects. In the Review
Process. Submitted to Journal of Systems and Software (JSS), ICSR Special Issue.

Oliveira, R. P., Santos, A. R., Almeida, E. S., and Gomes, G. S. S. (2015¢). Lehman’s laws
of software evolution and software product lines: Empirical studies. In the Review Process.
Submitted to IEEE Software.

Oliveira, R. P.,, Santos, A., Almeida, E. S., Abrahao, S., and Insfran, E. (2015d). Software
product lines evolution: A systematic mapping study. In the Review Process. Submitted to

ACM Computing Surveys.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies in
software engineering. In Proceedings of the 12th International Conference on Evaluation and

Assessment in Software Engineering (EASE), pages 68—77.

184

REFERENCES

Pohl, K., Bockle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc.

Pussinen, M. (2002). A Survey on Software Product-line Evolution. Tampere University of
Technology.

Ramil, J. F. and Lehman, M. M. (2000). Metrics of software evolution as effort predictors -

a case study. In IEEE International Conference on Software Maintenance (ICSM), pages
163-172.

Runeson, P. and Host, M. (2009). Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering, 14(2), 131-164.

Salman, 1., Misirli, A. T., and Juristo, N. (2015). Are students representatives of professionals
in software engineering experiments? In Proceedings of the International Conference on

Software Engineering (ICSE), to appear.

Santos, A. R., de Oliveira, R. P., and de Almeida, E. S. (2015a). Strategies for consistency
checking on software product lines: A mapping study. In Proceedings of the 19th International

Conference on Evaluation and Assessment in Software Engineering (EASE), pages 1-14.

Santos, J. A., Santos, A. R., and de Mendonca, M. (2015b). Investigating bias in the search
phase of software engineering secondary studies. In Proceedings of the 12th Workshop on

Experimental Software Engineering (ESELAW) - to appear.

Schulze, S., Thiim, T., Kuhlemann, M., and Saake, G. (2012). Variant-preserving refactoring in
feature-oriented software product lines. In Workshop on Variability Modeling of Software-
Intensive Systems (VaMoS), pages 73-81.

Shaker, P., Atlee, J. M., and Wang, S. (2012). A feature-oriented requirements modelling
language. In 20th IEEE International Requirements Engineering Conference (RE), pages
151-160.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete
samples). Biometrika, pages 591-611.

Souza, I. S., de Oliveira, R. P., da Silva Gomes, G. S., and de Almeida, E. S. (2012). On the
relationship between inspection and evolution in software product lines: An exploratory study.

In Brazilian Symposium on Software Engineering (SBES), pages 131-140.

185

Souza, I. S., Fiaccone, R., de Oliveira, R. P., and de Almeida, E. S. (2013). On the relationship
between features granularity and non-conformities in software product lines: An exploratory

study. In Brazilian Symposium on Software Engineering (SBES), pages 147-156.

Svahnberg, M. and Bosch, J. (1999). Evolution in software product lines: two cases. Journal of
Software Maintenance and Evolution: Research and Practice, 11(6), 391-422.

Thiim, T., Batory, D., and Kastner, C. (2009). Reasoning about edits to feature models. In /EEE
31st International Conference on Software Engineering (ICSE), pages 254-264.

Thurimella, A. and Bruegge, B. (2007). Evolution in product line requirements engineering:
A rationale management approach. In Requirements Engineering Conference, 2007. RE 07.
15th IEEE International, pages 254-257.

Turner, M., Kitchenham, B., Budgen, D., and Brereton, P. (2008). Lessons learnt undertaking a
large-scale systematic literature review. In Proceedings of the 12th International Conference

on Evaluation and Assessment in Software Engineering (EASE), pages 110-118.

Weiss, D. M. and Lai, C. T. R. (1999). Software Product-line Engineering: A Family-based
Software Development Process. Addison-Wesley Longman Publishing Co., Inc.

White, J., Galindo, J. A., Saxena, T., Dougherty, B., Benavides, D., and Schmidt, D. C. (2014).
Evolving feature model configurations in software product lines. Journal of Systems and
Software (JSS), 87, 119-136.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., and Regnell, B. (2012). Experimentation in
Software Engineering. Springer.

Xie, G., Chen, J., and Neamtiu, I. (2009). Towards a better understanding of software evolution:
An empirical study on open source software. In IEEE International Conference on Software
Maintenance (ICSM), pages 51-60.

Yan, X. and Su, X. G. (2009). Linear Regression Analysis: Theory and Computing. World
Scientific Publishing.

Ye, H. and Liu, H. (2005). Approach to modelling feature variability and dependencies in
software product lines. IEE Proceedings - Software, 152(3), 101-109.

Young, M. and Pezze, M. (2005). Software Testing and Analysis: Process, Principles and
Techniques. John Wiley & Sons.

186

Appendices

187

Empirical Studies

This appendix presents some relevant data from the empirical studies performed to evaluate
the applicability of Lehman’s laws of software evolution in private SPLs, earlier discussed in
Chapter 3.

189

"UOIIN[OAQ QIBMIJOS
Jo sme s,uewya] 1oddns 0y Areuoneis aq pnoys VN pue JNDOY Apmis reourdws siy)
10J sjasse/sme] paytoddns oy sjuasardar Surpeys Aei3 oy, "puail, :lg ‘Areuoneis :0g

O 109y 10N O | 0001°0 | €8200 | “HwslegIoNod | 00010 | 11600 | IRy IONOd | 00010 | LT600 davN

O 1l 1oN od | 00010 | 1600 | 9 109YION od | 0001°0 | STLOO | O 03 IoN od | 00010 | 80500 DY
0g 1oloy 9€200 | 66L1°0 0g 190y 00100 | +LTTO Of1 100loy $120°0 | 9S81°0 INON
0g 109ly 67200 | ¥9L1°0 0 10900y 00100 | TSTTO 0g 19ly ¥120°0 | 9S81'0 | DOION

0 10900y 10N 0 | L6900 | ¥SE1°0 0g 10900y 00100 | 00¥T0 0g 19y €1100 | STITO D01
0g 19ly 89100 | 6L61°0 0g 10900y 00100 | L8ITO 0g 1ly 1+€0°0 | 1S91°0 VN
QOEMOOQ 2:.@7& 1897, mmg Qoﬂmﬂooﬁ— OSGNNTQ 1891, mmmvH GOEMUOQ ®5~w>|m 1S9], wmmM

o@_ovawévz@oa& mvma_:&_w_ﬁw\w mwma_—ﬁﬁoggco I[qelIBA

(DIA 3e) s)nsa sasaypodAH pue 3saL, SSAM YL TV

190

A.2. THE KPSS TEST AND HYPOTHESES RESULTS (AT FC)

"UONIN[OAD QIBM}JOS
Jo sme s,uewyo 1oddns 03 Areuonels oq pnoys Qv N pue NDY Apnis reoudwae sy
10J sjasse/sme] paytoddns oy sjuasardar Surpeys Aei3 oy, "puail, :!g ‘Areuonels :0gy

OF 193l 10N od | 0001°0 8LST1°0 Of 199l 10N o | 0001°0 91600 OF 129l 10N od | 0001°0 9LLO0 dvN
OH 193[0y 10N 0 | 0001°0 LLTT0 - - - : : - DY
OF 102l 10N od | 0001°0 LYST°0 OF 199l 10N od | 0001°0 16800 OF 199y 10N od | 0001°0 1¥01°0 INON
OH 109l 10N od | 0001°0 [0 4%Y OH 199l 10N od | 0001°0 ¥680°0 OF 1990y 10N od | 0001°0 1¥0C°0 DO0TON
OH 100loy 00100 cesel Of 109loy L8¢00 0¢IS0 OH 100loy 00100 0LYO'1 D01
OF 193[0¥ 10N o | 0001°0 8LST0 OH 102[0y 10N o | 0001°0 91600 OH 100l 10N o | 0001°0 9LLO0 VN
UOISTOA(onfea-d | 1597, SSI UOISTOA(anfea-d | 1591, SSI UOISTIA(anea-d | 1597, SSAY
Jyadg-jonpoag SANIIqeLIBA sanIeUOWIUIO)) dqeraeA

(D4 18) S)[Nsaa sasay1odAH pue 1s3L, SSAM UL, TV

191

SPL Evolution: A Systematic Mapping Study

This appendix presents some relevant data from the systematic mapping study for SPL evolution,

earlier described in Chapter 4.

193

B.1 Primary studies selected

(S1) N. Abbas, J. Andersson, and W. Lowe. Autonomic software product lines (ASPL). In
European Conference on Software Architecture: Companion Volume (ECSA), 2010,
pages 324-331.

(S2) N. Abbas, J. Andersson, and D. Weyns. Knowledge evolution in autonomic software

product lines. In Software Product Line Conference (SPLC), 2011, pages 1-36.

(S3) M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire. Reverse engineering
architectural feature models. In European Conference on Software Architecture (ECSA),
pages 220-235, 2011.

(S4) S. Ajila and A. Kaba. Using traceability mechanisms to support software product line
evolution. In International Conference on Information Reuse and Integration (IRI), 2004,
pages 157 — 162.

(S5) S. A. Ajila and A. B. Kaba. Evolution support mechanisms for software product line
process. Journal of Systems and Software (JSS), 2008 81(10):1784 — 1801.

(S6) G. Alferez and V. Pelechano. Context-aware autonomous web services in software product
lines. In Software Product Line Conference (SPLC), 2011, pages 100 —109.

(S7) V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. J. P. de Lucena. Refactoring
product lines. In Generative Programming: Concepts and Experiences (GPCE), 2006,
pages 201-210.

(S8) V. Alves, P. M. Ir,, L. Cole, P. Borba, and G. Ramalho. Extracting and evolving mobile
games product lines. In Software Product Lines Conference (SPLC), 2005, pages 70-81.

(89) M. Anastasopoulos. Increasing efficiency and effectiveness of software product line
evolution: an infrastructure on top of configuration management. In Joint international
and annual ERCIM workshops on Principles of software evolution IWPSE) and software
evolution (Evol), 2009, pages 47-56.

(S10) M. Anastasopoulos, T. H. B. de Oliveira, D. Muthig, E. S. de Almeida, and S. R.
de Lemos Meira. Evolving a software product line reuse infrastructure: A configu-
ration management solution. In Variability Modelling of Software-intensive Systems
(VaMoS), 2009, pages 19-28.

194

B.1. PRIMARY STUDIES SELECTED

(S11)

(S12)

(S13)

(S14)

(S15)

(S16)

(S17)

(S18)

(S19)

(S20)

J. Axelsson. Evolutionary architecting of embedded automotive product lines: An in-
dustrial case study. In Joint Working IEEE/IFIP Conference on Software Architecture,
European Conference on Software Architecture (WICSA/ECSA), 2009, pages 101-110.

J. Axelsson. Improving the evolutionary architecting process for embedded system product

lines. In Systems Conference (SysCon), 2011, pages 334 —341.

J. Bayer, J.-F. Girard, M. Wiirthner, J.-M. DeBaud, and M. Apel. Transitioning legacy
assets to a product line architecture. In European software engineering conference.
International symposium on Foundations of software engineering (ESEC/FSE), 1999,
pages 446—463.

N. Bencomo, G. S. Blair, C. A. Flores-Cortés, and P. Sawyer. Reflective component-based
technologies to support dynamic variability. In Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), 2008, pages 141-150.

N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace. Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability of
adaptive systems. In Software Product Line Conference (SPLC), 2008, pages 23-32.

P. Borba, L. Teixeira, and R. Gheyi. A theory of software product line refinement. Theo-
retical Computer Science, International Colloquium on Theoretical Aspects of Computing.
2012, 455(0):2-30.

G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski. Evofm: feature-
driven planning of product-line evolutionary. In ICSE Workshop on Product Line Ap-
proaches in Software Engineering (PLEASE), 2010, pages 24-31.

G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski. Towards feature-driven planning
of product-line evolution. In International Workshop on Feature-Oriented Software
Development (FOSD), 2009, pages 109-116.

H. Breivold, S. Larsson, and R. Land. Migrating industrial systems towards software prod-
uct lines: Experiences and observations through case studies. In Euromicro Conference
Software Engineering and Advanced Applications (SEAA), 2008, pages 232-239.

H. Brummermann, M. Keunecke, and K. Schmid. Formalizing distributed evolution of
variability in information system ecosystems. In International Workshop on Variability
Modeling of Software-Intensive Systems (VaMoS), 2012, pages 11-19.

195

(S21)

(S22)

(S23)

(S24)

(S25)

(S26)

(S27)

(S28)

(S29)

(S30)

(S31)

C. Cetina, P. Giner, J. Fons, and V. Pelechano. Designing and prototyping dynamic
software product lines: Techniques and guidelines. In Software Product Lines Conference
(SPLC), 2010, pages 331-345.

C. Cetina, V. Pelechano, P. Trinidad, and A. R. Cortés. An architectural discussion on
dspl. In Software Product Line Conference (SPLC), 2008, pages 59—68.

Y. Chen, G. Gannod, J. Collofello, and H. Sarjoughian. Using simulation to facilitate
the study of software product line evolution. In International Workshop on Principles of
Software Evolution, 2004, pages 103—112.

M. Cordy, A. Classen, P.-Y. Schobbens, P. Heymans, and A. Legay. Managing evolution
in software product lines: a model-checking perspective. In International Workshop on
Variability Modeling of Software-Intensive Systems (VaMoS), 2012, pages 183-191.

S. Creff, J. Champeau, J.-M. Jézéquel, and A. Monégier. Model-based product line
evolution: an incremental growing by extension. In Software Product Line Conference
(SPLC), 2012, pages 107-114.

F. Damiani, L. Padovani, and I. Schaefer. A formal foundation for dynamic delta-oriented
software product lines. In International Conference on Generative Programming and

Component Engineering (GPCE), 2012, pages 1-10.

F. Damiani and I. Schaefer. Dynamic delta-oriented programming. In Software Product
Line Conference (SPLC), 2011, pages 1-34.

S. Deelstra, M. Sinnema, and J. Bosch. Variability assessment in software product families.
Information and Software Technology (IST), 2009, 51(1):195 - 218.

D. Dhungana, P. Griinbacher, R. Rabiser, and T. Neumayer. Structuring the modeling
space and supporting evolution in software product line engineering. Journal of Systems
and Software (JSS), 2010, 83(7):1108 — 1122.

D. Dhungana, T. Neumayer, P. Grunbacher, and R. Rabiser. Supporting evolution in
model-based product line engineering. In Software Product Line Conference (SPLC),
2008, pages 319 -328.

J. Diaz, J. Pérez, J. Garbajosa, and A. L. Wolf. Change impact analysis in product-line
architectures. In European Conference on Software Architecture (ECSA), 2011, pages
114-129.

196

B.1. PRIMARY STUDIES SELECTED

(S32) J.S. Dong, K. Lee, K. H. Kim, S. T. Kim, J. M. Cho, and T. H. Kim. Platform maintenance
process for software quality assurance in product line. In International Conference on

Computer Science and Software Engineering, 2008, pages 325-331.

(S33) C. Elsner, G. Botterweck, D. Lohmann, and W. Schréder-Preikschat. Variability in time
- product line variability and evolution revisited. In Variability Modelling of Software-
intensive Systems (VaMoS), 2010, pages 131-137.

(S34) R. Froschauer, D. Dhungana, and P. Grunbacher. Managing the life-cycle of industrial
automation systems with product line variability models. In Euromicro Conference
Software Engineering and Advanced Applications (SEAA), 2008, pages 35—42.

(S35) N. Gamez and L. Fuentes. Software product line evolution with cardinality-based feature

models. In International Conference on Software Reuse (ICSR), 2011, pages 102-118.

(S36) N. Gamez and L. Fuentes. Architectural evolution of famiware using cardinality-based
feature models. Information and Software Technology (IST), 2012, 55(3):563-580.

(S37) A. Garg, M. Critchlow, P. Chen, C. Van der Westhuizen, and A. van der Hoek. An
environment for managing evolving product line architectures. In International Conference
on Software Maintenance (ICSM), 2003, pages 358-367.

(S38) H. Gomaa and K. Hashimoto. Dynamic software adaptation for service-oriented product
lines. In Software Product Line Conference (SPLC), 2011, pages 1-8.

(S39) H. Gomaa and M. Hussein. Software reconfiguration patterns for dynamic evolution
of software architectures. In Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2004, pages 79-88.

(S40) H. Gomaa and M. Hussein. Model-based software design and adaptation. In International
Workshop on Software Engineering for Adaptive and Self-Managing Systems (ICSE-
SEAMYS), 2007, pages 1-7.

(S41) W. Heider, R. Rabiser, P. Grunbacher Facilitating the evolution of products in product line
engineering by capturing and replaying configuration decisions. International Journal on
Software Tools for Technology Transfer, 2012, 14:613-630.

(S42) S. Giinther and S. Sunkle. Dynamically adaptable software product lines using ruby
metaprogramming. In International Workshop on Feature-Oriented Software Development
(FOSD), 2010, pages 80-87.

197

(S43)

(S44)

(545)

(S46)

(S47)

(548)

(S49)

(S50)

(S51)

(S52)

J. Guo, Y. Wang, P. Trinidad, and D. Benavides. Consistency maintenance for evolving
feature models. Expert Systems with Applications, 2012, 39(5):4987 — 4998.

S. O. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line techniques
to build adaptive systems. In Software Product Line Conference (SPLC), 2006, pages
141-150.

G. Hanssen, A. Yamashita, R. Conradi, and L. Moonen. Software entropy in agile product
evolution. In Hawaii International Conference on System Sciences (HICSS), 2010, pages
1-10.

W. Heider, R. Froschauer, P. Griinbacher, R. Rabiser, and D. Dhungana. Simulating
evolution in model-based product line engineering. Information and Software Technology
(IST), 2010, 52(7):758 — 769.

W. Heider, R. Rabiser, P. Griinbacher, and D. Lettner. Using regression testing to analyze
the impact of changes to variability models on products. In Software Product Line
Conference (SPLC), 2012, pages 196-205.

M. Helvensteijn. Dynamic delta modeling. In Software Product Line Conference (SPLC),
2012, pages 127-134.

M. Inoki and Y. Fukazawa. Software product line evolution method based on kaizen
approach. In Proceedings of the ACM symposium on Applied computing (SAC), 2007,
pages 1207-1214.

M. Jahn, R. Rabiser, P. Grunbacher, M. Loberbauer, R. Wolfinger, and H. Mossenbock.
Supporting model maintenance in component-based product lines. In Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012, pages 21 -30.

K. C. Kang, M. Kim, J. Lee, and B. Kim. Feature-oriented re-engineering of legacy
systems into product line assets - a case study. In Sofware Product Line Conference
(SPLC), 2005, pages 45-56.

C. Kistner, S. Apel, and M. Kuhlemann. A model of refactoring physically and virtually
separated features. In Generative Programming: Concepts and Experiences (GPCE), 2009,
pages 157-166.

198

B.1. PRIMARY STUDIES SELECTED

(S53)

(S54)

(S55)

(S56)

(S57)

(S58)

(S59)

(S60)

(Se1)

(S62)

K. Kim, H. Kim, and W. Kim. Building software product line from the legacy systems
"experience in the digital audio and video domain". In Software Product Line Conference
(SPLC), 2007, pages 171-180.

M. Kim, J.-H. Kim, and S. Park. Tool support for quality evaluation and feature selection
to achieve dynamic quality requirements change in product lines. In Software Product
Line Conference (SPLC), 2008, pages 69-78.

M. Kim, S. Park, and J. Lee. An approach to dynamically achieving quality requirements
change in product line engineering. In Software Product Line Conference (SPLC), 2007,

pages 41-50.

J. Knodel, I. John, D. Ganesan, M. Pinzger, F. Usero, J. L. Arciniegas, and C. Riva. Asset
recovery and their incorporation into product lines. In Working Conference on Reverse
Engineering (WCRE), 2005, pages 120-129.

S. Krishnan, R. R. Lutz, and K. GoSeva-Popstojanova. Empirical evaluation of reliability
improvement in an evolving software product line. In Working Conference on Mining
Software Repositories (MSR), 2011, pages 103—-112.

S. Krishnan, C. Strasburg, R. R. Lutz, and K. GoSeva-Popstojanova. Are change metrics
good predictors for an evolving software product line? In Conference on Predictive

Models in Software Engineering (Promise), 2011, pages 1-7.

M. Kuhlemann, D. S. Batory, and S. Apel. Refactoring feature modules. In International
Conference on Software Reuse (ICSR), 2009, pages 106—115.

J. Lee and D. Muthig. Feature-oriented analysis and specification of dynamic product
reconfiguration. In International Conference Software Reuse (ICSR), 2008, pages 154—
165.

J. Liu, J. Dehlinger, H. Sun, and R. Lutz. State-based modeling to support the evolution
and maintenance of safety-critical software product lines. In International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS), 2007, pages
596-608.

F. Loesch and E. Ploedereder. Restructuring variability in software product lines us-
ing concept analysis of product configurations. In European Conference on Software
Maintenance and Reengineering (CSMR), 2007, pages 159-170.

199

(S63)

(S64)

(S65)

(S66)

(S67)

(S68)

(S69)

(S70)

(S71)

(S72)

N. Loépez, R. Casallas, and A. van der Hoek. Issues in mapping change-based product line
architectures to configuration management systems. In Software Product Line Conference
(SPLC), 2009, pages 21-30.

R. Lopez-Herrejon, L. Montalvillo-Mendizabal, and A. Egyed. From requirements to
features: An exploratory study of feature-oriented refactoring. In Software Product Line
Conference (SPLC), 2011, pages 181 —190.

R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski. Evolution of the linux
kernel variability model. In Software Product Line Conference (SPLC), 2010, pages
136-150.

F. G. Marinho, R. M. Andrade, C. Werner, W. Viana, M. E. Maia, L. S. Rocha, E. Teixeira,
J. B. E Filho, V. L. Dantas, F. Lima, and S. Aguiar. Mobiline: A nested software product
line for the domain of mobile and context-aware applications. Science of Computer
Programming, 2012, 78(12):2381-2398.

T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the grow-and-prune
model in software product lines evolution using clone detection. In European Conference

on Software Maintenance and Reengineering (CSMR), 2008, pages 163—-172.

B. Michalik, D. Weyns, N. Boucke, and A. Helleboogh. Supporting online updates of
software product lines: A controlled experimental. In Empirical Software Engineering
and Measurement (ESEM), 2011, pages 187-196.

I. Montero, J. Pefia, and A. R. Cortés. Business family engineering - managing the
evolution of business driven systems. In Software Product Line Conference (SPLC), 2007,
pages 33-40.

L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, and P. Borba. Investigating the safe
evolution of software product lines. In Proceedings of the ACM international conference

on Generative programming and component engineering (GPCE), 2011, pages 33—42.

N. Niu, J. Savolainen, and Y. Yu. Variability modeling for product line viewpoints
integration. In Computer Software and Applications Conference (COMPSAC), 2010,
pages 337 —-346.

C. Nunes, A. Garcia, C. J. P. de Lucena, and J. Lee. History-sensitive heuristics for
recovery of features in code of evolving program families. In Software Product Lines
Conference (SPLC), 2012, pages 136—-145.

200

B.1. PRIMARY STUDIES SELECTED

(S73)

(S74)

(S75)

(S76)

(S77)

(S78)

(S79)

(S80)

(S81)

(S82)

O. Ortiz, A. B. Garcia, R. Capilla, J. Bosch, and M. Hinchey. Runtime variability for
dynamic reconfiguration in wireless sensor network product lines. In Software Product
Line Conference (SPLC), 2012, pages 143—150.

C. Parra, X. Blanc, A. Cleve, and L. Duchien. Unifying design and runtime software
adaptation using aspect models. Science of Computer Programming, 2011, 76(12):1247-
1260.

C. Parra, X. Blanc, and L. Duchien. Context awareness for dynamic service-oriented
product lines. In Software Product Line Conference (SPLC), 2009, pages 131-140.

T. Patzke, M. Becker, M. Steffens, K. Sierszecki, J. E. Savolainen, and T. Fogdal. Identi-
fying improvement potential in evolving product line infrastructures: 3 case studies. In
Software Product Line Conference (SPLC), 2012, pages 239-248.

X. Peng, Y. Yu, and W. Zhao. Analyzing evolution of variability in a software product
line: From contexts and requirements to features. Information and Software Technology,
2011, 53(7):707-721.

G. Perrouin, F. Chauvel, J. DeAntoni, and J.-M. Jézéquel. Modeling the variability space
of self-adaptive applications. In Software Product Line Conference (SPLC), 2008, pages
15-22.

J. Pefia, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L. Rash. Designing and managing
evolving systems using a mas product line approach. Science of Computer Programming,
2007, 66(1):71-86.

A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski. Model-driven
support for product line evolution on feature level. Journal of Systems and Software (JSS),
2012, 85(10):2261-2274.

M. Ribeiro and P. Borba. Improving guidance when restructuring variabilities in software
product lines. In European Conference on Software Maintenance and Reengineering
(CSMR), 2009, pages 79-88.

M. Ribeiro, F. Queiroz, P. Borba, T. Tolédo, C. Brabrand, and S. Soares. On the impact
of feature dependencies when maintaining preprocessor-based software product lines. In

Generative programming and component engineering (GPCE), 2011, pages 23-32.

201

(S83)

(S84)

(S85)

(S86)

(S87)

(S88)

(S89)

(S90)

(S91)

(5892)

(S93)

C. Riva and C. Del Rosso. Experiences with software product family evolution. In

Workshop on Principles of Software Evolution, 2003, pages 161-169.

K. Romanovsky, D. Koznov, and L. Minchin. Refactoring the documentation of soft-
ware product lines. In Central and East European conference on Software engineering
techniques (CEE-SET), 2011, pages 158-170.

M. Rosenmiiller, N. Siegmund, S. Apel, and G. Saake. Flexible feature binding in software
product lines. Automated Software Engineering, 2011, 18(2):163-197.

M. Rosenmiiller, N. Siegmund, M. Pukall, and S. Apel. Tailoring dynamic software
product lines. In Generative Programming and Component Engineering (GPCE), 2011,

pages 3—12.

E. Roubtsova and S. Roubtsov. Behavioural inheritance in the uml to model software

product lines. Science of Computer Programming, 2004, 53(3):409-434.

K. Saller, S. Oster, A. Schurr, J. Schroeter, and M. Lochau. Reducing feature models
to improve runtime adaptivity on resource limited devices. In Software Product Line
Conference (SPLC), 2012, pages 135-142.

D. Saraiva, L. Pereira, T. V. Batista, F. C. Delicato, P. F. Pires, U. Kulesza, R. Aratjo,
T. Freitas, S. M. Filho, and A. L. S. Souto. Architecting a model-driven aspect-oriented
product line for a digital tv middleware: A refactoring experiences. In European Confer-
ence on Software Architecture (ECSA), 2010, pages 166—181.

J. Savolainen and J. Kuusela. Violatility analysis framework for product lines. In Proceed-
ings of the symposium on Software reusability: putting software reuse in context (SSR),
2001, pages 133—-141.

S. R. Schach and A. Tomer. Development/maintenance/reuse: software evolution in
product lines. In Software Product Line Conference (SPLC), 2000, pages 437—450.

K. Schmid and H. Eichelberger. From static to dynamic software product lines. In
Software Product Line Conference (SPLC), 2008, pages 33-38.

J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. Dynamic configuration
management of cloud-based applications. In Software Product Line Conference (SPLC),
2012, pages 171-178.

202

B.1. PRIMARY STUDIES SELECTED

(S94) M. Schubanz, A. Pleuss, G. Botterweck, and C. Lewerentz. Modeling rationale over
time to support product line evolution planning. In Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS), 2012, pages 193—-199.

(S895) S. Schulze, T. Thiim, M. Kuhlemann, and G. Saake. Variant-preserving refactoring in
feature-oriented software product lines. In Workshop on Variability Modeling of Software-
Intensive Systems (VaMoS), 2012, pages 73-81.

(S896) C. Seidl, F. Heidenreich, and U. Assmann. Co-evolution of models and feature mapping in
software product lines. In Software Product Line Conference (SPLC), 2012, pages 76-85.

(S97) L. Shen, X. Peng, J. Liu, and W. Zhao. Towards feature-oriented variability reconfiguration
in dynamic software product lines. In International Conference on Software Reuse (ICSR),
2011, pages 52-68.

(S98) L. Shen, X. Peng, J. Zhu, and W. Zhao. Synchronized architecture evolution in software
product line using bidirectional transformation. In Computer Software and Applications
Conference (COMPSAC), 2010, pages 389-394.

(899) H. Shokry and M. A. Babar. Dynamic software product line architectures using service-
based computing for automotive systems. In Software Product Line Conference (SPLC),
2008, pages 53-58.

(S100) D. Simon and T. Eisenbarth. Evolutionary introduction of software product lines. In
Software Product Line Conference (SPLC), 2002, pages 272-282.

(S101) D. B. Smith, L. O’Brien, and J. Bergey. Using the options analysis for reengineering (oar)
method for mining components for a product line. In Software Product Line Conference
(SPLC), 2002, pages 316-327.

(S102) N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. Royer, A. Rummler, and
A. Sousa. A model-driven traceability framework for software product lines. Software &
Systems Modeling, 2010, 9(4)427-451.

(S103) C. Thao, E. Munson, and T. Nguyen. Software configuration management for product
derivation in software product families. In International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS), 2008, pages 265-274.

(S104) T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature models. In
International Conference on Software Engineering (ICSE), 2009, pages 254-264.

203

(S105)

(S106)

(S107)

(S108)

(S109)

(S110)

(S111)

(S112)

(S113)

(S114)

L. P. Tizzei, M. Dias, C. M. Rubira, A. Garcia, and J. Lee. Components meet aspects: As-
sessing design stability of a software product line. Information and Software Technology
(IST), 2011, 53(2):121-136.

P. Trinidad, A. R. Cortés, J. Pefia, and D. Benavides. Mapping feature models onto
component models to build dynamic software product lines. In Software Product Line
Conference (SPLC), 2007, pages 51-56.

M. 1. Ullah, G. Ruhe, and V. Garousi. Decision support for moving from a single product
to a product portfolio in evolving software systems. Journal of Systems and Software
(JSS), 2010, 83(12):2496-2512.

M. T. Valente, V. Borges, and L. T. Passos. A semi-automatic approach for extract-
ing software product lines. IEEE Transactions on Software Engineering (TSE), 2012,
38(4):737-754.

D. Weyns and B. Michalik. Codifying architecture knowledge to support online evolution
of software product lines. In Workshop on SHAring and Reusing Architectural Knowledge
(SHARK), 2011, pages 37-44.

D. Weyns, B. Michalik, A. Helleboogh, and N. Boucke. An architectural approach to
support online updates of software product lines. In IEEE/IFIP Conference on Software
Architecture (WICSA), 2011, pages 204-213.

R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and H. Prahofer. Supporting
runtime system adaptation through product line engineering and plug-in techniques. In
International Conference on Composition-Based Software Systems (ICCBSS), 2008,
pages 21-30.

Y. Wu, Y. Yang, X. Peng, C. Qiu, and W. Zhao. Recovering object-oriented framework
for software product line reengineering. In International Conference on Software Reuse
(ICSR), 2011, pages 119-134.

Y. Wu, D. Zowghi, X. Peng, and W. Zhao. Towards understanding requirement evolution
in a software product line an industrial case study. In International Workshop on the Twin

Peaks of Requirements and Architecture (Twin Peaks), 2012, pages 7-14.

Y. Xue, Z. Xing, and S. Jarzabek. Understanding feature evolution in a family of product

variants. In Working Conference on Reverse Engineering (WCRE), 2010, pages 109-118.

204

B.1. PRIMARY STUDIES SELECTED

(S115)

(S116)

(S117)

(S118)

(S119)

(S120)

(S121)

(S122)

(S123)

(S124)

Y. Xue, Z. Xing, and S. Jarzabek. Feature location in a collection of product variants. In
Working Conference on Reverse Engineering (WCRE), 2012, pages 145-154.

K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno. Fave: factor analysis based
approach for detecting product line variability from change history. In International

working conference on Mining software repositories (MRS), 2008, pages 11-18.

G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao. Incremental and iterative reengineering
towards software product line: An industrial case study. In International Conference on
Software Maintenance (ICSM), 2011, pages 418—427.

W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid. Reengineering a pc-based system
into the mobile device product line. In International Workshop on Principles of Software
Evolution (IWPSE), 2003, pages 149-160.

M. Acher, B. Baudry, P. Heymans, A. Cleve, J.-L. Hainaut. Support for reverse engineering
and maintaining feature models. In International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), 2013, pages 1-8.

M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, P. Lahire. Extraction and evolution of
architectural variability models in plugin-based systems. Software And Systems Modeling,
2014, 13(4):1367-1394.

S. Adelsberger, S. Sobernig, G. Neumann. Towards assessing the complexity of object
migration in dynamic, feature-oriented software product lines. In International Workshop

on Variability Modelling of Software-Intensive Systems (VaMoS), 2013, pages 1-8.

A. Benlarabi. Towards a co-evolution model for software product lines based on cladistics.
In International Conference on Research Challenges in Information Science (RCIS), 2014,

pages 1-6.

C. Cetina, P. Giner, J. Fons, V. Pelechano, Prototyping dynamic software product lines to
evaluate run-time reconfigurations, Science of Computer Programming, 2013, 78(12):2399—
2413.

N. Dintzner, A. Van Deursen, M. Pinzger. Extracting feature model changes from the
linux kernel using fmdiff. In International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS), 2013, pages 1-8, 2013.

205

(S125)

(S126)

(S127)

(S128)

(S129)

(S130)

(S131)

(S132)

(S133)

(S134)

N. Gamez, L. Fuentes. Architectural evolution of famiware using cardinality-based feature
models. Information And Software Technology (IST), 2013, 55(3):563-580.

F. N. Gaia, G. C. S. Ferreira, E. Figueiredo, M. de Almeida Maia. A quantitative and
qualitative assessment of aspectual feature modules for evolving software product lines.
Science of Computer Programming, 2014, 96(2),230-253.

R. Hellebrand, A. Silva, M. Becker, B. Zhang, K. Sierszecki, J. Savolainen. Coevolution
of variability models and code: An industrial case study. In Software Product Line
Conference (SPLC), 2014, pages 274-283.

T. Kanda, T. Ishio, K. Inoue, Extraction of product evolution tree from source code of
product variants. In Software Product Line Conference (SPLC), 2013, pages 141-150.

J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, F. Damiani. Deltaj 1.5:
Delta-oriented programming for java 1.5. In International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools
(PPPJ), 2014, pages 63—74.

S. Krishnan, C. Strasburg, R. R. Lutz, K. Goseva-Popstojanova, K. S. Dorman. Predict-
ing failure-proneness in an evolving software product line. Information and Software
Technology (IST), 2013, 55(8):1479-1495.

R. E. L. Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Benavides, S. Segura,
A. Egyed. An assessment of search-based techniques for reverse engineering feature
models, Journal of Systems and Software (JSS), 2014, 103:353-369.

A. Murguzur, R. Capilla, S. Trujillo, O. Ortiz, R. E. Lopez-Herrejon. Context variability
modeling for runtime configuration of service-based dynamic software product lines. In
International Software Product Line Conference (SPLC), 2014, pages 2-9.

R. Muschevici, D. Clarke, J. Proenca. Executable modelling of dynamic software product
lines in the abs language. In International Workshop on Feature-Oriented Software
Development (FOSD), 2013, pages 17-24.

L. T. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wasowski, P. Borba. Coevolution of
variability models and related artifacts: a case study from the linux kernel. In International
Software Product Line Conference (SPLC), 2013, pages 91-100.

206

B.1. PRIMARY STUDIES SELECTED

(S135)

(S136)

(S137)

(S138)

(S139)

(S140)

(S141)

(S142)

C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, G. Botterweck. Consistency checking for
the evolution of cardinality-based feature models. In International Software Product Line
Conference (SPLC), 2014, pages 122—131.

D. Romero, S. Urli, C. Quinton, M. Blay-Fornarino, P. Collet, L. Duchien, S. Mosser.
Splemma: A generic framework for controlled-evolution of software product lines. In
International Software Product Line Conference Co-located Workshops (SPLC), 2013,
pages 59-66.

S. Schulze, M. Lochau, S. Brunswig. Implementing refactorings for fop: Lessons learned
and challenges ahead. In International Workshop on Feature-Oriented Software Develop-
ment (FOSD), 2013, pages 33—40.

S. Schulze, O. Richers, 1. Schaefer. Refactoring delta-oriented software product lines.
In International Conference on Aspect-oriented Software Development (AOSD), 2013,
pages 73-84.

C. Seidl, U. Assmann. Towards modeling and analyzing variability in evolving software
ecosystems. In International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), 2013, pages 3:1-3:8.

C. Seidl, I. Schaefer, U. Assmann. Integrated management of variability in space and time
in software families. In International Software Product Line Conference (SPLC), 2014,

pages 22-31.

J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, D. C. Schmidt. Evolving
feature model configurations in software product lines. Journal of Systems and Software
(JSS), 2014, 87(0):119-136.

B. Zhang, M. Becker, T. Patzke, K. Sierszecki, J. E. Savolainen. Variability evolution and
erosion in industrial product lines: A case study. In International Software Product Line
Conference (SPLC), 2013, pages 168—-177.

207

B.2 Data Extraction Form

1.Categories of SPL Requirement Evolution

New product family
Introduction of New Product
Adding New Features
Extend Standards Support

New Version of Infrastructure

© © O © © O

Improvement of Quality Attribute

2.Temporal Properties Evaluated (When)

o Time of change
[Static][Load Time][Dynamic/Run-Time]
o Change history
[Sequential][Parallel]
o Change frequency
[Continuous][Periodically][Arbitrary]
o Anticipation

[Yes-Which?][No]

continued on next page

208

B.2. DATA EXTRACTION FORM

continued from previous page

3.0bject of Change Evaluated (Where)

o Artifact

[Core Asset Base][Core

ture][Product][Other]

Asset][SPL

o Granularity

[Coarse Grained][Fine Grained]
o Impact

[Local][Global]

o Change propagation

[Change Impact Analysis][Traceability Analysis][Effort Estimation]

Architecture][Product Architec-

4.System Properties (What)

o Availability

[System Always Available][System not Always Available]

o Activeness
[Reactive][Proactive]

o Openness
[Open][Closed]

o Safety
[Static][Dynamic]

o Other

continued on next page

209

continued from previous page

5.Change Support (How)

o Degree of automation
[Automated][Partially][Manual]
o Degree of formality
[Ad hoc][Mathematical Formalism]
o Change type

[Structural (Re-engineering)][Semantics (Refactoring)]

6.Phase of the SPL life cycle in which the evolution is applied

o Domain Engineering
[Scoping][Requirement][Architecture][Realization][Test]
o Application Engineering

[Requirement][Architecture][Realization][Test]

7.Evaluation Procedure

o Type of Evaluation

[Case Studies][Surveys][Controlled Experiments][Feasibility Study][Not Evaluated]

8.Tool Support

o Automatic

0 Manual

continued on next page

210

B.2. DATA EXTRACTION FORM

continued from previous page

9.Current Usage

o Academia

o Industry

211

B.3 Search String for each Electronic Database

IEEE Xplore

Restricted to: (Content Type) Conference Publications, Journals and Magazines

Title

Search String: ((("Document Title":evol* OR "Document Title":maint*
OR "Document Title":chang® OR "Document Title":modif*) AND
(p_Title:"product line" OR "Document Title":"product-line" OR "Document Ti-
tle":"product family" OR "Document Title":"product-family" OR "Document
Title":"product families" OR "Document Title":"product-families” OR "Doc-
ument Title":SPL OR "Document Title":"family of product” OR "Document
Title":"families of product")))

Abstract

Search String: (("Abstract":evol* OR "Abstract":maint* OR "Ab-
stract":chang® OR "Abstract":modif*) AND (p_Abstract:"product
line" OR "Abstract":"product-line" OR "Abstract":"product family"
OR "Abstract":"product-family" OR "Abstract":"product families" OR
"Abstract":"product-families" OR "Abstract":SPL OR "Abstract":"family of
product” OR "Abstract":"families of product"))

Keywords

Search String: ((("Author Keywords":evol* OR "Author Keywords":maint*
OR "Author Keywords":chang® OR "Author Keywords":modif*) AND
(p_Author_Terms:"product line" OR "Author Keywords":"product-line"
OR "Author Keywords":"product family" OR "Author Keywords":"product-
family" OR "Author Keywords":"product families" OR "Author
Keywords":"product-families" OR "Author Keywords":SPL. OR "Au-
thor Keywords":"family of product” OR "Author Keywords":"families of
product")))

212

B.3. SEARCH STRING FOR EACH ELECTRONIC DATABASE

ACM Digital Library

Restricted to: Journal Proceeding Transaction Magazine

Search String: (Title:evol* or Title:maint* or Title:chang* or Title:modif*)
and (Title:"product line" or Title:"product-line" or Title:"product family" or
Title:"product-family" or Title:"product families" or Title:"product-families"
or Title:"spl" or Title:"family of product" or Title:"families of product")

Title

Search String: (Abstract:evol* or Abstract:maint* or Abstract:chang* or
Abstract:modif*) and (Abstract:"product line" or Abstract:"product-line" or
Abstract:"product family" or Abstract:"product-family" or Abstract:"product
families" or Abstract:"product-families" or Abstract:"spl" or Abstract:"family
of product" or Abstract:"families of product")

Abstract

Search String: (Keywords:evol* or Keywords:maint* or Keywords:chang*
or Keywords:modif*) and (Keywords:"product line" or Keywords:"product-
line" or Keywords:"product family" or Keywords:"product-family" or Key-
words:"product families" or Keywords:"product-families" or Keywords:"spl"
or Keywords:"family of product" or Keywords:"families of product")

Keywords

SpringerLink

Restricted to: Conferences and journals, Papers in English, Computer Science,
Software Engineering

Search String: (evol* OR maint* OR chang* OR modif*) AND ("prod-
uct line" OR "product-line" OR "product family" OR "product-family" OR
"product families" OR "product-families" OR SPL or "family of product" or
"families of product")

General

Science Direct

Restricted to: Computer Science

Search String: TITLE((evol* OR maint* OR chang* OR modif*) AND
(product AND line OR product-line OR product AND family OR product-
family OR product AND families OR product-families OR SPL OR family
AND of AND product OR families AND of AND product))

Title

Search String: ABSTRACT((evol* OR maint* OR chang* OR modif*) AND
(product AND line OR product-line OR product AND family OR product-
family OR product AND families OR product-families OR SPL OR family
AND of AND product OR families AND of AND product))

Search String: KEYWORDS((evol* OR maint* OR chang* OR modif*)
AND (product AND line OR product-line OR product AND family OR product-
family OR product AND families OR product-families OR SPL OR family
AND of AND product OR families AND of AND product))

Keywords |Abstract

213

orureud (Y) oneis (8) uadQ () pasolD (3) :9Ande0Id () :A1n08aY (0) d[qe[ieAy sKem[y WalsAS (q) d[qe[reAy sAem[y 10u wasAS (8) 4 1O

‘sisA[euy K)rpiqeaser], (w) suonewnsy WMoy (1) :siskeuy joedwy o3uey) () eqorn (I) {[ed07 (1) ipaureln) asieo) () spaureln) aut] (8) I0YIQ (J) 1onpoid (9) L2IMIANIYIIY 19nPoId (P) 2IMOAYIIY TS (9) $9sSy 210 (q) aseg 19ssy 210D (8) €' 1O

‘uonedronuy (1) ‘A[res1poridd () ssnonunuo)) (5) ‘Areniqry (J) (renuanbog (9) {[ofered (p) ‘owr] -unyorweuk((9) awiy, peoy (q) oneis (e) ;7 10Y
gy Aifeng) jo yuawaoxduiy () 9IMONNSeIuI Jo UOISIOA MaN (2) oddng spiepue)s pudlxy (p) ssaimea] moN SuIppy (9) 9onpoid MAN Jo uononponuy (q) sAJiue 1onpoid moN (8) (1 10d

o3ed 1xau Uo panunuUOd

X

X

XXX X X

o KoxoX X

HKoXX X XX X o

o

X

o

X (es)
(g€9)
X (zes)
(1€9)
(0€S)
(629)
X (829)
(Lzs)
(929)
(sz89)
tzS)
X X | (€9
(zzs)
(128)
(0z8)
X | (619
(819)
(L18)
(919)
(s19)
¥1S)
X | (€19

X @1s)
X X ars)
(019)
(6S)
X X (8S)
(Ls)
99)
X (sS)
X (¥S)
X X X X (€9)
(@s)

XXX X X

KX XX X XX

XXX X X
ol

HKoX XXX
o

felel

o
>
MR X X X X X X

XXX X X XXX X

XXX X X X

o o

o

o

lolia o KRR K XX

o
[olia

XXX X X XXX X
XXX

o
KOXX X X
o

MM XX X X X X X XX
o
XX XX

XXX X X X X
>R
[olial
>R
»xox
[l

XXX X X X X
xox

o
o
o

XXX X X X X
o
o
o
o

o
o
XXX X

o
o

Rl o e T e T I I A i i i i I I S T o Tl B i

SRR X X X XX
o
o
o

X
X X X (1s)
H J Q p 9 q ® 1 q H J) p b q ® J 2 p b) q e

ar
€10 108 108

sarpn)s Axewrad ay) jo Surddejy g

214

MAPPING OF THE PRIMARY STUDIES

B.4.

omureuA(() onels (8) tuadQ (3) tpaso) (9) :9Anoeoid (p) 2ANIeNY (9) d[qe[leAy SAemy WaISAS (q) o[qe[reAy SAem[y 10U WSS (&) :

*stsATeuy Apiqeaoer], (w) suonewnsy Hopd (1) ‘sisAreuy 1oeduwy oSuey) () (eqorn (I) {[edo7 (1) tpaureln asreo)) (1) paureln) aur (3) 10y (J) 9onpoid (9) 2ImoNIYdIy 1onpoid (p) 2IMIAIYIY TS (9) 19SSy 210D (q) ‘ased 19ssy 210D (&) :

‘uonedronuy (1) ‘A[restporrd () ssnonunuo)) (5) ‘Areniqry (J) {enuanbog (o) {[o[fered (p) ‘owry -unyorweuk((9) dwiy, peo (q) oneis (e)

109
€10¥
T10¥

-nqumy Airfeng) jo juawaorduy (J) 9IMONNSLIJUT JO UOISIOA MAN] (3) Hoddng spiepue)s pualxy (p) ssaImea] maN SUIppy (9) 919npoid MAN Jo uononponuy (q) ‘AJue, 1onpoid maN (8) (1" 10d
o3ed 1xau UO panunuUOd
X X X X X X X X (SLS)
X X X X X X X #LS)
X X X X X X X X (€LS)
X X X X X X X X (@Ls)
X X X X X X X (1LS)
X X X X X X X X X X oLS)
X X X X X X X X (69S)
X X X X X X X X X X X (89S)
X X X X X X X X (L9S)
X X X X X X X (999)
X X X X X X X X X X X (S98)
X X X X X X X X (#9S)
X X X X X X X (€98)
X X X X X X X X X (298)
X X X X X X X X (198)
X X X X X X X X (098)
X X X X X X X (6$S)
X X X X X X X X X (86S)
X X X X X X X X X X X (LSS)
X X X X X X X (958)
X X X X X X X X X (sss)
X X X X X X X X (¥SS)
X X X X X X X X (€69)
X X X X X X X (Tss)
X X X X X X X (159)
X X X X X X X X X 0sS)
X X X X X X (6¥S)
X X X X X X X (87S)
X X X X X X X X X (LyS)
X X X X X X X X X 9rS)
X X X X X X X X (S¥S)
X X X X X X X X X rS)
X X X X X X X X (€¥S)
X X X X X X X X (@rs)
X X X X X X X (1rs)
X X X X X X X X X (0rs)
X X X X X X X X X (6£S)
X X X X X X X X X (8€S)
X X X X X X X (LES)
X X X X X X X X (9¢S)
X X X X X X X X (S€S)
q 3 J ° P o q e woopy [! q L 9 p o q e ! y 3 J ° P o q v ¥ Bl p o q v
10 €108 7108 1'108 a

a3ed snoiaaid woay panunuod

215

orureud (Y) onels (8) uadQ () pasolD (3) :9Andeold () :Anoeay (0) d[qe[ieAy sKem[y WalsAS (q) d[qe[reAy skemy 1ou wasAs (8) 4 10

‘sisk[euy K)rpiqeaser], (w) suonewnsy Hoyyd (1) :siskeuy joedwy o3uey) () (eqorn (I) ([eoo7 (1) spaureln) asreo) () spaureln) aut] (8) I0yIQ (J) 1onpoid (9) L2IMdIIYdIY 19nPoid (P) 2IMoAIYIIY TS (9) sy 210 (q) aseg 19ssy 210D (8) €' 1O
‘uonedonuy(1) :A[estporad () snonunuo) (8) (Areniqry (3) (renuanbag (a) {a[ered (p) il -unyorweuk(() dwi], peo (q) dneis () 7 109

gy Lijeng) jo yuawaoxdui] () 9IdnnseIuy Jo uolsIop maN (9) oddng spiepuels pualxy (p) ssoimead moN SuIppy (9) 9onpoid MAN Jo uononponuy (q) sAJiue 1onpoid moN (8) (1 10¥

a3ed 1xau Uo panunuoOd

X X X X X X X | ©119)
X X X X X X X <119
X X X X X X X X | G1e
X X X X X X X X X X X (€119)
X X X X X X X | @s
X X X X X X X X X arrs)
X X X X X X X X X X O118)
X X X X X X X X X X X X (6018)
X X X X X X X X | (8019
X X X X X X X X | (ors)
X X X X X X X X (9018)
X X X X X X X | X X X (S018)
X X X X X X X (+018)
X X X X X X X X X (€018)
X X X X X X X X X X X X X X (zo1s)
X X X X X X X | (ors)
X X X X X X X X | (0o1s)
X X X X X X X X (66S)
X X X X X X X X X (86S)
X X X X X X X X X X X (L6S)
X X | X X X X X X 968)
X X X X X X X | X (S68)
X X | x X X X X X (¥6S)
X X X X X X X (€69)
X X X X X X X (269)
X X X X X X X X X (168)
X X X X X X X | X 068)
X X X X X X X X (688)
X X X X X X X X (88S)
X X X X X X X (L8S)
X X X X X X X X X X X (98s)
X X X X X X X X X X X X X (s89)
X X X X X X X X X (+89)
X X X X X X X X X X X X (€8S)
X X X X X X X X (289)
X X X X X X | X (189)
X X | x X X X X X 08S)
X X X X X X X 6LS)
X X X X X X X X X (8LS)
X X X X X X X X ULs)
X X X X X X X X (9LS)
q 5 3 o p o qQ v | w I A f ! y 3 3 9 p o qQ ® vy 8 3 9o p > q ® J ° p 2 q @
10U €104 T10¥ 1108 a

o5ed snorraid woty panunuod

216

*((Kyrenb poo3) 4 031 (Lifenb 100d) - woiy SurSuey) wog Judwssassy Aend) oyl Woly sanfeA Ayl Jo wng 'O

“Ansnpug (q) ‘erwapesy (8):6'10Y

‘fenueiy (q) “onewomy (e):8° 10Y

110 (§) sKoaIng (9) ssarpmg ase)) (p) ‘siuawadxyg pajjonuo)) (9) :Apmgs Aiiqisea (q) ‘parenfeaq 10N (8):L 1O

59, (1) ‘uonezifeay (y) ermoiyary (5) Juawarnbay (3) 9L, (9) tuonezieay (p) ImdaydIy (9) Juowairinbay (q) Surdosg (8):9' 10N
‘(Sunojorjay) sonuewa () {(SuneourSus-oy) [eINONNS (J) CWISI[RULIO] [eINRWAREA () 00y pY (p) pArewoiny (9) A[enied (q) {enuey (8):¢' 10

[X X X X X X X (8S)
14 X X X X X X X (Ls)
I- X X X X X X X X X 99)
14 X X X X X X X (sS)
[X X X X X X X X X X X X X X ¥S)
€ X X X X X X X X (€9)
I- X X X X X X X X X @s)
€ X X X X X X X X X (Is)
q ® q e J B} p 2 q ® 1 q H 3 B} p 2 q ® H J) p 2 q ®
VO a
6’104 $'10d L10d 9104 S'10d

MAPPING OF THE PRIMARY STUDIES

orureud (Y) oneis (8) uadQ () :pasolD (3) :9andeoid () :A1n0eaY (0) d[qe[ieAy sKem[y WalsAS (q) d[qe[reAy skemy 1ou wasAs (8) 4 1O

‘sisk[euy K)rpiqeaser], (w) suonewnsy Hoyyd (1) :siskeuy joedwy o3uey) () eqorn (I) ([ed07 (1) spaurein) asieo) () spaureln) aut] (8) I0yIQ (J) 1onpoid (9) L2IMIAIYIIY 19nPoId (P) 2IMOAYIIY TS (9) sy 210D (q) aseg 19ssy 210D (8) :¢' 1O
‘uonedonuy(1) :A[estporad () snonunuo)) (8) (Areniqry (3) (renuanbag (a) {oqered (p) il -unyorweuk(() dwi], peo (q) dneis () 7 109

gy Lijeng) jo yuawaoxduiy () 9Imonnseuy Jo uoisiop maN (9) oddng spiepuels pualxy (p) ssoimea] moN SuIppy (9) 9onpoid MAN Jo uononponuy (q) sAJiue 1onpoid moN (&) (1 10Y

B.4.

X X X X X X X X (Tr18)
X X X X X X X X (1+18)
X X X X X X X X (0v18)
X X X X X X X X X (6€18)
X X X X X X X X (8€18)
X X X X X X X (LE1S)
X X X X X X X X (9€18)
X X X X X X X X (s€19)
X X X X X X X X (FE1S)
X X X X X X X X (€€19)
X X X X X X | X X X (€19
X X X X X X X | (grs)
X X X X X X X X X X X (0€18)
X X X X X X X X (6218)
X X X X X X X X (8218)
X X X X X X X X X (Lz1s)
X X X X X X X X (9218)
X X X X X X X X X (sz18)
X X X X X X X X X +T18)
X X X X X X X (€219)
X X X X X X X (Tz19)
X X X X X X X 1z18)
X X X X X X X X X (0z18)
X X X X X X X (6118)
X X X X X X X X | @119
X X X X X X X X X | @i
q B J ° P o q e w [X f ! q 5y Bl p o q e ! y 3 J B p Bl q e J Bl p o qQ ®
104 €104 7104 1'10% a

a3ed snoiaaid woay panunuod

217

*((Kyrenb pooS) 4 03 (Aifenb 100d) - woiy SurSuey]) wio,] Juawssassy AJ[end) oy WoIj san[eA dy) Jo wing ')
“Ansnpuy (q) ‘erwopedy (e):6'10Y
‘Tenueql (q) onewony ():8° 10

YO () ‘shaaIng (3) ‘sarpmg ase)) (p) ‘siuawiLadxy pajjonuo) (9) :Apms Aniqisead (q) paenfeag 10N (8):L 10U
183, (1) ‘uonezifedy (Y) 21moydry (3) guawaiinbay (3) 93, (9) cuonezieay (p) 2ImaaydIy (9) Juawainbay (q) Surdods (8):9' 10N

*(Suu01oe)ay) sonuewas (3) {(Sureauisus-ay) [BINONNS (J) {WSI[ULIO] [eoneWaYIRIA (3) 00y pY (P) :parewoiny (9) Afented (q) {enuey (8):5 10

N - O n o oo oo M

-

To o ~ % <o

n o 7

R XX X KX XK XK X)X X)X

o

R X XK XK X

KX X XX

o

o

XXX X
o

o

XX

XXX X

o

X
X

KoK K X KX X HKoxX XX

el KoxX XX
o

o
o

XXX XK XK

el XoxoX X
o

o

o

X
X

<o

Ko X X XX

o

KoxX X XX

X

X
X
X

ol XXX X XX o [olial XXX X XXX XK X o [olia

o

X

KoxX XX

X

> XXX X X XXX X

XXX X X X

X

Iole

XXX X X X X

X
X

o

o

XXX X X

X

o

o

XXX X

(87S)
Lys)
97S)
(srs)
(4]
(€rs)
@rs)
ays)
ors)
(6£9)
(8¢9)
(Les)
(9¢S)
(ses)
((Z3N]
(€€9)
(zes)
(1€9)
(0gs)
(628)
(82)
(Lzs)
(928)
(sz9)
¥zs)
(€29)
(TTs)
(128)
0zs)
61S)
(81S)
(L1s)
©19)
1)
(4]
€19)
@1s)
ars)
(o19)
(6S)

<
S

SR XK X

6’108

910"

S'T10d

ar

218

MAPPING OF THE PRIMARY STUDIES

B.4.

“((Anrenb poo3) { 01 (Ajenb 100d) §- woiy SurSuey) wiog Judwssessy A[end) AY) WOILJ sANJeA Y} Jo wng 1y Q)
"Ansnpuy (q) ‘erwapESY (2):6° 10N
‘renuey (q) onewoiny (e):8° 10Y

1YIQ (§) ‘sheag (9) ‘sarpmg ase)) (p) ‘syuowrradxy pajjonuo)) (9) Apmg £y

sea (q) ‘parenieaq 10N (v):L 1OY

189, (1) ‘uonezifeay (y) 21modyary () Juawarnbay (3) 9saL, (9) tuonezieay (p) ImaaydIy (9) Juawarnbay (q) Surdodg (8):9 10N
*(Surioyoeay]) sonuewag (3) :(Surreourdud-oy) [BINONNS () (WSI[BULIO [BINRWAYIRIA () 00y PY (P) pAewoiny (9) A[ented (q) enuefy ():5 10

o T — 0O ~ O —~ 7 —

=1

- - = &

T TR o T T o e B B Al I S S Bl I S S ST I I e

XXX X >
o

X

o

o

KX K XK XK X X X XX R X X X X X X X
o

XXX X XX

XXX X

)X X »

o

X

X

X

[olia

o

HKX XX XX

XXX X XX

o

X

o

HKoXX X

X

X
X
X

o

XXX X

)oXox X XXX X X

XXX X X

o

KX XK X K X XX

o

X

o

X

>

e

(88S)
(L8S)
(989)
(s8)
(8S)
(€85)
(z89)
(189)
(08s)
(6LS)
(8LS)
LLs)
9LS)
(Ls)
(FLS)
(€LS)
@Ls)
(1LS)
OLS)
(69S)
(89)
(L9S)
(99s)
(598)
(¥9S)
(€99)
(299)
(199)
098)
(6S)
(86S)
(Lss)
(958)
(ss9)
(#$S)
(€6S)
(T$S)
(1$9)
(0sS)
(6+S)

S X XX

6104

q v
81O

DX XK XK XK X X X

LT0¥ 9'10d

ar

219

*((Anrenb pooS) 4 01 (Anfenb 100d) §- woxy SurSuey) wo Juswssassy Aend) AY) WOIJ SAN[eA Y} Jo wmg 1y Q)
“Ansnpuy (q) ‘erwopedy (e):6'10Y
fenuelA (q) onewony (8):8 10Y
YO (J) ‘shaang (3) ‘sarpmg ase) (p) ‘siuawLadxy pajjonuo) (9) :Apms Aiqisead (q) paenfeaq 10N (8):£ 109

983, (1) ‘uonezifeay (Y) 21moayary (3) Quswaiinbay (3) 953, (9) cuonezieay (p) 2ImdAYdIy (9) Juawaiinbay (q) Surdods (8):9 10N
*(Suio)oe)ay) sonuewag () {(Sureaursus-ay) [BINONNS (J) (WSI[RULIO [eoneWaYIRIA (9) 00y pY (P) (parewoiny (9) (A[fented (q) {enuepy (8):¢ 10

- - o o < =1

>

Koo)X X K X)X

XXX X o

[olia

o

o

o

X
X

MM X X X X X X X X XXX XXX X MM X X X X X X X XX XXX X

[olia

KX XK XX X X

o

X
X
X

[olia

HKoX X KX X X X

o

XX XK X X KX XX X XX ol

o

o

XXX X X

R XK XK X >

oleY

X

o KoK XK XK X

o

o

o

X

[olial

KRR X [olial XXX X o XXX X KRR X

o

KoXXR X X XX

X

o

X
X

o

o

o

(8z1S)
(Lzrs)
(Cla]
(sz1s)
(D]
(€z19)
(zz1s)
azis)
(0z18)
611S)
(811S)
Lirs)
9118)
(S118)
F11s)
(€118)
1)
Irrs)
0119)
(601S)
(801S)
(Lo1s)
(9019)
(so1s)
01S)
(€019)
(zors)
(1ors)
(001S)
(66S)
(86S)
(L6S)
(96S)
(S6)
(76S)
(€6S)
(26S)
(16S)
(06S)
(68S)

VO

Ll A A S S ST T B i B S A ST B

6108

L'10d

910"

O X XX

o0 X

S'T10d

ar

220

MAPPING OF THE PRIMARY STUDIES

B.4.

*((Knrenb poo3) 4 01 (Aienb 100d) - woiy Surduey) wLIo, JuSWSsassy Aend) syl Wolj san[eA) Jo wng 1y O
‘Ansnpu] (q) ‘erwapedy (8):6 108
‘TenuepA (q) onewony (8):8° 10
YO (§) sKoaIng (9) ssarpmg ase) (p) ‘siuawadxyg pajjonuo) (9) Apmg Aiiqisea (q) ‘parenfeaq 0N (8):L 1OY
8L, (1) ‘uonezifeay () eImoyary (3) Suawernbay (3) 9L, (9) cuonezieay (p) 2ImoaydIy (9) Huowarnbay (q) Surdods (8):9' 10N

*(Buno1oe)ay) sonuewag () {(Sureaursud-oy) [eINONNS (J) (WSI[RULIO [eaNeWARIA (9) o0y py (p) (parewoiny (9) (A[enied (q) fenuey (8):5' 109

I-
I-

I-

I-

I-

I-

I-
I-

XXX X o

o

X

XXX X

XXX

X

X

o

o

XXX

KX X X)X

o

o

XXX X

KoK X XX

o

X
X

MoK XX

o

X

)Xo X

o

XX X

X
X

(4]
ayrs)
or1s)
(6£18)
(8€1S)
(Le1s)
(9€19)
(se1s)
(FE1S)
(€€19)
(z€1s)
(Igrs)
0£18)
(621S)

VO

Sl E A i S S SR I

610U

SX X X X

)

SO

ar

221

Feature-Driven Requirements Engineering
(FeDRE) Approach

This appendix presents some relevant data from the empirical study performed to evaluate

Feature-Driven Requirements Engineering (FeEDRE) Approach, earlier discussed in Chapter 5.

223

C.1 Survey Statements to Evaluate FeDRE, based on PEOU

and PU variables

Variable | Statement

PEOU1 | The FeDRE approach is simple and easy to follow

PEOU2 | It is easy for me to follow the guidelines proposed by the FeDRE ap-
proach

PEOU3 | The guidelines for specifying SPL functional requirements are easy to
learn

PU1 I believe that the FeDRE approach would reduce the time required to
specify SPL requirements

pPU2 Overall, I found the FeDRE approach to be useful

PU3 I believe that the SPL requirements specifications obtained with the
FeDRE approach are organized, clear, concise and non-ambiguous
pU4 I believe that the FeDRE approach has sufficient expressiveness to repre-
sent functional SPL requirements

224

C.2. IDENTIFIED USE CASES FOR EACH FEATURE

C.2 Identified Use Cases for each Feature

Feature Name

Associated to an Use
Case or Alternative
Use Case Scenario?

Use Case Name

Access_Control

Use Case

Create_User, Login, Show_Profile,
Remember_ Password, Send_E-mail

Web_ Access_Control

Alternative scenario

Show_Profile

Mobile_Access_Control

Alternative scenario

Show_Profile

Import_Contact

Use Case

Retrieve_Contacts,
port_Contacts

Im-

Facebook_Import

Alternative scenario

Retrieve_Contacts

Twitter_Import

Alternative scenario

Retrieve_Contacts

Destination

Use Case

Send_Notification

SMS_Destination

Alternative scenario

Send_Notification

Twitter_Destination

Alternative scenario

Send_Notification

Facebook_Destination

Alternative scenario

Send_Notification

Email_Destination

Alternative scenario

Send_Notification

Contact

Use Case

Show_Contact, Delete_Contact, Up-

date Contact

Add_Contact Use Case Add_Contact
Destination Use Case Send_Notification
Emergency_Numbers Use Case Create_Emergency_Number,

Delete_Emergency_Number,
Update_Emergency_Number

225

v s v | €| v | 97 S b S T o
Ty v | S | s | € | €w S v v T |
St | v | ¥ | S| S S S S S T |V g
et T | T | v | ¢ y y y y T ¢
Sty s | s | s | v | ¥ y b y T |
Sty v | S | s | s | ¥ y y v T |1
scel v | £ | v | ¢ S S S S 1|8
LT T | € | € | € | ggg y 4 y)
A S T S I O I S v y o9
st e | T | €|z € v € (LS| uedg
stel € | v | v | v | g€t (C 3 1|y
St | S| s | v | ¥ | 9T (C y 1|¢
St | v | s | s | ¥ | 99¢ y € y 1|z
vy | s | s | ¢ | 1 | 9¢ y 3 ¥ |
nd | vnd | €nd | znd | 10d | 00dd | €103d | T10dd | 100dd | uoisssg | 1afqng

Nd pue NOHAJ 10§ sasuodsay s3d9lqng ¢

226

C.4. BOX PLOTS FOR PEOU AND PU VARIABLES

C.4 Box Plots for PEOU and PU Variables

227

Feature-Driven Requirements Engineering
Evolution (FeDRE?) Approach

This appendix presents some relevant data from the empirical study performed to evaluate

Feature-Driven Requirements Engineering Evolution (FeDRE?) Approach, earlier described in
Chapter 6.

229

D.1 Survey Statements to Evaluate FeDRE?, based on PEOU

and PU variables

Variable | Statement

PU1 I believe that the evolved SPL requirements obtained with the FeDRE?
approach are disorganized, unclear, unconcise and ambiguous
PU2 I believe that the FeDRE? approach has enough expressiveness to evolve
functional SPL requirements
PU3 I believe that FeDRE? approach would increase the time required to
evolve SPL requirements

PU4 | Overall, I found the FeDRE? approach to be useful
PEOUI | It is difficult for me to follow the guidelines proposed by FeDRE?
approach
PEOU2 | The guidelines for evolving SPL functional requirements are easy to
learn
PEOU3 | The identification of the evolution scenarios using FeDRE? is complex
and difficult to follow
PEOU4 | Overall, the evolved requirements obtained by the FeDRE? approach are

easy to use

PEOUS | The SPL requirements evolution using FeDRE? is simple and easy to
follow

PEOUG6 | Updating the traceability matrix using FeDRE? is simple and easy to
follow

230

D.2. FEDRE? BACKGROUND FORM

D.2 FeDRE? Background Form

GENERAL INFORMATION
1. Full Name *:
2. Degree (Bachelor, Master, PhD, PostDoc, ...)*:
3. Years since graduation (Mark only one oval.)*

() <1 year

() >=1 year and < 5 years

() >= 5 years and < 10 years

() > 10 years

TECHNICAL KNOWLEDGE

Select the option that best fits to your profile.

4. Regarding your Requirements Engineering background (Mark only one oval.)*

() I have been involved in software development teams applying Requirements Engineering

() I am a researcher working on topics related to Requirements Engineering

() I know what Requirements Engineering is but I have never participated in a software
project applying Requirements Engineering

() I have never heard about Requirements Engineering

5. How many years of experience do you have in Requirements Engineering? (Mark
only one oval.)*

(O <1 year

() >=1 year and < 5 years

() >=5 years and < 10 years

() > 10 years

6. Have you applied Requirements Engineering in building software? (Mark only one
oval.)*

() Yes, but only in the research domain

() Yes, but only in the industry domain

() Yes, both research and industry domain

(O No

7. Regarding your Software Evolution background (Mark only one oval.)*

() I have been involved in software development teams dealing with Software Evolution

() I am a researcher working on topics related to Software Evolution

(O I know what Software Evolution is but I have never participated in a software project

231

dealing with Software Evolution

() I have never heard about Software Evolution

8. How many years of experience do you have in Software Evolution? (Mark only one
oval.)*

(O <1 year

() >=1 year and < 5 years

() >=5 years and < 10 years

() > 10 years

9. Have you ever dealt with Software Evolution? (Mark only one oval.)*

() Yes, but only in the research domain

() Yes, but only in the industry domain

() Yes, both research and industry domain

() No

10. Regarding your SPL background (Mark only one oval.)*

() I have been involved in software development teams applying the Software Product Line
approach

() I am a researcher working on topics related to Software Product Line

Development

() I know what Product Lines are but I have never participated in a software project applying
SPL development

() I have never heard about Software Product Lines

11. How many years of experience do you have in SPL? (Mark only one oval.)*

() <1 year

() >=1 year and < 5 years

() >= 5 years and < 10 years

() > 10 years

12. Have you applied the SPL approach in building software? (Mark only one oval.)*

(O Yes, but only in the research domain

() Yes, but only in the industry domain

() Yes, both research and industry domain

() No

13. A Software Product Line (SPL) is a: (Mark only one oval.)*

() Set of products built from a platform of components

() Set of software intensive systems sharing a common managed set of features developed

from a common set of core assets in a prescribed way

232

D.2. FEDRE? BACKGROUND FORM

() I am not sure about that

14. What is a feature? (Mark only one oval.)*

() A feature is a uservisible characteristic of a system or software product and which are
usually organized in feature models

() A feature is everything that can vary through an SPL

() I am not sure about that

15. In SPL Development ... (Mark only one oval.)*

() ... requirements should be built from the scratch for every single product

() ... requirements concepts are not applicable

() ... there are: i) the Product Line Requirements with should include the variation mecha-
nisms to cover all the possible products within the SPL and; ii) the Product Requirements that
are derived from the Product Line Requirements by exercising these variation mechanisms in
order to achieve a specific product

16. In SPL development... (Mark only one oval.)*

() ... an evolution is applied to a single product

() ... it is necessary to evolve a product line in accordance with changes to the environment,
the market, and/or technology

() ... the concept of evolution is not applicable to SPL development

* Required

233

D.3 FeDRE? Survey

1. Full Name *:
Please read carefully each statement before answering.
2. T believe that the evolved SPL requirements obtained with the FeDRE? approach

are disorganized, unclear, unconcise and ambiguous (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

3. I believe that the FeDRE? approach has enough expressiveness to evolve functional

SPL requirements (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

4. Tt is difficult for me to follow the guidelines proposed by FeDRE? approach (Mark
only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

5. The guidelines for evolving SPL functional requirements are easy to learn (Mark
only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

6. I believe that FeDRE? approach would increase the time required to evolve SPL
requirements (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

234

D.3. FEDRE? SURVEY

7. Overall, I found the FeDRE? approach to be useful (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

8. The identification of the evolution scenarios using FeDRE? is complex and difficult

to follow (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

9. The SPL requirements evolution using FeDRE? is simple and easy to follow (Mark

only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

10. Updating the traceability matrix using FeDRE? is simple and easy to follow (Mark

only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

11. Overall, the evolved requirements obtained by the FeDRE? approach are easy to

use (Mark only one oval)*

1 2 3 4 5
Totally disagree () () () () () Totally agree

12. Do you have any suggestion on how to make this requirement evolution approach

more easy to use?

235

13. What are the reasons that will make usable or not this approach in the future?

14. Please write any other comment or suggestion related to requirements evolution

approach in the space below.

236

D.4. SUBJECT'S RESPONSES FOR PEOU AND PU

=

S) o~))
QW \Q — — QWX

St vt TS S| N = F T

PEOU2 | PEOU3 | PEOU4 | PEOUS | PEOU6 | PEOU

=N —
= 2
= @) NN NS TN N~ <N A
83|
< o
-] -
O S N) %) 2 lle) %)
= P na N S nwn
o mzmvmvvmmvvmmmﬁmvv
(3 <t
=) E MmNV n<stnuncnnmaoon —~ 1N nn
G
7))
<5 o
E E NV NN tTANN NNt onn <t <t
(=]
=T N
7)) E Nt Tttt on AN NN <t
9}
=7 _
'\(I) E tT VU NNtV TN AAN—~un <N
~
&
.g e |mFaeOtTrmOorcaaEDd T 20
= .8
2 | = g
N = < s
wn [=3
[=4] 19,]
<

237

	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	Introduction
	Motivation
	Objective
	Research Method
	Research History
	Contributions
	Out of Scope
	Organization of the Thesis

	II Background
	Background
	Software Product Lines
	Software Product Line Essential Activities
	Software Product Line Variability Management

	Software Product Lines Evolution
	Forces for Change
	Evolution Propagation

	Software Product Lines Requirements Engineering
	Risks and Challenges

	Evolution of Software Product Lines Requirements
	Chapter Summary

	III Understanding Software Product Lines Evolution
	Empirical Studies on the Application of Lehman's Laws within the Industry
	Introduction
	Related Work
	Empirical Studies
	General Planning
	First Empirical Study
	Execution
	Data Analysis and Discussion

	Motivation for Conducting the Replication
	Changes to the Original Experiment
	Second Empirical Study
	Execution
	Data Analysis and Discussion

	Comparison and Discussion of Results
	Consistent Results
	Partially Consistent Results
	Partially Different Results
	Differences in Results

	Threats to Validity
	Key Findings and Contributions for SPL Community
	Chapter Summary

	Software Product Lines Evolution: A Systematic Mapping Study
	Introduction
	Motivation

	Background
	Related Work

	Research Method
	Planning Stage
	Research Question
	Search Strategy
	Selection of primary studies
	Quality Assessment
	Data Extraction Strategy

	Conducting Stage
	Search from 1996 up to 2014
	Selection of Studies from 1996 up to 2014

	Results
	Why SPL approaches need to deal with evolution? (RQ1.1)
	When the SPL approaches perform the evolution? (RQ1.2)
	Where the SPL approaches perform the evolution? (RQ1.3)
	What type of Evolution (static or dynamic) does the approach support? (RQ1.4)
	How SPL approaches support the evolution? (RQ1.5)
	What is the SPL life cycle and phase in which the evolution is applied? (RQ1.6)
	What is the evaluation procedure from the approach? (RQ1.7)
	What type of tool support does the approach offer? (RQ1.8)
	In which context the approach is applied? (RQ1.9)
	Mapping Results
	Threats to Validity

	Chapter Summary

	IV Guiding Software Product Lines Evolution based on Requirements Engineering Activities
	Feature-Driven Requirements Engineering (FeDRE) Approach
	Introduction
	Related Work
	Feature-Driven Requirements Engineering Approach For SPL
	Scoping
	Existing Assets
	Feature Model
	Feature Specification
	Product Map

	Requirements Specification for Domain Engineering
	Glossary
	Functional Requirements
	Traceability Matrix

	Guidelines for Specifying SPL Functional Requirements

	Empirical Study
	Design of the empirical study
	Preparation of the empirical study
	Collection of the data
	Which features can be grouped to be specified by UC?
	What are the specific UC for the feature or set of features?
	Where the UC should be specified?
	How each UC is specified in terms of steps?

	Data Analysis
	First Quantitative Analysis
	Second Quantitative Analysis

	Threats to validity

	Chapter Summary

	Feature-Driven Requirements Engineering Evolution (FeDRE2) Approach
	Introduction
	Background
	Related Work

	FeDRE2 Approach
	Task 1: Identify the Evolution Scenario
	Change Request Artifact
	Feature Model Artifact
	Use Case Textual Specification Artifact
	Use Case Diagram Artifact
	Product Map Artifact

	Task 2: Evolve the SPL Requirements
	Task 3: Update the Traceability Matrix
	Traceability Matrix Artifact

	Empirical Study
	Design of the Empirical Study
	Preparation of the Empirical Study
	Data Collection
	Background Form
	Empirical Study
	Survey

	Data Analysis
	First Quantitative Analysis
	Second Quantitative Analysis

	Threats to Validity

	Chapter Summary

	V Conclusions and Future Work
	Conclusions
	Future Work
	Evaluating Lehman's Laws (LL) of Software Evolution
	Systematic Mapping Study on SPL Evolution
	Feature-Driven Requirements Engineering (FeDRE) Approach
	Feature-Driven Requirements Engineering Evolution (FeDRE2) Approach

	Related Work
	Main Contributions

	References
	Appendices
	Empirical Studies
	The KPSS Test and Hypotheses results (at MC)
	The KPSS Test and Hypotheses results (at FC)

	SPL Evolution: A Systematic Mapping Study
	Primary studies selected
	Data Extraction Form
	Search String for each Electronic Database
	Mapping of the primary studies

	Feature-Driven Requirements Engineering (FeDRE) Approach
	Survey Statements to Evaluate FeDRE, based on PEOU and PU variables
	Identified Use Cases for each Feature
	Subject's Responses for PEOU and PU
	Box Plots for PEOU and PU Variables

	Feature-Driven Requirements Engineering Evolution (FeDRE2) Approach
	Survey Statements to Evaluate FeDRE2, based on PEOU and PU variables
	FeDRE2 Background Form
	FeDRE2 Survey
	Subject's Responses for PEOU and PU

