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Abstract
The electron effective g factor tensor in asymmetric III–V semiconductor quantum wells
(AQWs) and its tuning with the structure parameters and composition are investigated with
envelope-function theory and the ´ k p8 8 · Kane model. The spin-dependent terms in the
electron effective Hamiltonian in the presence of an external magnetic field are treated as a
perturbation and the g factors *̂g and *g , for the magnetic field in the QW plane and along the
growth direction, are obtained analytically as a function of the well width L. The effects of the
structure inversion asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main
anisotropy * *D = -^ g g g in AQWs, a sign change is predicted in the narrow well limit due to
SIA, which can explain recent measurements and be useful in spintronic applications. Specific
results for narrow-gap AlSb InAs GaSb and - -Al Ga As GaAs Al Ga Asx x y y1 1 AQWs are
presented and discussed with the available experimental data; in particular InAs QWs are shown
to not only present much larger g factors but also a larger g-factor anisotropy, and with the
opposite sign with respect to GaAs QWs.

Keywords: electron g factor, semiconductor quantum wells, spin–orbit interaction

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron g-factor engineering, i.e. tuning the effective g factor
(g*) with quantum confinement effects in semiconductor
nanostructures is of great interest to semiconductor spin-
tronics [1–3]. g* is a fundamental parameter that determines
the Zeeman splitting of the electronic states and depends on
different quantum effects. For the most basic example, in
GaAs/AlGaAs like quantum wells (QWs) the g factor is
determined by the confined wave-function and by the meso-
scopic (Rashba type) spin–orbit (SO) interaction at the
interfaces [4–7]. Breaking of translation symmetry along the
QW growth direction (ẑ ) leads to an electron (leading-order)
g-factor tensor in the following form:

⎛
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where *̂g gives the Zeeman splitting for magnetic field in the

QW (i.e. xy) plane and *g for

B ẑ . The difference

* *D = -^ g g g is the QW g-factor anisotropy, which in first
order perturbation theory and for symmetric QWs with
barriers at = z L 2, reads [6]

/
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f 0( ) being the unperturbed confined wave-function and β the
(energy-dependent) Rashba SO coupling parameter, discussed
below; with * = = á ñg g f g fbulk

0
bulk

0¯ ∣ ∣( ) ( ) (i.e. equals to the
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bulk average). The g-factor anisotropy is then proportional to
the difference between the βs in the well and in the barrier,
and to the amplitude squared of the wave-function at the
interface; and as a function of L (as shown later in figures 3
and 4), Dg is seen to start equals to zero at L=0, to reach
then an extremum (e.g. a maximum at ~L 4 nm for GaAs
QWs) and then to return slowly to zero as L goes to infinity.

These theoretical results for *g LQW( ) give a simple picture
for the renormalization of the electron g factor due to
quantum confinement effects in III–V semiconductor QWs,
are in good agreement with the experimental data for GaAs
QWs [8–13], but are limited to symmetric QWs. The well
known Ivchenko and Kiselev framework for the g-factor
calculation [4, 14, 15] which is also based on the Kane model
and envelope function approximation, presents an accurate
solution for a general confinement (i.e. for both symmetric
and asymmetric QWs) and was explicitly applied in biased
GaAs and InGaAs triangular QWs [16]. However, the above
perturbative solution is much simpler, gives an intuitive and
useful physical interpretation for the g-factor renormalization,
derives from long used and tested approximations in similar
problems [17], more recently the g-factor solution has been
applied also to PbTe QWs [7], GaN QWs [18] and GaAs
nanodisks [3] and therefore it would be highly desirable to
have such a solution for a general nanostructure. In particular,
asymmetric quantum wells (AQWs), i.e. QWs with structure
inversion asymmetry (SIA), are important candidates for
structures with large g-factor variation. It is still not clear, for
example, how the SIA affects the above results for the g
factor in typical III–V AQWs. In this work we consider
square AQWs (i.e. QWs with different left and right barriers),
focus on the small L limit where both the quantum and SIA
effects are larger, and extend the above solution for *g LQW( ) to
the case of AQWs. Such low field perturbation solution has
shown to be accurate in the L 0 limit [6, 9–11], and reveal
here an interesting g-factor anisotropy sign change in narrow
AQWs that can be useful in different spintronic applications;
a detailed derivation of the main results is provided.

It is also interesting to investigate the electron g factor in
narrow-gap III–V semiconductor QWs with larger bulk g
factors, stronger SO interaction and smaller remote-bands
contribution than GaAs QWs. Among the narrow gap III–V
semiconductors, InAs presents large SO interaction, high
electron mobilities, small Shottky barriers and is therefore
particularly attractive for spintronic applications [19, 20]. The
gate-controlled electron g factor has been studied using InAs
AQWs [2]. Here we consider the *gQW for electrons confined
in undoped AlSb InAs GaSb AQWs. These are QW struc-
tures with SIA, analytical spin-split electronic structure and
therefore of interest to the physics of Rashba coupling in
semiconductor 2DEGs; the special possibilities connected
with the type II band-alignment in one interface and type III
in the other make them of interest also to the topological
insulator physics [21, 22]. Here expressions for the electron
*g LQW( ) in general III–V square AQWs are obtained and used

to calculate the electron g factor in specific InAs and GaAs
AQWs. Several differences are found between them and

between symmetric and asymmetric QWs; for example, the g-
factor anisotropy Dg is seen to have opposite signs in InAs
and GaAs QWs and, differently to the symmetric case, to
change sign in narrow AQWs due to SIA.

Next we present the multi-band envelope-function
model, then the AQW g-factor calculation, the results for
GaAs and InAs AQWs, the comparison with the experiments
and finally, in the conclusions, the summary of the results.

2. Multi-band envelope-function model

Using standard envelope-function method based on the
´ k p8 8 · Kane model for the bulk, the set of equations for the
envelope functions can be written as an effective Hamiltonian
for the electron (i.e. conduction band (CB)) envelope-func-
tions, with energy dependent effective-mass and explicit
Rashba SO coupling [23–25]. In the presence of an external
magnetic field we follow [6], add the bare Zeeman interaction,
make the fundamental substitution


 +k k Ae (-e being

the electron charge) and, as further explained in the appendix,
obtain the following effective Hamiltonian for the QW elec-
tronic states in an in-plane magnetic field = BB 0, , 0( ):
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where the CB edge profile Ec(z) is now a general one. The
Landau gauge is used with vector potential = z BA , 0, 0( )
and the signs m stand for spin down or up along ŷ . Note that
with this gauge the envelope function can be written as
Y = + f ze k x k yi x y ( )( ) , with f (z) satisfying e=s

sH f feff
( ) , kx

being a quantum number that gives the center of the cyclotron
orbit, i.e. = -z ℓ kx0

2 , where =ℓ eB is the magnetic
length; and ky is the wave-vector for the free motion along the
B-field direction which is zero for the ground-state. Finally es
is the electron energy with spin σ (=), the Bohr magneton

m = e m2B e (me being the free-electron mass),
a e b e=s sz z, ,

z

d

d
( ) ( ) and the effective mass esm z,( ) and

Rashba SO parameter b esz,( ) are given by:
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where Ev and Δ stand for the material valence band (VB) edge

and SO splitting respectively; = - á ñP m S p Xi e x
2

3
( ) ∣ ∣ is

the momentum matrix element, assumed constant along the
structure (as a fundamental assumption of the envelope-
function approximation) and determined by the measured

CB edge effective-mass in the well m*, i.e.
*

= +D

+ D
P

m
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It is easy to test and verify that the above effective Hamiltonian

2

Semicond. Sci. Technol. 31 (2016) 115008 M A Toloza Sandoval et al



reduces exactly to well-known Hamiltonians in three limits: (1)
in the zero magnetic field limit, giving the usual model for the
Rashba effect [23–25], (2) with no SO interaction, giving the
regular Landau level quantization in a QW [26] and (3) in the
bulk limit, reducing to the theory of Roth et al [27] for the
energy-dependent bulk g factor.

3. The g factor in AQWs

The ground state *gQW can be calculated in the small magnetic-

field limit considering the spin dependent terms in sHeff
( ) as a

perturbation. The zeroth order wave-function f z0 ( )( ) and
energy e0 are solutions of the unperturbed problem, i.e.

with B=0 and = =k k 0y x , - +
es

E z
z m z z c2

d

d

1

,

d

d

2( )( )
( )

e=f z f z0
0

0( ) ( )( ) ( ) , which corresponds to the Kane AQW
problem, which in turn can be easily solved exactly [25].
However, differently to the case of a symmetric QW, the
expectation value z̄ does not coincide in general with the
center of the well. For symmetric QWs with barriers at
= z L 2, =z 0¯ and thus the lowest energy state also has
=z 00 (i.e., kx=0). For AQWs instead, z0 has to be calcu-

lated minimizing the term  -
es

z z ℓ
m z2 , 0

2 2
2

[( ) ]
( )

in sHeff
( )

which simply leads to =z z0 ¯, independent on B (while
µk B zx 0 still vanishes when B 0). We note that an

alternative approach would be to change both coordinates,
using ¢ = -z z z̄ , and gauge, using ¢ = ¢z BA , 0, 0( ), in
which case the wave function changes as Y  Y¢ =

 Ye ezBxi ¯ and the lowest energy Y¢ would correspond to
¢ =z 00 and ¢ ºk 0x . Focussing here on AQWs, we prefer to

leave the role played by z̄ explicit, which accounts for the
diamagnetic shift [14–16].

In first order perturbation theory, one can simply calcu-
late the g factor from equation (3) as:

*


a e= - á - ñĝ g
m

f z z z f
4

, . 6e
Rbulk 2

0
0
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Note that in flat-band wells aR ( b=
z

d

d
) is different from zero

only at the interfaces where β changes abruptly. With

B ẑ ,

the system recovers the rotation symmetry around to growth
direction, and in the same approximation (see appendix) *g is
given by the bulk average, i.e.

*
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b e d= = + á - + ñg g g f
m

z g z f
4
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7

e
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2 0 rem
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( ) ( )

dgrem being the difference between the g-factor measured
experimentally and that given by the Roth formula, i.e. the
remote-bands contribution [27], and ge the free electron g
factor equals to 2. The QW g-factor anisotropy is then given
simply by:

* *


a eD = - =- á - ñ^ g g g
m

f z z z f
4

, . 8e
R2

0
0

0∣ ( )( ¯)∣ ( )( ) ( )

As illustrated in figure 1, for a general III–V square AQW we
set the two non-equivalent interfaces at =z zl and =z zr ,
with - =z z Lr l . The expectation values above can be easily

calculated and one gets:

* e e e= + +g g P g P g P 9l l w w r r0 0 0( ) ( ) ( ) ( )

and

D = D - Dg g g , 10r l( ) ( ) ( )

where Pi ( ò= f z zd
i

0 2∣ ( )∣( ) ) is the probability to find the
electron in the region i (i= l for z zl, i=w for < <z z zl r

and i=r for z zr); the bulk g factors = -g gi e


b e d+ gm

i
i4

0 rem
e

2 ( ) ( ) and


dbD = -g

m
z z f z

4
11j

e
j j j2

0 2( ) ( ¯)∣ ( )∣ ( )( )

with =j l r, and db b b= -j w j.
The g-factor anisotropy Dg in AQWs is then seen to be

determined by the differences db and by the wave-function
amplitudes (squared) at each interface, weighted however by
their distance to the center of the ground state orbit =z z0 ¯.
Note that in symmetric QWs db db=l r, - = - =z z z zl r¯ ¯
L 2 and the symmetrical result in equation (2) is recovered.
Recall also that for symmetric QWs, the ground-state corre-
sponds to = +z z z 2l r¯ ( ) at the center of the well and the
contributions from the two interfaces are equal:
- D = D = Dg g g 2l r( ) ( ) . The specific contribution of the
SIA to Dg increases with + -z z z2l r∣( ) ¯∣ and with
db db-f z f zr r l l

0 2 0 2∣ ∣ ( )∣ ∣ ( )∣ ∣( ) ( ) . It is interesting to consider
also the limit case of an infinite high barrier (a perfect insu-
lator) in one of the two sides (say the l side); in this case, the g
factor anisotropy is simply given by


dbD = -g z zm

r r
4 e

2 ( ¯)
f zr

0 2∣ ( )∣( ) .
Contrary to the symmetric QW case, the sign of Dg in

AQWs is not uniquely determined by the sign of db but
depends also on the sing of -z zinterf( ¯). In practice, to cal-
culate *g LQW( ) one solves the unperturbed problem and in the

above equations just plug in the obtained f zL
0 ( )( ) , e L0 ( ) and

Figure 1. Schematic illustration of a square asymmetric QW grown
along z with different interfaces at zl and zr, and of the classical
cyclotron orbit in real space for in-plane magnetic fields, centered at z0.
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also z L¯ ( ). Next we discuss the results for specific GaAs and
InAs AQWs.

4. AlxGa1�xAs GaAs AlyGa1�yAs
��

AQW

As a first example we consider -Al Ga As GaAsx x1

-Al Ga Asy y1 (with ¹x y) AQWs. The results for *g LQW( ) in
these wells are compared to those in similar GaAs symmetric
wells (SQWs) and in -insulator GaAs Al Ga Asy y1 AQWs.
Typical ground-state unperturbed solutions for these three
types of QWs are shown in figure 2 with the CB profile and
L=5 nm, showing that the wave-function is deformed and z0
is pushed away from the barrier on the left as the barrier
height increases. Similarly, for a fixed AQW profile, z0 is
pushed away from the higher barrier as the well width L is
decreased.

In figure 3, the obtained *̂g , *g and Dg for these three
wells are plotted as a function of L. First it is interesting to see

that the break of specular symmetry (or SIA) has only small
quantitative effects in the GaAs QW electron g factor except
for narrow wells when the g-factor anisotropy changes sign
and starts to increase rapidly. In these GaAs square AQWs
there is always a critical well width below which *̂g becomes
smaller than *g , i.e. Dg becomes negative, while in sym-
metric QWs Dg is always positive. Such anisotropy sign
change in thin AQWs is due to the z̄ dependence. For
example, in insulator GaAs GaAlAs AQWs it happens
when >z zr¯ , i.e. when the expectation value of the electron
position along the growth direction lies outside the QW or
GaAs region. Note also that for large well widths, the
anisotropy of the - -Al Ga As GaAs Al Ga Asx x y y1 1 AQWs
tend to that of the GaAs SQW, and when one of the barriers is
infinitely high, the anisotropy is a factor of 2 smaller, as due
to one interface only.

5. AlSb InAs GaSb== AQW

The present ´ k p8 8 · Kane model is much more precise for
InAs than it is for GaAs, as indicated by a much smaller
dg grem , which is ∼0.03 for InAs and ∼1.1 for GaAs. Here we
consider the electron g factor in InAs QWs similar to the
GaAs ones discussed above, namely thin InAs/GaSb sym-
metric QWs, AlSb InAs GaSb AQWs and insulator
InAs GaSb AQWs. Due to the broken-gap band alignment,

Figure 2. Conduction band-edge profile Ec(z), ground state energy e0
and probability density f z0 2∣ ( )∣( ) (with axis on the right) for
L=5 nm (a) Al Ga As GaAs Al Ga As0.15 0.85 0.15 0.85 SQW, (b)
Al Ga As GaAs Al Ga As0.3 0.7 0.15 0.85 AQW (red lines) and (c)
insulator GaAs Al Ga As0.15 0.85 AQW (blue lines). The respective
ground state orbit centers =z z0 ¯ are also shown. The parameters
used were = +E x1.519 1.247g ( ) eV, D = + x1.859 1.115(
+ -x E0.37 g

2 ) eV (x being the Al concentration) and m0.067 e for
the GaAs conduction-band edge effective mass. For the conduction
band-offset the 72% rule was used.

Figure 3. Effective electron g factors and the anisotropy Dg as a
function of the well width, in panels (a) and (b) respectively, for the
same structures in figure 2. In AQWs,Dg is seen to change sign for
narrow wells; note that the curves stop at the corresponding critical
well width for a bound state. A bulk conduction-band edge
* = - + -g x x0.44 4.25 3.9 2 (x being the Al concentration) was
used [28]. The experimental points are for *g in asymmetrically

doped GaAs Al Ga As0.15 0.85 AQWs as reported in [29].
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there are InAs confined electron states in these QWs with
GaSb barriers only when the well width < ~L L 9c nm. This
is because in InAs/GaSb QWs with >L Lc, the electron
energy e0 gets below EGaSb

v and the state is not confined in the
InAs layer anymore [30, 31]. Note that when e = Ev0

GaSb, the
GaSb (bulk) g factor diverges (see expression for β in
equation (5)) and * ~g L LcQW( ) is therefore expected to be
quite large since the barrier penetration is also expected to
increase when L Lc.

In figure 4(a) it is plotted the calculated *̂g (continuous
lines) and *g (dashed lines) for the three types of wells as a

function of L; and in figure 4(b), the corresponding Dg. The
SIA can be clearly seen to have a much stronger effect in
InAs QW g factors than it has in GaAs wells, due to the
stronger SO interaction. Compared to GaAs QWs, the elec-
tron g factor in InAs QWs is seen to be two-orders of mag-
nitude larger, with Dg also much larger and of the opposite
sign. Note that the anisotropy Dg in these InAs AQWs
changes sign at a smaller well width and that in
AlSb InAs GaSb wells, in the large L limit, Dg tend to that
of insulator InAs GaSb AQWs, instead to that of SQWs as
in GaAs wells, due to the large conduction (Γ) AlSb/InAs
band-offset. In these InAs AQWs, *g is seen to present a

maximum as a function of L.

It is also interesting to note the obtained large (in abso-
lute value) electron g factor (∼30) in InAs/GaSb QWs when
L Lc, which as just discussed, is due to barrier penetration

and to a divergence in the energy dependence of the bulk g
factor in GaSb. We now compare these calculations with the
available experimental data.

6. Comparison with the experiments

The electron g factor in GaAs/AlGaAs symmetric QWs has
been measured by different groups using both optical and
transport techniques, involving time-resolved photo-
luminescence and magnetoresistance measurements [8–13].
In particular *g is now well known; with good accuracy, it is
given by the above QW average of the bulk g factors, which
includes effects from the energy dependence of the bulk g
factors and from the wave-function barrier penetration.
Shown in figure 3(a), as L goes from very large values to near
zero, *g interpolates from the g factor in the well material to

that in the barrier, with a sign change and, therefore, *=g 0 for
a certain (narrow) well [4, 13].

The anisotropy Dg and its well width dependence are
less well known. With spin-quantum beats in the time-
resolved photoluminescence [9], Le Jeune et al [10] and
Malinowski and Harley [11] have measured Dg L( ) in GaAs
symmetric QWs, and as shown in [6] it is simply and accu-
rately described by equation (2) above. In

- -Al Ga As GaAs Al Ga Asx x y y1 1 square AQWs, Ye et al [33]
have measured the in-plane Zeeman splitting anisotropy
which is allowed by the SIA but is due to higher order terms
(in k and in B) [34].

More recently, * LgQW( ) in asymmetrically doped GaAs/
AlGaAs AQWs was studied by Shchepetilnikov et al [29]
using electron spin resonance detected with magnetoresis-
tance measurements. These data with doped AQWs can not
be precisely compared with our undoped square AQW results;
nevertheless, as shown in figure 3(a), the observed values and
well width dependence of *g agree fairly well with the the-

ory. As expected the experimental *g (which is for doped,
e ¹ 0F , AQWs) is a little larger than the calculated one
(which is for undoped wells); more interesting, the measured
g-factor anisotropy D ~g 0.08 for the 8 nm AQW (see [29]
figure 3) is not far from the calculated D =g 0.05 in
figure 3(b) above (note that in such well width range, both *g
and Dg increase with electron energy).

In such GaAs AQWs, there are also measurements of the
g-factor sign-reversal well-width L0 [13] and of the g-factor
dependence on the barrier height, controlled by the Al con-
centration x [29], which can further test of our model. A

= L 6.5 0.30 nm was determined for a

=GaAs Al GaAsx 0.33 asymmetrically doped QW and in
figure 5 it is shown that a L0 very close to that is expected also
theoretically, considering the above mentioned shift due to
the non zero Fermi energy. The figure compares our results
for *g L( ) in both symmetric and asymmetric (with infinite

Figure 4. Effective electron g factors ( *̂g , *g ) and the corresponding

anisotropy Dg (panels (a) and (b) respectively) as a function of the
well width, for three different InAs QWs: GaSb InAs GaSb
symmetric QW (black lines), insulator InAs GaSb asymmetric QW
(blue lines) and AlSb InAs GaSb asymmetric QW (red lines). As
before, dashed lines give *g and continuous *̂g . Well known bulk

low temperature parameters [32] and 0.96 eV and 1.98 eV for InAs/
GaSb and InAs/AlSb conduction-band offsets respectively,
were used.
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high left barrier) -GaAs Al Ga Asx x1 QWs, with x=0.15 and
0.33, and with the experimental data of [29]; one sees that L0
increases with both x and SIA and that the model describes
quantitatively well also the barrier height dependence, i.e.
nearly the same difference with the same change in x is
obtained both theoretical and experientaly. Note that this
mesoscopic barrier-penetration effect on g* applies to general
nanostructures, independently of the microscopic details or
structural defects. However, for a precise simulation of these
doped structures for example, one has to consider the occu-
pation of the states and the corresponding self-consistent
electrostatic-field, which will require numerical solutions; but
the equations to be used and the effects of the SO interaction
at the interfaces are as described here. Nevertheless, mea-
surements ofDg in thin undoped square AQWs would still be
the best test of our model and of the predicted effect of
anisotropy sign change.

Regarding such negative anisotropy in narrow GaAs
AQWs, Tomimoto et al [35] have measured a negativeDg in
a single sample with very narrow ( =L 0.32 nm) CdTe/ZnTe
QW and attributed it to a change in the sign of db . It is
interesting to note however that the g factor in such wells
behaves as in GaAs QWs, with positiveDg and no change in
the sign of db as a function of L when it is symmetric; this
observed negative Dg is then likely to have another expla-
nation. The growth of homogeneous and symmetric CdTe/
ZnTe QWs is difficult due to the large lattice mismatch and
the sample studied may well present some specular asym-
metry which can account for the observed negative Dg.

For InAs QWs there are much fewer experimental data.
Smith and Fang [36] measured an electron * ~ -g 8QW , in
10 nm GaSb InAs GaSb QWs, which however is a too wide
QW, i.e. beyond the bound state regime considered here; and
can not be compare with our results also due to the large
magnetic fields employed in the coincidence (between Zee-
man and Landau-level splittings) method used. The g factor in

wide InAs QWs was determined with similar methods also in
references [37, 38]. The electron g factor in thin InAs AQWs
was studied by Nitta et al [2] and an *g∣ ∣ of the order of 3.5

was measured in biased 4 nm InAs InGaAs AQWs, which is
not far from the present results, however the structures are
quite different and can not be directly compared. In general, a
self-consistent treatment of the band-edge profile and/or a
fine control of the structure parameters (including temperature
dependence, precise band-offset and electron effective mass
etc) are needed for a quantitative precise description of the
experimental data. The anisotropy Dg in InAs QWs does not
seem to have been measured yet.

7. Conclusions

Enough ground has been given to believe that the electron
effective g factor in III–V semiconductor AQWs can be tuned
within a wide range of values by controlling the well width
and composition, including a change of sign in both g factor
and g-factor anisotropy. The obtained effect of g-factor
anisotropy sign change in narrow wells is shown to be due to
SIA and determined by the electron average position in the
AQW, and can explain recent observations. Results for the
electron effective g factor tensor in different GaAs and InAs
QWs have been presented in fairly good agreement with the
available experimental data. With respect to GaAs QWs, InAs
QWs are seen to not only have a much larger g factor and g-
factor anisotropy but also opposite anisotropy sign. The
analytical expressions derived apply to general III–V square
AQWs and, as for the SQW case, can be easily extended to
describe also IV–VI and GaN AQWs, for example. These
results for the g-factor renormalization by the mesoscopic
quantum confinement in semiconductor nanostructures should
be of importance not only for the development of spintronic
devices but also for the spin manipulation with external
electric or magnetic fields in spin-based qubits made with
semiconductor nanostructures.
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Appendix. Effective Hamiltonian and g� for III–V QWs

The effective Hamiltonian used for the QW electronic states
in both transverse (equation (3)) and longitudinal magnetic
fields, is obtained projecting the ´8 8 Kane Hamiltonian into
the ´2 2 conduction-band space. Considering QWs grown
along ẑ and using the same basis states as in [24] after some
simple algebra one obtains the following Schroedinger-Pauli-

Figure 5. Longitudinal effective electron g factor ( *g ) as a function

of the well width, for both symmetric and asymmetric (i.e., with
infinite high left barrier) GaAs/GaAlAs QWs, with Al concentration
x=0.15 and 0.33. The measurements are from [13] and [29].
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like effective Hamiltonian:

b e s

b e s b e s

= +

+ +

s

s s

H H z k k

z k k z k k

1 i , ,

i , , i , , , A.1

x z y

x y z y z x

eff 0 [ ( ) ˆ ˆ ]

( )[ ˆ ˆ ] [ ( ) ˆ ˆ ] ( )

where H0 is the usual spin-independent part, i.e. kinetic
energy plus confining potential, with the energy dependent
effective mass in equation (4). The components kî are the
momentum (


+k Ae ) operators, which for zero magnetic

field lead to = - = =k k k k ki plus andz z x x y y
d

d
ˆ ˆ ˆ (i.e. good

quantum numbers). Note that in this case one then has
=k k, 0x y[ ] , b a b a= =k k k k k k, i and , ix z x y z y[ ˆ ] [ ˆ ] (recall

that a = b
z

d

d
) which substituting above give the well known

Rashba effective Hamiltonian [23–25] (with energy depen-
dent SO coupling parameter a; note that b is sometimes also
called Rashba coupling parameter, but clearly should not be
confused with its derivative a).

In the presence of a longitudinal homogeneous magnetic
field, one can use the Landau gauge = -ByA , 0, 0( ) and
after the fundamental substitution finds


= -k k B, i ,x y

e[ ˆ ˆ ]

b a=k k k, iy z y[ ˆ ˆ ] ˆ and b =k k, ix z[ ˆ ˆ ]


a -k Byx
e( )ˆ . Since in

this case Heff does not depend on x, one can write the
envelope spinor as y y= y ze ,k xi x ( ), where kx sets the center
of the orbit and can be chosen equal to zero, and one then has:

⎜ ⎟⎛
⎝

⎞
⎠ 

a s s b s= + + +H H k
e

By
e

B1 . A.2y x y zeff 0
ˆ ( )

Note that independently of the known divergence of the
vector potential in infinite systems (which can be treated with
a modulated vector potential [15, 39] or by considering finite
systems [14]), the off-diagonal terms above, i.e. those
proportional to a are much smaller than the diagonal ones
(proportional to b) and in a good first approximation can be
neglected, so that *g is simply given by equation (7). The
accuracy of this approximation was verified in [4] where it is
shown to be in close agreement with the full solution of the
Kiselev–Ivchenko equations (see curves 1 and 3 in figure 3
there); the present approximation corresponds to neglecting the
Kiselev–Ivchenko auxiliary function h [14, 15], which is indeed
several orders of magnitude smaller than the main function.
Note also that in the flat-band QWs considered here a is
different from zero only at the two interfaces, where it presents
opposite signs, so that the corresponding expectation values
should indeed be very small compared with the main term.

Similarly for a transverse magnetic field, as already dis-
cussed, one can chose = BzA , 0, 0( ) and has =k k, 0x y[ ˆ ˆ ] ,

 
b a b a b= = + +k k k k k k Bz B, i and , iy z y x z x

e e[ ˆ ˆ ] [ ˆ ˆ ] ( ( ) ),
which substituting above give the effective Hamiltonian in
equation (3).
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