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RESUMO 

 

O conhecimento das comunidades bentônicas marinhas é de fundamental importância ecológica 

e econômica. A abordagem tradicional dos estudos bentônicos envolve principalmente a coleta 

de organismos para triagem e identificação. Entretanto, este procedimento é extremamente 

demorado e dispendioso. O desenvolvimento de técnicas de sensoriamento remoto (ópticos e 

acústicos) minimizou significativamente este problema, possibilitando a geração de mapas 

espacialmente contínuos e de forma mais rápida. A área de estudo compreende a porção 

nordeste da BTS, localizada entre a ilha de Maré e a ilha dos Frades, próxima a grandes 

indústrias que contribuíram ou contribuem para acelerada degradação da região. O objetivo 

geral deste trabalho foi mapear os habitats marinhos epibentônicos da porção nordeste da BTS. 

Imagens de satélite de alta resolução disponíveis no Google Earth Pro foram usadas para 

delimitação de regiões opticamente distintas do leito marinho e regiões intermareais. A 

integração destas imagens a dados pretéritos disponíveis para área de estudo, permitiu a 

individualização das classes de substratos submarinos/costeiros a partir das quais foram 

selecionadas 145 estações amostrais para análise do epibentos. Nas zonas infralitorais, os 

trabalhos de campo consistiram de mergulho autônomo ou uso de drop câmera; e nas zonas 

intermareais o procedimento amostral ocorreu através de caminhadas ou utilizando pequenas 

embarcações, para otimização do tempo. Em todas as estações foi utilizada como unidade 

amostral um quadrado de 0,25 x 0,25 m para tomada de fotografias do substrato, além da 

utilização de draga van veen para coleta de sedimentos em regiões de substrato inconsolidado. 

Foram encontradas diferentes classes de substratos submarinos/costeiros. As análises dos dados 

de epibentos evidenciaram a presença de comunidades biológicas estaticamente distintas, entre 

a maioria das classes de substrato delimitadas. Utilizando uma combinação de todos esses 

dados, nove habitats marinhos epibentônicos foram identificados e mapeados. A combinação 

do uso de imagens de satélite de alta resolução com imagens fotográficas submarinas provou 

ser uma técnica útil e eficaz na caracterização de habitats marinhos epibentônicos. 

 

Palavras chave: Comunidades epibentônicas. Substrato. Sensoriamento remoto. Ground-

thruthing. 

 

 



 

ABSTRACT 

 

Knowledge of marine benthic communities is fundamental ecologically and economically. The 

traditional approach of benthic studies involves, mainly, sampling of benthic organisms for sorting and 

identification. However, this procedure is extremely time-consuming and costly. The development of 

remote sensing techniques (optical and acoustic) significantly minimized this problem, allowing faster 

production of spatially continuous maps. The study area comprises the northeastern portion of the BTS, 

located between the Maré island and Frades island, close to major industries that have contributed to the 

accelerated degradation of the region. The general objective of this study was to map the epibenthonic 

marine habitats of the northeastern portion of the BTS. High resolution satellite images available on 

Google Earth Pro were used to delineate optically distinct regions of the seabed. The integration of these 

images to previous data available for the study area allowed the individualization of subsea / coastal 

substrate classes from which 145 sample stations were selected for epibenthic analysis. A 0.25 x 0.25 m 

square was used as the sampling unit for substrate photography, (SCUBA dive and dropcam in the 

infralittoral regions, and walking and use of small boats in the intertidal zones), as well as the use of a 

van veen dredge for sediment collection in unconsolidated substrate regions. Different classes of 

submarine/coastal substrates were found. The analyzes of the epibenthos data showed the presence of 

statically distinct biological communities, among most of the substrate classes delimited. Using a 

combination of all these data, nine epibenthonic marine habitats were identified and mapped. The 

combination of the use of high resolution satellite images with underwater photographic images proved 

to be a useful and efficient technique in the characterization of epibenthic marine habitats. Different 

classes of submarine / coastal substrates were found. The analysis of epibenthic data evidenced the 

presence of statically distinct biological communities, among most of the classes of substrate delimited. 

Using a combination of all these data, nine epibenthonic marine habitats were identified and mapped. 

The combination of the use of high resolution satellite images with underwater photography proved to 

be a useful and effective technique for the characterization of epibenthic marine habitats. 

 

Keywords: Epibenthonic communities. Substrate. Remote sensing. Ground-truthing. 
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CAPÍTULO 1 

 INTRODUÇÃO 

 

1. INTRODUÇÃO 

Habitats marinhos bentônicos são áreas fisicamente distintas do substrato oceânico 

associadas à ocorrência de espécies particulares. Os habitats bentônicos representam o ambiente 

natural em que um organismo ou comunidade vive (Harris e Baker, 2011) e podem ser definidos 

por um conjunto de fatores geológicos, como tipo de substrato e pelos parâmetros físico-

químicos da água (Diaz et al., 2004). 

Os primórdios da produção de mapas do fundo oceânico remontam ao século XIII, 

quando comerciantes começaram a confeccionar cartas destinadas à navegação no 

Mediterrâneo (Blake, 2004). Estudos geológicos e biológicos só tiveram início efetivamente no 

século XIX, com a utilização de dragas primitivas para coleta de sedimentos e organismos 

bentônicos (McIntyre e Elefteriou, 2005). Petersen (1918); Holme (1961, 1966); e Cabioch 

(1968, apud Brown et al. 2002) são exemplos de estudos clássicos para a compreensão da 

variabilidade e distribuição da fauna bentônica ao longo de extensas áreas geográficas. 

Atualmente, existe uma associação internacional de cientistas marinhos (GeoHab: 

http://geohab.org/) que estimula pesquisas no âmbito do mapeamento de habitats marinhos 

bentônicos, utilizando diferentes indicadores biofísicos como proxies para comunidades 

biológicas e diversidade de espécies (Harris e Baker, 2011). 

A utilização, unicamente, de técnicas de amostragem convencionais (dragas, 

testemunhos, vídeos, fotografias e redes de arrasto), possui limitações para a geração de 

representações biofísicas precisas de áreas muito extensas. Levantamentos de pequena escala 

utilizando apenas as técnicas clássicas são dispendiosos, necessitando de uma grande densidade 

de dados e cobertura espacial para definir com precisão a heterogeneidade de habitats. Portanto, 

a utilização isolada dos métodos clássicos é útil apenas no estudo de pequenas áreas (Brown et 

al., 2011; van Rein et al., 2011). O desenvolvimento de técnicas como a batimetria multi-feixe, 

sonar de varredura lateral e LIDAR, possibilitaram minimizar estas dificuldades, com a 

amostragem direta utilizada apenas para a obtenção da verdade de campo (Ground-thruthing). 

O termo “Surrogates” é aplicado para designar variáveis abióticas facilmente 

mensuráveis, que podem ser mapeadas e que apresentam uma correspondência quantificável à 

ocorrência de comunidades e espécies bentônicas (Harris, 2011). Essas variáveis podem atuar 

como preditores de padrões de distribuição de habitats bentônicos em áreas ainda não 

exploradas ou com levantamento de dados biológicos insuficiente (Harris, 2011). As variáveis 
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abióticas, cujas influências sobre a distribuição dos organismos bentônicos são melhores 

conhecidas, são: textura e composição de sedimento, temperatura, salinidade, concentração de 

oxigênio e disponibilidade de luz (Snelgrove, 1999; Kostylev e Hannah, 2007). A identificação 

e o mapeamento de habitats marinhos bentônicos utilizando “surrogates” permite a 

caracterização de habitats em amplas áreas (Post, 2008).  

A crescente pressão antrópica sobre os ambientes marinhos costeiros tem resultado no 

aumento de poluentes, na alteração e destruição de habitats, na acidificação e aquecimento das 

águas, na sobrepesca e na introdução de espécies exóticas (Wells, 1999). Deste modo, a 

implementação de planos integrados de gerenciamento costeiro é fundamental. Entretanto a 

fragmentação da gestão, faz com que as pressões antropogênicas e os recursos marinhos sejam 

tratados isoladamente (Crowder et al., 2006). Uma abordagem mais integrada que considere a 

interação entre as pessoas, o ambiente e os impactos das atividades humanas no funcionamento 

dos ecossistemas e sua resiliência, faz-se necessária (Baker e Harris, 2011). O gerenciamento 

baseado em ecossistemas (da sigla em inglês EBM – Ecossystem-based Management) 

representa um importante alternativa por reconhecer a conectividade dos elementos que 

compõem um ecossistema em funcionamento. Neste contexto, análises como o DPSIR 

(Drivers, Pressures, State, Impact and Response) necessitam de mapas de habitats para a 

obtenção de indicadores que permitem descrever o estado do meio ambiente e prever impactos.  

A baía de Todos os Santos (BTS) não possui até o momento, um mapa de habitats 

marinhos bentônicos. A maior parte dos estudos realizados na região abordaram outros aspectos 

como contaminação química, oceanografia física, geológica, pesca, produção pesqueira, dentre 

outros. 

 Apesar de constituir uma Área de Proteção Ambiental, (APA Baía de Todos os Santos) 

criada por meio do Decreto Estadual nº 7595 de 05 de junho de 1999, esta unidade de 

conservação ainda não dispõe de um plano de manejo, ferramenta de extrema importância para 

a gestão ambiental, visto que a implementação deste, é fundamental para elaboração de 

diagnósticos da BTS e construção de um Zoneamento Ecológico Econômico (Blinder, 2009). 

A confecção de mapas de habitats marinhos, constitui-se, portanto, em uma etapa 

imprescindível para viabilização deste processo. 
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1.1. OBJETIVOS 

     1.1.2.  Objetivo Geral: 

➢ Mapear os habitats marinhos epibentônicos da porção nordeste da BTS. 

1.1.3. Objetivos específicos: 

➢ Identificar os principais organismos que compõem a megafauna epibentônica (a nível 

de grandes grupos) da porção nordeste da BTS; 

➢ Mapear os substratos marinhos da porção nordeste da BTS; 

➢ Analisar associações existentes entre a comunidade epibentônica e as classes de habitats 

estabelecidas; 

 

1.2. ORGANIZAÇÃO DA DISSERTAÇÃO 

Esta dissertação está subdividida em três capítulos: 

Capítulo 1 – é apresentada a contextualização do trabalho e os aspectos que motivaram o 

desenvolvimento do presente estudo; 

Capítulo 2 – são apresentados os resultados sob a forma de um artigo científico intitulado 

“Mapeamento de habitats marinhos epibentônicos da porção nordeste da baía de Todos os 

Santos – Bahia – Brasil”, submetido à revista Marine Pollution Bulletin (Qualis A2). Neste 

artigo é apresentado como resultado principal, um mapa de habitats marinhos 

epibentônicos, confeccionado para a porção NE da baía de Todos os Santos. 

Capítulo 3 – são apresentadas as principais conclusões do trabalho. 
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You may check on the progress of your paper by logging on to the Elsevier Editorial System as an author. The URL is 

https://ees.elsevier.com/mpb/. 

Your manuscript will be given a reference number once an Editor has been assigned. 

Please be aware that the average editorial time to first decision is 8.2 weeks. 
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Abstract 
 
Knowledge on benthic marine communities is ecologically and economically important. The 

objective of this study was to map epibenthic marine habitats of the northeastern portion of the 

Todos os Santos Bay (TSB). Satellite images available from Google Earth Pro were used in 

order to to delimitate optically different areas on the seafloor and intertidal areas. The 

integration of these images to previous data allowed the individualization of classes of 

underwater/coastal substrates from which 145 sampling stations were selected for analysis of 

epibenthic communities. A 0.25 m² square was used in all sampling stations for substrate photo 

shooting. A Van Veen grab was used to sample sediments from unconsolidated substrate 

areas. Several different classes of underwater/coastal substrates were found. The analysis of 

epibenthic data yielded statistically different biological communities among most of the classes 

of substrate delimitated. By combining all these data, nine epibenthic marine habitats were 

identified and mapped.  

Keywords: epibenthic communities, substrate, remote sensing, ground-truthing
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Introduction 

Marine habitat distribution patterns provide important information on the nature of 

physical factors and ecological processes that regulate benthic populations and communities 

(Levins and Lewontin, 1980; Nanami et al., 2005). These communities are important 

components of the trophic chain and play an essential role in marine sediment aeration and 

remobilization, contributing to nutrient remineralization processes and, consequently, to both 

primary and secondary production processes (Lana et al., 1996). In addition, several species 

are of direct economic importance as a relevant source of protein to the society and also 

present considerable pharmacological potential (Lana et al., 1996; Hunt and Vincent, 2006). 

 Traditional methodologies, such as organism sampling using bottom grab samplers 

followed by sorting and identification, are still widely used in benthic community studies. 

However, these procedures can be extremely time consuming and costly.  

 The development of techniques, such as multibeam bathymetry, side-scan sonar and 

LIDAR, has reduced these difficulties. In these cases, direct sampling is used only for ground-

truthing. However, the use of these techniques does not invalidate the use of traditional direct 

sampling tools. On the contrary, together these methods can provide better results than if they 

were used separately. According to Coogan and Populus (2007), at an initial stage this joint 

approach allows the individualization of different types of substrates for a given study area. It 

also allows for a later definition of direct sampling stations, enabling continuous habitat 

mapping, with the integration of physical and biological data. The studies by Markert et al. 

(2013), LaFrance et al. (2014), Buhl-Mortensen et al. (2015), and Henriques et al. (2015) are 

examples of investigations that adopted this type of approach. 

Benthic marine habitat maps are spatial representations of physically different areas of 

the seafloor, which are associated with the occurrence of a particular group of species. They 

are produced based on the evaluation and combination of biotic and abiotic variables, using 

morphology/relief and distribution of seafloor surface sediment as essential information for 

habitat classification (Lund and Wilbur, 2007). These maps are important for marine 

environmental management strategies and for the proposal of new marine protected areas 

(Roff et al., 2003; Greene et al., 2007). They are also of use to scientific investigation programs 

regarding benthic ecosystems and seafloor geology, and in the evaluation of living and non-

living seafloor resources for both economic and management objectives (Harris and Baker, 

2011). 

The Todos os Santos Bay (TSB), located along the eastern coast of Brazilian, is the 

country’s second largest bay (1,233 km²), with a surrounding population of approximately 3.5 

million inhabitants (IBGE, 2016). Industries and port facilities are also present in the area. 
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Despite this context of intense human activity, the benthic marine habitats of the TSB had not 

been mapped until the present moment. The majority of studies already conducted in this area 

addressed aspects such as chemical contamination, physical and geological oceanography, 

fisheries, among others. Previous information on the distribution of bottom surface sediment 

was not greatly detailed (Lessa and Dias, 2009; Dominguez et al. 2012).  

 Some initiatives to understand the variability and distribution of the benthic fauna in the 

TBS include the studies by Alves et al. (2004), Pires-Vanin et al. (2011) and Garcia et al. 

(2014), the latter two of which focused on the northeastern portion of the bay. The traditional 

approach applied to benthic community investigation was used in these studies. Valle (2013) 

mapped, in a preliminary approach, the northeastern portion of the seafloor of the TBS with 

the main objective of understanding the Holocene filling history; while Cruz et al. (2009) 

mapped the occurrence of reef formations in the bay. 

 The northeastern portion of the TBS, located between Maré Island and Frades Island 

(Figure 1) congregates the largest number of industrial activities of the entire bay. Chemical, 

petrochemical, metallurgical, food products and fertilizer industries represent the main 

branches of these activities (Hatje et al. 2009). Cases of chronic sediment contamination have 

been reported for this area, especially by oil-derived polycyclic aromatic hydrocarbons 

(Venturini and Tommasi, 2004; Martins et al., 2005), trace metals, such as zinc, copper, lead, 

and cadmium (Wallner-Kersanach et al., 2000; Hatje et al., 2006), and illegal agrochemical 

substances, such as dichlorodiphenyltrichloroethanes (DDT), dichlorodiphenylethylenes 

(DDE), and organochlorines (Tavares et al., 1999). Moreover, Maré and Frades islands do not 

present wastewater treatment plants, so domestic wastewater is directly discharged into 

mangroves and rivers that flow into the TSB (Hatje et al., 2009). Finally, there are 20 fishing 

communities within this region and neighboring areas, which are distributed across the 

municipalities of Madre de Deus, São Francisco do Conde, and Candeias (Soares et al., 2009).   

 Thus, the northeastern region of the TSB was chosen for epibenthic marine habitat 

mapping, a paramount tool for marine ecosystem management, representing the first stage for 

the development of studies and elaboration of management plans for this area. 
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Figure 1.  Location of the study area: northeastern portion of the Todos os Santos Bay. 

 

 

Geological and oceanographic characterization 

The Todos os Santos Bay is etched in the rocks of the Cretaceous Recôncavo 

sedimentary basin. Siltites and massive fine sandstones predominate around Frades and Maré 

islands (Dominguez and Bittencourt, 2009). The origin of the TSB has been attributed to 

differential erosion between more friable sedimentary rocks and basement rocks, which are 

more resistant to erosion (Dominguez and Bittencourt, 2009). During most of the past 500,000 

years, the TSB has been exposed to subaerial conditions, which has resulted in deep incised 

valleys. Only for very short periods of time during interglacial periods, the TSB was completely 

flooded (Dominguez and Bittencourt, 2009).  

The study area is shallow, with some places reaching less than 10 m in depth. However, 

greater depths can be found along the main channels, reaching 60 m, as in the case of the 

channel that separates Madre de Deus Island from Frades Island (Figure 2). 

 Fine sediments predominate on the seafloor of the studied area. Patches of 

autochthonous biogenic sandy sediments occur in the surroundings of sparse reef bottoms, 
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which are common in the area (Vilas Boas and Bittencourt, 1979; Cruz et al., 2009; Dominguez 

and Bittencourt, 2009). Sedimentation rates between 2 and 10 mm year-1 were reported for 

these fine sediments (Argollo 1999, 2001).  

The circulation in the bay is controlled by tides, which present a semidiurnal pattern 

(Lessa et al., 2001). The tidal wave is progressively amplified and distorted when entering the 

TSB, especially in narrower, sinuous, and/or shallower areas (Lessa et al., 2009). The 

maximum tide range during spring tides on the continental shelf adjacent to the TSB is 1.87 

m, while the minimum range during neap tides is 0.98 m. In turn, at the central area of the bay, 

near Frades Island, the tide range is amplified in 0.55 m during spring tides and 0.25 m during 

neap tides (Lessa et al., 2009). Significant current velocity variations are observed between 

spring and neap tides. Maximum velocities of 0.83 m s-1 have been reported near the channel 

that separates Frades Island from Madre de Deus Island (Figure 3). In the remaining regions 

of the study area, mean values ranging between 0.10 and 0.40 m s-1 have been reported during 

mean ebb tide level, and between 0.10 and 0.30 m s-1, during mean flood tide level. Ebb tides 

present lower duration and have been associated to higher flow velocities, especially near the 

surface (Xavier, 2002).  

The mean suspended sediment concentration in the area is 1.5 mg / l (Wolgemuth et 

al., 1981). Mean salinity is approximately 35, and water temperature is always above 20°C 

(Cirano and Lessa, 2007). 
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Figure 2. Bathymetric chart No. 1104 produced by the Brazilian Navy (DHN – Directorate of Hydrography and 
Navigation): northeastern TSB. Color grading indicates depth variation: in white, deeper areas, reaching depths of 
60 m; in dark blue, areas with depths ranging between 5 and 10 m; and in light blue, areas shallower than 5 m. 
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Figure 3. Current field in the Todos os Santos Bay, (a) during mid-ebb tide, and (b) during mid-flood tide; under a 
spring tide regimen (Lessa et al., 2009). 

     

 

 

(a) 

(b) 
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Material and methods 

    Remote sensing 

 Due to the characteristics of the area (area of approximately 150 km², reduced depths, 

large number of reef bottoms, and good light penetration) satellite images were used to define 

a map of coastal/marine classes of substrates. High-resolution satellite images available from 

Google Earth Pro (Image © 2016 CNES/ Astrium) were exported at the maximum resolution 

available (4800 x 2841 pixels) to the software ARCMAP 10.1 and georeferenced. In these 

images, optically different seafloor and intertidal areas were delimitated. The integration, using 

GIS, of these images and previous data available for the study area, such as Nautical Chart 

No. 1104 produced by the Brazilian Navy, high-resolution interpreted seismic profiles (Campos 

and Dominguez, 2011), sedimentary facies maps (Dominguez et al., 2012), and reef bottom 

distribution maps (Valle, 2013 and Cruz, 2009), allowed for a detailed individualization of 

different classes of underwater/coastal substrates, located at maximum depths of 

approximately 12 m, which represents the limit of visible light penetration in the analyzed 

images.  

 

Ground-truthing 

After the delimitation of different classes of substrates, 145 sampling stations were 

selected, distributed in a representative way among the various types of substrates so that 

they would reflect the size and heterogeneity of the previously identified classes. Field 

campaigns occurred in February, April, May, June, and November 2016.   

In infralittoral zones, fieldwork consisted on either SCUBA diving or using a drop 

camera system. In intertidal zones, sampling was either performed on foot or using small 

vessels for time optimization. A 0.25 x 0.25 m square was used as the sampling unit in all 

sampling stations for substrate photos, with the objective of characterizing not only the 

epibenthic community but also the substrate itself.   

Five photo-squares were taken in each sampling station. These were randomly 

positioned within a 10-m radius, except for 22 stations where low visibility at the bottom 

compromised image recording. A total of 620 photo-squares were obtained. 

The camera’s clock was synchronized with the clock of a GPS Garmin Map 60CSX® 

receptor located on the vessel. The software HoudahGeo® was used to geolocate each 

photograph, comparing the time recorded for both the camera and the track log of the GPS.  

In sampling stations that presented unconsolidated substrate, sediment was either 

sampled directly or sampled using a Van Veen grab. Mechanical sieving was used to 

determine percentages of gravel, sand and mud in all 121 samples of sediment collected. A 

stereoscopic microscope was used to determine sediment composition by counting 100 grains 
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from previously homogenized sand and gravel fractions from each sample. Grains were 

classified into two categories: bioclastic and siliciclastic. The data obtained was weighed in 

importance considering the physical weight of each fraction in the total sample. The IDW 

(Inverse Distance Weighting) interpolation method was used to interpolate granulometry and 

sediment composition data, to generate content distribution maps for sand, mud, gravel, and 

siliciclastic and bioclastic grains in the surface sediment of the seafloor of the studied area.  

The software Adobe Photoshop CS® was used to process the photographs obtained, 

which were later exported to the software Coral Point Count with Excel extensions (CPCe) 

(Kohler and Gill, 2006). In this software, 100 points per photo-square were drawn over a mesh 

of 500 possibilities, in which benthic organisms and types of substrate were identified. After 

the analysis of all photo-squares, a table was generated with the coverage percentage of the 

identified epibenthic organisms. 

  

    Statistical analyses and definition of epibenthic marine habitats 

Multivariate statistical methods were used to analyze associations between epibenthic 

communities and the identified classes of substrate. Initially, photo-squares that did not present 

biological records (7) were excluded from the analyses. The log (X+1) transformation was 

applied to the biological data for approximation to a normal distribution. The Bray-Curtis 

Dissimilarity Index (Clarke and Warwick, 1994) was then used for a non-Metric 

Multidimensional Scaling analysis (mMDS) of the cover data of the epibenthic organisms 

identified. The ANOSIM test (Clarke, 1993) was used in order to test the significance of 

differences in epibenthic community composition among the various classes of substrate 

mapped. In addition, the software Similarity Percentage (SIMPER) was used with the objective 

of indicating which organisms were mainly responsible for similarities within each group (most 

common organisms), and which organisms presented the greatest contribution to dissimilarity 

among these groups (most different organisms). The software Microsoft Office Excel 2010 and 

PRIMER 6.0 for Windows were used for data processing. 

The integration of biological and physical data allowed the elaboration of the final 

habitat map of the study area. A synthesis of the methodological process is presented in Figure 

4. 
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              Figure 4. Flowchart with the methodological stages of the present study. 

 

                

Results 

Substrate Classes 

Analysis of high-resolution images and their integration to previous data indicated the 

presence of 8 classes of substrate in the study area (Figures 5 and 6): Class A – hard substrate 

entirely colonized by organisms; Class B – intertidal rocky slabs; Class C – seafloor covered 

by soft macroalgae; Class D – predominantly sandy seafloor (> 50% sand); Class E – tidal 

flats; Class F – predominantly muddy seafloor (> 50% mud); Class G – mangrove forest; Class 

H – apicum. Fieldwork campaigns confirmed that the classes that had been previously 

identified through satellite images did in fact correspond to different substrates and 

geomorphologies. 
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Photo-squares  

A total of 15 groups of organisms (hard corals, fire corals, black corals, Zoantharia, 

Octocorals, Echinodermata, Porifera, Crustacea, soft macroalgae, calcareous macroalgae, 

Mollusca, Ascidiacea, Bryozoa, Cyanobacteria, and Polychaeta) and two indicators of 

biological activity (biofilm and bioturbation) were identified from the analysis of the 620 photo-

squares.  

The term biofilm was used to describe a fine reddish, often brownish, layer that covers 

the water-sediment interface, similarly to “mucus”. Though its source is unknown, it is most 

likely of biological origin.  

Signs of bioturbation represent any type of sediment disturbance caused by the 

presence of organisms resulting from faunal activities, such as feeding, excavation and 

locomotion (Posey, 1987; Findlay et al., 1990; Hall, 1994; Kinoshita et al., 2003; Friedrichs et 

al., 2009; Araújo et al., 2012). These signs indicate biological activities and are mainly 

associated with crustaceans, mollusks, polychaetes, and fish (Meysman et al., 2006). 

Table 1 shows the mean percentage and standard deviation of the coverage of the 

different groups of epibenthic organisms identified through photo-squares for each one of the 

classes of substrate found in the study area. No sampling activities were performed for classes 

G (Mangrove forest) and H (Apicum), since their area of occurrence was not restricted to the 

study area and are distributed over several other regions in the TSB. They were only delimited 

during photointerpretation in order to complement the mapped area. 

The group of organisms that presented the largest cover for the total sampled area was the 

“soft macroalgae” group (fleshy and filamentous macroalgae), covering 22% of the area. On 

the other hand, the “Polychaeta” group presented the smallest area, covering only 0.04% of 

the epibenthic environment. The highest taxa richness was observed for substrate class A, 

which was the only class where all identified groups were present. Class F presented the 

lowest taxa richness, in which only biological activity indicators, such as biofilm and 

bioturbation, were found (Table 1).
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Figure 5. Examples of optical responses to the various classes of substrate individualized during 
photointerpretation: (a) Class A – hard substrate entirely colonized by organisms; (b) Class B – intertidal rocky 
slabs; (c) Class C – seafloor covered by soft macroalgae; (d) Class D – predominantly sandy seafloor (> 50% sand); 
(e) Class E – tidal flats; (f) Class F – predominantly muddy seafloor (> 50% mud); (g) Class G – mangrove forest; 
and (h) Class H – apicum. 
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Figure 6. Map of substrate classes produced from the integration of high-resolution satellite image analysis and 
previous data. Points show the location of sampling stations visited during field campaigns. Class A – hard substrate 
entirely colonized by organisms; Class B – intertidal rocky slabs; Class C – seafloor covered by soft macroalgae; 
Class D – predominantly sandy seafloor (> 50% sand); Class E – tidal flats; Class F – predominantly muddy seafloor 
(> 50% mud); Class G – mangrove forest; Class H – apicum. 
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Table 1. Coverage percentage of groups of epibenthic organisms for each substrate class (X is the mean % of 
occupied area in photo-squares, and s is the standard deviation). 
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Hard coral X̅ 5,2 0,01 0,01 0,03    0,00    0,00 

s 15,03 0,088 0,10 0,32 0,00 0,00 

Fire Coral X̅ 1,64 0,00 0,00 0,00 0,00    0,00 

s 9,81 0,00 0,00 0,00 0,00    0,00 

Black coral X̅ 0,36 0,00 0,00 0,00 0,00    0,00 

s 1,67 0,00 0,00 0,00 0,00    0,00 

Zoantharia X̅ 18,16 0,12 0,00 0,00 0,00    0,00 

s 26,24 0,78 0,00 0,00 0,00    0,00 

Octocoral X̅ 4,36 0,00 0,00 0,04 0,00    0,00 

s 11,65 0,00 0,00 0,48 0,00    0,00 

Echinodermata X̅ 0,01 0,01 0,02 0,31 0,00    0,00 

s 0,09 0,09 0,21 1,88 0,00    0,00 

Porifera X̅ 11,53 1,60 3,32 1,71 0,00    0,00 

s 13,12 4,63 6,21 4,57 0,00    0,00 

Crustacea X̅ 0,10 4,05 0,02 0,03 0,00    0,00 

s 0,42 9,46 0,21 0,16 0,00    0,00 

Soft macroalgae 
X̅ 9,33 30,79 73,5 6,7 17,7    0,00 

s 20,91 24,43 24,82 14,04 14,93    0,00 

Calcareous macroalgae 
X̅ 3,35 2,28 0,6 1,82 0,00    0,00 

s 7,30 6,79 1,67 4,18 0,00    0,00 

Molusca X̅ 0,24 4,62 0,23 0,69 0,96    0,00 

s 0,88 9,24 0,75 1,92 2,48    0,00 

Ascidiacea X̅ 0,21 0,05 0,01 0,01 0,00    0,00 

s 0,81 0,45 0,10 0,11 0,00    0,00 

Bryozoa X̅ 0,07 0,11 0,00 0,03 0,00    0,00 

s 0,36 0,77 0,00 0,21 0,00    0,00 

Cyanobacteria X̅ 3,63 0,00 0,00 0,00 0,00    0,00 

s 7,46 0,00 0,00 0,00 0,00    0,00 

Polychaeta X̅ 0,01 0,08 0,01 0,02 0,00    0,00 

s 0,12 0,45 0,10 0,14 0,00 0,00 

Biofilm X̅ 1,40 0,06 3,32 22,34 0,00   49,85 

s 6,55 0,70 7,21 25,35 0,00   22,88 

Bioturbation X̅ 0,44 0,21 0,39 1,77 1,60    4,49 

s 1,02 0,73 0,87 1,82 1,46    2,65 
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Surface Sediment Texture 

Figure 7 shows the spatial distribution of the sand, mud and gravel contents of seafloor 

surface sediments in the study area. Apart from Class F, sand predominated in all remaining 

substrate categories mapped (Table 2). Patches of coarser sediments occurred mainly in the 

surroundings of, and often on, rocky substrates. Classes G and H, as previously mentioned, 

were neither visited nor sampled. Apart from Class E, surface sediment was predominantly 

comprised by biogenic grains. Figure 8 shows the spatial distribution of bioclastic grain content 

in the seafloor surface sediment, and Table 3 presents the mean values of bioclastic grain 

content for each class of mapped substrate. 

 

Table 2. Mean contents of gravel, sand, and mud fractions in the seafloor surface sediments of each class of 

substrate mapped. 

Substrate class % gravel % sand % mud 

  A (n = 22) 14.48 
(±12.64) 

75.61 
(±18.24) 

9.91 
(±17.60) 

B (n = 6) 8.74 
(±5.94) 

80.25 
(±9.20) 

11.01 
(±8.82) 

 C (n = 19) 
6.02 

(±6.05) 
87.40 

(±8.07) 
6.58 

(±6.53) 

 D (n = 35) 
13.58 

(±13.14) 
77.02 

(±13.38) 
9.40 

(±8.81) 

 E (n = 14) 
4.62 

(±4.54) 
78.16 

(±5.47) 
17.22 

(±1.74) 

 F (n = 25) 
0.29 

(±0.65) 
14.83 

(±12.77) 
84.89 

(±12.85) 

 

 

Table 3.  Mean values of bioclastic and siliciclastic grain content in the seafloor surface sediments of each class 

of substrate mapped. 

Substrate class % siliciclastic grain % bioclastic grain 

  A (n = 22) 3,03 
(±6,94) 

87,06 
(±18,60) 

B (n = 6) 41,98 
(±38,68) 

47,00 
(±44,35) 

 C (n = 19) 
26,58 

(±23,57) 

66,84 
(±23,26) 

 D (n = 35) 
21,91 

(±22,82) 

68,68 
(±25,57) 

 E (n = 14) 
67,94 

(±25,47) 

14,83 
(±15,07) 

 F (n = 25) 
3,32 

(±3,58) 

11,7 
(±11,55) 
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                                       Figure 7.  Distribution of sand, mud, and gravel contents in seafloor surface sediments.                              
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        Figure 8.  Spatial distribution of bioclast content in seafloor surface sediments. 
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Statistical Analyses 

The non-Metric Multidimensional Scaling analysis (nMDS) of the epibenthic organism 

coverage percentage found in each class of substrate was applied to observe how these 

organisms were grouped (Figure 9).   

The Analysis of Similarity (ANOSIM) indicated significant differences in the composition 

of epibenthic communities among the various classes of substrate (overall R = 0.45; p = 0.001), 

except between D and F (Table 4). 

 

Table 4. Analysis of Similarity (ANOSIM) of epibenthic organism coverage from each of the classes of substrate 
mapped (significant test results are presented in boldface). 

Paired tests R p 

Classes A x B 0,579 0,001 

Classes A x C 0,520 0,001 

Classes A x D 0,474 0,001 

Classes A x E 0,599 0,001 

Classes A x F 0,762 0,001 

Classes B x C 0,151 0,001 

Classes B x D 0,486 0,001 

Classes B x E 0,096 0,015 

Classes B x F 0,899 0,001 

Classes C x D 0,393 0,001 

Classes C x E 0,496 0,001 

Classes C x F 0,941 0,001 

Classes D x E 0,232 0,001 

Classes D x F - 0,051 0,98 

Classe E x F 0,915 0,001 
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Figure 9. Results of the nMDS analysis of epibenthic fauna coverage for the classes of substrate mapped. Class A 
– hard substrate entirely colonized by organisms; Class B – intertidal rocky slabs; Class C – seafloor covered by 
soft macroalgae; Class D – predominantly sandy seafloor (> 50% sand); Class E – tidal flats; Class F – 
predominantly muddy seafloor (> 50% mud). 
 
 

The Similarity Percentage analysis (SIMPER) showed that mean faunistic similarity for 

the study area was 56.93%. Classes of substrate F and C presented the highest similarity 

mean values (78.73% and 72.67%, respectively). On the other hand, classes A and D, 

revealed the lowest mean similarities (34.34% and 38.98%, respectively) (Table 5). Regarding 

dissimilarity, the highest observed value was between classes of substrate B and F (95.35%), 

while the lowest was between classes C and E (46.34%). 

In general, the high dissimilarity values found in the SIMPER analysis (Table 6) 

corroborated the separation of these classes of substrate, demonstrated by the ANOSIM 

analysis. However, between some classes, such as B and C, and C and E, for example, the 

mean dissimilarity values were low (46.39% and 46.34%, respectively) but significant enough 

to be separated through the ANOSIM analysis. In turn, while classes of substrate D and F 

presented higher mean dissimilarity (51.38%), this value was not significant enough to 

discriminate these classes through the ANOSIM analysis. 
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Table 5. SIMPER. Similarity Percentages and contribution of the main taxa of epibenthic organisms to the 
similarity of the substrate classes mapped. 

Substrate class Similarity (%) Taxa Contribution (%) 

A 34,34 

Porifera 
Zoantharia 

Calcareous macroalgae 
Cyanobacteria 

Soft macroalgae 

46,32 
19,80 
11,59 
6,39 
5,93 

B 51,47 Soft macroalgae 
Mollusca 

80,24 
10,05 

C 72,67 
Soft macroalgae 91,53 

D 38,98 
Biofilm 

Bioturbation 
Soft macroalgae 

51,07 
25,08 
12,20 

 

E 65,39 Soft macroalgae 
Bioturbation 

76,54 
21,16 

F 78,73 Soft macroalgae 
Bioturbation 

71,40 
28,43 
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Table 6. SIMPER. Dissimilarity Percentages and contribution of the main taxa of epibenthic organisms to the 
dissimilarity of the substrate classes mapped. 

Substrate classes Dissimilarity (%) Taxa Contribution (%) 

A x B 83,36 
Soft macroalgae 

Porifera 
Zoantharia 

22,74 
15,68 
13,08 

 

A x C 78,94 
Soft macroalgae 

Porifera 
Zoantharia 

31,81 
14,75 
13,23 

A x D 84,24 

 
Biofilm 
Porifera 

Zoantharia 
Soft macroalgae 

 

18,18 
15,58 
13,28 
11,86 

A x E 87,59 
Soft macroalgae 

Porifera 
Zoantharia 

22,07 
18,90 
14,27 

 

A x F 92,64 
Biofilm 
Porifera 

Zoantharia 
Bioturbation 

27,20 
15,93 
12,13 
10,65 

B x C 46,39 

 
Soft macroalgae 

Mollusca 
Porifera 

Crustacea 
Biofilm 

 

27,12 
16,31 
16,09 
12,51 
10,62 

B x D 79,94 

 
Soft macroalgae 

Biofilm 
Mollusca 

 

28,22 
23,73 
10,83 

B x E 51,14 

 
Soft macroalgae 

Mollusca 
Bioturbation 
Crustacea 

 

29,91 
19,87 
17,26 
14,19 

B x F 95,35 
Biofilm 

Soft macroalgae 
Bioturbation 

34,08 
28,30 
13,65 

C x D 72,90 Soft macroalgae 
Biofilm 
Porifera 

 

42,03 
23,72 
10,79 
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C x E 46,34 
Soft macroalgae 

Bioturbation 
Porifera 
Biofilm 

 

40,99 
17,35 
15,22 
12,18 

C x F 85,48 
Soft macroalgae 

Biofilm 
Bioturbation 

43,62 
31,37 
13,83 

D x E 72,02 
Soft macroalgae 

Biofilm 
Bioturbation 

 

32,59 
31,79 
10,67 

D x F 51,38 
Biofilm 

Soft macroalgae 
Bioturbation 

39,39 
17,96 
16,46 

E x F 80,37 
Biofilm 

Soft macroalgae 
Bioturbation 

 

48,69 
34,35 
11,99 

 

 

Characterization of classes of substrate and associated epibenthic organisms 

Class A – Hard substrate entirely colonized by organisms  

Class A corresponded to rocky substrates permanently underwater and entirely 

colonized by encrusting benthic organisms (Figure 10). This class occurred at depths ranging 

between 1.5 and 11 meters in relation to the base level of the nautical charts produced by the 

Brazilian Directorate of Hydrography and Navigation (DHN). The following epibenthic groups 

were found for this class: hard corals, fire corals, black corals, Zoantharia, Octocorals, 

Echinodermata, Porifera, Crustacea, soft macroalgae, calcareous macroalgae, Mollusca, 

Ascidiacea, Bryozoa, Cyanobacteria, and Polychaeta. Biological activity indicators (biofilm and 

bioturbation) were also observed. The SIMPER analysis (Table 5) showed that the composition 

of the epibenthic community associated with this class of substrate was similar in 34.34%. The 

main common organisms were Porifera, Anthozoans, calcareous macroalgae, cyanobacteria, 

and soft macroalgae, with similarity contributions of 46.32%, 19.80%, 11.59%, 6.39%, and 

5.93%, respectively. 

Although substrate class A is not of biological origin (Valle, 2013), meaning the 

structures that compose the class are not bioconstructions, the predominance of biogenic 

sediments covering this type of substrate was noteworthy, comprising an average of 87.06% 
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of surface sediments. Regarding texture, the sediment analyzed presented mean content 

values of 14.48% gravel, 75.61% sand, and 9.91% mud.  

Substrate class A occurred in the southern and middle-western portions of Maré Island, 

in the southeastern portion of Frades Island, in the eastern portion of Madre de Deus Island, 

and in a few areas of the central portion of the study area. 

 

 

Figure 10. Class A (hard substrate entirely colonized by organisms). Photo taken at a depth of 4 m. Red dots 

indicate hard corals; blue dots, Octocorals; yellow dots, Porifera; and purple dots, Zoantharia. 

 

Class B – Intertidal rocky slabs  

This class consisted of rocky slabs (marine-cut terraces) that are exposed during low 

tides (Figure 11). The epibenthic groups found in these areas were: hard corals, Zoantharia, 

Echinodermata, Porifera, Crustacea, soft macroalgae, calcareous macroalgae, Mollusca, 

Ascidiacea, and Polychaeta. Biological activity indicators (biofilm and bioturbation) were also 

observed (Figure 12). The SIMPER analysis showed that the epibenthic community coverage 

in this class of substrate was similar in 51.47%. The groups that contributed the most to this 

similarity value were soft macroalgae and Mollusca, with contribution values of 80.24% and 

10.05%, respectively. 

The portions of these slabs that remain exposed to subaereous conditions for longer 

periods of time were not densely colonized. 
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Locally, a thin layer of sediments was observed in the surroundings of and burying 

these slabs. On average, these sediments consisted of 41.98% siliciclastic grains and 47% 

biogenic grains. These sediments presented mean percentages of 8.74% gravel, 80.25% 

sand, and 11.01% mud.  

This class was found bordering the eastern portion of Frades Island, in the southern 

and southeastern portions of Maré Island, and in the northern portion of the study area. The 

presence of tide pools was common for this class. 

 

 

Figure 11. Class B (intertidal rocky slabs) exposed during a low tide, located at the southeastern margin of Frades 

Island.   
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Figura 12. Example of photo-squares obtained for Class B (intertidal rocky slabs). Green dots indicate soft 
macroalgae; blue dots, Crustacea; yellow, Porifera; purple, Zoantharia; white, Mollusca; and orange, calcareous 
macroalgae. 

 

Class C – Seafloor covered by soft macroalgae 

This substrate occurred in the infralittoral zone at depths ranging between 0.5 and 

6 meters, below the base level of the nautical charts produced by the DHN (Figure 13). The 

following epibenthic groups were found in this class: hard corals, Echinodermata, Porifera, 

Crustacea, soft and calcareous macroalgae, Mollusca, Ascidiacea, Polychaeta, and biological 

activity indicators (biofilm and bioturbation) (Figure 14). The SIMPER analysis showed 

similarity of 72.67% in epibenthic community coverage. The soft macroalgae group contributed 

with 91.53% of this similarity.  

Mean values of sediment composition were 6.02% gravel, 87.40% sand, and 6.58% 

mud, which consisted of a mean value of 26.58% siliciclastic grains and 66.84% bioclastic 

grains. 

This class of substrate was found bordering the entire eastern portion of Frades and 

Madre de Deus islands, the western portion of Maré Island, and the middle-northern portion of 

the study area. 

 



43 
 

 

   

Figure 13. Class C (seafloor covered by soft macroalgae). Photo taken at a depth of 3 m, at the eastern portion of 
Frades Island. 
 

 
 

 

Figure 14. Examples of photo-squares obtained for Class C (seafloor covered by soft macroalgae). Green dots 

indicate soft macroalgae; yellow dots, Porifera. 

 

Class D – Predominantly sandy seafloor with variable amounts of gravel and mud 

Class D corresponded to regions where unconsolidated substrate was found at the 

transition between consolidated substrates and areas of the seafloor where muddy sediments 

predominated. This class was found at depths ranging between 1 and 44 meters, below the 

base level of the nautical charts produced by the DHN. 
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The epibenthic community found in Class D included the following groups: hard corals, 

Octocorals, Echinodermata, Porifera, Crustacea, soft and calcareous macroalgae, Mollusca, 

Ascidiacea, Bryozoa, Polychaeta, and biological activity indicators - biofilm and bioturbation 

(Figure 15).  

The SIMPER analysis indicated that the benthic community found in substrate class D 

presented 38.98% of similarity. The biological activity categories contributed the most to this 

value (51.07% biofilm and 25.08% bioturbation), followed by soft macroalgae (12.20%) and 

Porifera (4.67%). 

The predominant sediment of this type of substrate was sand (77.02%), with lower 

contents of gravel (13.58%) and mud (9.4%). Locally, however, the content of gravel was 

occasionally equal to or even higher than the content of sand. Sediment was composed by a 

mean value of 21.91% siliciclastic grains and 68.68% bioclastic grains. 

In general, this class was found near rocky outcrops (classes A and B), where 

significant amounts of biodetritic sediments were present (Figure 16). Locally, large areas of 

this class were found with the presence of ripple marks, with or without bioturbation (Figure 

17).  

This class bordered the eastern portions of Frades Island and Madre de Deus Island, 

stretching until the central portion of the study area, the southern and western portion of Maré 

Island, and the middle-northern region of the study area.   

 

 

Figure 15. Examples of photo-squares obtained for Class D (predominantly sandy seafloor). Brown dots indicate 
biofilm; grey dots, signs of bioturbation; yellow dots, Porifera; green dots, soft macroalgae; and black dots, 
Echinodermata. 
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Figure 16. Class D (predominantly sandy seafloor) found near rocky outcrops. Photo taken at the southern portion 
of Maré Island at a depth of 6 m. 

.  
 

 

Figure 17. Class D (predominantly sandy seafloor). Example of ripple marks found locally, which could either 
present or not signs of bioturbation. (a) Middle-southern region of the study area at a depth of 11 m; (b) Eastern 
portion of Frades Island at a depth of 3 m. 

 

Class E – Tidal flats  

This class consisted of tidal flats that were predominantly composed by sand, although, 

locally, there were areas dominated by mud.  

The epibenthic groups found in this type of substrate were: soft macroalgae, Mollusca, 

and signs of bioturbation (Figure 18). The presence of crabs and swimming crabs (Crustacea) 
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was particularly noteworthy in this substrate class. However, these organisms were not 

recorded in photo-squares, due to the wandering habit of these animals and because they 

become scared by human approximation. The SIMPER analysis showed similarity of 65.39% 

for epibenthic community coverage. Soft macroalgae contributed with 76.54% of this similarity, 

while the biological activity indicator present (bioturbation) contributed with 21.16%. 

Mean values of sediment composition in this class were 4.62% gravel, 78.16% sand, 

and 17.22% mud. Unlike the other substrate classes, siliciclastic grains predominated in this 

class, with mean contents of 67.94%. Moreover, ripple marks were commonly found (Figure 

19). 

Tidal flats were found bordering the continent at the northern portion of the study area 

and in the western surroundings of Maré Island. This class of substrate was generally 

associated with mangrove forests and occurred near extremely urbanized areas, with intense 

industrial activity in the surroundings, intense mollusk harvesting, and noteworthy presence of 

domestic waste. 

 

Figure 18. Examples of photo-squares obtained for Class E (tidal flats). Green dots indicate soft macroalgae; white 
dots, Mollusca; and grey dots, signs of bioturbation. Crustaceans were very common in this class of substrate, 

although they were not represented in photo-squares due to their wandering behavior. 
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Figure 19. Class E (tidal flats). Northwestern portion of the study area, near the facilities of the Landulfo Alves oil 
refinery. 

 

Class F – Predominantly muddy seafloor 

This type of substrate was found at depths ranging between 0.5 and 32 m below the 

base level of the nautical charts produced by the DHN. Epibenthic organism richness in this 

type of substrate was very low and only biological activity indicators (biofilm and bioturbation) 

were observed (Figure 20). The high similarity value (78.73%) found through the SIMPER 

analysis resulted from the dominance of biological activity indicators (biofilm and bioturbation) 

in photo-squares, which contributed with 71.40% and 28.43% of similarity, respectively. 

Surface sediment presented mean contents of 0.29% gravel, 14.83% sand, and 84.89% mud, 

with predominant biogenic origin. 

Class F was present at the central portion of the study area, where greater depths are 

found. 
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Figure 20. Examples of photo-squares obtained for Class F (predominantly muddy seafloor). Brown dots indicate 
biofilm; and grey dots, signs of bioturbation. 

 

Classes G and H – Mangrove forest and Apicum 

These classes of substrate occurred at the northeastern portion of the Maré and Madre 

de Deus islands, and at the northeastern portion of the study area. These regions were 

delimitated only during photo interpretation and were not sampled, since they are not specific 

to the study area. For additional information on mangroves of this area, the authors 

recommend the study by Queiroz and Celino (2008). The apicum ecosystem of this region has 

not yet been studied in detail. Information on this ecosystem is generally associated with either 

mangrove or coastal zone mapping studies. The authors indicate the study by Hadlich et al. 

(2009) for more information. 

 

Discussion  

The epibenthic communities observed generally presented good correlation with the 

initially mapped classes of substrates. Although the ANOSIM analysis did not separate the 

communities present in substrate classes D and F, they were still analyzed separately 

considering the accentuated dissimilarity (> 50%) and the clear environmental differences 

observed between them, especially regarding sediment texture. Likewise, Class E (tidal flats) 

showed during fieldwork that it could be comprised by either muddy or sandy sediments. 

Therefore, based on sediment texture, this class was subdivided into two sub-classes (E1 – 

sandy tidal flat, and E2 – muddy tidal flat), although the epibenthic communities found in each 

were the similar. 



49 
 

 

The integration of the map of substrate classes that was originally produced through 

photo-interpretation and field data yielded an epibenthic marine/transitional habitat map 

(Figure 21). 

Nine epibenthic marine/transitional habitats were individualized: Habitat A – Reef 

patches, where Porifera, Zoantharia, and calcareous macroalgae predominated (total area: 

9.2 km²); Habitat B – Intertidal rocky slabs, where soft macroalgae and Mollusca predominated 

(total area: 3.2 km²); Habitat C – Sandy substrate densely covered by soft macroalgae (total 

area: 8.8 km²); Habitat D – Predominantly sandy substrate covered by biofilm and signs of 

bioturbation (total area: 53.8 km²); Habitat E1 – Sandy tidal flat covered by soft macroalgae 

and signs of bioturbation (total area: 8.9 km²); Habitat E2 – Muddy tidal flat covered by soft 

macroalgae and signs of bioturbation (total area: 1.2 km²), Habitat F – Predominantly muddy 

substrate covered by biofilm and signs of bioturbation (total area: 54.3 km²); Habitat G – 

Mangrove forest (total area: 6.9 km²); and Habitat H – Apicum ecosystem (total area: 1.0 km²).   

When using this habitat map, one must be aware that, in order to produce maps, 

delimiting lines must be drawn and that communities were defined by peaks of frequency of 

organisms, within the faunistic composition continuous gradient proposed by Gle'marec 

(1973). Therefore, sometimes there are no clear distinctions between neighboring benthic 

communities, but rather gradual changes in fauna composition without any discontinuities. This 

was clearly reflected in the present study by the superposition of epibenthic communities that 

were associated with various classes of substrate in the non-Metric Multidimensional Scaling 

analysis (nMDS), even in cases that were significantly separated by the ANOSIM test (habitats 

C and D).  

The results obtained in the present study were generally in agreement with those from 

previous studies conducted in the TSB (Alves et al., 2004; Pires-Vanin et al., 2011; Garcia et 

al., 2014). Previous studies focused on different aspects of epibenthic communities and did 

not aim to produce spatial distribution maps of these communities. Most of these studies 

attempted to show the relationship between the physicochemical characteristics of the 

environment, including substrate, and the structure of macrobenthic communities. These 

authors concluded that substrate geomorphology had great influence on the distribution 

pattern of benthic organisms, and that areas with muddy substrate presented lower species 

richness. 

Only Cruz et al. (2009) and Valle (2013) presented attempts to map habitats. Cruz et 

al. (2009) mapped the occurrence of coral reefs in the TSB. The geographical distribution of 

their study greatly agreed with the reef patches (Habitat A) mapped in the present study. The 

results obtained by Cruz et al. (2009) showed that in the inner reefs of the TSB, which coincides 

with the study area of the present study, Porifera organisms were very frequent, the dominant 

coral species was Montastraea cavernosa, while the species Siderastrea sp. and the 
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hydrocoral Millepora alcicornis were also abundant, in conformity with the results obtained in 

the present study. The community structure of epibenthic organisms of reef patches (Habitat 

A) presented similarity of 46.3% in the study by Cruz et al. (2009), which is close to the value 

found in the present study (34.34%).  

The popularization of multibeam surveys over the past decade greatly increased the 

effectiveness of benthic marine habitat mapping. Ierodiaconou et al. (2007), Wilson et al. 

(2007), Le Bas and Huvenne (2009), McGonigle et al. (2009), Copeland et al. (2011), 

Lamarche et al. (2011), Rueda et al. (2011), Haris et al. (2012), Micallef et al. (2012), Hasan 

et al. (2012), Hasan et al. (2014), and Galparsoro et al. (2014) are examples of benthic marine 

habitat studies that used this method. However, this tool is still very expensive and has limited 

use in very shallow areas and regions that present considerable depth variability, as is the 

case of the present study area. Although these limitations can be compensated by the 

combined use of multibeam bathymetry and bathymetric LIDAR (Light Detection And 

Ranging), this arrangement is still beyond the reach of most researchers and governmental 

agencies in developing countries.  

On the other hand, satellite images, which can be obtained free of cost, can be 

effectively used for shallow marine habitat mapping, as previously showed by several authors 

(Khan et al., 1992; Michalek et al., 1993; Ahmad and Neil, 1994; Peddle et al., 1995; 

Matsunaga and Kayanne, 1997; Cruz et al., 2009; and Dankers et al. 2011). However, although 

these images allow wide marine environment coverage, most of them (Landsat Thematic 

Mapper (TM), Enhanced Thematic Mapper – Plus (ETM +), Satellite Pour l’Observation de la 

Terre (SPOT), and High – Resolution Visible (HRV)) still provide limited descriptive resolution 

of the ecosystem (Green et al., 1996; Holden and LeDrew 1998). Furthermore, the majority of 

satellite sensors presents a limited number of water-penetrating bands, and does not present 

the proper sensitivity to separate different spectral bands (Mumby and Edwards, 2002). Most 

satellite sensors are also limited by atmospheric conditions (cloud coverage), water turbidity, 

and sunlight reflected on the surface of the water. 

Despite these limitations, optical sensors were considered to be an excellent tool for 

detailed habitat mapping in the present study area. This was partly due to intrinsic 

characteristics of the studied area and to the use of high-spatial-resolution images, available 

free of cost from Google Earth Pro. Several types of substrate found in intertidal and sublittoral 

areas at less than 12 m of depth were clearly visible in some of the available images. 

Direct sampling techniques are also essential in habitat mapping studies, since they 

provide ground-truthing data regarding the real composition of the seafloor. Thus, this 

methodology can be considered an important stage for the validation of remote sensing data 

by allowing a quantitative assessment of the epibenthic environment.  
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The use of photo-squares was quite satisfactory not only due to the low cost of this 

methodology, but also for providing sufficiently accurate estimates of epibenthic species 

abundance. The most relevant limitations to their use are: (i) the obtained data are restricted 

to the water-sediment interface, which in a best-case scenario allows only inferences regarding 

subsurface biological activities (Fell, 1967; Owen, Sanders, and Hessler, 1967); and (ii) this 

methodology cannot be used under high turbidity conditions. 

Finally, the main cost-related item of the present study was related to fieldwork 

campaigns (photo-squares, SCUBA diving, etc.), representing a total expense of 

approximately US$ 2,500.00. This shows the feasibility of the use of this approach in other 

areas where research resources are limited.  
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Figure 21. Epibenthic marine habitat map produced from high-resolution satellite images integrated with previous 
data, granulometry data, and statistical analyses. Habitat A – Reef patches, where Porifera, Zoantharia, and 
calcareous macroalgae predominated; Habitat B – Intertidal rocky slabs covered by soft macroalgae and Mollusca; 
Habitat C – Sandy substrate densely covered by soft macroalgae; Habitat D – Predominantly sandy substrate 
covered by biofilm and signs of bioturbation; Habitat E1 – Sandy tidal flat covered by soft macroalgae and signs of 
bioturbation; Habitat E2 – Muddy tidal flat covered by soft macroalgae and bioturbation; Habitat F – Muddy substrate 
where biofilm and signs of bioturbation predominated; Habitat G – Mangrove forests; Habitat H – Apicum. 
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Conclusion 

The combination of the use of high-resolution satellite images, available free of cost 

from Google Earth Pro, and traditional field techniques (photo-squares and SCUBA diving) 

was a useful, effective, and low-cost strategy for creating the first epibenthic marine habitat 

map for the TSB. The cost for collecting data was considerably lower than if acoustic 

techniques were used, and the time spent was substantially shorter than what is expected of 

traditional benthic community studies. However, due to limitations intrinsic to the use of satellite 

images, the methodology used in the present study cannot be applied to deeper areas of the 

bay, becoming restricted to clear, shallow waters. Regardless, for the study area, the obtained 

results were satisfactory, allowing the identification and representation of the spatial 

distribution of 9 epibenthic marine habitats: Habitat A – Reef patches, where Porifera, 

Zoantharia, and calcareous macroalgae predominated; Habitat B – Intertidal rocky slabs 

covered by macroalgae and Mollusca; Habitat C – Sandy substrate densely covered by soft 

macroalgae; Habitat D – Predominantly sandy substrate covered by biofilm and signs of 

bioturbation; Habitat E1 – Sandy tidal flat covered by soft macroalgae and signs of bioturbation; 

Habitat E2 – Muddy tidal flat covered by soft macroalgae and bioturbation; Habitat F – 

Predominantly muddy substrate, where biofilm and signs of bioturbation predominated; Habitat 

G – Mangrove forest; and Habitat H – Apicum.   

The map generated is extremely important for the management of the study area, 

considering that industrial activity in neighboring areas is quite expressive, and most sediment 

coverage was comprised by fine sediments, which favors the accumulation of organic and 

inorganic contaminants (i.e.: trace metals and aromatic hydrocarbons), therefore 

characterizing a highly vulnerable area to contamination. In addition, given the high variety of 

habitats in the region, this area presents one of the highest biodiversity levels in the TSB. 
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CAPÍTULO 3 

 CONCLUSÕES 

 

 

1. CONCLUSÃO 

A combinação do uso de imagens de satélite de alta resolução com imagens fotográficas 

submarinas obtidas por meio de mergulho autônomo provou ser uma técnica útil, eficaz e de 

baixo custo para a confecção do primeiro mapa de habitats marinhos epibentônicos para a BTS. 

Os custos com os levantamentos foram consideravelmente menores, quando comparados à 

utilização de técnicas acústicas, e o tempo despendido foi substancialmente inferior ao das 

técnicas tradicionais de estudos de comunidades bentônicas. Entretanto, devido às limitações 

intrínsecas à utilização de imagens de satélite, a metodologia utilizada não pode ser estendida 

para as regiões mais profundas da baía, restringindo-se a águas claras e de pouca profundidade. 

De todo modo, para a área de estudo, os resultados obtidos foram satisfatórios, possibilitando a 

identificação e representação da distribuição espacial de 9 habitats marinhos epibentônicos: 

Habitat A - Bancos recifais com predomínio de Porifera, Zoantharia e Calcareous macroalgae; 

Habitat B – Lajes rochosas intermareais cobertas por macroalgas e Mollusca; Habitat C – 

Substrato arenoso com densa cobertura de Soft macroalgae; Habitat D – Substrato 

predominantemente arenoso recoberto por Biofilm e marcas de Bioturbation; Habitat E1 – 

Planície de maré arenosa com cobertura de Soft macroalgae e marcas de Bioturbation; Habitat 

E2 – Planície de maré lamosa com cobertura de Soft macroalgae e Bioturbation; Habitat F – 

Substrato predominantemente lamoso com predomínio de Biofilm e marcas de Bioturbation; 

Habitat G – Manguezais; e Habitat H – Apicuns.  O mapa gerado é de extrema importância para 

a área estudada, uma vez que a atividade industrial é expressiva nas suas cercanias, e a maior 

do sedimento apresenta uma textura fina, o que acaba favorecendo a acumulação de 

contaminantes orgânicos e inorgânicos (ex: metais traços e hidrocarbonetos aromáticos), 

constituindo-se, portanto, em uma região altamente vulnerável à contaminação. 
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