

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS CURSO DE PÓS-GRADUAÇÃO EM GEOLOGIA ÁREA DE PETROLOGIA, METALOGÊNESE E EXPLORAÇÃO MINERAL

TESE DE DOUTORADO

PETROLOGIA E GEOQUÍMICA DAS ROCHAS METAMÁFICAS E METAULTRAMÁFICAS DO MUNICIPIO DE MANOEL VITORINO, POVOADO DE CATINGAL, ESTADO DA BAHIA

MICHELE CÁSSIA PINTO SANTOS

Salvador 2018

PETROLOGIA E GEOQUÍMICA DAS ROCHAS METAMÁFICAS E METAULTRAMÁFICAS DO MUNICIPIO DE MANOEL VITORINO, POVOADO DE CATINGAL, ESTADO DA BAHIA

Tese apresentada ao Curso de Pós-Graduação em Geologia, Instituto de Geociências, Universidade Federal da Bahia, como requisito parcial para obtenção do grau de Doutora em Geologia. Concentração em: Petrologia, Metalogênese e Exploração Mineral

Orientadora: Prof^a. Dr^a. Angela Beatriz de Menezes Leal

Salvador 2018

Ficha catalográfica elaborada pelo Sistema Universitário de Bibliotecas (SIBI/UFBA), com os dados fornecidos pelo(a) autor(a).

Santos, Michele Cássia Pinto Petrologia e geoquímica das rochas metamáficas e metaultramáficas do município de Manoel Vitorino, povoado de Catingal, estado da Bahia / Michele Cássia Pinto Santos. --Salvador, 2018. 150 f. : il Orientadora: Profa. Dra. Angela Beatriz de Menezes Leal. Tese (Doutorado - Curso de Pós - Graduação em Geologia) --Universidade Federal da Bahia, Instituto de Geociências, 2018. 1. Petrologia. 2. Metamorfismo (Geologia). 3. Rochas ultramáficas. 4. Geoquímica. 5. Química Mineral. I. de Menezes Leal, Profa. Dra. Angela Beatriz. II. Título.

MICHELE CÁSSIA PINTO SANTOS

"PETROLOGIA E GEOQUÍMICA DAS ROCHAS METAMÁFICAS E METAULTRAMÁFICAS DO MUNICÍPIO DE MANOEL VITORINO, POVOADO DE CATINGAL, ESTADO DA BAHIA"

Tese apresentada ao Programa de Pós-Graduação em Geologia da Universidade Foderal da Bahia, como requisito para a obtenção do Grau de Doutor em Geologia na área de concentração em Petrologia, Metalogênese e Exploração Mineral, em 04/04/2018.

Angela Bierthiz de Menisso (Dra. Angela Beatriz de Menezes Leal Orientadora - UFBA Dra. Ana Claudia de Aguiar Accioly Examinadora Externa - CPŘM Dr. Paulo César Corrêa da Costa Examinador Externo - UFMT Dr. Reinaldo Santana Correia de Brito Examinador Externo – UFBA Dra. Jailma Santos de Souza de Oliveira Examinadora Interna – UFBA

TESE APROVADA PELA BANCA EXAMINADORA:

Salvador – BA 2018

À minha mãe, sempre

AGRADECIMENTOS

Agradeço primeiramente a Deus pela benção e proteção nesta caminhada, por me dar força e coragem para continuar e pelos anjos da guarda que ele colocou na minha vida.

À minha mãe por sempre acreditar em mim, me incentivar, e ser quem é.

Ao meu pai, que deve estar muito orgulhoso e me iluminando.

À minha irmã pela confiança e apoio.

Agradeço à minha orientadora Prof.^a Angela por continuar me acompanhando e me apoiando desde a graduação, sempre atenciosa e presente.

À Andreia, pela companhia nessa caminhada.

À Ana Carolina, Pérola, Maria Clara e Marcos Vinicius muito obrigada pelo apoio nas campanhas de campo.

Às minhas amigas Daniele e Nelize, obrigada pela amizade.

À Reinaldo Brito e Rejane Luciano pelas dicas e ajuda fornecida para o desenvolvimento deste trabalho.

À Tenilson, pela ajuda nas análises do MEV.

À Natali, pela ajuda no tratamento dos isótopos.

À Pós-Graduação em Geologia pelo apoio financeiro e logístico.

À CAPES pelo fornecimento da bolsa de estudos.

À Companhia Baiana de Pesquisa Mineral (CBPM), em especial a Ernesto Fernando pelo apoio na confecção das lâminas delgadas e realização das análises químicas.

Gratidão a todos que contribuíram de alguma forma para este momento.

RESUMO

A área de pesquisa localiza-se na porção sudeste do estado da Bahia, município de Manoel Vitorino, povoado de Catingal. Está inserida no contexto tectônico do Cráton do São Francisco, correspondente ao Bloco Jeguié. Neste trabalho foram estudados dois corpos máficos-ultramáficos. O corpo Norte apresenta aproximadamente 2km de comprimento, sendo formado por meta-websterito, meta-ortopiroxenito, metaolivina websterito, meta-olivina-ortopiroxenito, meta-lherzolito, meta-harzburgito e meta-melanogabros cumulatos. O corpo Leste apresenta aproximadamente 1,5 km de comprimento e é composto por uma porção máfica, formada por metagabros e metagabronoritos, e uma porção ultramáfica formada por meta-websterito, metaolivina websterito. meta-olivina-ortopiroxenito, meta-Iherzolito cumulatos е serpentinito. As rochas ultramáficas dos dois corpos estudados possuem texturas cumuláticas e apresentam como fase cúmulos olivina, ortopiroxênio e espinélio, e como fase intercúmulos/pós-cúmulos minerais como clinopiroxênio, anfibólio e minerais opacos. Estas rochas encontram-se modificadas por intenso grau de serpentinização e talcificação, além de outras transformações de menor temperatura que atestam o reequilíbrio pós-magmático na fácies anfibolito. A análise calcográfica evidenciou a presença de uma paragênese sulfetada intersticial marcada por pentlandita, calcopirita, pirita, violarita e pirrotita, além de arsenietos de Ni e Co. Os dados de geotermobarometria permitiram a definição das temperaturas de cristalização e as temperaturas do reequilibro metamórfico. As razões ¹⁴³Nd/¹⁴⁴Nd produziram idades modelos mesoproterozoicas para as rochas máficas do corpo Leste. As características petrográficas e geoquímicas apresentadas permitiram a classificação dos corpos ultramáficos estudados como intrusões diferenciadas de pequeno porte, de filiação toleíticas e colocados sob condições de alta pressão.

Palavras-chave: Corpos máfico-ultramáficos; petrografia; química mineral; geoquímica.

ABSTRACT

The research area is located in the southeastern portion of the state of Bahia, municipality of Manoel Vitorino, village of Catingal. It is inserted in the tectonic context of São Francisco Craton, corresponding to the Block Jeguié. In this work two mafic-ultramafic bodies were studied. The northern body is approximately 2km long, consisting of meta-websterite, meta-orthopyroxenite, meta-olivine websterite, metaolivine-orthopyroxenite, meta-lherzolite, meta-harzburgite and meta-melanogabbros cumulates. The eastern body is approximately 1.5 km long and consists of a mafic portion, formed by metagabbros and metagabbronorites, and an ultramafic portion formed by meta-websterite, meta-olivine websterite, meta-olivine -ortopyroxenite, meta-lherzolite cumulates and serpentinite. The ultramafic rocks of the two bodies studied have cumulus textures and show as cumulus phases olivine, orthopyroxene and spinel, and as intercumulus / post-cumulus phase the clinopyroxene, amphibole and opaque minerals. These rocks are modified by intense degree of serpentinization and talcification, and other transformations of lower temperature attesting to the postmagmatic rebalancing in amphibolite facies. The chalcographic analysis evidenced the presence of an interstitial sulfide paragenesis marked by pentlandite, chalcopyrite, pyrite, violarite and pyrrhotite, as well as arsenietes of Ni and Co. The geothermobarometry data allowed the definition of crystallization temperatures and ¹⁴³Nd/¹⁴⁴Nd metamorphic rebalancing temperatures. The ratios produced mesoproterozoic models ages for the mafic rocks of the Eastern body. The petrographic and geochemical characteristics presented allowed the classification of ultramafic bodies studied as small differentiated intrusions, of tholeitic affiliation and placed under high pressure conditions.

Keywords: Mafic-ultramafic bodies; petrography, mineral chemistry, geochemistry.

ÍNDICE DE QUADROS

Quadro 3.1: Composição modal das litologias encaixantes e rochas associadas18
Quadro 3.2: Nomenclatura para rochas cumuláticas
Quadro 3.3: Composição modal das litologias do Corpo Norte
Quadro 3.4: Composição modal das litologias do Corpo Leste
Quadro 4.1: Sumário dos dados de química mineral obtidos para as rochas
estudadas48
Quadro 4.2: Temperaturas calculadas com base no geotermômetro Cpx-OI e o valor
médio para os obC161
Quadro 4.3: Temperaturas calculadas com base no geotermômetro Cpx-Opx e o
valor médio para os obC161
Quadro 4.4: Temperaturas calculadas com base no geotermômetro de Kretz (1982)
e o valor médio para os pbaC62
Quadro 4.5: Temperaturas calculadas (°C) para os plagioclásios e o valor médio
para os Metagabronoritos e pbaC63
Quadro 4.6: Temperaturas calculadas com base no geotermômetro Opx-OI e o valor
médio para os obC1, Corpo Leste63
Quadro 4.7: Temperaturas calculadas para os ortopiroxênios e o valor médio, dos
corpos Norte e Leste64
Quadro 4.8: Pressões calculadas (kbar) baseada no geobarômetro de AI^{T} em
hornblenda65
Quadro 5.1: Análises químicas de rocha total para os corpos ultramáficos Norte. #mg
(número de magnésio) = (MgO*100)/(MgO+FeO _T molecular)68
Quadro 5.2: Análises químicas de elementos terras raras para os corpos
ultramáficos Norte69
Quadro 5.3: Análises químicas de rocha total para as rochas máficas do Corpo
Leste. #mg (número de magnésio) = (MgO*100)/(MgO+FeOT molecular)70
Quadro 5.4: Análises químicas de rocha total para os corpos ultramáficos Leste. #mg
(número de magnésio) = (MgO*100)/(MgO+FeO _T molecular)71
Quadro 5.5: Quadro Norma CIPW para as rochas máficas do Corpo Leste71
Quadro 5.6: Quadro Norma CIPW para os corpos ultramáficos Norte e Leste72

Quadro 5.7: Razões dos ETR normalizados pelo condrito (MCDONOUGH & SUN
1995)
Quadro 5.8: Coeficientes de partição (Kd)86
Quadro 5.9: Percentagem em volume (peso). Correções de acordo com BÉDARD
(1994)
Quadro 5.10: Valores calculados para a composição do magma original88
Quadro 5.11: Dados analíticos Rb-Sr para as rochas máficas do Corpo Leste90
Quadro 5.12: Razões isotópicas, idades modelos TDM e valores de épsilon Nd (ɛNd)
em diversos períodos de tempo para as rochas máficas do Corpo Leste: εNd (0) =
hoje; εNd (TDM) = na extração do magma do manto; εNd (T1) = a 1,0 Ga; εNd (T2) =
a 2,0 Ga; e εNd (T3) = a 2,5Ga90

ÍNDICE DE FIGURAS

Figura 1.1: a) Mapa de localização e b) Principais vias de acessos à área de estudo.
Figura 1.2: Mapa de localização dos trabalhos realizados na area
Figura 1.3: a) Sete folhas cartográficas geológicas na escala 1: 50.000 mapeadas
pelo Projeto Contendas-Mirante; b) Detalhe ampliado da porção leste da Folha
Catingal8
Figura 2.1: a) Compartimentos tectônicos e limites do Cráton do São Francisco; b)
Mapa geológico regional12
Figura 2.2: Mapa Geológico Simplificado do estado da Bahia, com destaque (tons de
verde) para alguns dos principais sistemas intrusivos (máficos e ultramáficos) do
estado13
Figura 3.1: a) Mapa da área do Corpo Norte; b) Seção esquemática da área Norte.
Figura 3.2: a) Mapa da área do Corpo Leste; b) Seção esquemática da área Leste.
Figura 3.3: Diagrama QAP (STRECKEISEN, 1976) para a classificação do protólito
das rochas dos grupos do TTG e do Migmatito (Leucossoma)20
Figura 3.4: Diagrama Ol-Cpx-Opx (STRECKEISEN, 1976), para a classificação das
rochas ultramáficas do Corpo Norte30
Figura 3.5: Diagrama PI-Cpx-Opx (STRECKEISEN, 1976), para a classificação das
rochas máficas do Corpo Leste36
Figura 3.6: Diagrama Ol-Cpx-Opx (STRECKEISEN, 1976), para a classificação das
rochas ultramáficas do Corpo Leste
Figura 4.1: Diagrama de classificação para olivinas de DEER et al. (1972)49
Figura 4.2: Diagramas de classificação de piroxênios segundo Morimoto et al. (1990)
e Poldervaart & Hess (1951), para os piroxênios dos corpos estudados51
Figura 4.3: Composição dos plagioclásios classificados segundo os componentes
moleculares Ab-Or-An52
Figura 4.4: Diagrama de classificação de anfibólios cálcicos segundo Leake et al.
(1991) para os anfibólios dos corpos estudados53

Figura 4.5: Diagrama de classificação das cloritas segundo Deer et al. (1992) para as rochas estudadas.54 Figura 4.6: a) Fotomicrografia do detalhe do metagabronorito. Metagabronorito – Amostra NLP-009. Aumento 100X, NX; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Espectro EDS da titanomagnetita..56 Figura 4.7: a) Fotomicrografia da paragênese dos cristais de pentlandita, calcocita e magnetita. Meta-Olivina Ortopiroxenito – Amostra NLP-003. Aumento 200X, LR; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Figura 4.8: a) Fotomicrografia da paragênese dos cristais de pirrotita, calcopirita e pentlandita. Meta-Melanogabro Cumulato (pbaC0) – Amostra NLP-006. Aumento 50X, LR; b) Imagem de microscopia eletrônica de varredura (MEV); c) Espectro EDS da Calcopirita; d) Espectro EDS da pirrotita; e) Espectro EDS da pirita; f) Espectro Figura 4.9: a) Fotomicrografia da paragênese dos cristais de nicolita e gersdorfita. Metamelanogabro Cumulato (pbaC1) – Amostra NLP-017. Aumento 200X, LR; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Figura 4.10: a, b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados. Meta-Melanogabro Cumulato (pbaC1) - Amostra NLP-001; c)

Diagrama tectônico Jensen (1976) para as rochas máficas e ultramáficas dos Corpos estudados. Símbolos como na Figura 5.1.....77 Figura 5.5: Diagramas de variação #mg versus elementos maiores (%).Símbolos Figura 5.6: Diagramas de variação #mg versus elementos traços (ppm). Símbolos como na figura 5.1......80 Figura 5.7: Diagrama de elementos terras raras para os litotipos do Corpo Norte: a) obC1 (Meta-Olivina Websteritos e Meta-Olivina Ortopiroxenitos; b) obC2 (Meta-Lherzolitos e Meta-Harzburzitos); e c) pbaC (Meta-Melanogabro Cumulatos). Símbolos como na Figura 5.1.....81 Figura 5.8: Diagrama de elementos terras raras para os litotipos do Corpo Leste: a) Rochas máficas; b) bC (Meta-Websterito); c) obC1 (Meta-Olivina Websteritos e Meta-Olivina Ortopiroxenitos); d); obC2 (Meta-Lherzolitos e Serpentinito). Símbolos Figura 5.9: Diagrama de elementos terras raras calculados para o provável magma parental para as rochas cumuláticas dos corpos estudados. Corpo Norte: a) obC1; b) Figura 5.10: Diagrama de evolução do neodímio......91 Figura 5.11: Diagrama ε Nd versus razão inicial ⁸⁷ Sr/⁸⁶ Sr. SIGLAS: DM- Manto

ÍNDICE DE PRANCHAS

Prancha 1: Granulitos enderbíticos (pEed).	17
Prancha 2: TTG (Tonalito Trondhjemito Granodiorito)	19
Prancha 3: Granulitos Máficos e Anfibolitos	21
Prancha 4: Migmatitos	22
Prancha 5: Kinzigitos	24
Prancha 6: Sienitos	25
Prancha 7: Hornblenda granoblastitos (pEhgt)	26
Prancha 8: Hornblenda granulitos charnockíticos (pEhch)	27
Prancha 9: Dique Máfico	28
Prancha 10: Fotomicrografias do Corpo Ultramáfico Norte	32
Prancha 11: Fotomicrografias do Corpo Máfico Leste.	38
Prancha 12: Fotomicrografias do Corpo Ultramáfico Leste	40

SUMÁRIO

CAPÍTU	JLO 1 – INTRODUÇÃO	1					
1.1 L	OCALIZAÇÃO E ACESSO DA ÁREA DE TRABALHO	2					
1.2 N	IATERIAIS E MÉTODOS	3					
1.3 T	RABALHOS ANTERIORES	4					
CAPÍTI	JLO 2 – CONTEXTO GEOLÓGICO	10					
CAPÍTI	JLO 3 – GEOLOGIA LOCAL E PETROGRAFIA	14					
3.1	TIPOS LITOLÓGICOS ENCAIXANTES E ROCHAS ASSOCIADAS	14					
3.1.1	Granulitos Enderbíticos (pEed)	14					
3.1.1.1	TTG (Tonalito Trondhjemito Granodiorito)	17					
3.1.1.2	Granulitos Máficos e Anfibolitos20						
3.1.1.3	Migmatitos20						
3.1.1.4	Kinzigitos23						
3.1.2	Sienitos (pEalc)	25					
3.1.3	Hornblenda Granoblastitos (pEhgt)	25					
3.1.4	Hornblenda Granulitos Charnockíticos (pEhch)	26					
3.1.5	Dique Máfico	27					
3.2 ULTRA	CARACTERIZAÇÃO PETROGRÁFICA DOS CORPOS MÁFI MÁFICOS	CO- 29					
3.2.1	Corpo Ultramáfico Norte	30					
3.2.2	Corpo Máfico-Ultramáfico Leste	36					
3.3	ALTERAÇÕES SECUNDÁRIAS	43					
3.3.1	Propilítica	44					
3.3.2	Potássica	45					
3.3.3	Sericítica (ou Fílica)	45					
3.3.4	Serpentinização, Talcificação e Bastitização	46					

3.3.5	Martitização	.47
CAPÍ	TULO 4 – QUÍMICA MINERAL	.48
4.1	OLIVINA	.48
4.2	PIROXÊNIO	.50
4.3	PLAGIOCLÁSIO	.51
4.4	ANFIBÓLIO	.53
4.5	CLORITA	.54
4.6	MINERAIS OPACOS	.55
4.7	GEOTERMOMETRIA	.60
4.8	GEOBAROMETRIA	.64
CAPÍ	TULO 5 – LITOGEOQUÍMICA	.67
5.1	MOBILIDADE DOS ELEMENTOS	.67
5.2	CLASSIFICAÇÃO	.74
5.3	EVOLUÇÃO MAGMÁTICA	.76
5.4	ELEMENTOS TERRAS RARAS	.79
5.5 ROCH	CONCENTRAÇÃO DOS ETR NOS LÍQUIDOS MAGMÁTICOS PARA IAS CUMULÁTICAS	AS .84
5.6	GEOLOGIA ISOTÓPICA	.90
CAPÍ	TULO 6 – CONSIDERAÇÕES FINAIS	.92
REFE	RÊNCIAS	.95
ANEX	OS	101

CAPÍTULO 1 – INTRODUÇÃO

Na porção sul-sudeste do Cráton do São Francisco, no estado da Bahia, ocorrem vários corpos máficos e ultramáficos, de pequenas dimensões, encaixados nos terrenos granulíticos do Bloco Jequié, alguns deles com presença inequívoca de mineralização sulfetada. Por não existirem trabalhos detalhados realizados nestes corpos, Santos (2013) realizou um estudo sistemático da caracterização petrológica na área leste, localizado na zona rural do município de Manoel Vitorino. Essa autora classificou o corpo máfico-ultramáfico leste como uma intrusão diferenciada, colocada sob condições de alta pressão, formada por uma porção máfica composta por metagabros e metagabronoritos, e uma porção ultramáfica formada por meta-ortopiroxenitos, meta-olivina websterito e meta-websteritos, com a presença de calcopirita, pirita e pentlandita.

O objetivo geral deste trabalho é ampliar o conhecimento geológico dessas rochas, caracterizando os corpos máficos e ultramáficos, além das rochas encaixantes e rochas associadas, presentes na Folha Catingal (1:50.000), na porção oeste do Bloco Jequié, do ponto de vista petrológico (petrografia, química mineral e geoquímica) e isotópico.

Como objetivos específicos esperam-se:

- Identificar os tipos litológicos associados aos corpos máfico-ultramáficos da área e suas possíveis relações de contato com as rochas encaixantes. Ainda com relação aos corpos máficos-ultramáficos, serão estabelecidas as espessuras aflorantes, os comprimentos e direções destes corpos procurando-se definir as rochas do topo e da base;
- Descrever petrograficamente as rochas máficas e ultramáficas e as rochas encaixantes identificando os minerais constituintes, e descrevendo suas relações texturais;
- Caracterizar a mineraloquímica dos minerais estudados, afim de se obter suas composições o que possibilitará a temperatura e pressão de colocação dos corpos em foco;
- Definir idades de cristalização e metamorfismo dos litotipos da área;

 Caracterizar o comportamento geoquímico dos elementos maiores, traço e Terras Raras dos corpos máficos-ultramáficos, através de diagramas usados na literatura.

1.1 LOCALIZAÇÃO E ACESSO DA ÁREA DE TRABALHO

A área de trabalho localiza-se na porção sudeste do estado da Bahia, compreendida entre os paralelos 14°3'0"S e 14°11'24"S e os meridianos 40°36'36"W e 40°30'36"W (Figura 1.1a), na zona rural do município de Manoel Vitorino, no povoado de Catingal.

O acesso pode ser feito, partindo de Salvador até a cidade de Feira de Santana pela BR 324. A partir de Feira de Santana, seguir pela BR 116 sentido sudeste, passando por Santo Estevão e Milagres até o município de Jequié, onde seguindo pela direita na BA-330, com cerca de 30 km de trajeto percorrido vira-se à esquerda em direção à Rod. Jequié - Porto Alegre e com 31 km toma-se a esquerda e percorre-se mais 23 km até o povoado de Catingal. Este percurso totaliza 449 km (Figura 1.1b).

Figura 1.1: a) Mapa de localização e b) Principais vias de acessos à área de estudo.

Fonte: a) IBGE, 2006; b) Fonte: Google Maps (2011).

1.2 MATERIAIS E MÉTODOS

Para atingir os objetivos propostos, a pesquisa desenvolvida no Instituto de Geociências na Universidade Federal da Bahia, utilizou os métodos apresentados nos Quadros A1.1 a 1.3, nos Anexos e resumidos no Quadro A1.4.

Foram realizados trabalhos preliminares de pesquisa e levantamento bibliográfico, além dos trabalhos de campo, realizados em 3 campanhas, onde foram descritos 179 pontos.

Foram descritas 85 lâminas delgadas e 25 lâminas delgadas polidas das diferentes litologias presentes na área. Além da identificação dos minerais constituintes, assim como a descrição de suas relações texturais nos diferentes tipos de rochas, a descrição petrográfica permitiu a classificação da rocha, sequência de cristalização e a seleção de amostras para realização de análises geoquímicas e de química mineral. As lâminas foram descritas no Laboratório de Mineralogia Óptica e Petrografia do IGEO/UFBA, utilizando-se o microscópio OLYMPUS BX41, e confeccionadas pela Companhia Baiana de Pesquisa Mineral (CBPM).

Foram determinados em 49 amostras os elementos maiores, traço e terras raras, nos laboratórios do IGc/USP e SGS Geosol. Os elementos maiores (SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O, MnO, TiO₂, P₂O₅ e Cr₂O₃) e alguns elementos traço (Ba, Nb, Ni, Sr, Sc, Y e Zr) foram dosados por Espectrômetro de Emissão ICP (Jarrel Ash AtomComp Model 975 /Spectro Ciros Vision) e os outros elementos traço e terras raras por Espectrômetro de Plasma Induzido (ICP-MS: Perkin-Elmer ELAN 6000). No caso do Na₂O e K₂O as análises com teores abaixo de 1% foram obtidas por absorção atômica após digestão de HCI e HCIO₄. Perda ao fogo (LOI) foi estimada pela ignição em 1g de amostra a 950°C por 90 minutos. As análises de Au foram pelo método Fire Assay.

A análise e interpretação dos resultados analíticos foram realizadas utilizando o Excel para o cálculo dos índices de diferenciação (#mg e IS- Índice de solidificação) e posteriormente a confecção de diagramas binários e ternários, utilizando os *softwares* GCDkit 2.23 (JANOUSEK et al., 2006) e o MinPet 2.02 (RICHARD, 1995).

Em 6 lâminas selecionadas, foram realizadas 47 análises de microscopia eletrônica por varredura (MEV) no Laboratório MultiUsuário de Microscopia

Eletrônica de Varredura (LAMUME), Instituto de Física e Geofísica (UFBA), com o aparelho de marca Jeol, modelo JSM-6610 LV acoplado a um aparelho de microanálise de raios X com energia dispersiva (EDS) modelo X-Max Oxiford Instruments 20 mm².

Em 13 lâminas selecionadas, foram realizadas 279 análises de química mineral, sendo que 179 foram realizadas na Microssonda Eletrônica do tipo Cameca SX 100, na *Université Blaise Pascal* em *Clermont Ferrand*, França, em condições de operação de 15 kV, 15 nA, com espessuras do raio incidente variando entre 5 e 10µm, e 100 foram realizadas no Laboratório da Universidade Federal do Rio de Janeiro (UFRJ), onde se utilizou a microssonda do tipo Jeol JXA-8230, em condições de operação de 15kV e 20nA.

Além de verificar a composição química das principais fases minerais, foi possível obter parâmetros físico-químicos, que possibilitaram o estabelecimento das condições de temperatura (geotermômetro) e pressão (geobarômetro) a que estiveram submetidos os corpos estudados.

Os geotermômetros e barômetros foram determinados com o auxílio do sotfware PTMAFIC v 2.0 (SOTO, 1993) e planilhas do Excel.

Para o cálculo das fórmulas estruturais de cada fase mineral analisada foi utilizada a metodologia descrita por DEER et al. (1992), através de planilhas Excel disponibilizadas por TINDLE (2010). Para a confecção de gráficos e diagramas relacionados a estes dados foram utilizados os programas MinPet versão 2.02 (RICHARD, 1995) e Corel Draw X5.

Foram realizadas, no Centro de Pesquisas Geocronológicas (CPGeo) da Universidade de São Paulo (USP), 04 análises pelos métodos Rb-Sr e Sm/Nd para a determinação do grau de contaminação que estas rochas foram submetidas, além dos parâmetros isotópicos (⁸⁷Sr/⁸⁶Sr e ¹⁴³Nd/¹⁴⁴Nd) para caracterização da fonte.

1.3 TRABALHOS ANTERIORES

No Cráton do São Francisco, os primeiros trabalhos a identificar a existência de complexos máfico-ultramáficos no Estado da Bahia, foram os levantamentos aeromagnéticos regionais pelo Serviço Geológico do Brasil (Companhia de Pesquisas de Recursos Minerais - CPRM) em 1976. Entre o período

de 1979 a 1981 a Mineração Nhambú Limitada (um empreendimento conjunto entre a BP Minerals Ltd. e RTZ Ltd. no Brasil) realizou um programa de exploração regional para metais base e preciosos no sul do Estado da Bahia (BARNES et al., 2011).

A área do presente trabalho já foi estudada por projetos (MELO et al., 1977; MARINHO et al., 1979; SANTOS & SOUZA, 1985; MARINHO et al., 2009; SÁ et al., 2010 - Figura 1.2), que deram destaque para o potencial metalogenético da região sudeste do Estado da Bahia, devido principalmente aos estudos relacionados à Faixa Contendas Mirante (Sequência metavulcanossedimentar Contendas-Mirante).

Após as descobertas das mineralizações de cobre no Vale do Curaçá e de cromo em Campo Formoso, as ocorrências de rochas básicas e ultrabásicas na Bahia despertaram especiais atenções, e por esse motivo foi realizado o **Projeto Rochas Básicas e Ultrabásicas de Vitória da Conquista** (MELO et al., 1977), que tinha como objetivos: investigação geológica e geoquímica de caráter regional, levantamentos aerogeofísicos e verificação de ocorrências minerais - visando localizar e selecionar áreas-alvo de maior prospectividade, merecedoras de estudos complementares de detalhe. Devido ao número elevado de informações a serem checadas e às dimensões consideráveis da área do projeto, os trabalhos e as conclusões advindas assumiram, muitas vezes, um caráter preliminar.

As rochas presentes na área do presente estudo, de acordo com a classificação apresentada por MELO et al. (1977), estão inseridas no Complexo Metamórfico Migmatítico, Complexo Granulítico e na unidade Rochas Básicas e Ultrabásicas de Posicionamento Indeterminado mapeadas pela CPRM, representada na área por Gabros e Ultrabásicas

Os corpos básicos e ultrabásicos intrusivos classificados no Projeto foram admitidos como originados em zonas orogênicas e corresponderiam aos tipos Alpino e Alaskeano (MELO et al., 1977).

O **Projeto Contendas-Mirante** (MARINHO et al., 1979), teve como objetivo realizar o mapeamento geológico regional e prospecção geoquímica e aluvionar visando definir os ambientes geológicos propícios às mineralizações de Pb, Zn e Cu, típicas de ambiente de *greenstone belt*. Baseado nestes trabalhos obteve-se a cartografia geológica de sete folhas (Figura 1.3a), na escala 1: 50.000

(dentre elas a Folha Catingal) (Figura 1.3b), além de um mapa integrado na escala 1:200.000 e suas respectivas colunas estratigráficas.

Figura 1.2: Mapa de localização dos trabalhos realizados na área.

Fonte: Adaptado de IBGE (2006), Melo et al. (1977), Marinho et al. (1979), Santos & Souza (1985), Marinho et al. (2009) e Sá et al. (2010).

Ainda neste projeto, o capítulo de prospecção geoquímica de sedimentos correlaciona a distribuição geoquímica de alguns elementos e as litologias presentes. Segundo Marinho et al. (1979) devido à complexidade da área estudada e à grande diversificação nos tipos litológicos presentes, um tratamento global dos dados geoquímicos não conseguiria revelar mudanças sutis, e apresentaria estimadores estatísticos mais representativos de uma área geográfica do que do ambiente geológico. Para melhorar a sensibilidade da interpretação, e, ao mesmo tempo, apresentar um panorama geoquímico mais realístico, a região foi dividida em oito domínios litológicos, cada um representando um ambiente geológico ou um conjunto de rochas que poderia ser favorável ou não à mineralização.

A área de estudo do presente trabalho está inserida na População III, que compreende a áreas com predominância das rochas do Complexo Granulito-

Granoblastítico (encaixante granulítica) e subordinadamente ocorrem kinzigitos, gabros, peridotitos, rochas calciossilicáticas, formação ferrífera bandada e, às vezes, sem expressão mapeável, mármores, anortositos e anfibolitos. Essa heterogeneidade litológica torna um pouco problemática a avaliação do potencial desta população de rochas, sendo necessário um reagrupamento das amostras desse grupo em subpopulações, de acordo com os diferentes ambientes litológicos que o compõem.

O Corpo Norte corresponde ao Alvo 31, abrangendo uma área de 9km², sendo considerado de 3^ª ordem e onde registraram-se 9 anomalias: 1° grau de Cr e de Ni, e 2° grau de Co.

O Corpo Leste corresponde ao Alvo 34, abrangendo uma área de 9km², sendo considerado de 3^a ordem e onde registraram-se 6 anomalias: 1° grau de Cr e as demais, menores, de Cu, Ni e Co.

O Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais Folha SD.24-Y-A – Vitória da Conquista (SANTOS & SOUZA, 1985), não delimitou alvos favoráveis para a exploração mineral na área de estudo, porém foram apresentados indícios/ocorrências de substâncias minerais como mármore, quartzo, amianto e grafita.

Em 2009 a Diretoria Técnica da CBPM, decidiu publicar uma Edição Histórica da Série Arquivos Abertos, sob o título **A Sequência Vulcanossedimentar** *de Contendas-Mirante Uma Estrutura do Tipo Greenstone Belt?*, baseado no Projeto Contendas Mirante (MARINHO et al., 1979), devido a sua importância histórica e precursora de importantes descobertas minerais do Estado.

A partir do trabalho de Mascarenhas (1979) que identificou características peculiares aos *greenstone belts*, nas sequências de baixo grau de metamorfismo, reconhecidas no leste da Bahia, fez-se necessário a realização de estudos detalhados, nesta região, com destaque para o Complexo Metamórfico de Contendas-Mirante.

Figura 1.3: a) Sete folhas cartográficas geológicas na escala 1: 50.000 mapeadas pelo Projeto Contendas-Mirante; b) Detalhe ampliado da porção leste da Folha Catingal.

Fonte: Adaptado de Marinho et al. (1979).

Este trabalho reuniu os dados e resultados obtidos pelo Projeto Titânio do Sul da Bahia que foi realizado na década de 1980, além de realizar uma avaliação e interpretação dos mesmos dentro de um contexto geológico e tectônico atualizado. Foram confirmados quatro conjuntos de alvos prioritários para pesquisas de ferro e titânio (recomendados pelo Projeto Titânio do Sul da Bahia) e ampliou-se para seis as áreas de interesse para pesquisas de ferro, totalizando 10 alvos (Figura 1.2).

A área de estudo do presente trabalho não está inserida em nenhum dos alvos, porém devido ao contexto geológico é possível correlacionar algumas unidades presentes nos Alvos 2 e 3, Jequié e Boa Nova-Poções, respectivamente (Figura 1.2).

CAPÍTULO 2 – CONTEXTO GEOLÓGICO

A área de trabalho está inserida no setor oeste do Bloco Jequié (BJ) (Figuras 2.1a e b), próximo à zona de sutura com o Bloco Gavião (nessa região representada pela Sequência Vulcanossedimentar Contendas-Mirante), ambos segmentos crustais compondo o Cráton do São Francisco (CSF) (ALMEIDA, 1977). Segundo o modelo de Begg et al. (2010), muitos dos principais depósitos magmáticos de sulfetos ficam situados perto ou nas margens dos blocos da litosfera e, mais geralmente, perto da margem dos crátons. Em algumas situações, as margens referidas são as antigas zonas de suturas nas bordas dos domínios litosféricos espessos, e não são necessariamente as margens atuais de crátons mapeados.

O CSF abriga uma grande variedade de terrenos formados durante o arqueano e o paleoproterozoico, bem como coberturas sedimentares e metassedimentares com magmatismo máfico associado. Neste contexto, destacam-se como principais unidades de rochas máficas e ultramáficas do Estado (Figura 2.2), aquelas associadas às sequências vulcanossedimentares arqueanas e paleoproterozoicas do tipo *greenstone belts* (ex: Umburanas, Brumado, Ibitira-Ubiraçaba, Mundo Novo, entre outras), as unidades litológicas representadas por diques e *sills* máficos (ex: Chapada Diamantina, Espinhaço Setentrional, Rio Jacaré, Serra de Jacobina, dentre outros) e complexos máficos – ultramáficos (ex: Campo Alegre de Lourdes, Curaçá, Mirabela, etc.).

Abram (1993) apontou que poderia haver novos corpos máficoultramáficos mineralizados, que se encontram alinhados com o Corpo Máfico-Ultramáfico da Fazenda Mirabela (CFM) (Figura 2.1), porém na época, estudos de detalhe não foram realizados nestes corpos, não permitindo uma correlação petrográfica, geoquímica e tipológica com o CFM, mas apenas geográfica.

Santos (2013) fez um resumo das principais bibliografias sobre as características dos corpos máficos e ultramáficos, assim como a correlação destes como a sua origem em relação à ambiência tectônica.

No estado da Bahia se destacam os corpos classificados como complexos estratiformes e intrusões diferenciadas de pequeno e médio porte.

Na porção oeste e central do BJ, ocorrem granulitos heterogêneos orto e paraderivados, além de rochas enderbíticas, charnoenderbíticas e charnockíticas, essas últimas com química calcioalcalina e com quantidades altas a intermediárias de potássio (BARBOSA et al., 2012). As rochas que compõem a unidade dos granulitos enderbíticos-charnockíticos eram consideradas anteriormente como Complexo Metamórfico Migmatítico (MELO et al., 1977).

Segundo Barbosa & Sabaté (2004), o Bloco Gavião é composto principalmente de associações gnaisse-anfibolito e tonalito-granodiorito ortognaisses de fácies anfibolito datados em 2,8-2,9 Ga, bem como g*reenstone belts*, em fácies xisto-verde. São também encontrados no Bloco Gavião dois grupos de TTGs com idades 3,4–3,2 Ga e 3,2-3,1 Ga, metamorfisados na fácies anfibolito (MARTIN et al. 1991).

A porção leste do Bloco Gavião apresenta terrenos greenstone belts (BASTOS LEAL, 1998; CUNHA et al., 2012) e sequências metavulcanossedimentares, dentre elas a de Contendas-Mirante (MARINHO et al., 1979; 2009), que foi deformada pela colisão dos Blocos Gavião e Jequié durante a orogenia Paleoproterozoica e agora está localizada ao longo de parte do lineamento principal Contendas-Jacobina (TEIXEIRA et al., 2000).

Segundo Maier et al. (2001) depósitos econômicos de sulfeto de Ni-Cu de tamanhos variáveis foram descobertos em corpos menores do tipo conduto como a Jinchuan (China), Noril'sk (Rússia), Voisey's Bay (Labrador), Uitkomst (África do Sul), Nebo-Babel (Austrália), Kabanga North (Tanzânia), Eagle (Estados Unidos) e Thunder Bay North (Canadá).

Corpos que apresentam uma geometria intrusiva irregular, que não podem ser classificados como um lacólito, dique, *sill* ou outro corpo reconhecido são classificados como conolito, conforme definido por Bates & Jackson (1987). Estes corpos estão associados a descontinuidades. No Brasil, o exemplo de um conduto em forma de conolito é o Complexo Ultramáfico Limoeiro (SILVA, 2014), que hospeda a mineralização de Ni-Cu (-PGE), na Província da Borborema.

Figura 2.1: a) Compartimentos tectônicos e limites do Cráton do São Francisco; b) Mapa geológico regional.

Fonte: a) Adaptado de Barbosa & Sabaté (2004); b) Modificado de Bizzi et al. (2001).

Figura 2.2: Mapa Geológico Simplificado do estado da Bahia, com destaque (tons de verde) para alguns dos principais sistemas intrusivos (máficos e ultramáficos) do estado.

Fonte: Modificado de Bizzi et al. (2001).

CAPÍTULO 3 – GEOLOGIA LOCAL E PETROGRAFIA

Os litotipos a seguir foram separados em dois grupos: àqueles que constituem as rochas encaixantes dos corpos máfico-ultramáficos (CMUM) e rochas associadas, e àqueles que compõem os CMUM. O primeiro grupo, que constitui os tipos litológicos encaixantes sendo composto por 5 unidades: 1) Granulitos enderbíticos (pEed), com níveis de kinzigito (kz); 2) Sienitos (pEalc); 3) Hornblenda granoblastitos (pEhgt); 4) Hornblenda granulitos charnockíticos (pEhch) e 5) Diques Máficos. O segundo grupo é formado por duas unidades: 1) Corpo ultramáfico Norte e 2) Corpo máfico-ultramáfico Leste. Todas as unidades litológicas estão representadas nos mapas das Figuras 3.1 e 3.2.

3.1 TIPOS LITOLÓGICOS ENCAIXANTES E ROCHAS ASSOCIADAS

3.1.1 Granulitos Enderbíticos (pEed)

Unidade delimitada por Marinho et al. (1979) e ocorre na porção leste da área de estudo, em duas faixas distintas, orientadas na direção aproximada NS. Nesta unidade estão presentes rochas de composições enderbíticas, além de TTG, granulitos máficos e migmatitos (Figuras 3.1 e 3.2).

As rochas enderbíticas são de coloração cinza claro a escuro quando preservadas e de coloração marrom pálido amarelado, quando intemperizadas. Apresentam granulometria fina a grossa e bandamento gnáissico, além de porções migmatizadas exibindo estruturas estromáticas (Prancha 1a), nebulíticas e *schlieren* (MARINHO et al., 1979). Veios de quartzo paralelos e também ortogonais a foliação estão presentes.

Petrograficamente apresentam microestrutura granoblástica granular (Prancha 1b), com os minerais máficos, marcando a foliação. Formadas por plagioclásio + antipertita (28 a 73% - Prancha 1c), quartzo (14 a 51%), anfibólio (10%), clinopiroxênio (2 a 10%), ortopiroxênio (2 a 16%), minerais opacos (Tr a 4%), biotita (Tr a 2%), microclínio/mesopertita (Tr a 1%), titanita e epidoto+clinozoisita (Quadro 3.1). Como minerais acessórios tem-se apatita e zircão. Como processos secundários foram identificados carbonatação, sericitização, saussuritização e uralitização (Prancha 1d). Algumas amostras apresentam-se silicificadas, com presença de veios de quartzo, associados com moscovita e clorita.

Figura 3.1: a) Mapa da área do Corpo Norte; b) Seção esquemática da área Norte.

Fonte: a) Modificado de Marinho et al. (2009).

Figura 3.2: a) Mapa da área do Corpo Leste; b) Seção esquemática da área Leste.

Fonte: a) Modificado de Marinho et al. (2009).

Prancha 1: Granulitos enderbíticos (pEed).

a) Afloramento da encaixante granulítica com estrutura migmatítica estromática. Ponto MV39, b) Fotomicrografia da microestrutura granoblástica granular, formada por quartzo (Qtz), plagioclásio (PI), ortopiroxênio (Opx), minerais opacos (Op), biotita e apatita. Aumento de 25X, NX. Amostra NL-002. c) Microestrutura granoblástica, formada por antipertita (Antp), minerais opacos (Op), biotita (Bt), ortopiroxênio (Opx), clorita, quartzo (Qtz) e plagioclásio (PI). Aumento de 50X, NX. Amostra ZJ-674. d) Detalhe dos cristais de clinopiroxênio (Cpx) com bordas de anfibólio (Anf), marcando o processo de uralitização. Aumento de 100X, LP. Amostra NL-013. SIGLAS: NX- Com analisador; LP-Sem analisador.

3.1.1.1 TTG (Tonalito Trondhjemito Granodiorito)

As rochas da suíte TTG (Tonalito Trondhjemito Granodiorito) são de cor creme a cinza esbranquiçado (Prancha 2a) a rosa amarelado com porções ricas em minerais máficos. Granulometria fina a grossa, foliada, bandamento gnaíssico.

Petrograficamente os TTGs foram separados em quatro subgrupos, classificados como granodioritos, monzogranitos, sienogranito/álcali-granito e quartzo-diorito (Quadro 3.1, Figura 3.3).

Unidades	Grupos	Subgrupos	Amostras	Moda	Minerais Acessórios	Minerais Retrometamórficos	Processos de alteração	
Granulitos enderbíticos (pEed)	End	erbitos	NL-002, NL-013, NL-032, ZJ-674	PI + Antp (28 a 73%), Qtz (14 a 51%), Cpx (2 a 10%), Opx (2 a 16%), Op (Tr a 4%), e Mc/Msp (Tr a 1%), Ttn e Ep+Czo	Ap e Zr	Anf (10%) e Bt (Tr a 2%)	carbonatação, sericitização saussuritização e bastitização/uralitização	
	TTG		NL-015, NL-020, NL-024, NL- 026, NL-030, NL-035, ZJ-080	PI (7 a 79%), Qtz (11 a 40%), Mc/Pert/Msp (2 a 73%), Grt (7%), Bt (Tr a 4%), Opx (3%), Op (Tr a 2%), Ms (1%) e Ep/Czo	Ap e Zr	Chl (Tr a 3%)	carbonatação, sericitização, cloritização, saussuritização e uralitização	
	Granulito Máfico e Anfibolitos		Ma18B, Mv-16, NE-021, NL- 022, NL-025, NL-027, NL-029, NL-036, NLP-011, NLP-013, NLP-016, ZJ-673	Opx (2 a 37%), Cpx (2 a 47%), PI (10 a 66%), Antp (15%), Op (1 a 10% - Ilm, Mt, Hm, Cpy, Pnt, Po, Py, Bn, Cv), Qtz (Tr a9%)	Ap, Mb, Ttn, Zr	Anf (2 a 70%), Bt (Tr a 5%), Chl (Tr a 12%),	saussuritização, sericitização, uralitização	
	Migmatitos	Melanossoma	NL-031	Pl (37%), Cpx (8%), Op (3%), Opx (2%), Qtz e Ep	Ар	Hbl (50%) e Bt	uralitização e sericitização	
		Migmatitos	Leucossoma	NL-004, NL-005	PI (55 a 69%), Qtz (15 a 25%), Mc (7%), Cpx (5%), Op (2 a 5%), Opx (1%), Ep+Czo e Antp	Ap e Zr	Bt (5 a 10%), Chl (Tr a 1%) e Anf	carbonatação, sericitização uralitização, saussuritização
	Kinzigitos (kz)		NL-006, NL-021, NL-023, NL- 033, NL-034, VR-129, ZJ-129, ZJ-158, ZJ-327	Ser/pinita (5 a 40%), Crd (8 a 33%), Qtz (3 a 53%), Grt (3 a 25%), Pl (4 a 55%), Op (Tr a 6%), Spl (Tr a 1%), Sill (1%), Cpx (17%), Opx (2 a 7%), Czo, Ep (5%) e Cb	Zr	Bt (2 a 20%), Ur (6%) e Chl (2%)	pinitização, sericitização, saussuritização e uralitização	
Sienitos (pEalc)		ZJ-671, ZJ-1027	Mc + Pl (65 a 85% - 0-5An), Cpx (10 a 15%), Ep (10%), Grt (3%), Op (Tr a 2%), Ttn (1%) e Qtz	Zr	Anf (5%)	-		
Hornblenda granoblastitos (pEhgt)		NL-001, ZJ-078, ZJ-555/ZJ- 1047	Msp+ortoclásio/Mc Pert (16 a 70%), Pl (5 a 45%) (An22), Qtz (18 a 25%), Op (1 a 3%) e Ep	Ap e Zr	Hbl (4 a 11%) e Bt (2 a 4%)	sericitização		
Hornblenda charnockític	a granulitos		Ma11A, ZJ-1152, ZJ-153	Mc-Pert (54 a 60%), Qtz (15 a 28%), Pl (10 a 15%) (An15-27), Cpx (Tr a 6%), Opx (Tr a 5%), Op (Tr a 5%) e Ep	Ap e Zr	Hbl (Tr a 1%), Bt e Chl	Saussuritização, sericitização e	
	cos (pEhch)	Rochas anfibolitizadas	ZJ-154	Ep (15%), Op (8%), Qtz (4%), Pl (1%)	Ap e Zr	Hbl (52%), Act(?) (18%)	carbonatação	
Diques máficos		DS	AM-26, Mv38, Ma18.1, VR-131	Cpx (24 a 45%), PI (30 a 53%), Op (5 a 15%- Mt, Ilm, Py, Cpy), Bt (2%), Qtz (1 a 5%), Ttn	Ар	Chl+Ep (8 a 35%)	saussuritização e sericitização	
Act-Actinolita, Anf-Anfibólio, Antp-Antipertita, Ap-Apatita, Bt-Biotita, Cb-Carbonato, Chl-Clorita, Cpx-Clinopiroxênio, Cpy-Calcopirita, Crd-Cordierita, Czo-Clinozoisita, Ep- Epidoto, Grt-Granada, Hbl-Hornblenda, Ilm-Ilmenita, Mb-Mica branca, Mc-Microclínio, Ms-Moscovita, Msp-Mesopertita, Mt-Magnetita, Op-Minerais Opacos, Opx- Ortopiroxênio, Pert-Pertita, PI-Plagioclásio, Po-Pirrotita, Pnt-Pentlandita, Px-Piroxênio, Py-Pirita, Qtz-Quartzo, Ser-Sericita, Sill-Silimanita, Spl-Espinélio, Ttn-Titanita, Ur-								

Quadro 3.1: Composição modal das litologias encaixantes e rochas associadas.

Uralita, Zr-Zircão. Abreviações segundo Kretz (1983).

As rochas desta unidade são levemente foliadas, com microestruturas inequigranular, granoblástica granular, lepidoblástica, mirmequítica, formadas por plagioclásio (7 a 79%), quartzo (11 a 71%), microclínio/pertita/mesopertita (2 a 73% - Prancha 2b), granada (7%) (Prancha 2c), biotita (Tr a 4%), ortopiroxênio (3%),minerais opacos (Tr a 2%), clorita (Tr a 3%), moscovita (1%) e epidoto/clinozoisita. Como minerais acessórios tem-se apatita e zircão. Como processos secundários foram identificados carbonatação, sericitização, cloritização, saussuritização e uralitização (Prancha 2d).

Prancha 2: TTG (Tonalito Trondhjemito Granodiorito).

a) Afloramento da porção félsica da encaixante, levemente foliada e migmatizada, com veio de quartzo pegmatítico com direção N345. Ponto MP39, b) Detalhe da rocha foliada, com microestrutura granoblástica, mirmequítica, formada por mesopertita (Msp), quartzo (Qtz), plagioclásio (PI), biotita, minerais opacos e zircão. Aumento de 25X, NX. Amostra ZJ-080. c) Detalhe da rocha formada por quartzo (Qtz), microclínio (Mc), plagioclásio sericitizado (Ser), antipertita, granada (Grt), e minerais opacos. Aumento de 25X, NX. Amostra NL-026. d) Detalhe da rocha foliada, com microestruturas mirmequítica e inequigranular, formada por microclínio (Mc), mesopertita, quartzo (Qtz), plagioclásio, piroxênio uralitizado (Ur) e minerais opacos. Aumento de 25X, NX. Amostra NL-030. SIGLA: NX- Com analisador.

Figura 3.3: Diagrama QAP (STRECKEISEN, 1976) para a classificação do protólito das rochas dos grupos do TTG e do Migmatito (Leucossoma).

3.1.1.2 Granulitos Máficos e Anfibolitos

Os granulitos máficos e anfibolitos correspondem a rochas foliadas, de cor preta a verde com porções de cor branca a amarronzado, granulometria fina a média (Prancha 3a) e não são magnéticas. Acham-se fracamente intemperizadas e com presença de veios de quartzo em alguns afloramentos (Figuras 3.1 e 3.2).

Apresentam microestruturas granoblástica granular (Prancha 3b), inequigranular, nematoblástica (Prancha 3c), formada por plagioclásio (10 a 66%), antipertita (15% - Prancha 3d), clinopiroxênio (2 a 47%), minerais opacos (1 a 10%), orto piroxênio (2 a 37%), anfibólio (2 a 70%), quartzo (Tr a 9%), biotita (Tr a 5%), clorita (Tr a 12%), mica branca e titanita. Como minerais acessórios têm-se apatita e zircão. Os processos secundários identificados foram carbonatação, sericitização, saussuritização, cloritização e uralitização (Quadro 3.1). Os minerais opacos (Prancha 3e, 3f) são representados por ilmenita, hematita, pirita, pirrotita, calcopirita, pentlandita e magnetita, além de covelita e bornita.

3.1.1.3 Migmatitos

A unidade dos migmatitos (Figura 3.1) corresponde às porções das encaixantes granulíticas da unidade pEed, com maior grau de migmatização. Com presença de veios de epidoto e K-feldspato, além de bolsões anfibolíticos.
Prancha 3: Granulitos Máficos e Anfibolitos.

a) Afloramento do granulito máfico, com granulometria fina a média. Ponto NL-025, b) Detalhe da rocha com microestrutura granoblástica granular, formada por plagioclásio (PI), piroxênio (Cpx), minerais opacos (Op), anfibólio (Anf), quartzo e apatita. Aumento de 25X, NX. Amostra NL-025. c) Detalhe da rocha com microestrutura nematoblástica, formada por plagioclásio (PI), anfibólio (Anf), piroxênio (Opx), minerais opacos, quartzo e biotita. Aumento de 25X, NX. Amostra NE-021. d) Detalhe da rocha com microestrutura granoblástica granular, formada por plagioclásio (PI), anfibólio (Anf), piroxênio (Opx), minerais opacos, quartzo e biotita. Aumento de 25X, NX. Amostra NE-021. d) Detalhe da rocha com microestrutura granoblástica granular, formada por plagioclásio (PI), antipertita (Antp), piroxênio (Cpx), anfibólio, quartzo (Qtz), minerais opacos (Op), biotita, apatita e zircão. Aumento 25X, NX. Amostra NL-022. e) Detalhe dos minerais opacos presentes na matriz formada por plagioclásio (PI), clinopiroxênio (Cpx), anfibólio (Anf) e biotita (Bt). Aumento de 100X, NX. Amostra NLP-016, f) Detalhe dos minerais opacos representados por ilmenita (IIm), pirita, pirrotita (Po), calcopirita (Cpy), pentlandita (Pnt) e magnetita (Mt). Aumento de 100X, LR. Amostra NLP-016. SIGLAS: NX- Com analisador; LP-Sem analisador; LR-Luz Refletida.

As porções melanocráticas (melanossoma - Prancha 4a) correspondem a rochas de cor preta a esverdeada (Prancha 4b), com granulometria fina a média, foliadas. Presença cristais de anfibólio cor verde pálido, bem desenvolvido. Apresentam magnetismo. Petrograficamente corresponde a uma rocha com microestrutura nematoblástica, formada por hornblenda (50% - Prancha 4c), plagioclásio (37%), clinopiroxênio (8%), minerais opacos (3%), ortopiroxênio (2%), quartzo (Tr), biotita (Tr) e epidoto (Tr). Como minerais acessórios, tem-se apatita, e como minerais e processos secundários tem-se a uralitização e sericitização. (Quadro 3.11).

Prancha 4: Migmatitos.

a) Afloramento de porção do melanossoma, em contato com parte migmatítica mais félsica com porções ricas em K-feldspato. Ponto MP12. b) Detalhe do afloramento de porção do melanossoma, em contato com parte migmatítica mais félsica com porções ricas em K-feldspato, Ponto MP65. c) Detalhe da rocha com microestrutura nematoblástica, formada por hornblenda (Hbl), plagioclásio (PI), piroxênios (Cpx), minerais opacos (Op), epidoto, quartzo, biotita e apatita. Amostra NL-031. Aumento de 25X, NX. d) Detalhe dos cristais de microclínio (Mc), antipertita (Antp) e quartzo (Qtz), da porção do leucossoma. Amostra NL-005. Aumento de 50X, NX. SIGLA: NX- Com analisador.

As porções leucocráticas (leucossoma) correpondem a litotipos de cor cinza a cinza escuro, com porções verde e concentrações de minerais máficos. Apresentam-se frescas, sem grau de alteração intempérica. Granulometria fina a média e algumas porções grossa. Com estrutura anisotrópica em pequenas porções marcada por uma foliação incipiente. Possuem magnetismo. Petrograficamente apresentam composição de Quartzo Diorito a Granodiorito (Figura 3.3), e correspondem rochas foliadas. inequigranulares, а com microestrutura lepidoblástica, granoblástica granular, mirmequítica, formada por plagioclásio (55 a 69%), quartzo (15 a 25%), biotita (5 a 10%), microclínio (7% - Prancha 4d), clinopiroxênio (5%), minerais opacos (2 a 5%), clorita (Tr a 1%), ortopiroxênio (1%), epidoto+clinozoisita (Tr), anfibólio (Tr) e antipertita (Tr) (Quadro 3.1).

Como minerais acessórios têm-se apatita e zircão. Os processos secundários identificados são carbonatação, sericitização uralitização e saussuritização.

Uma das hipoteses levantadas para esta unidade é que corresponderia a corpos granodioríticos a dioríticos com processo de mistura mecânica de magmas (*mixing*). A relação entre as porções félsicas e máficas poderiam ser uma evidência deste processo.

3.1.1.4 *Kinzigitos*

Unidade aflorante a sudoeste do povoado de Catingal sob forma de um corpo estreito e alongado, e a leste do Corpo Leste como pequenas exposições, esparsamente distribuídos (Figuras 3.1 e 3.2). Possuem granulometria média a grossa, foliadas, com estruturas gnáissicas e porfiroblástica marcada por porfiroblastos de granada, e localmente com estruturas migmatíticas *schollen* (Prancha 5a) e estromática (Prancha 5b). Presença de lentes e/ou boudins de quartzo com tamanhos menores que 2,0cm, além de veios/diques e bolsões félsicos.

Correspondem a rochas foliadas, com microestrutura poiquiloblástica, granoblástica granular, inequigranular, lepidoblástica e mirmequítica formada por uma massa de sericita/pinita (5 a 40%) e cordierita (8 a 33%), além de quartzo (3 a 53%), granada (3 a 25% - Prancha 5c), plagioclásio (4 a 55%), biotita (2 a20%),minerais opacos (Tr a 6%), espinélio (Tr a 1%), silimanita (1% - Prancha 5d), clinopiroxênio (17%), ortopiroxênio (2 a 7%), uralita (6%), clinozoisita, epidoto (5%),

carbonato, clorita (2%) e zircão. Com processos de alteração pinitização (Prancha 4e), sericitização, saussuritização (Prancha 5f) e uralitização (Quadro 3.1).

Prancha 5: Kinzigitos.

a) Afloramento kinzigítico, migmatizado, rico em granada. Ponto MP72, b) Afloramento do kinzigito foliado, com direção N025, com presença de porfiroblastos de granada e bolsões félsicos. Ponto MP40, c) Detalhe da rocha com microestrutura lepidoblástica, inequigranular, com a matriz formada por quartzo (Qtz), cordierita (Crd), biotita (Bt), sericita, granada (Grt), plagioclásio, minerais opacos (Op), carbonato e zircão. Aumento de 25X, LP. Amostra NL-006, d) Detalhe dos cristais de silimanita (Sil), tanto com hábito acicular inclusos nos cristais de cordierita (Crd) sericitizados (Ser)/pininizados, quando como cristais prismáticos, associados com cristais de espinélio (Spl) verde. Aumento de 50X, NX. Amostra ZJ-129, e) Detalhe da rocha foliada, com microestrutura mirmequitica, formada por quartzo (Qtz), cordierita (Crd), plagioclásio (PI), ortopiroxênio (Opx), sericita, granada (Grt), biotita, minerais opacos, clorita e zircão. Aumento de 25X, NX. Amostra ZJ-158. f) Detalhe da rocha com microestrutura granoblástica granular, formada por plagioclásio (PI), quartzo (Qtz), granada (Grt), sericita (Crd), epidoto (Ep), clinozoisita (Czo), ortopiroxênio e minerais opacos. Aumento de 25X, NX. Amostra ZJ-158. f) Detalhe da rocha com microestrutura granoblástica granular, formada por plagioclásio (PI), quartzo (Qtz), granada (Grt), xordierita (Crd), epidoto (Ep), clinozoisita (Czo), ortopiroxênio e minerais opacos. Aumento de 25X, NX. Amostra ZJ-327. SIGLAS: NX- Com analisador; LP-Sem analisador.

3.1.2 Sienitos (pEalc)

Apresentam-se como pequenos corpos ovalados a elípticos, por vezes dispostos ao longo de falhas nos granulitos enderbíticos (pEed) e nos hornblenda granoblastitos (pEhgt) (Figura 3.1). São rochas de coloração cinza, creme a rosada, de granulação fina a média, maciça a levemente orientadas. Rochas com textura granular hipidiomórfica, classificadas como álcali-sienitos e formadas por microclínio + plagioclásio (65 a 85% – Prancha 6a), egirina (10 a 15%), epidoto(10%), anfibólio (5%), granada (3%), minerais opacos (Tr a 2%), titanita (1% - Prancha 6b), quartzo e zircão (Quadro 3.1).

Prancha 6: Sienitos

a) Detalhe da rocha textura granular hipidiomórfica, formada por microclínio (Mc), plagioclásio (Pl), clinopiroxênio (Cpx), epidoto, granada, minerais opacos (Op), titanita, quartzo e zircão. Aumento de 25X, NX. Amostra ZJ-671. b) Detalhe dos cristais de granada (Grt) zonadas, associadas aos cristais de titanita (Ttn), microclina (Mc) e quartzo (Qtz). Aumento de 100X, NX. Amostra ZJ-671. SIGLA: NX-Com analisador.

3.1.3 Hornblenda Granoblastitos (pEhgt)

Ocorrem na porção oeste da folha Catingal (Figura 3.1), apresentando granulometria fina (Prancha 7a) a grossa, com estrutura migmatítica tipo nebulíticas e *schollen* (Prancha 7b), gnáissica, com bandamento composicional. De cor rósea e creme, sendo magnética em algumas porções.

São rochas com microestrutura porfiroclástica (Prancha 7c), mirmequítica (Prancha 7d), formada por mesopertita+ortoclásio/microclínio pertítico (16 a 70%), plagioclásio (5 a 45%), quartzo (18 a 25%), hornblenda (4 a 11%), biotita (2 a 4%),

minerais opacos (1 a 3%), epidoto (Tr), apatita e zircão. Os cristais de plagioclásio estão alterados pelo processo de sericitização (Quadro 3.1).

Prancha 7: Hornblenda granoblastitos (pEhgt)

a) Afloramento da encaixante foliada, com granulometria fina. Ponto MP05. b) Afloramento da porção máfica (paleossoma) da encaixante migmatítica, com estrutura schollen, em corte de estrada. Ponto MP06. c) Detalhe da rocha com microestrutura porfiroclástica, formada por hornblenda (Hbl), mesopertita (Msp), antipertita, plagioclásio (PI) sericitizado (Ser), quartzo (Qtz), biotita (Bt) e minerais opacos (Op). Aumento de 25X, LP. Amostra NL-001. d) Detalhe da rocha com microestrutura porfiroclástica, mirmequítica (mirm), formada por mesopertita (Msp), plagioclásio (PI), ortoclásio (Or), hornblenda (Hbl), biotita (Bt), quartzo (Qtz) e minerais opacos (Op). Aumento de 25X, NX. Amostra ZJ-078. SIGLA: NX- Com analisador.

3.1.4 Hornblenda Granulitos Charnockíticos (pEhch)

Esta unidade está presente como uma faixa de orientação NNE-SSW no centro dos granulitos enderbíticos (pEed) (Figura 3.3). Composta por rochas félsicas, de cor cinza clara a amarelada, avermelhada por oxidação, com estrutura gnáissica apresentando segregação de minerais máficos, em meio a agregado de quartzo e feldspatos, de granulação fina a média, com porções migmatizadas (melanossoma) e porções magnéticas. Presença de veios de minerais máficos e carbonato.

Rochas com microestrutura granoblástica (Prancha 8a), inequigranular poligonal, com os constituintes orientados, com grânulos estirados medindo aproximadamente 0,5 a 3,1mm de comprimento, formada por microclínio-pertita (54 a 60%), quartzo (15 a 28%), plagioclásio (10 a 15%), diopsídio (Tr a 6%), hiperstênio (Tr a 5%), minerais opacos (Tr a 5%), hornblenda (Tr a 1%), biotita (Tr), clorita, epidoto, bastita, apatita e zircão (Quadro 3.1).

Presença de rochas anfibolitizadas, cortando a unidade dos Hornblenda granulitos charnockíticos, classificadas como epidoto hornblendito, de cor escura, granulação fina a média, orientada, exibindo várias fraturas, apresenta microestrutura granonematoblástica, e é formada por hornblenda (52%), actinolita(?) (18%), epidoto (15%), minerais opacos (8%), quartzo (4%), plagioclásio (1%), apatita e zircão. Presença de veios (2%) de epidoto (Prancha 8b) e quartzo.

Prancha 8: Hornblenda granulitos charnockíticos (pEhch)

a) Detalhe da rocha com microestrutura granoblástica formada por microclina (Mc), plagioclásio (Pl), quartzo (Qtz) e minerais opacos (Op). Aumento de 25X, NX. Amostra Ma11A. b) Detalhe da rocha formada por hornblenda(Hbl) epidoto (Ep) quartzo (Qtz) e minerais opacos (Op), além de veios de epidoto e quartzo. Aumento de 25X, NX. Amostra ZJ-154. SIGLA: NX- Com analisador.

3.1.5 Dique Máfico

Esta unidade é formada por quatro diques, que cortam a encaixante granulítica (pEed), três na porção norte-nordeste do Corpo Leste e um próximo ao Corpo Norte (Figuras 3.1 e 3.2). Ocorrem como diques de granulometria afanítico a muito fina, com alguns fenocristais. Estrutura maciça, fratura conchoidal, e com 1,5 metros de espessura, apresentando direção preferencial N035, bastante fraturados (Prancha 9 a e b).

Prancha 9: Dique Máfico.

a) Afloramento do dique máfico. Ponto MV38; b) Detalhe do contado entre o dique máfico e a encaixante (pEed). Ponto MV38; c) Detalhe do dique máfico, evidenciando a textura porfirítica, formado por plagioclásio (PI), clinopiroxênio (Cpx) e minerais opacos (Op). Amostra MV38. Aumento: 25X, NX. d)Detalhe do dique máfico formado por uma matriz composta por clorita (ChI), minerais opacos (Op), leucoxênio (Lcx), titanita (Ttn), plagioclásio (PI), clinopiroxênio (Cpx), epidoto e quartzo (Qtz), envolvendo fenocristais de plagioclásio, clinopiroxênio e quartzo (Qtz) bipiramidal idiomórfico. Amostra VR-131. Aumento 50X, NX. SIGLA: NX-Com analisador.

Correspondem a diabásios, sendo holocristalinos, com texturas porfirítica (Prancha 9c), ofítica, subofítica e intergranular, pilotaxítica; além de apresentar-se com alto grau de alteração pelos processos de sericitização, saussuritização, uralitização e cloritização, associado com epidoto. Formados por fenocristais de plagioclásio (30 a 53% - An₅₂₋₅₇ - labradorita), clinopiroxênio (24 a 45% - augita), clorita + epídoto (8 a 35%), minerais opacos (5 a 10%), biotita (2%) e quartzo (1 a 5%), envolvidos por matriz composta por clorita, minerais opacos, leucoxênio, titanita, plagioclásio, augita, epidoto e quartzo. Alguns minerais opacos apresentam bordas de esfeno/titanita, formando a textura coroa de reação. Os minerais opacos foram identificados como magnetita, ilmenita, pirita e calcopirita. Presença de

quartzo bipiramidal idiomórfico (Prancha 9d) com tamanhos até 1,0mm. Como minerais acessórios foram identificados cristais de apatita (Quadro 3.1).

3.2 CARACTERIZAÇÃO PETROGRÁFICA DOS CORPOS MÁFICO-ULTRAMÁFICOS

Os corpos máfico e ultramáficos estão localizados ao norte da área de pesquisa e a sul do povoado de Catingal, denominado de Corpo Norte (Figura 3.1) e no extremo leste/sul da área, aproximadamente no eixo de um sinclinal da encaixante granulítica, denominado de Corpo Leste (Figura 3.2). As rochas que compõem estes corpos são de cor verde escuro a preta, com presença de sulfetos. Encontram-se fraturadas e foliadas, apresentando granulação fina a muito grossa. Em alguns pontos são observadas faixas de serpentina com até 0,5 cm de espessura, cortando todo o afloramento.

As rochas cumuláticas foram separadas em grupos segundo a nomenclatura proposta por Irvine (1982), que utiliza a abundância dos minerais cúmulos, e tendo os minerais pós-cúmulos como sufixo modificador (Quadro 3.2).

As rochas cumuláticas também podem ser classificadas a partir da relação entre os cristais cumulus e o material intercumulus em: ortocumulatos, mesocumulatos, adcumulatos e heteradcumulatos (WAGNER et al., 1960).

Nome da Rocha	Minerais Cúmulos	Minerais Pós-cúmulos	Notação*			
Peridotito	Ol (+Chr)	Opx, Cpx, Pl, Phl, (Anf, Ap)	oC/ocC			
Harzburgito	Ol, Opx(+Chr)	Cpx, PI, (PhI, Anf, Ap)	obC			
Cromitito	Chr (+OI)	Opx, Cpx, Pl, (Phl, Anf, Ap)	cC			
Bronzitito	Орх	PI, Cpx, (Qtz, PhI, Ap)	bC			
Norito	Pl, Opx/Pig	Cpx, (Ap, Qtz)	pbC			
Olivina gabro	PI, Cpx, OI	Opx (Ap)	paoC			
Gabronorito (Gabro)	Pl, Opx/Pig, Cpx	(Qtz, Ap, Mt)	pbaC			
Troctolito	PI, OI	Opx, Cpx (Ap)	роС			
Olivina gabronorito	PI, Opx, Cpx, OI, (Ap)		pbaoC			
Anortosito	PI	Opx/Pig, Cpx, Qtz, (Mt)	рС			
*Abreviações: C = cumulato, p = plagioclásio (PI), o = olivina (OI), c = cromita (Chr), b = ortpiroxênio/pigeonita (Opx/Pig), a = augita (Cpx), qtz = quartzo, ap = apatita, anf = anfibólio, phI = flogopita, mt = magnetita. Parênteses indicam uma fase menor que nem sempre está presente. Os sulfetos podem ocorrer como minerais intersticiais em qualquer assembleia.						
Fonte: McCallum (1996)						

Quadro 3.2: Nomenclatura para rochas cumuláticas.

3.2.1 Corpo Ultramáfico Norte

As rochas deste grupo são foliadas, apresentam as texturas cumulática (adcumulática a ortocumulática), inequigranular, e subordinadamente granonematoblástica. Encontram-se alteradas pelos processos de serpentinização, bastitização, uralitização, cloritização, sericitização e saussuritização. Foram identificadas através dos estudos petrográficos e classificação modal (Figura 3.4) seis litotipos (Quadro 3.3), conforme descritos a seguir:

Figura 3.4: Diagrama OI-Cpx-Opx (STRECKEISEN, 1976), para a classificação das rochas ultramáficas do Corpo Norte.

a) bC (Ortopiroxênio Cumulato) - Grupo formado por rochas que correspondem a Meta-Websterito e Meta-Ortopiroxenito (Figura 3.4). Formadas por ortopiroxênio (20 a 83% - enstatita), clinopiroxênio (52% - augita), anfibólios (15 a 32% - tremolita e hornblenda), minerais opacos (3 a 16%), espinélio (5%), quartzo (20%) (Quadro 3.3).
O ortopiroxênio representa os cristais cúmulos, enquanto que o clinopiroxênio, recristalizado em anfibólio, o intercúmulos. Os minerais opacos seriam de pós cúmulos. Os cristais de piroxênio encontram-se fraturados e parcialmente alterados em uralita. Em algumas lâminas o clinopiroxênio ocorre em grandes placas que envolvem poiquiliticamente (oikocristais) os outros constituintes da rocha. São de

Grupos	Nome da Rocha	Texturas	Amostras	Moda	Minerais Metamórficos/ Hidrotermais	Processos de alteração	Óxidos	Sulfetos
bC	Meta-Websterito e Ortopiroxenito	Ortocumulática, Mesocumulática e Adcumulática	AM-24, AM-25B, NE-005, ZJ-767	Opx (20 a 83%), Cpx (52%), Op (3 a 16%), Spl (5%), Qtz (20%)	Anf (15 a 32%)	Serpentinização, bastitização, uralitização	Mt, Ilm	-
obC1	Meta-Olivina websterito e Meta-Olivina Ortopiroxenito	Mesocumulática e Ortocumulática	NL-009, NL-010, NL-011, NL-017, NL-018, NL-019, NLP-002, NLP-003, NLP- 007, NLP-012	Ol (6 a 27%), Opx /Ens (5 a 33%), Cpx (1 a 7%), Op (2 a 8%), Sp (2a 5%)	Anf/Hbl/Tre (17 a 71%), Spr (2 a 32%), Chl (1%), Tlc (4 a 15%)	Serpentinização, Talcificação, uralitização	Mt, Hm, IIm, Lm	Po, Py, Cpy, Cct, Cv
obC2	Meta-Lherzolito e Meta-Harzburgito	Ortocumulática, Mesocumulática e Adcumulática	AM-17A, AM-22, NE-027, NL-007, NL-008, NL-012, NLP-004, ZJ-328	Ol (5 a 50%), Ol+Spr (58 a 77%), Opx (15 a 38%), Cpx (1 a 3%), Op (4 a 11%), Sp (2 a 5%)	Anf (7 a 45%), Spr (30 a 55%), Chl (1 a 6%), Tlc (Tr)	Serpentinização, uralitização, bastitização - talcificação	Mt, Hm, Lm	-
pbaC0	Meta- Melanogabro Cumulato	granonematoblástica, inequigranular, poiquilítica, lepidoblástica?	NE-025, NLP-005, NLP- 006	Opx (3%), Cpx (52 a 70%), Pl (16 a 22%), Op (3%), Qtz (Tr)	Anf (10 a 20%), Bt (1 a 7%)	Sericitização, saussuritização, uralitização	llm	Cpy, Pnt, Po, Py
pbaC1	Meta- Melanogabro Cumulato e Meta- Melanogabro Cumulato+Qtz	Ortocumulático a Mesocumulática	NE-018, NE-019, NE-020, NL-003, NL-028, NLP-001, NLP-017	Opx (2%), Cpx (35 a 82%), PI (4 a 27%), Op (1 a 3%), Ttn (1 a 2%), Ap (Tr), Qtz (1 a 3%), Cb (Tr), Zr (Tr)	Anf (1 a 8%), Bt (1%), Ep (21%)	sericitização, saussuritização e uralitização	llm, Mt	Cpy, Po, Py, Bn, Nic, Ger
pbaC2	Meta- Melanogabro Cumulato (fino)	Ortocumulática a Mesocumulática	NE-026, NL-014, NL-016	Opx (24 %), Cpx (2 a 65%), Pl+Chl+Ser (26%), Pl (20 a 49%), Op (2%), Ttn (Tr), Ap (Tr)	Anf/Hbl (6 a 25%)	Carbonatação, sericitização, saussuritização	-	-
Anf-Anfibólio, Ap-Apatita, Bn-Bornita, Bt-Biotita, Cb-Carbonato, Cct- Calcocita; Chl-Clorita, Cpx-Clinopiroxênio, Cpy-Calcopirita, Cv-Covelita; Ens-Enstatita,								
Ep-Epidoto, Ger-Gersdorfita, Hbl-Hornblenda, Hm-Hematita, Ilm-Ilmenita, Lm-Limonita, Mt-Magnetita, Nic-Nicolita, Ol-Olivina; Op-Minerais Opacos, Opx-								
Ortopiroxênio, PI-Plagioclásio, Po-Pirrotita, Pnt-Pentlandita, Py-Pirita, Qtz-Quartzo, Ser-Sericita, Spr-Serpentina; Sp-Espinélio, Tlc-Talco; Tre-Tremolita, Ttn-								
Titanita, Zr-Zircão. Abreviações segundo Kretz (1983).								

Quadro 3.3: Composição modal das litologias do Corpo Norte.

Prancha 10: Fotomicrografias do Corpo Ultramáfico Norte.

a) Detalhe da rocha formada por cristais de tremolita (Tre) e cristais cúmulos de enstatita (Ens), com impregnação de minerais opacos nos interstícios. Litotipo bC. Amostra AM-25B. Aumento 25X, NX. b) Detalhe da rocha inequigranular, formada por megapórfiros de olivina (OI) e clinopiroxênio (Cpx), envolvidos por uma matriz formada por piroxênio, anfibólio (Anf), serpentina (Srp) e espinélio (SpI) verde. Litotipo obC1. Amostra NL-010. Aumento 25X, NX; c) Detalhe da rocha com textura cumulática, formada por anfibólio (Anf), serpentina (Srp), clinopiroxênio (Cpx) e olivina (OI). Litotipo obC1. Amostra NL-019. Aumento 25X, LP; d) Detalhe da rocha foliada, formada por serpentina (Srp), anfibólio (Anf), ortopiroxênio (Opx), olivina (OI) e minerais opacos (Op). Litotipo obC2. Amostra NE-027. Aumento de 25X, NX; e) Detalhe da rocha foliada, com textura inequigranular, formada por uma matriz de serpentina (Srp) envolvendo cristais de piroxênios (Cpx e Opx), anfibólio (Anf), olivina (OI), espinélio (SpI) verde e minerais opacos (Op). Litotipo obC2. Amostra MP15B/NL-008. Aumento de 25X, NX; f) Detalhe da rocha com textura inequigranular, formada por uma matriz de serpentina (Ttn). Litotipo pbaC1. Amostra NLP-017. Aumento de 25X, NX; si Detalhe da rocha com textura inequigranular, formada por uma matriz de serpentina (Srp) envolvendo cristais de piroxênios (Cpx e Opx), anfibólio (Anf), olivina (OI), espinélio (SpI) verde e minerais opacos (Op). Litotipo obC2. Amostra MP15B/NL-008. Aumento de 25X, NX; f) Detalhe da rocha com textura inequigranular, formada por piroxênios (Opx e Cpx), plagioclásio (PI), anfibólio (Anf) e titanita (Ttn). Litotipo pbaC1. Amostra NLP-017. Aumento de 25X, NX. SIGLAS: LP-Sem analisador; NX- Com analisador.

cores levemente esverdeadas a incolores, espalhadas no mosaico da rocha; achamse parcialmente alterados, com formação de bastita. O anfibólio ocorre como cristais prismáticos, xenomórficos, levemente esverdeados, desenvolvendo-se inclusos nos ortopiroxênios. O espinélio apresenta cor verde e está associado com minerais opacos. Os minerais opacos estão presentes nos interstícios dos silicatos ou como cristais subidiomórficos a alongados, quando preenchendo fissuras (Prancha 10a). O quartzo é classificado como de aporte, preenchendo as fraturas.

b) obC 1 (Olivina - Ortopiroxênio Cumulato) - Grupo formado por rochas que correspondem a Meta-Olivina Websterito e Meta-Olivina- Ortopiroxenito (Figura 3.4). Formadas por olivina (6 a 27%), ortopiroxênio (5 a 33%), anfibólio (17 a 71%), serpentina (2 a 32%), clinopiroxênio (1 a 7%), espinélio (2 a 5%) e minerais opacos (2 a 8%), talco (4 a 15%), clorita (Tr a 1%) (Quadro 3.3). Cristais xenomórficos de piroxênio e olivina (Prancha 10b) com tamanhos até 12,0mm e com fraturas preenchidas por serpentina e magnetita. Os cristais de olivina apresentam bordas de cor amarronzada (oxidada/ limonitizados - inddigsita? - Prancha 10c), e com inclusões de minerais opacos e anfibólio. Concentrações de talco e serpentina com tamanhos até 1,4mm. Os ortopiroxênios (oikocristais) possuem inclusões de clorita, olivina, piroxênios e anfibólio subidiomórfico.

Cristais idiomórficos a xenomórficos de anfibólio, com pleocroísmo leve variando de marrom amarelado a verde pálido, tamanhos variando de 0,4 a 5,6mm e contatos retos a curvos entre si, e curvos com os demais minerais. Os maiores cristais de anfibólio envolvem cristais de olivina, e concentrações de serpentina.

Cristais xenomórficos de espinélio verde e marrom, com tamanhos variando de 0,02 e 2,3mm, estando associados com minerais opacos.

Cristais idiomórficos a xenomórficos de minerais opacos, com tamanhos variando entre 0,01 e 1,2mm. Estão presentes tanto como cristais primários (intercúmulos), quanto como produto de alteração, preenchendo as fraturas dos cristais silicáticos. Os minerais opacos são representados por magnetita martitizada (hematita), ilmenita, espinélio, pirita, pirrotita, calcocita, calcopirita, estes como cristais muito pequenos (0,01mm) dispersos pela rocha.

Cristais subidiomórficos a xenomórficos de clorita incolor, com extinção ondulante e tamanhos até 1,2mm, apresentam planos de clivagem preenchidos por minerais opacos (magnetita).

C) obC 2 (Olivina - Ortopiroxênio Cumulato) - Grupo formado por rochas que correspondem a Meta - Lherzolito e Meta- Harzburgito (Figura 3.4). Formada por cristais de olivina + serpentina (5 a 77% - Prancha 10d), ortopiroxênio (15 a 38%), anfibólio (7 a 45%), minerais opacos (4 a 11%), clorita (1 a 6%), espinélio (2 a 5%), clinopiroxênio (1 a 3%) e talco, envolvidos por uma matriz de serpentina (Quadro 3.3). Pseudomorfos de olivina com 12,0mm. Cristais subidiomórficos a xenomórficos e arredondados (cúmulos) de piroxênio com tamanhos até 3,3mm, com inclusões de espinélio verde e olivina, minerais opacos e anfibólio. Presença de cristais de piroxênio com contatos retos/poligonizados (Prancha 10e). Presenca de clinopiroxênio contornando outros cristais (intercúmulos). Cristais idiomórficos a xenomórficos de anfibólio incolor a verde claro, com tamanhos até 3,5mm, contatos poligonizados entre si, com planos de clivagem preenchidos por minerais opacos. Cristais xenomórficos a alongados de minerais opacos, com tamanhos variando entre 0,01 e 3,4mm, representados por magnetita martitizada, hematita, espinélio. Os minerais opacos estão associados com cristais de serpentina, espinélio e clorita incolor. Duas gerações de magnetita, uma intensamente martitizada, xenomórfica a alongada preenchendo os planos de fratura da rocha e associada com espinélio, e cristais idiomórficos não alterados, com tamanhos até 0,01mm. Cristais xenomórficos de espinélio verde e marrom avermelhado, com tamanhos variando entre 0,04 e 3,6mm, associados com minerais opacos e olivina. Cristais xenomórficos de clorita, com extinção ondulante, planos microdobrados e tamanhos variando entre 0,2 e 2,4mm. Serpentina tanto envolvendo e preenchendo os planos de fraturas dos cristais de olivina, formando textura em "mesh", guanto como faixas paralelas cortando os diversos cristais da rocha.

d) pbaC (Plagioclásio Ortopiroxênio Clinopiroxênio Cumulato) - Grupo formado por rochas que correspondem a Meta-Melanogabro Cumulato, foram separados em três pela diferença da granulometria, porém de maneira geral são formadas por ortopiroxênio+clinopiroxênio (2 a 82%), plagioclásio (4 a 49%), anfibólio (1 a 25%), epidoto (21%), minerais opacos (Tr a 3%), titanita (1 a 2%), biotita (1 a 7%), quartzo (1 a 3%), carbonato, apatita e zircão (Quadro 3.3), e apresentam texturas granulares chegando a formar junções tríplices (Prancha 10f).

Cristais idiomórficos a xenomórficos de piroxênio (augita e hiperstênio), zonados e geminados, com tamanhos variando de 0,2 a 14,0mm, com inclusões orientadas de biotita, além de plagioclásio, quartzo, minerais opacos e anfibólio. Cristais alterados pelo processo de uralitização com desenvolvimento de cristais de anfibólio nos planos de clivagem ou envolvendo por completo os cristais de piroxênio, deixando núcleos arredondados preservados. Grandes cristais com continuidade óptica e extinção ondulante. Contatos retos entre si (junção tríplice) e curvos com os plagioclásios. Cristais xenomórficos a arredondados de plagioclásio (An37 a 42 - Andesina), zonados, de tamanhos até 2,8mm, com geminação segundo a lei albita e subordinadamente cristais com geminação tectônica e cristais com geminação mecânica em cunha segundo a lei albita e periclina. Presentes como intercúmulos, contornando os cristais de piroxênio, e com inclusões de quartzo, titanita e anfibólio. Cristais transformados pelo processo de sericitização, geralmente no centro dos cristais e subordinadamente saussuritização (formando concentrações de epidoto e clorita com 1,2mm). Presença de cristais de plagioclásio com extinção ondulante nas maclas da geminação. Cristais idiomórficos a xenomórficos de anfibólio com pleocroísmo variando entre marrom e marrom a verde (hornblenda). Tamanhos variam entre 0,05 a 2,4mm. Presente tanto como inclusões arredondadas nos cristais de piroxênio e plagioclásio, quanto nas bordas dos cristais de piroxênio, com contatos retos entre si e curvos com os outros cristais. Presença de cristais fibrosos/ripiformes como processo de uralitização dos piroxênios. Alguns cristais apresentam-se geminados. Os minerais opacos são subidiomórficos a xenomórficos, com tamanhos até 3,1mm, e são representados por calcopirita, pirita, pirrotita, ilmenita, bornita, magnetita, nicolita e gersdorfita, pentlandita (flames de pentlandita dentro da pirrotita). Alguns cristais de minerais opacos apresentam bordas e núcleos de leucoxênio. Cristais xenomórficos a subidiomórficos de titanita, com tamanhos até 3,6mm, inclusos nos cristais de plagioclásio e piroxênio. Cristais idiomórficos a xenomórficos de biotita com pleocroísmo incolor a marrom avermelhado, com tamanhos até 5,0mm, associados com minerais opacos. Presença de cristais envolvendo (continuidade óptica) parte dos fenocristais de piroxênio (biotita secundária), formando uma coroa de reação, com bordas de hornblenda. Cristais xenomórficos a arredondados de epidoto, com tamanhos até 3,7mm. Quartzo na matriz com cristais arredondados, com tamanhos variando de 0,1 a 0,6mm, com extinção ondulante. Presença de cristais inclusos nos cristais de piroxênio e plagioclásio. Cristais de quartzo do veio apresentam extinção ondulante e cristais com extinção reta. Cristais subidiomórficos a xenomórficos de carbonato, com tamanhos variando entre 0,1 a 1,0mm. Como minerais acessórios foram identificados cristais de zircão e apatita inclusos nos cristais de plagioclásio e piroxênio, com tamanhos até 0,1mm.

3.2.2 Corpo Máfico-Ultramáfico Leste

As rochas que compõem a porção máfica estão presentes a nordeste do Corpo Leste, separados em dois corpos (Figuras 3.1), sendo isotrópicos e apresentando granulação fina a média. Preservam as texturas ígneas, sendo classificadas (Figura 3.5) como metagabros e metagabronoritos (Quadro 3.4), apresentando como evidências de metamorfismo/hidrotermalismo a saussuritização do plagioclásio e desenvolvimento de titanita/esfeno a partir de minerais opacos.

Figura 3.5: Diagrama PI-Cpx-Opx (STRECKEISEN, 1976), para a classificação das rochas máficas do Corpo Leste.

Grupos	Nome da Rocha	Texturas	Amostras	Moda	Minerais Metamórficos/ Hidrotermais	Processos de alteração	Óxidos	Sulfetos
máf	Metagabros e Metagabronoritos	Intergranular, ofítica, subofítica, diabásica	Ma15, Mv10, Mv11, Mv26, Mv30, Mv32, NE-023, NLP- 008, NLP-009, VR-130	Opx (1 a 7%), Cpx (13 a 50%), Pl (35 a 64%), Op (4 a 13%), Ttn/Spn (Tr a 4%), Ap (Tr a 4%), Qtz (Tr a 4%)	Anf (1%), Bt (Tr a 2%), Chl+Ep (7 a 24%)	sericitização, saussuritização e uralitização	Ilm, Tmt, Mt, Hm	Ру, Сру
bC	Meta-Websterito	Ortocumulática e Mesocumulática	Mv14, Mv34	Opx (27 a 30%), Cpx (13 a 22%), Op (7 a 8%)	Anf (37 a 40%), Chl (1%), Tlc (15%)	Talcificação, uralitização		
obC1	Meta-Olivina websterito e Meta- Olivina Ortopiroxenito	Mesocumulática e Adcumulática	Ma12, Ma14, Ma21, Ma22, Mv07, Mv17, Mv21, Mv22, ZJ-155A-C	Ol (3 a 13%), Opx (2 a 48%), Cpx (3 a 41%), Op (6 a 15%), Sp (1 a 4%), Qtz (1%), Cb (Tr)	Anf (2 a 45%), Spr (7 a 22%), Tlc (2 a 41%),	Talcificação, uralitização, serpentinização, carbonatação	Mt, Hm	Po, Pnt, Cpy
obC2	Meta-Lherzolito, Meta-Harzburgito e Serpentinito	Ortocumulática e Mesocumulática	Mv23, Mv41, NE-024, ZJ- 1037	Ol (5 a 15%), Opx (4 a 23%), Cpx (5 a 26%), Op (5 a 13%), Sp (3%), Qtz (Tr), Cb (2%)	Anf (7 a 45%), Spr (30 a 74%), PhI (Tr), ChI (Tr), Tlc (10%)	Serpentinização, uralitização	Mt, Hm	
Anf-Anfibólio, Ant-Antofilita, Ap-Apatita, Bt-Biotita, Cb-Carbonato, Cct- Calcocita; Chl-Clorita, Cpx-Clinopiroxênio, Cpy-Calcopirita, Cv-Covelita; Ep-Epidoto, Hm-Hematita, Ilm-Ilmenita, Lm-Limonita, Mt-Magnetita, Mrt-Martita, Ol-Olivina; Op-Minerais Opacos, Opx-Ortopiroxênio, Phl- Flogopita, Pl-Plagioclásio, Po-Pirrotita, Pnt-Pentlandita, Py-Pirita, Qtz-Quartzo, Ser-Sericita, Spr-Serpentina; Sp-Espinélio, Spn-Esfeno; Tlc- Talco; Tmt-Titanomagnetita, Ttn-Titanita. Abreviações segundo Kretz (1983).								

Quadro 3.4: Composição modal das litologias do Corpo Leste.

Apresentam as texturas blasto-intergranular, blasto-ofítica e blastosubofítica. São constituídas essencialmente por plagioclásio (53 a 64%), clinopiroxênio (augita) (3 a 50%), ortopiroxênio (hiperstênio) (1 a 30%) e minerais opacos (4 a 15%). Os cristais de plagioclásio estão intensamente alterados pelos processos de saussuritização e sericitização (Prancha 11a). Os cristais de piroxênio apresentam centros preservados, do processo de uralitização e cloritização (Prancha 11b). Os minerais opacos com bordas de biotita e clorita, além de formar coroa de reação com esfeno/titanita (Prancha 11c). Nesta unidade é observada a presença de sulfetos disseminados (pirita - Prancha 11d e calcopirita). A análise calcográfica

Prancha 11: Fotomicrografias do Corpo Máfico Leste.

a) Detalhe da rocha formada por clinopiroxênio (Cpx), plagioclásio (PI) fortemente alterados pelos processos de saussuritização (ChI e Ep) e sericitização, preservando apenas a forma em ripas. Presença de minerais opacos (Op) com coroa de reação de esfeno (Spn) /titanita. Metagabronorito – Amostra MV26. Aumento 100X, NX; b) Associação clorita (ChI)+epidoto (Ep), e minerais opacos (Op)+esfeno (Spn)/titanita, na matrix formada por plagioclásio (PI) e clinopiroxênio (Cpx). Metagabronorito – Amostra MV26. Aumento 100X, LP; c) Detalhe da concentração de clorita (ChI), além dos minerais opacos (Op) intimamente associados com cristais de leucoxênio (Lcx). Metagabro. Amostra NLP-008. Aumento 100X, NX; d) Presença de pirita (Py) no centro do cristal de magnetita (Mt) martitizada (Mrt), associados a lamelas de plagioclásio (PI). Metagabronorito – Amostra MV10. Aumento 500X, LR. SIGLAS: NX- Com analisador; LP-Sem analisador; LR-Luz refletida.

também permitiu a identificação de cristais subidiomórficos a xenomórficos de magnetita e martita (ex-solução de hematita - Prancha 11d). Apatita, quartzo e biotita ocorrem como minerais traços, e clorita e epidoto como minerais secundários.

Petrograficamente as rochas que compõem a porção ultramáfica do Corpo Leste são foliadas a bandadas, apresentam as texturas cumuláticas (adcumulática a ortocumulática) e inequigranular, encontram-se transformadas pelos processos de serpentinização, bastitização e uralitização. Foram separados em três litotipos (Quadro 3.4, Figura 3.6), descritos a seguir:

Figura 3.6: Diagrama OI-Cpx-Opx (STRECKEISEN, 1976), para a classificação das rochas ultramáficas do Corpo Leste.

a) bC (Ortopiroxênio Cumulato) Grupo formado por rochas que correspondem a Meta-Websteritos (Figura 3.6), formada por ortopiroxênio (27 a 30%), clinopiroxênio (13 a 22%), anfibólio (37 a 40%), minerais opacos (7 a 8%), clorita (1%), talco (15%). Cristais subidiomórficos a xenomórficos de anfibólio, com pleocroísmo verde pálido, pleocroísmo de verde a marrom muito pálido (hornblenda). Contatos retos a irregulares com opacos, talco, piroxênios e anfibólio, sendo que com estes apresentam também contatos poligonais (junção tríplice). Raros locais apresentam contato do anfibólio com o piroxênio, sem a presença do opaco separando-os. Tamanhos variam de 0,1 a 0,8mm. Não apresentam alteração. Prancha 12: Fotomicrografias do Corpo Ultramáfico Leste

a) Cristais de antofilita na borda de anfibólios e piroxênios. Litotipo bC – Amostra MV34. Aumento 100X, NX; b) Minerais opacos como intercumulus, preenchendo os espaços entre os grãos. Talco presente na borda dos ortopiroxênio e preenchendo as fraturas do mesmo. Litotipo bC – Amostra MV14. Aumento 100X, NX; c) Detalhe da solução sólida monosulfetada (MSS), composta por magnetita, pirrotita, calcopirita, pentlandita e violarita. Litotipo obC1 – Amostra Ma21. Aumento 200X, LR; d) Textura adcumulática reliquiar, com contatos sub-poligonais entre orto e clinopiroxênios. Litotipo obC1 - Amostra MV22. Aumento 100X, NX; e) Detalhe da rocha fortemente foliada e formada por serpentina, clinopiroxênio, minerais opacos, ortopiroxênio, anfibólio e olivina. Litotipo obC2 - Amostra MV23. Aumento 25X, NX; f) Cristais de clorita presentes na matriz serpentinizada e na borda de alguns cristais preservados de ortopiroxênio. Litotipo obC2 - Amostra MV41. Aumento 100X, NX. SIGLAS: NX- Com analisador; LP-Sem analisador; LR-Luz refletida.

Cristais subidiomórficos a xenomórficos de piroxênios (augita, diopsídio e hiperstênio), com tamanhos variando entre 0,05mm e 1,7mm, e exibindo bordas alteradas por uralitização (minerais com pleocroísmo incolor a verde pálido –

uralita/antofilita - Prancha 12a) e talcificação. Alguns cristais apresentam uralita/antofilita e talco preenchendo as fraturas e planos de clivagem. O contato entre esses minerais e os piroxênios e anfibólios é predominantemente reto.

Cristais subidiomórficos a xenomórficos de minerais opacos, predominância de cristais alongados preenchendo os espaços entre os cristais de piroxênios e anfibólios (opacos como intercúmulos - Prancha 12b) e também preenchem as linhas de clivagem do anfibólio. Tamanhos variam de 0,02 a 1,0mm. Alguns cristais encontram-se inclusos ou parcialmente inclusos nos cristais de anfibólio e piroxênio.

b) obC 1 (Olivina - Ortopiroxênio Cumulato) Grupo formado por rochas que correspondem a Meta-Olivina websterito e Meta-Olivina Ortopiroxenito (Figura 3.6), formada por olivina (3 a 13%), ortopiroxênio (2 a 48%), clinopiroxênio (3 a 41%), serpentina (7 a 22%), anfibólio (2 a 45%), minerais opacos (6 a 15%), espinélio (1 a 4%), quartzo (1%), carbonato, talco (2 a 41%).

Cristais subidiomórficos a xenomórficos de olivina, fortemente serpentinizada, com tamanhos variando de 0,2 a 8,8mm. Serpentinas com birrefringência cinza e algumas com birrefringência amarela a cor verde limão. Alguns cristais de olivina estão inclusos nos piroxênios.

Cristais de piroxênio (hiperstênio/enstatita, diopsídio e augita) idiomórficos a xenomórficos, com tamanhos variando entre 0,2 e 6,0mm. Alguns cristais de piroxênio encontram-se bastante fraturados, cujas fraturas e bordas são preenchidas por talco. Presença de cristais inclusos nos anfibólios e clinopiroxênio. Em algumas porções da rocha, os contatos dos cristais de piroxênio não possuem material intercúmulos (crescimento adcumulático). Contatos retos a irregulares com anfibólios, piroxênios e minerais opacos, e irregulares com olivina. Presença de clinopiroxênio como intercúmulos, contornando os ortopiroxênios.

Cristais de anfibólio (hornblenda e antofilita - levemente pleocróico, verde pálido a incolor) subidiomórficos a xenomórficos, secundária e pós-cúmulos, com tamanhos variando de 0,2 a 1,6mm. Alguns planos de clivagem estão preenchidos por opacos, talco e serpentina. Cristais subidiomórficos a xenomórficos de minerais opacos, presente entre o contato dos outros cristais (intercúmulos), raros cristais

subidiomórficos inclusos nos piroxênios e anfibólio. Tamanhos variando de 0,01 a 1,6 mm.

Os minerais opacos são caracterizados por espinélio verde parcialmente substituídos por magnetita, além de hematita, pirrotita, calcopirita e pentlandita. Com a diminuição da temperatura o líquido sulfetado imiscível, composto por duas fases: (i) solução sólida monossulfetada (MSS) de pirrotita, com porções cupríferas e niquelíferas; e (ii) magnetita, torna-se instável, gerando diversas ex-soluções como de calcopirita, pentlandita (Prancha 12c) e pirita (NALDRETT, 1969, 2004). A magnetita ocorre também em fraturas, em cristais alongados (remobilização hidrotermal) e como mineral pós-cúmulo. A hematita ocorre principalmente associada a serpentina ou em finas venulações cortando os demais minerais. Raramente observam-se finíssimos cristais com formas irregulares de calcopirita, inclusos no espinélio ou ao longo de fraturas. Cristais idiomórficos a subidiomórficos de espinélio verde (Prancha 12d), com tamanhos variando de 0,1 a 0,4mm, e fraturas/bordas parcialmente substituídas por magnetita. Estão inclusos no ortopiroxênio e hornblenda. Algumas concentrações de talco preservam a forma do mineral cumulático primário.

c) obC 2 (Olivina - Ortopiroxênio Cumulato) - Grupo formado por rochas que correspondem a Meta-Lherzolito, Meta-Harzburgito e Serpentinito (Figura 3.6), com textura ortocumulática e mesocumulática, formada por olivina (5 a 15%), ortopiroxênio (4 a 23%), clinopiroxênio (5 a 26%),serpentina (30 a 74%), anfibólio (7 a 45%), minerais opacos (5 a 13%), espinélio (3%), carbonato (2%), flogopita, quartzo, clorita e talco (10%).

Cristais de olivina intensamente fraturada, com tamanhos de até 1,0 mm, sendo que as fraturas são preenchidas por serpentina. Serpentina é pseudomorfa do olivina formando com esta uma textura em "mesh" (Prancha 12e).

Cristais subidiomórficos a xenomórficos, de piroxênios (augita e hiperstênio), com tamanhos variam de 0,5 a 1,7mm, fraturados e alguns planos de clivagem preenchidos por minerais opacos (concentrados principalmente no centro da fratura) e serpentina. Inclusões de olivina, minerais opacos e anfibólio. Presença de cristais geminados.

Minerais opacos idiomórficos a xenomórficos, alongados com tamanhos variando de 0,01 a 1,0mm, associados com serpentina e espinélio. Apresentam contatos retos com piroxênios e retos a irregulares com serpentina.

Cristais subidiomórficos a xenomórficos de anfibólio (incolor a fracamente pleocroíca- tremolita), com tamanhos de até 1,2 mm, com contatos irregulares com serpentina e piroxênio. Apresentam alguns planos fraturados associados com talco e também cortadas por serpentina.

Presença de cristais de clorita (Prancha 12f), com tamanhos até 1,1mm, com minerais opacos preenchendo os planos de clivagens. Presença de talco na borda alguns cristais. Cristais subidiomórficos de quartzo, com tamanhos de 0,3mm. Cristais xenomórficos de flogopita, com tamanhos de 0,4mm.

Cristais subidiomórficos de quartzo, com tamanhos de 0,3mm.

Espinélio verde subidiomórficos a xenomórficos com bordas de minerais opacos e com e com tamanhos até 1,0mm.

Cristais de carbonato, intensamente associados com a serpentina e como inclusões nos cristais de piroxênio, formando concentrações com até 1,0mm.

3.3 ALTERAÇÕES SECUNDÁRIAS

A partir da análise petrográfica foi possível observar a importância da ação dos processos secundários (hidrotermais e metassomáticos) que foram impostos à mineralogia original. As rochas máficas e ultramáficas são caracterizadas por apresentar uma mineralogia pouco hidratada a anidra respectivamente, sendo assim, a mineralogia de alteração será formada a partir da introdução de fluidos e outros componentes no sistema, evidenciada pelo surgimento de minerais hidratados.

A principal paragênese das rochas ultramáficas é representada por ortopiroxênio (hiperstênio/enstatita) ± olivina ± hornblenda ± clinopiroxênio (augita/diopsídio) ± espinélio verde. As paragêneses de baixo grau metamórfico (serpentina + talco + clorita + minerais opacos) indicam que os corpos ultramáficos foram afetados localmente por atividade hidrotermal tardia.

Foram identificadas cerca de cinco alterações secundárias descritas a seguir:

3.3.1 Propilítica

A alteração propilítica é caracterizada pela adição de H₂O e CO₂, e localmente S, sem apreciável H⁺ metassomático (PIRANJO, 2009).

Em algumas situações, pode ser intensa a albitização, cloritização ou carbonatação, que MEYER & HEMLEY (1967) consideram separadamente, reservando o termo propilitização para efeitos mais fracos H⁺ metassomáticos.

Neste grupo estão reunidos ainda a saussuritização e a uralitização. Os minerais típicos são epidoto, actinolita, clorita, carbonatos, albita, K-feldspato e pirita.

Plagioclásio Qtz 2(Na,Ca)Al₂Si₂O₈+2SiO₂+10Mg²⁺+2CO₂+8H₂O →

Clorita Calcita $2Mg_5Al_2Si_3O_{10}(OH)_8+2CaCO_2+2Na+8H^+$ (Prancha 11a,b)

Ortopiroxênio Espinélio Clorita (Clinocloro) Qtz $4MgSiO_3 + MgAl_2O_4 + 4H_2O \rightarrow Mg_5Al_2Si_3O_{10}(OH)_8 + SiO_2$ (Prancha 12f)

Biotita (Flogopita) $2KMg_3AISi_3O_{10}(OH)_2 + 4H^+ \rightarrow Mg_5Al_2Si_3O_{10}(OH)_8 + 3SiO_2 + 2K^+Mg^{2+}$ (Prancha 12f)

 EPIDOTO - Ocorre como um mineral de substituição em rochas alteradas ou preenchendo veios. Cristais aumentam de tamanho e aparecem mais prismáticos com o aumento da temperatura (Prancha 11b, c).

```
Plagioclásio Calcita Epidoto

3(Na,Ca)Al_2Si_2O_8+CaCO_3+2H_2O \rightarrow 2Ca_2Al_3Si_3O_{12}(OH)+CO_2+3Na+2H^+

(Prancha 11b, c)
```

• URALITA – Produto de alteração de piroxênios em anfibólios, que podem ser um único cristal de hornblenda, ou uma actinolita fibrosa (Prancha 12a)

ou agregados de hornblenda (WINTER, 2009). Rochas com antofilita não correspondem a protólitos ígneos ultramáficos primários, sendo então produtos de modificações composicionais (principalmente em zonas de cisalhamento).

 $Cpx \qquad Opx \qquad Espinélio \qquad Qtz$ $4CaMgSi_2O_6 + MgSiO_3 + 5MgAl_2O_4 + 7SiO_2 + 2H_2O \rightarrow$

Hornblenda 2Ca₂(Mg,Al)₅Si₈O₂₂(OH)₂+15O⁻ (Prancha 10 b)

Ortopiroxênio Qtz Antofilita 7MgSiO₃+ SiO₂ + H₂O \rightarrow Mg₇Si₈O₂₂(OH)₂ (Prancha 12a)

3.3.2 Potássica

Alteração potássica para o contexto das rochas estudadas está relacionado com o processo de biotitização. A biotita é gerada diretamente a partir de piroxênio, ou, mais comumente, de hornblenda, cuja desestabilização pode liberar o Ca e produzir epidoto juntamente com a biotita (WINTER, 2009).

Em termos composicionais a biotita secundária tem geralmente mais elevada razão Mg/(Mg + Fe) e concentrações mais baixas de Ti que a biotita ígnea. A menor concentração de Fe e Ti em relação biotita hidrotermal para o mineral precursor geralmente resulta na formação de titanita/esfeno secundário, rutilo (anatásio) e/ou de magnetita com intercrescimento ou imediatamente adjacente a alteração da biotita (THOMPSON & THOMPSON, 1996).

O esfeno/titanita (Prancha 11b e c) ocorre como um mineral acessório, formado durante a alteração hidrotermal de fases portadoras de titânio, como a biotita, augita, hornblenda e ilmenita.

3.3.3 Sericítica (ou Fílica)

Sericita é um termo aplicado a qualquer mica branca muito fina. Sericitização é então o processo pelo qual os minerais félsicos (geralmente feldspatos ou feldspatóides em rochas ígneas) são hidratados para produzir a sericita. Os íons de K⁺ são necessários para o plagioclásio ser alterado para sericita. O potássio pode ser liberado por cloritização de biotita nas proximidades (WINTER, 2009).

Plagioclásio Qtz Sericita Calcita (Na,Ca)Al₂Si₂O₈+SiO₂+K⁺_(aq)+CO₂+Al(OH)⁻⁴_(aq)+2H₂O \rightarrow (K,Na)Al₃Si₃O₁₀(OH)₂+CaCO₃+3H⁺ (Prancha 9f)

3.3.4 Serpentinização, Talcificação e Bastitização

Em baixos graus metamórficos rochas meta-ultramáficas são dominadas pelos minerais de serpentina (antigorita, crisotila e lizardita), resultante em geral, apenas da introdução de grandes quantidades de CO₂ e H₂O a partir de olivina e piroxênio (bastita). A talcificação necessita de um aporte externo de sílica, que na área de estudo pode estar relacionado com os veios de quartzo observados no mapa regional (Figura 1.3).

Olivina Serpentina $2Mg_2SiO_4 + H_2O+2H^+ \rightarrow Mg_3Si_2O_5(OH)_4 + Mg^+$ (Prancha 10c, d, e; Prancha 12d, e, f)

Ortopiroxênio Qtz Talco

$$3MgSiO_3 + SiO_2 + H_2O \rightarrow Mg_3Si_4O_{10}(OH)_2$$

(Prancha 11b)

3.3.5 Martitização

Em alterações de baixas temperaturas a magnetita (primária ou secundária) é substituída (martitização) por hematita nos limites dos grãos e ao longo das fraturas, devido a presença de fluidos oxidantes.

Magnetita Hematita $4Fe_3O_4 + O_2 \rightarrow 6Fe_2O_3$ (Prancha 11d) O estudo da química mineral foi realizado através dos métodos de microssonda eletrônica (MSE) e espectrometria de energia dispersiva de raios X acoplada a microscópio eletrônico de varredura (MEV-EDS). As fases minerais e o número de análises realizadas para cada espécie mineral dos litotipos estudados estão listadas no Quadro 4.1.

Corpo	Grupo	Amostra analisada	Nº total de pontos	Método de análise	Minerais analisados		
Leste	Máf	NLP-009	10	MEV	Hbl, Pl, F-Ap, Tmt		
	Ινιαι	Ma15, Mv10, Mv11	54	MSE	Px, Pl, Ilm, Mrt		
	obC1	Ma12, Ma14, Ma22, Mv17	117	MSE	OI, Px, Anf, Srp, Mt, Sp		
	obC2	Mv41	10	MSE	Chl, Srp, Mt		
Norte	obC1	NLP-002, NLP-003, NLP-012	58	MSE	OI, Px, Anf, Chl		
		NLP-003	3	MEV	Cb, Mt, Pnt		
	obC2	NLP-004	21	MSE	OI, Px, Anf, Chl		
	pbaC0	NLP-005, NLP-006	17	MEV	Aug, Hbl, Anth, Pl, Ti-Phl, Pnt, Py, Po, Ilm		
	pbaC1	NLP-001	15	MEV	Aug, Hbl, Pl, Cpy, Ger, Ni- Co, Ni-As-O (Alteração)		
		NLP-017	2	MEV	Ger, Nic		
			21	MSE	Px, PI, Anf,		
Anf-Anfibólio, Anth-Antofilita, Aug-Augita, Cb-Carbonato, Chl-Clorita, Cpy-Calcopirita, F-Ap -Fluor							
Apatita, Ger-Gersdorfita, Hbl- Hornblenda, Ilm-Ilmenita, Mt-Magnetita, Mrt-Martita, Nic-Nicolita, Ol-							
Olivina; PI-Plagioclásio, Po-Pirrotita, Pnt-Pentlandita, Px-Piroxênio, Py-Pirita, Spr-Serpentina; Sp-							

Quadro 4.1: Sumário dos dados de química mineral obtidos para as rochas estudadas.

4.1 OLIVINA

Foram realizadas 41 análises por microssonda eletrônica deste mineral (Anexos - Quadro A1), presentes nos litótipos obC1 (Meta-Olivina Websterito – Leste e Meta-Olivina Ortopiroxenito - Norte) e obC2 (Meta-Harzburgito – Norte).

Espinélio, Ti-Phl-Titano-Flogopita, Tmt-Titanomagnetita. Abreviações segundo Kretz (1983).

A fórmula estrutural foi classificada a partir dos seus componentes moleculares fosterita (Fo – Mg_2SiO_4) e faialita (Fa – Fe_2SiO_4) (DEER *et al.*, 1992) e calculada com base em 4 oxigênios, pela fórmula:

Y₂ZO₄ Z = Si Y = Mg, Fe, Mn

As fases minerais foram classificadas como crisólito (Figura 4.1) com conteúdo de fosterita variando entre Fo₈₉ a Fo₈₃, sendo os menores valores nos obC2.

Figura 4.1: Diagrama de classificação para olivinas de DEER et al. (1972).

Segundo Jackson & Thayer (1972) os teores de fosterita de olivinas em rochas ultramáficas variam de maneira geral entre 75 e 94% para os complexos estratificados, de 74 a 93% para complexos concêntricos (tipo Alaska), de 88 a 94% para complexos alpinos harzburgíticos e de 87 a 94% nos complexos alpinos lherzolíticos.

Para os corpos estudados foram observados teores de fosterita para o Corpo Leste variando de 85 a 89%, enquanto que para o Corpo Norte os valores foram de 83 a 87%, estando os dois corpos dentro dos limites observados para complexos estratificados e concêntricos. Para o Corpo M-UM da Fazenda Mirabela (CFM) os teores variam de 80 a 88%.

Os valores de NiO para as rochas do Corpo Leste variam entre 0,203 a 0,509% (Anexos - Quadro A1), sendo compatíveis com os valores observados nas análises de rocha total (Quadro 5.4) destas amostras (Ma12 e Ma22), indicando que

o níquel está concentrado nas olivinas. Já para as rochas do Corpo Norte, os teores de níquel foram abaixo do limite de detecção, indicando que o níquel poderia estar concentrado na pentlandita.

4.2 PIROXÊNIO

Foram realizadas 6 análises, pelo método MEV (Anexos - Quadro A2), nas rochas do Corpo Norte classificadas como Meta-Melanogabro cumulatos (pbaC0 e 1). Pelo método MSE, foram realizadas 116 análises (Anexos - Quadro A3), sendo 38 da porção máfica, 42 do Corpo Leste e 36 do Corpo Norte.

Utilizou-se a base de 6 oxigênios para os cálculos do número de cátions dos piroxênios e com o Fe⁺³ obtido estequiometricamente. A nomenclatura foi baseada em Morimoto et al. (1990) e segue as recomendações do IMA *(International Mineralogical Association)*, permitindo o cálculo dos membros finais (Figura 4.2) Enstatita (En–Mg₂Si₂O₆)- Wollastonita (Wo–Ca₂Si₂O₆)-Ferrosilita (Fs–Fe₂Si₂O₆). No cálculo da fórmula estrutural dos piroxênios foi considerada a expressão geral:

$M_2M_1T_2O_6$

 $T (\Sigma = 2,00) = Si^{+4}, Al^{IV} e Fe^{+3}$ M1($\Sigma = 1,00$) = Al^{VI}, Fe⁺³, Ti⁺⁴, Cr⁺³, Mg⁺², Fe⁺² e Mn⁺² M2 ($\Sigma = 1,00$) = Mg⁺², Fe⁺², Mn⁺², Ca⁺², Na⁺¹

Ocorrem desde a porção ultramáfica (obC1) com teores de MgO variando entre 16,6 a 33,4%, à porção máfica (Metagabronoritos) com teores de MgO variando entre 6,1 a 15,2%. A diminuição dos teores de magnésio confirma a diferenciação da sequência litológica/petrográfica definida nos capítulos anteriores.

Os cristais dos litotipos analisados plotam na área Quad (Figura 4.2) sendo então classificados pelo quadrilátero do diagrama Wo-En-Fs como piroxênios Ca-Mg-Fe, com os átomos Ca, Mg e Fe (Fe²⁺ +Fe³⁺+Mn) normalizados (MORIMOTO, et al., 1990).

Para o Corpo Leste, na porção máfica os Metagabronoritos foram analisados os cristais de clinopiroxênio, sendo classificados como augita. Presença de uma amostra classificada como pigeonita (Anexos - Quadro A3).

Nos obC1 (Leste) os cristais de ortopiroxênio são classificados como enstatita. Os clinopiroxênios são classificados como augita (Anexos - Quadro A3). Para o Corpo Norte nos Meta-Melanogabro Cumulatos (pbaC 1), os piroxênios são classificados como enstatita, diopsídio e pigeonita (Anexos - Quadro A3). As amostras analisadas pelo MEV apresentaram os picos de augita. Nos obC1 são classificados como augita e enstatita. Já os obC2 são classificados como enstatita (Anexos - Quadro A3).

A coexistência de piroxênios ricos e pobres em Ca, assim como a evolução acompanhada por um decréscimo nos conteúdos de Ca e Mg, e um moderado enriquecimento de Fe, caracterizam o padrão evolutivo de piroxênios de suítes toleíticas.

Figura 4.2: Diagramas de classificação de piroxênios segundo Morimoto et al. (1990) e Poldervaart & Hess (1951), para os piroxênios dos corpos estudados. WEF

4.3 PLAGIOCLÁSIO

Foram realizadas 7 análises pelo método MEV (Anexos - Quadro A4), sendo 2 na unidade metagabronorito do Corpo Leste e 5 do Meta-Melanogabro Cumulato do Corpo Norte. Foram também realizadas 12 análises pelo método MSE (Anexos - Quadro A5), sendo 5 na unidade Metagabronorito do Corpo Leste e 7 do Meta-Melanogabro Cumulato do Corpo Norte.

Para a determinação da sua fórmula estrutural, utilizou-se a base de 32 oxigênios para os cálculos do número de cátions dos plagioclásios, permitindo o

cálculo dos teores de An. No cálculo da fórmula estrutural dos plagioclásios foi considerada a expressão geral:

$$(A^{1+}_{X}A^{2+}_{1-X})(B^{3+}_{2-X}B^{4}_{2+X})O_{8} \text{ com } 0
 $A^{1+} = Na, K, Rb$
 $A^{2+} = Ca, Sr, Ba, Pb e Mn$
 $B^{3+} = AI, B, Ga e Fe$
 $B^{4+} = Si e Ge$$$

Os plagioclásios presentes no metagabronorito apresentam alto grau de alteração pelos processos de saussuritização e sericitização, o que não permitiu a determinação petrográfica do teor de anortita pelo método Michael-Levi (KERR, 1959). Quimicamente esta fase é classificada como Andesina (An_{42,1} -48,8) e Labradorita (An_{65,7}) de acordo com o Sistema Ternário Albita (Ab)-Anortita (An)-Ortoclásio (Or) segundo Deer et al. (1992) (Figura 4.3). Os cristais do Meta-Melanogabro cumulato foram identificados como Bitonita (An_{66,9} - 79,6). Pelo MEV as amostras de todos os litotipos apresentaram o pico da labradorita.

Figura 4.3: Composição dos plagioclásios classificados segundo os componentes moleculares Ab-Or-An.

4.4 ANFIBÓLIO

Foram realizadas 14 análises, pelo método MEV (Anexos - Quadro A6), sendo 4 amostras das rochas máficas do Corpo Leste e 10 amostras nas rochas do Corpo Norte classificadas como Meta-Melanogabro Cumulatos (pbaC0 e 1). Pelo método MSE, foram realizadas 44 análises (Anexos - Quadro A7), sendo 22 do Corpo Leste e 22 do Corpo Norte.

Para os anfibólios utilizou-se a base de 23 oxigênios para o cálculo do conteúdo catiônico da fórmula padrão, já que não se dispõe da determinação de H_2O , segundo a proposta de Leake et al. (1991), que também estabelece o procedimento para o cálculo estrutural e a nomenclatura desta fase mineral. Sua formula geral é definida por:

-- -

$$\begin{array}{l} \textbf{A_{0-1}B_2C^{IV}}_5\textbf{T}^{IV}}_8\textbf{O}_{22}(\textbf{OH, F, CI})_2 \\ T \ (\Sigma = 8,00) = Si^{+4}, \ Al^{IV} \ e \ Ti^{+4} \\ C \ (\Sigma = 5,00) = Al^{VI}, \ Ti^{+4}, \ Cr^{+3}, \ Fe^{+3}, \ Mg^{+2}, \ Fe^{+2} \ e \ Mn^{+2} \\ B \ (\Sigma = 2,00) = Mg^{+2}, \ Fe^{+2}, \ Mn^{+2}, \ Ca^{+2}, \ Na_B \ e \ Ni^{+2} \\ A \ (\Sigma = 1,00) = Na_A \end{array}$$

Os anfibólios analisados fazem parte da série cálcica (Figura 4.4) de acordo com a classificação de Leake et al. (1991). Apenas uma amostra foi classificada como edenita-hornblenda (pbca1 – Quadro A7). Os obC1 do Corpo Leste foram classificados como Magnésio Hornblenda e Tschermaquita Hornblenda.

Tr-Tremolita; Act-Actinolita; Hbl-Hornblenda; Tsch-Tschermaquita.

Para o Corpo Norte, os litotipos dos grupos obC1 e os obC2 são classificados como magnésio-hornblenda e hornblenda tremolítica, enquanto que para o grupo pcba1 foram classificadas como Tschermaquita.

As amostras analisadas pelo MEV apresentaram os picos de antofilita e hornblenda.

4.5 CLORITA

Foram realizadas 14 análises desta fase mineral (Anexos - Quadro A8), presentes nos obC1 e obC2 do Corpo Norte e no obC2 do Corpo Leste.

Para o cálculo da sua fórmula estrutural, utilizou-se a base de 36 oxigênios para os cálculos do número de cátions, sendo considerada a expressão geral:

$$[R^{+2}, R^{+3}]_{12}^6[Si_{8-x} R^{+3}_x]^4O_{20}(OH)_{16} \text{ com x} \sim 1-3$$

 $R^{+2}=Mg$, Fe, Mn, Ni, Zn
 $R^{+3}=AI$, Fe, Cr

As fases foram classificadas como clinocloro (Figura 4.5), o polo mais magnesiano da série clinocloro-chamosita.

Figura 4.5: Diagrama de classificação das cloritas segundo Deer et al. (1992) para as rochas estudadas.

4.6 MINERAIS OPACOS

Foram identificados por microscopia de luz refletida e tiveram a sua composição determinada tanto por MSE, quanto por MEV-EDS. Pelo MSE foram realizadas 40 análises correspondentes às fases: espinélio (18 análises), magnetita (13 análises), ilmenita (8 análises) e martita (1 análise).

Para o cálculo da fórmula estrutural dos espinélios, utilizou-se a base de 4 oxigênios para os cálculos do número de cátions, sendo considerada a expressão geral:

AB_2O_4

A= Mg, Co, Fe⁺², Ni, Ti, Zn, Mn, Pb, Cu ...

B= AI, Fe³⁺, Cr, Mn, Co...

Quimicamente apresentam composição espinélio/hercinita, magnetita e martita (Anexos - Quadro A9).

A razão Cr/(Cr+Al) decresce do litotipo mais primitivo (obC2 - Meta-Ortopiroxenito - 0,661) para os diferenciados (obC1 - Meta-Olivina Websterito - 0,112 a 0,054), enquanto que a razão $Fe^2/(Fe^2+Fe^3)$ aumenta progressivamente (0,428 para o obC2 e 0,627 a 0,908 para o obC1) (SANTOS, 2013). Estas características são compatíveis com espinélios do tipo estratiforme (HUTCHISON, 1972).

Foram realizadas 8 análises de Ilmenita (Anexos – Quadro A10), que estão presentes nos metagabronoritos como cristais subédricos a anédricos.

Através do MEV foram realizadas 12 análises, sendo 4 de óxidos, 2 de Sulfetos de Cobre, 4 de Sulfetos de Ferro, 2 de pentlandita, 4 de arsenietos, e 2 de Ni-As-O (Alteração).

Os óxidos (Anexo - Quadro A11) foram identificados como titanomagnetita (Figura 4.6c), magnetita (Figura 4.7c) e ilmenita.

Os sulfetos de cobre (Anexos - Quadro A12) foram identificados como calcocita (Figura 4.7d) e calcopirita (Figura 4.8c).

Foram identificados cristais de pirrotita (Figura 4.8d) e pirita (Figura 4.8e), como os sulfetos de ferro (Anexos - Quadro A13).

Os cristais de pentlandita (Anexos - Quadro A14- Figura 4.8f) estão associados com os cristais de pirrotita.

Os arsenietos (Anexos - Quadro A15) foram identificados como nicolita (Figura 4.9c), gersdorfita (Figura 4.9d e 4.10d), Ni-Cobaltita (Figura 4.10c), além da

paragênese de alteração Ni-As-O (Anexos - Quadro A16, Figuras 4.10e e 4.10f). A gersdorfita é bastante comum na fase final hidrotermal da paragenêse níquel-pirrotita de Sudbury (RAMDOHR, 1980).

Figura 4.6: a) Fotomicrografia do detalhe do metagabronorito. Metagabronorito – Amostra NLP-009. Aumento 100X, NX; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Espectro EDS da titanomagnetita.

Figura 4.7: a) Fotomicrografia da paragênese dos cristais de pentlandita, calcocita e magnetita. Meta-Olivina Ortopiroxenito – Amostra NLP-003. Aumento 200X, LR; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Espectro EDS da magnetita; d) Espectro EDS da calcocita.

Figura 4.8: a) Fotomicrografia da paragênese dos cristais de pirrotita, calcopirita e pentlandita. Meta-Melanogabro Cumulato (pbaC0) – Amostra NLP-006. Aumento 50X, LR; b) Imagem de microscopia eletrônica de varredura (MEV); c) Espectro EDS da Calcopirita; d) Espectro EDS da pirrotita; e) Espectro EDS da pirita; f) Espectro EDS da pentlandita.

Figura 4.9: a) Fotomicrografia da paragênese dos cristais de nicolita e gersdorfita. Metamelanogabro Cumulato (pbaC1) – Amostra NLP-017. Aumento 200X, LR; b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados; c) Espectro EDS da nicolita; d) Espectro EDS da gersdorfita.

Figura 4.10: a, b) Imagem de microscopia eletrônica de varredura (MEV), com os pontos analisados. Meta-Melanogabro Cumulato (pbaC1) - Amostra NLP-001; c) Espectro EDS da Ni-Cobaltita; d) Espectro EDS da Gersdorfita, e, f) Espectro EDS da Ni-As-O (Alteração).

s os cálculos geotermométricos nas fases minerais presentes nos obC1, obC2 e pbaC1 no Corpo Norte e nos metagabronoritos e obC1 do Corpo Leste. Com o objetivo de se determinar as temperaturas de cristalização e/ou reequilíbrio das paragêneses presentes nos corpos estudados, foram utilizados os geotermômetros de Berger & Vannier (1978) e Povdin (1988) para o par ortopiroxênio-olivina (Opx-Ol); Powell & Powell (1974) para o par clinopiroxênio-olivina (Cpx-Ol); Wood & Banno (1973), Wells (1977) e Kretz (1982) para o par ortopiroxênio-clinopiroxênio (Cpx-Opx); Brey & Kohler (1990); Witt-Eickschen & Seck (1991) para os ortopiroxênios e Kudo & Weill (1970) e Mathez (1973) para os plagioclásios.

С

zado

Analisando as temperaturas médias para os diferentes geotermômetros calculados que utilizam os piroxênios, é possível observar diferenças entre as temperaturas de cristalização e as temperaturas obtidas pelo evento pós-magmático (reequilíbrio metamórfico).

Os geotermômetros que utilizaram o par Cpx-Ol (Quadro 4.2) no seu cálculo geraram temperaturas de médias 1011,82 °C (Corpo Norte) e 1012,97 °C (Corpo Leste) (cálculo proposto por POWELL & POWELL, 1974).

Já para o par Cpx-Opx (Quadro 4.3) obteve-se as temperaturas médias de 1364,82 °C (Corpo Norte) e 1276,48 °C (Corpo Leste) (WOOD & BANNO, 1973), 1350,06 °C (Corpo Norte) e 1257,16 °C (Corpo Leste) (WELLS, 1977) e 1419,71 °C (Corpo Norte) e 1357,62 °C (Corpo Leste) (KRETZ, 1982).

Quadro 4.2: Temperaturas calculadas com base no geotermômetro Cpx-OI e o valor médio para os obC1.

Corpo	Amostra-Campo	POWELL (1974	& POWELL) Cpx-Ol			
		Ln Kd	T (°C)			
	NLP02-C1(px3-ol3)	-0,68	1010,4			
Norte	NLP02-C1 (px4-ol4)	-0,388	1013,24			
	T Média	1011,82±2,01				
	Ma12-c4(6;9)	-0,518	1012,97			
Leste	Ma12-c4(6;10)	-0,520	1012,96			
	T Média	1012,97±0,01				

Quadro 4.3: Temperaturas calculadas com base no geotermômetro Cpx-Opx e o valor médio para os obC1.

Corpo	Par Cpx-Opx	Wood 8	& Banno (1973)	Wells (1977)	Krotz (1082)
	P (kbar)=5,00	Ln Kd	T (°C)	T (°C) for Opx	Rielz (1902)
	NLP02-C1(px01-px03)	-0,72	1390,28	1374,07	1438,02
Norte	NLP02-C1(px02-px04)	-0,89	1339,35	1326,04	1401,39
	T Média	1364	4,82 ± 36,01	1350,06 ± 33,96	1419,71 ± 25,90
	Ma12-c4(3;5)	-1,08	1284,82	1272,72	1346,32
	Ma12-c4(6;5)	-1,13	1274,54	1266,11	1345,30
Leste	Ma14-c2(162;159)	-0,81	1275,53	1246,56	1201 25
	Ma14-c2(162;166)	-0,82	1271,04	1243,25	1301,25
	T Média	127	′6,48 ±5,88	1257,16 ±14,47	1357,62 ±20,47

Os pbaC apresentam temperaturas para o geotermômetro de Kretz (1982 -Quadro 4.4), de 825,87 °C, mostrando o reequilibro metamórfico.

Litotipo	Amostra-Campo	Kretz (1982)
	NLP17_C2_01	826,33
	NLP17_C2_02	827,58
pbaC	NLP17_C2_03	832,05
	NLP17_C2_04	817,53
	T Média	825,87 ±6,08

Quadro 4.4: Temperaturas calculadas com base no geotermômetro de Kretz (1982) e o valor médio para os pbaC.

As temperaturas médias obtidas para os plagioclásios (Quadro 4.5) de acordo com Kudo & Weill (1970) e Mathez (1973), apresentam valores médios de 1426,56°C e 1372,14°C, para as pbaC do Corpo Norte, e 1040,59°C e 1032,45°C para as rochas máficas do Corpo Leste.

O ponto M10-c3-43 da rocha máfica, apresenta as maiores temperaturas desta unidade, corresponde à labradorita, que é a fase com maiores percentuais de Ca (2,580) em relação às outras amostras, indicando e comprovando sua maior temperatura de cristalização.

Para o par Opx-OI (Quadro 4.6) as temperaturas calculadas para o Corpo Leste foram de 980,54 e 977,21°C para os geotermômetros de Berger & Vannier (1978) e Povdin (1988), respectivamente. Estas temperaturas são menores tanto em relação às encontradas para os plagioclásios presente nas rochas máficas do Corpo Leste (Quadro 4.5), quanto para os pares Cpx-OI (Quadro 4.2), Cpx-Opx (Quadro 4.3) e o geotermômetro de Kretz (1982) (Quadro 4.4) para as rochas ultramáficas, indicando então que estas temperaturas correspondem possivelmente ao evento pós-magmático (retro-metamorfismo ou hidrotermalismo).

Para os ortopiroxênios (Quadro 4.7) as temperaturas foram muito mais baixas segundo os geotermômetros de Brey & Kohler (1990) e Witt-Eickschen & Seck (1991) com 680,05 a 720,98°C e 719,57 a 733,80°C respectivamente, para o Corpo Norte e 785,47 e 783,86°C respectivamente, para o Corpo Leste, comprovando um evento pós-magmático.

Corpos	Unidade	Pontos	Kudo & Weill (1970)	Mathez (1973)
		NLP17_C1_02	1325,34	1280,08
		NLP17_C1_03	1455,29	1398,30
		NLP17_C1_04	1470,91	1412,58
Norto	phoC	NLP17_C2_01	1420,66	1366,72
None	pbac	NLP17_C2_02	1450,90	1394,29
		NLP17_C2_03	1443,59	1387,62
		NLP17_C2_04	1419,21	1365,37
		T média	1426,56 ± 48,32	1372,14 ± 43,97
		MV10-c1-2	977,45	977,31
		MV10-c1-24	878,04	899,11
		MV10-c1-25	1025,46	1017,22
Leste	Máficas	MV10-c1-30	1031,27	1022,08
		MV10-c3-43	1290,73	1249,48
		T média	1040,59 ± 152,72	1033,04 ± 130,63

Quadro 4.5: Temperaturas calculadas (°C) para os plagioclásios e o valor médio para os Metagabronoritos e pbaC.

Quadro 4.6: Temperaturas calculadas com base no geotermômetro Opx-OI e o valor médio para os obC1, Corpo Leste.

Amostra-Campo	Berger	& Vannier	Povdin (1988) NI					
(Pontos-Opx; Ol)	(1978) N	NI OPX-OL	C	PX-OL				
	Ln Kd	T (°C)	Ln Kd	T (°C) média				
Ma12-c4(5;8)	1,737	800,2	1,737	796,97				
Ma12-c4(5;11)	1,556	857,59	1,556	854,3				
Ma12-c1(23;14)	1,566	854,52	1,566	851,24				
Ma12-c1(31;32)	0,857	1152,6	0,857	1149,22				
Ma12-c1(31;32)	0,857	1152,6	0,857	1149,22				
Ma22-c1(118;123)	0,959	1100,67	0,959	1097,28				
Ma22-c1(125;123)	1,362	926,75	1,362	923,41				
Ma22-c1(130;128)	1,18	999,41	1,18	996,04				
T média	980,54	± 141,63	977,2	21 ± 141,57				

Corpo	Litatina	Amostra (Pontos	Brey & Kohler (1990) Ca no Opx	Witt-Eickschen & Seck (1991) Al/Cr no Opx
Corpo	Litotipo	analisados)	T (°C) ±26°C; P (kbar)=5.00	T (°C); P (kbar)=5.00
		NLP02 (2 pontos)	741,52±44,98	766,74±10,27
	abC1	NLP03 (6 pontos)	711,54±61,45	715,20±17,45
Norte	1 200	NLP12 (6 pontos)	709,88±67,84	719,47±24,03
		MÉDIA	720,98±17,81	733,80±28,60
	ah C 2	NLP04 (6 pontos)	680,05±57,61	719,57±12,45
	0002	MÉDIA	680,05±57,61	719,57±12,45
		Ma12 (7 pontos)	794,56±30,45	794,69±21,25
Locto	obC1	Ma14 (9 pontos)	808,07±26,98	781,10±21,74
Lesie		Ma22 (12 pontos)	753,77±74,01	775,79±34,52
		MÉDIA	785,47±26,21	783,86±7,53

Quadro 4.7: Temperaturas calculadas para os ortopiroxênios e o valor médio, dos corpos Norte e Leste.

4.8 GEOBAROMETRIA

As condições de pressão que os corpos estudados estão submetidos foram calculados a partir do geotermômetro de Hollister et al. (1987) que utiliza a quantidade de AI^T presente na hornblenda, seguindo a seguinte equação:

Pressão (± 1 kbar) = -4,76+5,64 AI_{Hbl}^{T}

Os resultados estão presentes no Quadro 4.8. Para o Corpo Norte, obteve valores médios de pressões de 4,69kbar para a unidade obC2 e 5,39 kbar para a unidade pbaC1. Para o Corpo Leste obteve-se valores médios de pressões para a unidade obC1 entre 5,60 a 7,03 kbar.

Associado aos valores calculados pelo geobarômetro de Hollister et al. (1987), algumas feições observadas nas fases minerais analisadas, indicam que os corpos Norte e Leste tenham sido colocados sob condições de alta pressão, no fácies anfibolito, como:

- a) Baixas razões Cr/(Cr+Al) nos espinélios
- b) Elevados teores de Al₂O₃ na fase mineral clinopiroxênio;
- c) Coexistência de olivina e ortopiroxênio como fases cumuláticas
- d) Associação antofilita e olivina

e) Associação hornblenda e plagioclásio

Além disso, os corpos Norte e Leste são encaixados em rochas granulíticas retrometamorfisadas em fácies anfibolito, que se encontram na faixa de

pressão entre 5 e 7 kbar (BARBOSA, 1986; BARBOSA & FONTEILLE, 1989; BARBOSA & SABATÉ, 2004) corroborando com o espectro calculado (4,69 a 7,03 kbar) para os corpos estudados.

CORPO	Unidade	Amostra	AI ^T	Hollister <i>et al.,</i> (1987)
		Ma12-c2-30	1,93	6,13
		Ma12-c3-46	1,91	6,01
		Ma12-c3-47	1,89	5,90
		Ma12-c3-48	1,95	6,24
		Ma12-c3-49	1,97	6,35
		Ma12-c3-50	1,97	6,35
		Ma12-c3-51	1,91	6,01
		MÉDIA	1,93±0,03	6,14±0,18
		Ma14-c1-145	1,86	5,73
		Ma14-c1-147	1,94	6,18
		Ma14-c2-164	1,62	4,38
		Ma14-c3-168	1,90	5,96
Leste	obC1	Ma14-c3-169	1,86	5,73
		MÉDIA	1,83±0,13	5,60±0,71
		Ma22-c2-129	1,91	6,01
		MV17-c2-45	2,13	7,25
		MV17-c2-46	2,11	7,14
		MV17-c3-47	2,10	7,08
		MV17-c3-49	2,12	7,20
		MV17-c3-50	2,07	6,91
		MV17-c3-52	2,11	7,14
		MV17-c3-56	2,10	7,08
		MV17-c3-57	2,06	6,86
		MV17-c3-58	2,01	6,58
		MÉDIA	2,09±0,04	7,03±0,21
		NLP04_C1_01	1,79	5,34
		NLP04_C1_02	1,55	4,00
Norte	obC2	NLP04_C1_03	1,69	4,77
None		NLP04_C2_01	1,67	4,66
		MÉDIA	1,68±0,10	4,69±0,55
	pbaC1	NLP17_C2_01	1,80	5,39

Quadro 4.8: Pressões calculadas (kbar) baseada no geobarômetro de Al^T em hornblenda.

A Figura 4.11 apresenta a relação entre os geotermômetros e geobarômetros calculados, onde as amostras de maior temperatura (acima da curva "solidus") correspondem temperaturas de cristalização, enquanto que as amostras que apresentam as menores temperaturas plotam nas zonas da tremolita, antofilita e diopsídio, que correspondem a condições de fácies anfibolito.

Figura 4.11: Diagrama P-T para rochas ultramáficas do sistema CaO-MgO-SiO2-H2O CMSH (SPEAR, 1993, adaptado de WINTER, 2009).

Os resultados das análises químicas de rocha total (elementos maiores, traço e terras raras) e índices de diferenciação (#mg) para as rochas do grupo 1 estão apresentados nos Quadros 5.1 a 5.4. Os valores da norma CIPW estão nos Quadros 5.5 e 5.6.

5.1 MOBILIDADE DOS ELEMENTOS

As rochas estudadas apresentam as texturas ígneas preservadas e uma mineralogia primária alterada por processos pós-magmáticos. Essas alterações podem modificar o quimismo de rocha total, sendo necessária, antes do tratamento geoquímico uma análise da possível mobilização dos elementos químicos destas rochas.

Para o estudo da mobilidade dos elementos são utilizados os diagramas LMPR (*Logarithmic Molecular Proportion Ratio*) (Figura 5.1), utilizando o método gráfico de Beswick & Soucie (1978), para avaliar os efeitos de alterações ou metamorfismo em amostras de komatíitos e basaltos.

As amostras da porção máfica do Corpo Leste (Figura 5.1) estão distribuídas tanto dentro quanto paralelos às faixas dos campos definidos pelas rochas não alteradas, sugerindo que estas amostras sofreram poucas alterações ou variações na composição das rochas, aproximando-se de modo geral das composições ígneas originais. Para as rochas ultramáficas, do Corpo Norte e do Corpo Leste apresentam padrão paralelo aos campos das rochas não alteradas apenas para os pares SiO₂/Al₂O₃ e SiO₂/FM, mostrando que para estes elementos não houve modificações químicas significativas. Já para os demais elementos estas rochas não apresentam padrões retilíneos que podem estar influenciados tanto pela natureza cumulática das rochas, quando pelo grau de alterações metassomáticas submetidas.

Os diagramas MPR são também utilizados para observar o fracionamento da olivina e do piroxênio (Figura 5.2) através de vetores definidos pelas razões dos diferentes elementos envolvidos no fracionamento destes minerais. As rochas

0												Corpo Ultramáfico Norte																
Grupo					ob	C1							ob	C2				pbaC0				pba	aC1				pbaC2	
Nome da Rocha			Meta-	Olivina we	bsterito e l	Meta-Olivir	na Ortopiro	oxenito				Meta-L	herzolito e	Meta-Har	zburgito						Me	eta-Melanog	abro Cumul	ato				
Amostra	NL- 009	NL- 010	NL- 011	NL- 017	NL- 018	NL- 019	NLP- 002	NLP- 003	NLP- 007	NLP- 012	NE- 027	NL- 007	NL- 008	NL- 012	NLP- 004	ZJ-328	NE- 025	NLP- 005	NLP- 006	NE- 019	NE- 020	NL-003	NL-028	NLP- 001	NLP- 017	NE-026	NL- 014	NL- 016
SiO ₂	43,71	43,87	43,14	45,87	44,16	44,70	38,55	40,60	45,42	39,83	40,67	41,31	42,95	42,56	42,67	40,70	52,68	47,72	47,55	52,33	50,53	50,90	47,66	51,74	49,15	49,28	46,97	48,28
TiO ₂	0,15	0,16	0,26	0,83	0,77	0,58	0,06	0,09	0,81	0,10	0,18	0,16	0,15	0,10	0,09	0,40	0,59	0,89	0,92	0,67	1,50	0,06	0,46	0,33	0,70	0,50	0,26	0,18
Al ₂ O ₃	5,66	7,41	8,19	4,05	3,74	2,81	3,73	4,94	3,78	5,73	3,53	7,56	5,58	4,69	4,71	11,90	6,54	10,35	10,44	2,47	6,24	4,00	13,41	5,86	4,09	12,21	12,21	8,90
Fe ₂ O ₃	12,43	13,30	11,22	17,12	16,40	14,48	10,27	9,80	16,63	9,63		11,69	10,44	11,25	12,29	6,62	13,96	13,67	13,59	10,91	12,46	23,68	8,84	11,58	9,99	11,54	8,90	8,58
FeO _T	11,18	11,97	10,10	15,40	14,76	13,03	9,24	8,82	14,96	8,67	13,64	10,52	9,39	10,12	11,06	5,96	12,56	12,30	12,23	9,82	11,21	21,31	7,95	10,42	8,99	10,38	8,01	7,72
MnO	0,21	0,18	0,21	0,25	0,26	0,21	0,15	0,15	0,24	0,15	0,19	0,19	0,16	0,18	0,21	0,23	0,25	0,22	0,22	0,58	0,43	0,26	0,34	0,43	0,49	0,20	0,35	0,44
MgO	26,65	28,21	22,07	14,61	18,54	19,76	30,00	29,57	16,37	29,08	30,00	27,60	28,91	29,73	30,00	23,00	10,95	10,42	10,17	10,86	9,37	9,29	5,15	11,83	10,51	12,73	7,76	8,61
CaO	3,58	4,25	6,29	10,23	10,23	9,96	0,88	2,57	9,17	3,37	3,28	1,71	1,77	1,29	0,56	4,00	11,18	11,15	11,76	22,04	20,55	8,74	20,50	12,95	19,90	10,58	17,64	19,06
Na ₂ O	0,17	0,18	0,24	0,22	0,20	0,10	0,01	0,04	0,36	0,14	0,09	0,06	0,08	0,07	0,04	0,08	0,58	0,75	0,75	0,43	0,60	0,08	0,46	0,30	0,40	0,98	0,58	0,33
K ₂ O	0,08	0,05	0,09	0,06	0,06	0,04	0,03	0,04	0,08	0,04	0,01	0,04	0,03	0,04	0,03	0,06	0,15	0,80	0,47	0,08	0,26	0,10	0,12	0,35	0,25	0,21	0,44	0,56
P ₂ O ₅	0,01	0,05	0,01	0,05	0,04	0,03	0,02	0,03	0,05	0,03	0,02	0,04	0,01	0,03	0,02	0,05	0,06	0,06	0,08	0,02	0,11	0,06	0,22	0,17	0,01	0,03	0,01	0,01
LOI	2,63	3,91	3,37	2,69	1,45	4,40	9,58	6,89	2,30	6,86	6,76	5,79	6,00	6,70	5,51	-	0,04	0,21	0,01	0,22	0,55	0,01	0,59	0,01	0,37	0,50	0,42	0,43
Total	95,49	102,19	95,47	96,22	96,06	97,29	96,28	95,16	95,42	95,53	101,33	96,88	96,53	96,90	96,13	95,57	97,00	96,38	95,84	100,76	102,94	96,17	97,77	95,60	95,98	98,89	95,88	95,60
Ba	70,00	12,00	13,00	149,00	131,00	238,00	20,00	23,00	136,00	5,00	19,00	63,00	5,00	48,00	47,00	124,00	80,00	52,00	37,00	28,00	123,00	71,00	35,00	615,00	128,00	38,00	22,00	39,00
Rb	0,90	0,30	0,80	0,80	1,30	1,60	0,30	0,50	0,70	0,30	0,10	0,70	0,90	1,60	0,90	25,00	20,10	24,20	10,00	35,00	47,70	2,90	4,70	14,80	18,00	19,40	20,10	33,00
Sr	5,00	10,00	5,00	92,00	131,00	151,00	5,00	5,00	111,00	5,00	5,00	5,00	5,00	5,00	5,00	2,50	91,00	107,00	99,00	61,00	128,00	18,00	458,00	79,00	61,00	49,00	101,00	63,00
Y	5,54	4,74	10,93	16,44	12,05	9,18	2,18	3,58	12,16	3,32	5,00	4,27	3,85	3,11	2,33	-	13,00	21,44	20,73	5,00	17,00	8,04	16,63	17,02	19,76	11,00	8,73	9,70
Zr	5,00	41,00	5,00	31,00	38,00	22,00	5,00	5,00	39,00	5,00	21,00	5,00	5,00	5,00	5,00	-	62,00	42,00	57,00	39,00	94,00	5,00	42,00	34,00	30,00	18,00	5,00	5,00
Nb	0,03	0,03	0,03	1,80	2,52	0,03	0,03	0,03	0,85	7,06	1,64	0,50	0,03	1,27	0,03	-	3,96	5,03	14,44	15,61	20,49	2,84	24,90	8,80	7,32	0,90	0,03	0,03
lh C	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	3,00	0,05	-	0,05	1,60	0,70	1,50	1,50	0,50	2,80	2,10	0,05	0,05	0,05	0,05
Ga	6,10	6,90	8,00	9,70	8,70	7,20	4,70	5,20	8,60	5,50	2,00	9,00	6,40	5,00	5,20	-	10,30	20,00	19,80	5,10	15,80	10,50	22,20	17,90	12,70	9,20	12,30	9,40
Zn	61,00	82,00	30,00	70,00	77,00	84,00	52,00	43,00	92,00	50,00	102,00	83,00	61,00	53,00	62,00	-	0	92,00	96,00	141,00	137,00	114,00	73,00	173,00	107,00	74,00	37,00	37,00
Cu	93,00	20,00	5,00	125,00	201,00	118,00	5,00	12,00	101,00	2,50	2,50	23,00	6,00	2,50	23,00	7,00	2,50	263,00	208,00	18,00	47,00	7,00	23,00	16,00	15,00	6,00	9,00	9,00
Ni	905,00	870,00	647,00	1588,0 0	1589,0 0	2040,0 0	1468,0 0	1172,0 0	1114,0 0	896,00	1503,0 0	931,00	834,00	863,00	972,00	440,00	316,0 0	449,00	397,00	777,00	1280,0 0	221,00	126,00	1132,0 0	748,00	400,00	602,00	426,00
V	63,00	108,00	160,00	232,00	145,00	86,00	11,00	77,00	132,00	100,00	86,00	104,00	65,00	55,00	82,00	-	225,0 0	276,00	276,00	140,00	215,00	50,00	252,00	122,00	111,00	264,00	181,00	142,00
Cr	2000,0 0	6300,0 0	3800,0 0	2300,0 0	2100,0 0	2200,0 0	3200,0 0	4400,0 0	2100,0 0	5500,0 0	5800,0 0	7300,0 0	4600,0 0	2700,0 0	2900,0 0	4000,0 0	200,0 0	1500,00	1500,0 0	1600,0 0	3500,0 0	50,00	200,00	1400,0 0	1600,0 0	1200,00	3400,0 0	2100,0 0
Hf	0,03	0,03	0,03	0,92	0,74	0,42	0,03	0,03	0,84	0,03	0,50	0,03	0,03	0,69	0,03	-	1,79	1,86	1,76	1,29	2,47	0,15	0,82	1,12	0,57	0,44	0,32	0,13
Cs	0,11	0,03	0,03	0,07	0,06	0,09	0,08	0,07	0,03	0,03	0,03	0,29	0,50	0,74	0,14	-	0,19	1,28	0,53	0,61	0,17	0,23	0,52	1,21	0,59	0,03	0,68	1,18
Та	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	-	0,03	0,03	0,03	0,03	0,17	0,03	2,15	0,03	0,03	0,03	0,03	0,03
Co	122,50	111,00	83,00	131,60	129,40	120,10	126,70	120,20	71,90	102,10	128,10	121,20	119,60	116,10	110,10	86,00	77,80	86,00	83,60	96,90	108,40	22,10	41,40	106,40	88,50	60,00	99,60	83,90
U	0,10	0,08	0,06	0,28	0,29	0,26	0,06	0,09	0,23	0,10	0,03	0,08	0,06	0,13	0,07	-	0,13	0,14	0,23	0,21	1,18	0,35	5,18	0,74	1,13	0,03	0,14	0,32
W	1,80	3,80	0,90	1,10	1,00	6,70	1,20	0,90	0,60	0,30	0,05	4,90	1,60	1,50	1,10	-	0,05	1,30	1,00	0,05	0,05	5,80	63,00	484,80	6,20	0,05	1,00	4,00
Sn	1,90	0,15	0,50	1,40	2,20	0,15	0,80	0,15	0,80	1,10	0,15	2,20	0,50	3,70	0,15	-	0,15	2,70	4,20	0,15	0,15	1,20	9,40	16,10	33,60	0,15	1,40	1,90
Мо	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	-	1,00	1,00	1,00	1,00	1,00	1,00	2,00	1,00	1,00	1,00	1,00	1,00
Au	2,50	2,50	91,00	2,50	9,00	2,50	2,50	84,00	2,50	2,50	-	2,50	2,50	80,00	2,50	-		35,00	2,50	-	-	2,50	2,50	2,50	2,50		2,50	2,50
TI	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	1,00	0,25	-	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
#mg	80,95	80,77	79,57	62,84	69,13	73,00	85,27	85,66	66,11	85,67	79,68	82,38	84,59	83,97	82,86	87,31	60,85	60,16	59,72	66,35	59,84	43,73	53,59	66,93	67,57	68,61	63,33	66,53

Quadro 5.1: Análises químicas de rocha total para os corpos ultramáficos Norte. #mg (número de magnésio) = (MgO*100)/(MgO+FeO_T molecular).

Crumo												Co	orpo Ultrar	náfico Nor	te													
Grupo					ob	C1							obC	2				pbaC0				pba	IC1				pbaC2	
Nome da Rocha			Meta	Olivina we	bsterito e N	Meta-Olivin	a Ortopiroxe	nito			Meta-Lherzolito e Meta-Harzburgito										Meta-	Melanogat	oro Cumu	lato				
Amostra	NL- 009	NL-010	NL-011	NL-017	NL-018	NL-019	NLP-002	NLP-003	NLP- 007	NLP- 012	NE-027	NL-007	NL-008	NL-012	NLP- 004	ZJ- 328	NE-025	NLP- 005	NLP- 006	NE- 019	NE- 020	NL-003	NL- 028	NLP- 001	NLP- 017	NE- 026	NL- 014	NL- 016
La	3,80	0,80	0,05	13,00	10,30	5,60	1,10	6,80	11,40	0,05	2,70	1,20	0,20	0,05	6,20	-	12,30	8,60	13,00	8,10	12,80	9,30	40,70	15,40	3,90	2,40	3,50	6,80
Ce	2,40	1,50	2,20	18,70	15,20	10,10	0,05	1,70	17,80	0,80	5,80	5,80	0,70	0,40	3,70	-	26,80	25,80	25,50	15,60	28,40	18,00	80,20	21,10	12,20	8,50	2,00	2,60
Pr	0,51	0,40	0,66	3,35	6,04	2,01	0,21	0,37	3,49	0,30	0,03	0,29	0,32	0,33	0,39	-	2,96	3,82	3,54	2,10	3,85	2,49	10,22	2,74	2,03	0,16	0,48	0,49
Nd	1,50	1,30	2,60	15,10	22,30	8,70	0,20	0,90	14,20	0,70	3,00	0,70	0,80	0,70	1,50	-	14,70	16,10	14,60	11,20	18,40	9,40	40,20	10,40	8,90	3,50	1,60	1,60
Sm	0,50	0,40	0,90	3,70	2,90	2,20	0,20	0,30	3,30	0,30	0,05	0,30	0,30	0,30	0,20	-	3,20	4,20	3,50	2,30	4,20	2,00	6,90	2,40	2,50	0,50	0,50	0,50
Eu	0,20	0,18	0,24	0,85	0,85	0,60	0,03	0,11	0,97	0,15	0,03	0,08	0,08	0,12	0,07	-	0,54	1,00	1,13	0,51	0,98	0,56	1,75	0,76	0,86	0,03	0,24	0,21
Gd	0,66	0,65	1,39	3,79	3,04	2,26	0,28	0,45	3,35	0,36	0,55	0,50	0,44	0,40	0,30	-	2,79	4,55	4,25	2,58	4,39	1,76	5,31	2,59	3,13	1,37	0,93	0,94
Tb	0,12	0,11	0,25	0,55	0,42	0,33	0,05	0,07	0,50	0,07	0,03	0,09	0,08	0,09	0,06	-	0,03	0,72	0,69	0,03	0,20	0,25	0,64	0,42	0,51	0,03	0,18	0,20
Dy	0,87	0,74	1,78	3,07	3,10	1,71	0,33	0,56	2,62	0,49	0,69	0,63	0,52	0,47	0,37		2,46	4,22	3,93	2,20	4,13	1,36	3,29	2,60	3,19	1,59	1,37	1,38
Но	0,19	0,16	0,38	0,59	0,42	0,32	0,08	0,12	0,46	0,11	0,03	0,15	0,13	0,12	0,08	-	0,30	0,79	0,77	0,32	0,65	0,25	0,58	0,51	0,60	0,14	0,30	0,31
Er	0,65	0,53	1,21	1,56	1,13	0,81	0,25	0,39	1,22	0,36	0,29	0,47	0,41	0,38	0,30	-	1,22	2,18	2,21	0,78	2,19	0,76	1,51	1,65	1,77	1,06	0,95	1,00
Tm	0,12	0,08	0,18	0,22	0,15	0,12	0,03	0,06	0,16	0,06	0,03	0,08	0,06	0,09	0,06	-	0,03	0,32	0,33	0,03	0,11	0,12	0,21	0,25	0,25	0,03	0,16	0,15
Yb	0,60	0,50	1,20	1,20	0,90	0,70	0,20	0,40	1,00	0,40	0,30	0,50	0,40	0,40	0,30	-	1,40	1,90	1,80	0,80	1,80	0,90	1,30	1,80	1,50	1,40	1,00	1,00
Lu	0,09	0,07	0,18	0,16	0,11	0,08	0,03	0,05	0,13	0,03	0,03	0,08	0,07	0,07	0,05	-	0,03	0,25	0,28	0,03	0,03	0,13	0,19	0,24	0,19	0,03	0,14	0,15
ΣETR	12,21	7,42	13,22	65,84	66,86	35,54	3,04	12,28	60,60	4,18	13,56	5,77	4,51	3,92	13,58	0,00	68,76	74,45	75,53	46,58	82,13	47,28	193,00	62,86	41,53	20,74	13,35	17,33

Quadro 5.2: Análises químicas de elementos terras raras para os corpos ultramáficos Norte.

Corpo		<u>/·(</u>		Les	te			
Grupo				Máfie	cas			
Amostra	NE-023	Mv10	Mv11	Mv26	Mv30	Mv32	NLP-008	NLP-009
SiO ₂	46,02	45,81	44,47	47,85	47,15	48,48	44,32	45,58
TiO ₂	3,25	2,78	2,98	3,36	3,53	3,05	2,93	2,82
Al ₂ O ₃	13,68	13,59	13,25	14,69	14,62	14,66	12,66	14,09
Fe ₂ O ₃	13,80	13,01	13,67	14,19	15,07	13,67	14,94	12,82
FeOT	12,42	18,63	19,41	19,65	20,34	19,39	13,44	11,54
MnO	0,24	0,24	0,24	0,27	0,28	0,25	0,27	0,23
MgO	5,51	4,96	5,58	6,29	6,37	6,18	5,17	4,96
CaO	10,15	8,55	9,28	9,64	10,40	9,25	9,01	9,82
Na ₂ O	2,78	2,73	2,54	3,11	2,63	3,04	2,25	2,55
K ₂ O	0,91	1,17	1,12	1,17	1,16	1,22	1,08	1,03
P ₂ O ₅	1,18	1,38	1,27	1,15	1,17	1,00	1,34	1,05
LOI	2,11	1,75	1,83	2,18	2,01	1,95	1,52	1,79
Total	99,65	95,99	96,26	103,93	104,41	102,77	95,51	96,75
Ва	808,00	925,00	761,00	1005,00	870,00	891,00	857,00	808,00
Rb	99,50	20,70	20,60	18,40	19,60	24,90	16,70	13,80
Sr	445,00	452,00	433,00	513,00	548,00	499,00	402,00	495,00
Y	26,00	26,00	25,00	25,00	26,00	24,00	33,95	27,44
Zr	159,00	196,00	200,00	156,00	167,00	168,00	232,00	134,00
Nb	50,83	29,52	27,20	23,55	25,10	25,21	28,28	20,26
Th	2,30	5,30	4,70	1,80	2,10	2,40	1,70	0,80
Ga	18,40	20,00	22,00	20,30	20,60	21,30	23,50	21,90
Zn	118,00	122,00	110,00	116,00	110,00	110,00	96,00	78,00
Cu	39,00	33,00	46,00	38,00	37,00	32,00	43,00	39,00
Ni	56,00	54,00	68,00	70,00	65,00	70,00	62,00	69,00
V	295,00	238,00	317,00	286,00	294,00	256,00	236,00	223,00
Cr	200,00	200,00	300,00	300,00	200,00	200,00	200,00	100,00
Hf	3,65	4,90	5,41	3,95	4,19	4,78	4,98	3,04
Cs	0,03	0,25	0,25	0,07	0,08	0,11	0,26	0,18
Та	0,44	2,10	1,95	1,51	1,81	1,74	0,03	0,03
Со	38,90	34,20	44,80	41,30	41,80	45,00	44,60	38,60
U	0,51	0,73	0,74	0,50	0,61	0,69	0,84	0,60
W	0,05	1,60	1,30	3,70	3,50	2,20	4,00	0,10
Sn	0,15	3,90	2,40	1,00	0,50	0,70	2,40	0,15
Мо	1,00	2,00	2,00	1,00	2,00	3,00	3,00	1,00
Ag	0,50	0,50	0,50	0,50	0,50	0,50		
TI	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
La	39,20	41,30	40,20	32,60	37,00	35,90	43,70	33,40
Ce	81,00	93,00	91,30	76,90	79,80	79,40	100,70	77,20
Pr	11,01	12,40	12,61	10,85	11,04	10,83	13,15	10,25
Nd	50,90	53,90	51,90	45,70	47,90	46,20	56,40	44,20
Sm	9,70	10,60	10,70	9,20	9,90	9,30	10,80	8,80
Eu	3,52	4,98	4,86	4,49	4,61	4,59	4,77	3,93
Gd	8,95	10,19	10,72	8,84	8,92	9,52	10,33	8,01
Tb	0,74	1,34	1,32	1,29	1,27	1,20	1,31	1,03
Dy	7,06	7,18	6,58	6,43	7,16	6,56	6,88	5,60
Ho	1,10	1,26	1,51	1,19	1,14	1,24	1,26	1,00
Er	3,16	3,53	3,42	3,24	3,65	3,07	3,21	2,69
Tm	0,25	0,44	0,49	0,46	0,42	0,45	0,42	0,34
Yb	2,60	2,70	2,90	2,50	2,60	2,50	2,50	2,00
Lu	0,03	0,32	0,32	0,35	0,34	0,26	0,36	0,29
ΣETR	219,22	243,14	238,83	204,04	215,75	211,02	255,79	198,74
#mg	44,16	32,18	33,88	36,33	35,83	36,23	40,68	43,38

Quadro 5.3: Análises químicas de rocha total para as rochas máficas do Corpo Leste. #mg (número de magnésio) = (MgO*100)/(MgO+FeOT molecular).

Grupo		- ,				Ĺ	.este					obC2	
Nome da	Meta-V	Vebsterito				do		a			Meta	-Lherzolito	Meta-
Rocha				Me	ta-Olivina w	ebsterito e l	Meta-Olivina	a Ortopiroxe	nito		Harzbu	rgito e Serp	entinito
Amostra	Mv14	Mv34	Ma12	Ma14	Ma21	Ma22	Mv07	Mv17	Mv21	Mv22	NE-024	Mv23	Mv41
SiO2	49,33	47,74	40,35	44,43	45,80	43,96	47,99	45,92	48,45	43,45	41,61	42,15	39,05
1102	0,25	0,44	0,34	0,38	0,26	0,25	0,29	0,33	0,37	0,39	0,19	0,31	0,18
AI2O3	6,18	8,01	6,97	6,46	5,21	5,05	4,22	6,45	7,72	4,53	4,46	3,38	1,48
Fe2O3	10,42	13,93	12,74	11,08	10,60	10,53	9,79	11,77	11,99	10,93	12,14	10,63	6,98
FeOI	10,24	15,24	14,65	12,33	11,40	12,39	10,94	12,12	12,42	12,66	10,92	12,14	8,09
MnO	0,17	0,20	0,14	0,20	0,20	0,26	0,12	0,11	0,22	0,19	0,24	0,16	0,17
MgO	20,51	0.25	20,14	23,52	29,84	30,00	20,28	20,00	23,19	28,00	30,00	30,00	30,00
CaU	9,02	9,25	4,83	0,11	4,42	1,00	4,00	0,51	0,89	5,76	1,79	2,90	1,12
NazO K2O	0,83	0,75	0,43	0,31	0,49	0,25	0,45	0,57	0,89	0,34	0,21	0,09	0,01
R20	0,21	0,14	0,11	0,10	0,10	0,07	0,14	0,10	0,18	0,05	0,03	0,06	0,04
P205	0,09	0,01	0,07	0,02	5.02	0,01	0,08	0,01	1.90	0,09	0,01	0,00	0,05
LOI	1,39	2,90	06.96	4,47	102.16	0,42	00.79	102.26	1,00	100.24	0,33	7,03	02.21
Ro	90,70	25.00	90,00	97,39 55.00	103,10	18.00	99,70	88.00	55.00	20.00	20.00	5.00	32,31
Da Ph	4 90	23,00	2 70	1.00	497,00	0.70	97,00 6.60	5 30	5 30	23,00	20,00	1 10	232,00
Sr	4,90	5.00	2,70	20.00	28.00	5.00	22.00	16.00	24.00	2,30 /1.00	5,00	14.00	18.00
31 V	43,00	5,00	5.00	20,00	5.00	5,00	5.00	11,00	5.00	5.00	5,00	5.00	5.00
1 7r	12,00	20.00	34.00	29.00	11.00	14.00	22.00	27.00	18.00	28.00	12.00	21.00	15.00
Nb	1 30	20,00	1 /0	29,00	0.40	14,00	8.87	27,00	164	20,00	1 73	1.08	2 15
Th	1,30	1,10	1,40	0,00	0,40	0.20	4.80	0,30	0.60	2,55	0.05	0.20	1 10
Ga	5 50	9.60	10.80	7 20	5 30	5.40	-,00 6 10	6.90	7 20	5 90	1 90	4 40	2 70
Zn	70.00	235.00	127.00	128.00	69.00	256.00	65.00	128.00	87.00	77.00	242.00	73.00	115.00
Cu	18.00	3064.00	50.00	5.00	9.00	6.00	16.00	110.00	7.00	34.00	2 50	20.00	2 50
Ni	878.00	3402.00	1105.00	1545.00	1755.00	1832.00	1315.00	1311.00	979.00	1704 00	1844 00	1937.00	2209.00
V	144.00	165.00	193.00	151.00	104.00	107.00	118.00	144.00	131.00	121.00	131.00	76.00	47.00
Cr	3800,00	6300,00	5100,00	3100,00	3000,00	7000,00	2500,00	4300,00	3000,00	2500,00	5800,00	2600,00	1900,00
Hf	0,57	0,62	0,84	0,66	0,54	0,39	0,87	0,69	0,75	0,95	0,40	0,69	0,57
Cs	0,29	0,12	0,17	0,06	0,21	0,10	0,35	0,30	0,08	0,13	0,03	0,12	0,08
Та	0,12	0,23	0,09	0,13	0,13	0,18	0,76	0,16	0,16	0,36	0,03	0,33	0,53
Co	77,10	112,50	112,50	91,70	116,10	125,30	83,60	74,20	94,80	110,50	126,00	103,30	96,10
U	0,06	0,37	0,09	0,11	0,10	0,08	0,19	0,20	0,06	0,07	0,03	0,03	0,29
W	0,40	1,50	2,20	2,50	2,20	4,10	3,50	2,50	4,10	4,70	0,05	6,40	4,10
Sn	0,60	0,15	2,90	2,60	1,20	1,90	3,70	2,60	0,15	0,70	0,15	0,15	0,70
Mo	3,00	2,00	1,00	1,00	1,00	4,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Ag	0,50	0,50	0,50	0,50		0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
TI	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
La	4,80	4,80	3,60	7,90	5,50	4,20	8,30	2,90	4,60	4,40	5,60	1,10	7,10
Ce	6,50	9,30	5,70	11,10	4,60	3,60	11,10	2,30	23,00	9,30	11,70	4,20	11,60
Pr	1,24	1,24	0,86	2,46	0,98	0,43	1,36	0,81	1,18	1,35	0,54	0,56	1,33
Nd	6,10	4,70	3,70	9,30	3,90	2,40	5,70	3,60	5,20	5,30	4,00	3,00	5,20
Sm	1,50	1,30	1,00	2,40	1,30	0,60	1,20	1,00	1,60	1,30	0,30	0,90	0,70
Eu	0,61	0,37	0,32	0,89	0,31	0,35	0,27	0,18	0,47	0,52	0,03	0,21	0,20
Gd	1,91	1,45	1,32	2,37	1,65	0,71	1,94	1,75	1,77	1,53	0,73	1,23	0,49
Tb	0,29	0,19	0,26	0,49	0,25	0,12	0,35	0,30	0,32	0,30	0,03	0,17	0,08
Dy	1,91	1,54	1,24	3,18	1,77	0,96	2,21	1,57	1,67	1,63	0,83	1,10	0,37
Ho	0,41	0,35	0,33	0,55	0,35	0,20	0,39	0,34	0,39	0,34	0,03	0,25	0,06
Er	1,02	0,93	0,99	1,54	1,02	0,57	1,30	1,09	1,28	1,05	0,54	0,69	0,25
Tm	0,18	0,14	0,13	0,23	0,13	0,08	0,17	0,12	0,16	0,17	0,03	0,13	0,03
Yb	1,10	1,00	0,70	1,60	0,70	0,60	1,20	0,90	1,10	1,00	0,40	0,60	0,20
Lu	0,12	0,03	0,09	0,11	0,03	0,03	0,08	0,10	0,08	0,09	0,03	0,03	0,03
ΣETR	27,69	27,34	20,24	44,12	22,49	14,85	35,57	16,96	42,82	28,28	24,79	14,17	27,64
#mg	78,12	67,46	75,36	77,27	82,35	81,19	81,07	78,98	76,90	79,77	83,04	81,50	86,86

Quadro 5.4: Análises químicas de rocha total para os corpos ultramáficos Leste. #mg (número de magnésio) = $(MgO^{100})/(MgO+FeO_{T} molecular)$.

Quadro 5.5	: Qı	Jadro	Norm	a CIP\	Νı	para	as re	ochas	máfic	as do	Cor	ро	Lest	e.

Amostras	Q	Or	Ab	An	Di	DiWo	DiEn	Ну	HyEn	HyFs	OI	Mt	Hm	П	Ар
Mv10	5,95	6,84	22,81	21,10	9,98	5,36	4,62	7,64	7,64	0,00	0,00	14,85	2,62	5,22	2,98
Mv11	4,05	6,53	21,15	21,09	13,16	7,07	6,09	7,65	7,65	0,00	0,00	14,83	3,24	5,58	2,73
Mv26	1,95	6,37	24,20	20,84	13,22	7,10	6,12	8,36	8,36	0,00	0,00	12,25	4,62	5,88	2,31
Mv30	2,66	6,29	20,36	22,56	14,33	7,70	6,63	7,95	7,95	0,00	0,00	11,47	5,89	6,14	2,34
Mv32	3,10	6,69	23,81	21,06	12,48	6,70	5,78	8,54	8,54	0,00	0,00	13,73	3,20	5,37	2,02
NE-023	4,07	5,52	24,09	22,69	17,00	9,13	7,87	6,26	6,26	0,00	0,00	0,80	13,60	0,00	2,64
NLP-008	7,27	6,80	20,24	22,58	12,93	6,94	5,99	7,77	7,77	0,00	0,00	0,94	15,25	0,00	3,11
NLP-009	5,30	6,42	22,70	25,19	15,27	8,20	7,07	5,99	5,99	0,00	0,00	0,79	12,96	0,00	2,41

Corpo		Amostra	Q	С	Or	Ab	An	Di	DiWo	DiEn	Hy	HyEn	HyFs	OI	OIFo	OIFa	Mt	Hm	Ш	Ар
	0	Mv14	0,71	0,00	1,27	7,17	12,77	25,21	13,54	11,67	40,72	40,72	0,00	0,00	0,00	0,00	2,66	8,81	0,49	0,20
	þQ	Mv34	2,45	0,00	0,82	6,28	17,89	21,43	11,51	9,92	33,98	33,98	0,00	0,00	0,00	0,00	8,04	8,26	0,83	0,01
		Ma12	0,00	0,00	0,69	3,85	17,75	5,62	3,02	2,60	32,31	32,31	0,00	22,21	22,21	0,00	10,34	6,38	0,68	0,16
		Ma14	0,00	0,00	0,62	2,76	16,76	11,69	6,28	5,41	46,01	46,01	0,00	7,35	7,35	0,00	7,53	6,47	0,76	0,05
		Ma21	0,00	0,00	0,60	4,19	11,85	8,03	4,31	3,72	39,93	39,93	0,00	22,31	22,31	0,00	5,97	6,62	0,50	0,01
	5	Mv07	0,00	0,00	0,86	3,96	9,43	10,99	5,90	5,09	58,29	58,29	0,00	3,47	3,47	0,00	6,67	5,58	0,57	0,18
Leste	0p(Mv17	0,00	0,00	0,60	4,92	15,05	10,00	5,37	4,63	43,03	43,03	0,00	12,34	12,34	0,00	4,43	8,98	0,64	0,01
		Mv21	0,00	0,00	1,05	7,41	16,27	13,52	7,26	6,26	40,56	40,56	0,00	7,20	7,20	0,00	4,82	8,48	0,69	0,01
		Mv22	0,00	0,00	0,31	2,98	11,05	14,00	7,52	6,48	34,68	34,68	0,00	21,93	21,93	0,00	8,92	5,17	0,77	0,20
		Ma22	0,00	1,66	0,44	2,23	8,56	0,00	0,00	0,00	56,98	56,98	0,00	15,41	15,41	0,00	10,04	4,17	0,50	0,02
		Mv23	0,00	0,00	0,38	0,82	9,35	4,56	2,45	2,11	48,45	48,45	0,00	21,47	21,47	0,00	8,60	5,59	0,64	0,14
	bC2	Mv41	0,00	0,00	0,29	0,05	4,81	1,32	0,71	0,61	58,70	58,70	0,00	23,39	23,39	0,00	7,25	3,63	0,42	0,13
	0	NE-024	0,00	0,92	0,20	1,96	9,77	0,00	0,00	0,00	51,29	51,29	0,00	21,99	21,99	0,00	0,26	13,21	0,40	0,01
		NL-009	0,00	0,00	0,51	1,55	15,57	2,76	1,48	1,28	54,46	54,46	0,00	11,32	11,32	0,00	0,27	13,23	0,31	0,02
		NL-010	0,00	0,00	0,30	1,56	19,70	1,25	0,67	0,58	43,23	43,23	0,00	19,89	19,89	0,00	0,13	13,53	0,31	0,11
		NL-011	0,00	0,00	0,58	2,21	22,87	8,63	4,63	4,00	45,41	45,41	0,00	7,52	7,52	0,00	0,75	11,72	0,00	0,02
		NL-017	10,10	0,00	0,38	1,99	10,58	33,83	18,17	15,66	4,00 45,41 45,41 0,00 7,52 7,52 0,00 0,75 15,66 23,49 23,49 0,00 0,00 0,00 0,00 0,88 15,79 33,31 33,31 0,00 0,00 0,00 0,00 0,90	17,75	0,00	0,12						
	5	NL-018	2,20	0,00	0,38	1,79	9,66	34,10	5 0,67 0,58 43,23 43,23 0,00 19,89 19,89 0,00 0,13 i3 4,63 4,00 45,41 45,41 0,00 7,52 7,52 0,00 0,75 7 i3 4,63 4,00 45,41 45,41 0,00 7,52 7,52 0,00 0,75 7 i3 18,17 15,66 23,49 23,49 0,00	16,75	0,00	0,09								
	obC	NL-019	2,33	0,00	0,26	0,91	7,65	7,65 35,36 18,99 16,37 36,94 36,94 5,08 0,00 0,00 55,92 55,92 55,92	0,00	0,00	0,00	0,00	0,74	15,11	0,00	0,07				
		NLP- 002	0,00	2,53	0,21	0,10	5,08	0,00	0,00	0,00	55,92	55,92	0,00	23,58	23,58	0,00	0,38	12,01	0,14	0,05
		NLP- 003	0,00	0,24	0,27	0,38	14,33	0,00	0,00	0,00	47,84	47,84	0,00	25,43	25,43	0,00	0,26	10,98	0,19	0,07
		NLP- 007	7,41	0,00	0,51	3,27	9,10	30,76	16,52	14,24	29,81	29,81	0,00	0,00	0,00	0,00	0,84	17,32	0,00	0,12
		NLP- 012	0,00	0,00	0,27	1,34	16,88	1,49	0,80	0,69	38,18	38,18	0,00	30,56	30,56	0,00	0,23	10,77	0,22	0,07
		NE-027	0,00	0,00	0,03	0,82	9,88	5,81	3,12	2,69	40,81	40,81	0,00	25,92	25,92	0,00	0,11	16,21	0,37	0,05
		NL-007	0,00	4,86	0,26	0,56	9,13	0,00	0,00	0,00	61,04	61,04	0,00	10,73	10,73	0,00	0,17	12,82	0,34	0,10
	22	NL-008	0,00	2,46	0,20	0,75	9,69	0,00	0,00	0,00	62,61	62,61	0,00	12,33	12,33	0,00	0,10	11,52	0,32	0,02
Manta	ob(NL-012	0,00	2,50	0,26	0,66	6,92	0,00	0,00	0,00	63,06	63,06	0,00	13,71	13,71	0,00	0,33	12,28	0,21	0,07
Norte		NLP- 004	0,00	4,01	0,20	0,37	2,94	0,00	0,00	0,00	68,69	68,69	0,00	9,85	9,85	0,00	0,47	13,24	0,19	0,05
		ZJ-328	0,00	5,75	0,37	0,71	17,70	0,00	0,00	0,00	48,27	41,66	6,61	15,22	12,95	2,27	10,04	0,00	0,80	1,14
		NE-025	17,76	0,00	0,92	5,06	15,25	32,36	17,38	14,98	13,26	13,26	0,00	0,00	0,00	0,00	0,84	13,82	0,00	0,14
	baC0	NLP- 005	8,28	0,00	4,93	6,60	23,41	26,31	14,13	12,18	14,95	14,95	0,00	0,00	0,00	0,00	0,75	13,72	0,00	0,14
	d	NLP- 006	8,89	0,00	2,90	6,61	24,70	27,70	14,88	12,82	13,67	13,67	0,00	0,00	0,00	0,00	0,75	13,65	0,00	0,18
		NE-019	14,92	0,00	0,47	3,62	4,55	58,41	31,37	27,04	0,00	0,00	0,00	0,00	0,00	0,00	1,89	9,57	0,00	0,04
		NE-020	11,85	0,00	1,51	4,97	13,28	49,58	26,63	22,95	0,00	0,00	0,00	0,00	0,00	0,00	1,38	11,26	0,00	0,24
	CI	NL-003	25,33	0,00	0,61	0,70	10,55	26,22	14,08	12,14	11,76	11,76	0,00	0,00	0,00	0,00	0,70	23,89	0,12	0,13
	pba	NL-028	14,77	0,00	0,73	4,00	35,13	28,62	15,37	13,25	0,00	0,00	0,00	0,00	0,00	0,00	1,14	8,31	0,00	0,49
		NLP- 001	14,99	0,00	2,17	2,65	14,23	40,42	21,71	18,71	12,24	12,24	0,00	0,00	0,00	0,00	0,47	11,80	0,66	0,39
		NLP- 017	11,12	0,00	1,55	3,54	9,02	59,44	31,92	27,52	0,00	0,00	0,00	0,00	0,00	0,00	1,68	9,31	0,00	0,01
	5	NE-026	6,40	0,00	1,26	8,43	28,76	19,05	10,23	8,82	23,57	23,57	0,00	0,00	0,00	0,00	0,67	11,29	0,00	0,07
	baC:	NL-014	6,26	0,00	2,74	5,15	30,89	44,06	23,66	20,40	0,00	0,00	0,00	0,00	0,00	0,00	0,41	9,07	0,52	0,01
	dq .	NL-016	9,77	0,00	3,49	2,94	22,25	48,97	26,30	22,67	0,00	0,00	0,00	0,00	0,00	0,00	0,96	8,37	0,36	0,01

Quadro 5.6: Quadro Norma CIPW para os corpos ultramáficos Norte e Leste.

Ab-Albita, An-Anortita, Ap-Apatita, C-Coríndon, Di-Diopsídio, DiEn-Diopsídio/Enstatita, DiFs-Diopsídio/ Ferrosilita, DiWo-Diopsídio/ Wollastonita, Hm-Hematita, HyEn-Hiperstênio/ Enstatita, HyFs-Hiperstênio/ Ferrosilita, Hy-Hiperstênio, II-Ilmenita, Mt-Magnetita, Or-Ortoclásio, Q – Quartzo. Di= DiWo+DiEn+DiFs, Hy=HyEn+HyFs

Os bC (Meta-Websteritos) do Corpo Leste apresentam a inclinação da razão de 0,81 indicando que tanto o clinopiroxênio quanto o ortopiroxênio são as fases controladoras. Os obC 1 dos Corpos Norte e Leste apresentam a inclinação da razão 1,04 e 1,11 respectivamente, indicando que o *trend* observado para o

fracionamento de FeO_T+MgO e SiO₂, combina o ortopiroxênio e olivina como fases controladoras. Os obC 2 dos Corpos Norte e Leste apresentam a inclinação da razão 1,22 e 1,30, respectivamente, indicando a olivina e ortopiroxênio como fases controladoras.

Figura 5.2: Diagrama (FeO_T+MgO)/Al₂O₃ *versus* SiO₂/Al₂O₃, proposto por Pearce (1970); a) Corpo Norte; b) Corpo Leste. Símbolos como na Figura 5.1.

5.2 CLASSIFICAÇÃO

Com base na quantidade de SiO_2 as rochas estudadas foram classificadas como básicas e ultrabásicas. As rochas do Corpo Norte apresentam teores variando entre 38,55% e 52,68% (Quadro 5.1), as rochas do Corpo Leste apresentam para as rochas máficas teores variando de 44,32 a 48,48% (Quadro 5.3) e para porção ultramáfica teores variando entre 39,05% e 49,33% (Quadro 5.4).

O número de magnésio (#mg), originalmente proposto por Jaques & Green (1980) é importante para a classificação do grau de diferenciação do magma, aplicado principalmente a complexos máficos/ultramáficos diferenciados (WERNICK, 2004). Valores elevados de #mg, em torno de 80, são dos termos mais primitivos, ou pouco diferenciados e valores inferiores a 50 são muito diferenciados.

A Figura 5.3 apresenta as variações modais, normativas (Quadros 5.5 e 5.6) e composicionais dos corpos estudados. As amostras do litotipo pbaC apresentam quartzo normativo, devido a presença de veios de quartzo. Algumas amostras do litotipo obC1 para o Corpo Norte, não apresentam valores de olivina normativa, porém possuem quartzo normativo, além dos maiores valores do

Figura 5.3: Perfis pseudoestratigraficos com as variações modais, normativas e composicionais dos Corpos Norte (a) e Leste (b).

somatório de ETR, evidencia do maior grau de alteração. Petrograficamente são as amostras mais alteradas deste litotipo com maiores valores de talco (4 a 15%).

As rochas do Corpo Leste apresentam uma variação entre as composições modais e normativas, onde as rochas máficas apresentam quartzo normativo, e as rochas da porção ultramáfica apresentam plagioclásio normativo. As diferentes

composições estão relacionados com as alterações secundárias e reações metamórficas.

Para o Corpo Leste a curva do somatório de ETR, assim com os teores de Ni, Cu e Cr, marcam nitidamente a diferença de comportamento das rochas máfica em relação às rochas de natureza cumulática.

Os bC apresentam os valores anômalos de Cu (3064ppm), Cr (3800 a 6300ppm) e Ni (878 a 3402ppm) em relação aos demais litotipos.

Green et al. (1974), sugerem que magmas primários extraídos de um manto peridotítico têm valores de #mg em torno de 70. As rochas máficas do Corpo Leste possuem #mg entre 32,19 e 44,16 (Figura 5.3b), sendo classificadas como rochas evoluídas/diferenciadas, enquanto que as rochas ultramáficas do Corpo Leste apresentam valores entre 67,45 a 86,86 (Figura 5.3b). O grupo dos Melanogabros (pbaC) do Corpo Norte apresentam valores entre 43,73 a 68,61, e as rochas dos grupos obC1 e obC2 apresentam valores entre 62,84 e 87,31 (Figura 5.3a) indicando guardar características primitivas.

Os teores de enstatita dos piroxênios aumentam em relação às rochas mais primitivas, onde observam-se valores entre En_{35-55} para os melanogabros cumulatos (pbaC1) e En_{64-87} para os obC1 e obC2 do Corpo Norte. Para o Corpo Leste os valores variam entre En_{21-44} para as rochas máficas e En_{57-97} para os obC1.

5.3 EVOLUÇÃO MAGMÁTICA

No diagrama AFM (A-Na₂O + K₂O; F-FeO_T; M-MgO) (IRVINE & BARAGAR, 1971) as amostras plotam no campo da série toleítica (Figura 5.4a), marcada pelo enriquecimento progressivo em ferro (ou *trend* de Fenner), em relação aos teores de MgO e empobrecimento em álcalis, para os corpos ultramáficos (Norte e Leste); enquanto que para as rochas máficas plotam no *trend* toleítico sem enriquecimento em FeO_T.

No diagrama de Jensen (1976) as ultramáficas (Corpos Norte e Leste) seguem o *trend* komatiítico (Figura 5.4b), plotando no campo dos basaltos komatiítico. O elevado enriquecimento em MgO, está provavelmente relacionado com acumulação dos minerais magnesianos cúmulos (olivina e piroxênio).

Analisando os diagramas da Figura 5.5, observa-se que as amostras estudadas se apresentam de modo geral, compatíveis com a evolução magmática, mostrando que com o decréscimo de #mg há um aumento progressivo dos elementos maiores.

Figura 5.4: a) Diagrama AFM, segundo Irvine & Baragar (1971). A linha cheia representa a suíte toleítica do Hawaii, segundo MacDonald & Katsura (1964); b) Diagrama tectônico Jensen (1976) para as rochas máficas e ultramáficas dos Corpos estudados. Símbolos como na Figura 5.1.

Relacionando os diagramas com a análise petrográfica tem-se que os litotipos com menores proporções de olivina e maiores dos cristais intercúmulos (clinopiroxênio e plagioclásio), com o pico na cristalização dos clinopiroxênios. apresentam aumento dos teores de CaO. Para as rochas máficas há diminuição, quando há participação do plagioclásio, no momento da cristalização. Presentes também nos cristais de epidoto e actinolita.

O leve enriquecimento de P_2O_5 e Ti₂O é melhor observado nas máficas pelo aparecimento de apatita e esfeno/titanita. As análises químicas das rochas máficas apresentam valores de P_2O_5 entre 1,0 e 1,38%, valores muito superiores aos esperados para este tipo de rocha, que podem sugerir um enriquecimento devido ao hidrotermalismo, ou então que este magma seria primariamente enriquecido em fósforo.

Figura 5.5: Diagramas de variação #mg versus elementos maiores (%). Símbolos como na Figura 5.1.

Nos diagramas binários elementos traço versus #mg (Figura 5.6), observa-se que os elementos traço compatíveis como o Cr, Ni e Co, apresentam um decréscimo dos teores, com o aumento da cristalização.

As análises de Cu apresentam um *trend* negativo, como o aumento dos teores com o decréscimo do #mg, indicando sua maior concentração nas rochas máficas em relação às ultramáficas. A amostra MV34 (bC - Meta-Websterito), que apresenta anomalias de níquel (3402ppm), cobre (3064ppm) e cromo (6300ppm), foi omitida do diagrama Cu versus #mg, devido esta anomalia plotar fora do campo das outras amostras analisadas que apresentam uma variação de 5 a 263ppm, mostrando o evidente enriquecimento da MV34.

Os incompatíveis como Sr, Y, Zr e V apresentam como esperado, comportamentos negativos em relação ao #mg, evidenciando sua concentração no líquido residual.

O enriquecimento de Y em algumas rochas ultramáficas pode estar relacionado com assimilação crustal.

Relacionando os diagramas com a análise petrográfica tem-se que os maiores teores de Ni estão relacionados às rochas com maiores porcentagens de serpentina. Este aumento está relacionado com a alteração supergênica que aumenta a concentração deste elemento. A depender da espessura e dimensão destes corpos, esta alteração pode corresponder aos depósitos de laterita niquelífera.

Os elevados teores de Sr nas rochas máficas estão relacionados com a cristalização dos plagioclásios.

5.4 ELEMENTOS TERRAS RARAS

Os padrões dos ETR dos litotipos normalizados para o condrito (McDONOUGH & SUN, 1995) apresentam de maneira geral, um enriquecimento em ETRL (leves) em relação aos ETRP (pesados) para as rochas máficas do Corpo Leste, enquanto que as rochas ultramáficas apresentam leve enriquecimento dos leves, com pouco fracionamento dos pesados (Figuras 5.7 e 5.8). A unidade obC1 do Corpo Norte é formada duas populações, uma enriquecida e outra paralela ao condrito (pouco fracionada) (Figura 5.7a).

Figura 5.6: Diagramas de variação #mg versus elementos traços (ppm). Símbolos como na figura 5.1.

Figura 5.7: Diagrama de elementos terras raras para os litotipos do Corpo Norte: a) obC1 (Meta-Olivina Websteritos e Meta-Olivina Ortopiroxenitos; b) obC2 (Meta-Lherzolitos e Meta-Harzburzitos); e c) pbaC (Meta-Melanogabro Cumulatos). Símbolos como na Figura 5.1.

Figura 5.8: Diagrama de elementos terras raras para os litotipos do Corpo Leste: a) Rochas máficas; b) bC (Meta-Websterito); c) obC1 (Meta-Olivina Websteritos e Meta-Olivina Ortopiroxenitos); d); obC2 (Meta-Lherzolitos e Serpentinito). Símbolos como na Figura 5.1.

As rochas máficas do Corpo Leste apresentam anomalias positivas de Eu, que evidenciam uma maior participação do plagioclásio. Para as rochas ultramáficas as anomalias de Eu são predominantemente negativas, sendo característica das séries de rochas toleíticas. Esta anomalia negativa também indica que o plagioclásio foi extraído.

De maneira geral, os baixos valores de ETRL, para as rochas ultramáficas são um reflexo de sua composição, correspondendo basicamente à presença de minerais magnesianos como olivina, piroxênios, serpentinas e opacos, os quais retêm menores quantidades de elementos incompatíveis, e preferencialmente os ETRP.

Observa-se nas rochas ultramáficas, que os elementos pesados se apresentam muito pouco fracionados.

Os baixos teores de ETRP sugerem que as rochas ultramáficas, podem ser o produto da diferenciação de um líquido gerado pela fusão parcial do manto em profundidades onde a granada foi estável como mineral residual.

As razões dos ETR (Quadro 5.7) foram obtidas a partir da normalização com os valores condríticos propostos por McDonough & Sun (1995).

A razão [La/Sm]n que define o padrão dos ETRL apresenta, para as rochas máficas do Corpo Leste valores que variam de 2,21 a 2,53. Para as rochas ultramáficas do Corpo Leste os valores estão no intervalo de 0,76 a 11,66, enquanto que para as rochas do Corpo Norte os valores variam de 0,03 a 19,36. A amostra NE-027 apresenta valor de 33,72, representando a amostra com o maior fracionamento dos ETRL.

A razão [Gd/Yb]n que define o padrão dos ETRP, apresenta valores de para as rochas máficas do Corpo Leste valores que variam de 2,78 a 3,34. Para as rochas ultramáficas do Corpo Leste os valores estão no intervalo de 0,96 a 1,98, enquanto que para as rochas do Corpo Norte os valores variam de 0,073 a 2,73.

As amostras máficas do Corpo Leste apresentam um forte fracionamento, com valores da razão [La/Yb]n variando de 8,86 a 11,87, e valores de [Sm//Yb]n entre 4,00 a 4,79.

As razões [La/Yb]n para as rochas ultramáficas do Corpo Leste apresentam valores entre 1,25 e 9,51, enquanto que para as rochas do Corpo Norte os valores variam de 0,03 a 14,04, mostrando um padrão de fracionamento mais forte para algumas amostras do Corpo Norte.

Corpo	Grupo	Amostra	(La/Lu) _N	(La/Yb) _N	(La/Sm) _N	(Gd/Yb) _N	(Sm/Yb) _N
		NL-009	4,38	4,30	4,75	0,89	0,91
		NL-010	1,19	1,09	1,25	1,05	0,87
		NL-011	0,03	0,03	0,03	0,94	0,82
		NL-017	8,43	7,36	2,19	2,56	3,35
		NL-018	9,72	7,77	2,22	2,73	3,51
	obC1	NL-019	7,27	5,43	1,59	2,61	3,42
		NLP-002	4,57	3,74	3,43	1,13	1,09
		NLP-003	14,12	11,55	14,15	0,91	0,82
		NLP-007	9,10	7,74	2,16	2,71	3,59
		NLP-012	0,21	0,08	0,10	0,73	0,82
		Média	5.90±4.49	4.91±3.86	3.19±4.66	1.63±0.85	1.92 ± 1.31
		NE-027	11.21	6.11	33.72	1.48	0.18
		NL-007	1.56	1.63	2.50	0.81	0.65
		NL-008	0.30	0.34	0.42	0.89	0.82
	obC2	NL-012	0.07	0.08	0.10	0.81	0.82
Norte		NLP-004	12.87	14.04	19.36	0.81	0.73
		Média	5 20+6 30	4 44+5 89	11 22+14 91	0.96+0.29	0.64+0.26
		NE-025	51.07	5.97	2.40	1.61	2.49
		NI P-005	3.57	3.07	1 28	1.94	2 40
	pbaC0	NI P-006	4 82	4 91	2.32	1,01	2 12
		Média	19 82+27 07	4 65+1 46	2 00+0 63	1 82+0 18	2 34+0 20
		NF-019	33.63	6.88	2 20	2 61	3 13
		NE-020	53.14	4.83	1.90	1.97	2.54
		NI -003	7 43	7.02	2.90	1.58	2 42
	pbaC1	NI P-001	6 66	5.81	4 01	1 16	1 45
		NI P-017	2 13	1 77	0.97	1,10	1,10
		Média	20.60+22.01	5 26+2 15	2 40+1 14	1 80+0 54	2 27+0 65
		NE-026	9.96	1 16	3.00	0.79	0.39
		NL -014	2 59	2 38	4 37	0.75	0.54
	pbaC2	NL -016	4 71	4.62	8 49	0.76	0.54
		Média	5 75+3 80	2 72+1 75	5 29+2 86	0.77+0.02	0.49+0.09
		My10	13.40	10.30	2/3	3.05	1 27
		My11	13.04	9.42	2 35	2 99	4,27
		My26	9.67	8.86	2,00	2,35	4,01
		My30	11 30	0,00	2,21	2,00	4,00
	Máficas	My32	1/ 33	9,07	2,00	3.08	4.05
	Mancas	NE-023	162 75*	10.24	2,41	2.78	4,05
			12.60	11.97	2,52	2,70	4,00
		NI P-000	12,00	11.37	2,33	3.24	4,70
		Média	12 33+1 53	10 19+1 00	2 39+0 10	3,2+	$\frac{1}{4},75$
		My14	12,00±1,00	2 96	2,00	1 /0	1/8
	bC	My34	10.03	2,30	2,00	1 17	1,40
	50	Média	12 04+11 16	3 11+0 21	2 15+0 22	1 20+0 16	1 45+0 05
Losto		Ma12	12,04±11,10	3 /0	2,10±0,22	1,23±0,10	1,45±0,05
Lesie		Ma14	7.45	3 35	2,25	1,00	1,00
		Ma21	7,45	5.34	2,00	1,20	2.02
		Ma22	17.44	4 76	2,04	1,91	2,02
	obC1		10.77	4,70	4,37	1 21	1,09
	0001	My17	3.01	2 10	1 21	1,51	1,09
			5,01	2,19	1,01	1,07	1,21
			5,97	2,04	2 1 1	1.30	1,00
		Módia	0.50-7.06	2,33	2,11	1.24	1,41
		Mu22	9,09±1,00	3,71±1,10	2,07±1,07	1,30±0,29	1,40±0,32
			4,37	1,20	0,70	1,00	1,03
	obC2		23,40	24,12	0,33	1,90	0.00
		NE-U24	23,25	9,01		1,48	0,82
		wedia	19,10±12,96	11,62±11,58	0,25±5,45	1,71±0,26	2,09±1,55

Quadro 5.7: Razões dos ETR normalizados pelo condrito (MCDONOUGH & SUN, 1995).

*Valor anômalo para a unidade, retirado da média.

As razões [Sm//Yb]n que também marcam o grau de fracionamento, para as rochas ultramáficas do Corpo Leste os valores estão no intervalo de 0,82 a 2,02, enquanto que para as rochas do Corpo Norte os valores variam de 0,18 a 3,59.

A amostra MV41 (obC2 –Serpentinito - Corpo Leste) apresenta valores das razões [La/Yb]n e [Sm/Yb]n de 24,12 e 3,81, respectivamente, correspondendo à unidade com maior fracionamento.

Os valores médios por litotipo das razões [La/Lu]n para o Corpo Norte (5,20 a 20,60) e para o Corpo Leste (9,59 a 19,10) estão dentro do intervalo composicional característico das intrusões de filiação toleítica, que apresenta um intervalo de 0,31 a 19,39.

Segundo Cullers & Graff (1984), o conteúdo de ETR e a razão [La/Lu]n nos corpos toleíticos, como observado nas rochas estudadas, tende a aumentar segundo a sequência estratigráfica, controlado principalmente pela cristalização fracionada de plagioclásio, piroxênio e/ou olivina.

O enriquecimento de ETRL em relação aos ETRP das rochas ultramáficas pode ser explicado de diversas formas, como por exemplo sendo resultante dos processos de cristalização fracionada ou devido à heterogeneidade composicional do manto (LIMA, 1997), ou ainda por processos metassomáticos que aumentariam os ETRL na geração de manto enriquecido (RODEN et al., 1984).

5.5 CONCENTRAÇÃO DOS ETR NOS LÍQUIDOS MAGMÁTICOS PARA AS ROCHAS CUMULÁTICAS

O estudo geoquímico de rochas cumuláticas apresenta limitações, pois a análise química de rocha total não corresponde ao magma original e sim um produto que foi submetido a diferenciação. Vários métodos foram desenvolvidos a fim de se obter a composição do magma parental, como a utilização de margens resfriadas (*chilled margins*) e diques tardios cogenéticos.

Neste trabalho será utilizado a metodologia descrita por Bédard (1994) que utiliza a combinação da análise geoquímica de rocha total, percentagem modal e valores coeficientes de partição mineral/líquido a partir de um banco de dados consistente, com o objetivo de determinar a concentração de um dado elemento no líquido em equilíbrio com o cumulato. Assim, a concentração dos elementos terras raras no liquido inicial será determinada de acordo com as seguintes fórmulas:

(1)

$$C_i^j = \mathcal{K} d_i^j \times C_i^{magma} \qquad \qquad \sum_{j=1}^n \phi^j C_i^j = C_i^{rocha}$$

onde C é a concentração, i = elemento, j = fase mineral, Kd = coeficiente de partição do elemento, ϕ = fração de peso (modal) da fase cúmulos j;

Deduzindo a equação (2) e combinando com a equação (1), utilizando como fase cúmulos olivina, ortopiroxênio, clinopiroxênio e espinélio, temos:

$$C_{i}^{liq} = \frac{C_{i}^{rocha}}{(\phi^{ol} K d_{i}^{ol} + \phi^{opx} K d_{i}^{opx} + \phi^{cpx} K d_{i}^{cpx} + \phi^{spl} K d_{i}^{spl} +) + (1 - \phi^{ol} - \phi^{opx} - \phi^{cpx} - \phi^{spl})}$$

Antes de realizar os cálculos é necessário fazer uma correção na moda, a fim de minimizar a interação do liquido intercúmulos com os cumulatos, já que parte dos minerais intercúmulos são produtos de reação.

As amostras estudadas foram corrigidas de acordo com Bédard (1994) a relação entre os anfibólios e os piroxênios; a quantidade de clinopiroxênio para a fase cúmulos, já que este mineral também é encontrado no intercúmulos; redistribuição da percentagem modal de serpentina para olivinas e ortopiroxênios, assim como o talco para este último.

No Quadro 5.8 estão os coeficientes de partição para os minerais cúmulos (BÉDARD, 1994) e no Quadro 5.9 está a moda em peso (volume) corrigida. As densidades dos minerais foram obtidas pela média dos valores apresentados Klein & Hurlbut (1993). No Quadro 5.10 estão os resultados obtidos para os elementos calculados.

Na figura 5.9 pode-se observar que a composição do magma inicial calculado segue a forma das rochas cumuláticas, porém sendo muito mais enriquecida em elementos incompatíveis, já que estes não são incorporados pela estrutura das fases cumuláticas.

Quadro 5.8: Coeficientes de partição (Kd).

ETR	Olivina	Ref.	ΟΡΧ	Ref.	СРХ	Ref.	Plag	Ref.	Espinélio	Ref.
La	0,00044	[2]	0,016	[4]	0,0536	[5]	0,042	[6]	0,0006	[3]
Ce	0,0003	[2]	0,04	[4]	0,0858	[5]	0,036	[6]	0,0006	[3]
Nd	0,0002	[2]	0,037	[4]	0,1873	[5]	0,029	[6]	0,0006	[3]
Sm	0,00018	[2]	0,054	[4]	0,291	[5]	0,022	[6]	0,0006	[3]
Eu	0,0002	[2]	0,063	[4]	0,3288	[1]	0,22	[6]	0,0006	[3]
Gd	0,00025	[2]	0,097	[4]	0,367	[1]	0,014	[6]	0,0006	[3]
Tb	0,000475	[1]	0,094	[4]	0,404	[1]	0,013	[6]	0,00105	[1]
Dy	0,0007	[2]	0,1621	[4]	0,442	[5]	0,013	[6]	0,0015	[3]
Но	0,00122	[1]	0,1633	[4]	0,4145	[1]	0,013	[6]	0,0023	[1]
Er	0,00174	[2]	0,1816	[4]	0,387	[5]	0,012	[6]	0,003	[3]
Tm	0,00348	[1]	0,259	[4]	0,4085	[1]	0,012	[6]	0,00375	[1]
Yb	0,00522	[2]	0,2605	[4]	0,43	[5]	0,012	[6]	0,0045	[3]
Lu	0,00852	[2]	0,318	[4]	0,433	[5]	0,012	[6]	0,0045	[1]

Referências retiradas de BÉDARD (1994)

[1] = BÉDARD (1994)

[2] = PRINZHOFER & ALLÈGRE (1985)

[3] = KELEMEN et al., (1990)

[4] = LIGHTFOOT et al., (1993)

[5] = HART & DUNN (1993)

[6] = DRAKE & WEILL (1975)

Corpo	Grupo	Amostra	Olivina	Орх	Срх	Plagioclásio	Espinélio
		NL009	0,2078	0,1759	0,1045	-	0,0381
		NL011	0,1435	0,1630	0,1269	-	0,0271
		NL017	0,1343	0,1852	0,1230	-	0,0000
		NL018	0,2444	0,1174	0,1218	-	0,0000
	obC1	NL019	0,3111	0,2246	0,1229	-	0,0000
		NLP003	0,2077	0,2021	0,1153	-	0,0294
		NLP007	0,0685	0,2570	0,1219	-	0,0000
		NLP012	0,1975	0,3452	0,0900	-	0,0418
NORTE		NL010	0,3519	0,3464	0,0976	-	0,0528
		NL007	0,5089	0,2420	0,0636	-	0,0526
	abC2	NL008	0,3838	0,3378	0,1292	-	0,0635
	0002	NL012	0,5527	0,2332	0,0528	-	0,0266
		NLP004	0,3632	0,4204	0,0433	-	0,0237
	nhoC0	NLP005	-	0,0652	0,5997	0,1971	-
	ppaco	NLP006	-	0,1450	0,5349	0,1290	-
		NLP017	-	0,0975	0,7265	0,1167	-
	pbaC1	NL003	-	0,1317	0,7366	0,0391	-
		NLP001	-	0,2374	0,5425	0,1192	-
	nhoC2	NL014	-	0,1057	0,5345	0,2137	-
	pbacz	NL016	-	0,1193	0,5775	0,2435	-
	ьC	Mv14	-	0,4752	0,1933	-	-
		Mv34	-	0,3642	0,2802	-	-
		Mv07	0,1089	0,5237	0,0914	-	0,0000
		Ma21	0,0000	0,5138	0,0879	-	0,0000
		Ma12	0,2102	0,5573	0,1259	-	0,0060
LESTE	obC1	Ma14	0,1116	0,4929	0,0927	-	0,0108
LESIE	1 200	Mv21	0,1398	0,4256	0,4131	-	0,0000
		Mv22	0,2685	0,1819	0,4929	-	0,0000
		Ma22	0,3445	0,5063	0,0700	-	0,0485
		Mv17	0,0575	0,4445	0,2277	-	0,0235
_	abC2	Mv23	0,4682	0,1181	0,3318	-	0,0000
		Mv41	0,3968	0,6032	0,0000	-	0,0000

Quadro 5.9: Percentagem em volume (peso). Correções de acordo com BÉDARD (1994).

Quadro 5.10: Valores calculados para a composição do magma original.

Corpo	Grupo	Amostra	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
		NL009	7,88	4,90	3,00	0,97	0,39	1,25	0,23	1,59	0,35	1,19	0,21	1,06	0,16
		NL011	0,09	3,95	4,57	1,54	0,41	2,31	0,41	2,86	0,61	1,96	0,28	1,88	0,28
		NL017	22,92	32,49	25,70	6,13	1,39	6,11	0,88	4,78	0,92	2,44	0,34	1,82	0,24
		NL018	19,62	28,59	41,02	5,20	1,51	5,31	0,73	5,26	0,72	1,93	0,25	1,50	0,18
	obC1	NL019	15,92	27,98	23,34	5,65	1,52	5,54	0,80	3,96	0,75	1,88	0,27	1,54	0,17
		NLP003	14,94	3,67	1,90	0,61	0,22	0,89	0,14	1,06	0,23	0,74	0,11	0,73	0,09
		NLP007	20,24	31,05	24,28	5,48	1,59	5,38	0,80	4,04	0,71	1,89	0,24	1,49	0,19
		NLP012	0,15	2,30	1,97	0,81	0,40	0,92	0,18	1,16	0,26	0,85	0,13	0,88	0,05
		NL010	4,93	8,64	7,12	2,02	0,88	2,94	0,49	2,95	0,64	2,10	0,28	1,75	0,23
Norto		NL007	8,55	39,13	4,55	1,82	0,47	2,78	0,50	3,14	0,75	2,32	0,36	2,21	0,33
None		NL008	2,04	0,00	6,53	2,12	0,54	2,65	0,47	2,63	0,67	2,07	0,26	1,73	0,28
	0002	NL012	0,35	2,69	4,57	1,84	0,72	2,26	0,51	2,40	0,61	1,92	0,41	1,81	0,30
		NLP004	39,07	21,75	8,66	1,08	0,37	1,45	0,29	1,56	0,34	1,23	0,22	1,07	0,16
	nhoC0	NLP005	47,92	123,46	62,29	13,11	2,61	12,39	1,85	10,14	1,98	5,67	0,80	4,58	0,59
	ppaco	NLP006	57,14	100,44	48,60	9,79	2,79	10,54	1,63	8,68	1,76	5,19	0,74	3,91	0,60
		NLP017	37,25	90,01	43,98	8,98	2,61	9,29	1,40	8,02	1,59	4,92	0,65	3,76	0,47
	pbaC1	NL003	68,47	109,48	39,73	6,35	1,59	4,68	0,62	3,09	0,60	1,89	0,28	2,03	0,29
		NLP001	110,96	126,22	48,43	8,75	2,37	7,98	1,22	6,83	1,39	4,64	0,65	4,53	0,58
		NL014	18,87	9,32	6,24	1,60	0,64	2,62	0,48	3,41	0,77	2,54	0,41	2,46	0,34
	ppacz	NL016	66,15	19,27	8,92	2,09	0,68	3,28	0,65	4,09	0,96	3,25	0,46	2,92	0,43
	ьC	Mv14	13,73	17,71	15,83	3,63	1,44	4,26	0,64	3,87	0,84	2,07	0,34	2,04	0,21
	bC	Mv34	12,75	23,59	11,15	2,85	0,79	2,94	0,38	2,86	0,66	1,75	0,25	1,75	0,04
		Mv07	28,68	36,41	18,24	3,63	0,80	5,38	0,97	5,51	0,98	3,20	0,38	2,65	0,17
		Ma21	13,37	10,79	8,99	2,88	0,67	3,43	0,52	3,40	0,67	1,94	0,23	1,23	0,04
		Ma12	30,94	42,62	25,54	5,97	1,81	6,57	1,27	5,03	1,35	3,95	0,44	2,33	0,27
Looto	obC1	Ma14	25,91	34,72	28,39	6,94	2,52	6,34	1,30	7,70	1,34	3,69	0,50	3,47	0,22
Lesie	ODCT	Mv21	91,23	311,14	45,39	9,72	2,55	8,26	1,40	6,11	1,49	4,95	0,53	3,54	0,24
		Mv22	51,02	87,37	34,00	6,19	2,26	5,99	1,10	5,36	1,17	3,74	0,56	3,15	0,27
		Ma22	98,40	63,12	38,35	7,65	4,09	6,73	1,12	6,67	1,40	3,79	0,42	3,08	0,11
		Mv17	10,89	8,09	11,76	2,97	0,51	4,68	0,79	3,74	0,82	2,62	0,26	1,95	0,21
	abC2	Mv23	10,81	36,45	20,20	4,87	1,06	5,71	0,75	4,44	1,04	2,97	0,52	2,33	0,09
	0002	Mv41	722,61	478,43	232,17	21,44	5,25	8,36	1,41	3,77	0,61	2,27	0,16	1,26	0,13

Figura 5.9: Diagrama de elementos terras raras calculados para o provável magma parental para as rochas cumuláticas dos corpos estudados. Corpo Norte: a) obC1; b) obC2; c) pbaC0; d) pbaC1; e) pbaC2; Corpo Leste: f) bC; g) obC1; h) obC2.

5.6 GEOLOGIA ISOTÓPICA

Os dados obtidos para datação pelos métodos Rb/Sr (Quadro 5.11) e Sm/Nd (Quadro 5.12) em rocha total, não permitiram definir isócronas. Deste modo, os métodos Rb-Sr e Sm-Nd foram utilizados para fins petrogenéticos.

As razões 143 Nd/ 144 Nd medidas para as rochas máficas do Corpo Leste possuem idades TDM de 1,26 a 1,31Ga e valores de ϵ Nd($_{TDM}$) entre 4,98 a 5,18 (Quadro 5.12 e Figura 5.10).

Estes valores positivos indicam que os magmas foram derivados de uma fonte mantélica e que na época da sua extração não estavam contaminados por material crustal.

As rochas máficas do Corpo Leste apresentam idades mesoproterozoicas.

Devido à ausência de idades de cristalização, foram feitas simulações para os cálculos dos εNd em três idades (Figura 5.11): 1,0Ga (Mesoproterozoico), 2,0Ga (Ciclo Paleoproterozoico); 2,5Ga (Suíte São José do Jacuípe) (BARBOSA et al., 2012).

Para as rochas máficas do Corpo Leste observa-se que os valores de εNd decrescem progressivamente de altos valores positivos (εNd (2,5Ga): 18,27 a 15,88) valores negativos (εNd (0): -7,21 a -7,09) indicando uma contaminação crustal cada vez maior ao longo do tempo.

Amostra	Rb (ppm)	Sr (ppm)	Rb87/Sr86 (X)	Erro	Sr87/Sr86 (Y)	Erro	T(Ma) λ1.42	Erro Ri = 0.705					
Mv11	20,6	433	0,138	0,020	0,70630874	0,00004	666,3	1018,2					
Mv26	18,4	513	0,104	0,018	0,70885674	0,00004	2568,7	1377,6					
NLP-008	16,7	402	0,120	0,016	0,70625154	0,00003	729,4	1163,8					
NLP-009	13,8	495	0,081	0,013	0,70631483	0,00003	1138,5	1728,1					

Quadro 5.11: Dados analíticos Rb-Sr para as rochas máficas do Corpo Leste.

Quadro 5.12: Razões isotópicas, idades modelos TDM e valores de épsilon Nd (ϵ Nd) em diversos períodos de tempo para as rochas máficas do Corpo Leste: ϵ Nd (0) = hoje; ϵ Nd (TDM) = na extração do magma do manto; ϵ Nd (T1) = a 1,0 Ga; ϵ Nd (T2) = a 2,0 Ga; e ϵ Nd (T3) = a 2,5Ga.

					,	,									
Amostra	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	Erro	¹⁴³ Nd/ ¹⁴⁴ Nd	Erro	T _{DM (Ma)}	Erro	ε ₍₀₎	f _{Sm/Nd}	ε _(TDM)	ε _(T1)	ε _(T1)	ε _(T2)	
Mv11	10,7	51,9	0,1247	0,0069	0,512274	0,000005	1314,5	94,1	-7,09	-0,37	4,98	2,095	11,28	15,88	
Mv26	9,2	45,7	0,1217	0,0068	0,512272	0,000004	1276,9	86,7	-7,14	-0,38	5,07	2,424	11,99	16,77	
NLP-008	10,8	56,4	0,1158	0,0064	0,512252	0,000004	1231,6	75,3	-7,53	-0,41	5,18	2,789	13,11	18,27	
NLP-009	8,8	44,2	0,1204	0,0067	0,512268	0,000004	1264,8	83,9	-7,21	-0,39	5,10	2,524	12,26	17,12	

Figura 5.11: Diagrama ε Nd versus razão inicial ⁸⁷ Sr/ ⁸⁶ Sr. SIGLAS: DM- Manto Empobrecido, EMI-Manto enriquecido 1, EMII- Manto enriquecido 2.

Figura 5.10: Diagrama de evolução do neodímio.

CAPÍTULO 6 – CONSIDERAÇÕES FINAIS

Neste trabalho foram apresentados os estudos petrográfico, de química mineral, litogeoquímica e geologia isotópica das rochas máficas e corpos ultramáficos da Folha Catingal, além as rochas encaixantes e rochas associadas. Os estudos realizados nesta pesquisa permitiram as seguintes considerações:

Os corpos estudados apresentam formas alongadas (similar a conolitos) e estão encaixados em rochas granulíticas máficas e enderbíticas, e associados com kinzigitos, sienitos e diques máficos do Bloco Jequié, estando incipientemente metamorfizado, preservando as texturas ígneas primárias.

O Corpo Norte é formado por meta-websterito, meta-ortopiroxenito (bC), meta-olivina websterito, meta-olivina-ortopiroxenito (obC1), meta-lherzolito, metaharzburgito (obC2) e meta-melanogabros (pbaC) cumulatos.

O Corpo Leste é formado por uma porção máfica, formada por metagabros e metagabronoritos e uma porção ultramáfica formada por metawebsterito (bC), meta-olivina websterito, meta-olivina-ortopiroxenito (obC1), metalherzolito cumulatos e serpentinito (obC2).

As rochas que compõem os corpos máficos e ultramáficos apresentam as texturas ígneas preservadas, classificando-as como meta-máficas e metaultramáficas. Estas rochas apresentam-se parcialmente deformadas.

As rochas ultramáficas de textura cumuláticas apresentam como fase cúmulos a olivina, ortopiroxênios e espinélios, e como fase intercúmulos/póscúmulos os clinopiroxênios, anfibólios e minerais opacos.

Estas rochas encontram-se alteradas pelos processos de serpentinização, bastitização, uralitização, cloritização, sericitização e saussuritização.

A análise calcográfica dos corpos máficos e ultramáficos da Folha Catingal, evidenciou a presença de uma paragenêse sulfetada intersticial marcada por pentlandita, calcopirita, violarita, pirita, pirrotita, bornita, calcocita e covelita, além de arsenietos de Ni e Co.

Com os dados da química mineral foram realizadas observações pontuais, que acabam refletindo alguns dos processos relacionados a gêneses dos mesmos, como a coexistência de piroxênios ricos e pobres em Ca, assim como a evolução acompanhada por um decréscimo nos conteúdos de Ca e Mg, e um
moderado enriquecimento de Fe, que caracterizam o padrão evolutivo de piroxênios de suítes toleíticas.

A razão Cr/(Cr+Al) para os espinélios, pode indicar uma baixa potencialidade metalogenética para mineralizações de Cr para o Corpo Leste.

As análises de MEV permitiram a identificação de arsenietos, como a Gersdorfita, comum na fase final hidrotermal da paragenêse níquel-pirrotita de Sudbury.

As temperaturas encontradas variam de 1426,56 a 680,05 °C, para o Corpo Norte e 1357,62 a 783,86°C para o Corpo Leste, sendo que as temperaturas mais altas estão relacionadas com a cristalização do corpo, enquanto que as menores refletem as temperaturas das reações que reequilíbrio metamórfico.

As pressões obtidas a partir do geobarômetro da hornblenda foram de 4,69 a 5,39 para o Corpo Norte e de 5,60 a 7,03 kbar, para o Corpo Leste, indicando que os corpos foram colocados sob condições de alta pressão, no fácies anfibolito.

A presença do ortopiroxênio como fase cúmulos no corpo M-UM de Catingal, sugere que o magma original seria de filiação toleítica, dado comprovado pelos gráficos de elementos maiores para as rochas ultramáficas.

A composição do magma inicial calculado apresenta um padrão enriquecido em elementos incompatíveis, já que estes não são incorporados pela estrutura das fases cumuláticas.

Não foi possível definir isócronas pelos métodos Rb/Sr e Sm/Nd em rocha total.

As razões ¹⁴³Nd/¹⁴⁴Nd produziram idades mesoproterozoicas para as rochas máficas do Corpo Leste (1,26 a 1,31Ga).

Apresentaram valores positivos de εNd(_{TDM}) indicando que os magmas foram derivados de uma fonte mantélica e que na época da sua extração não estavam contaminados por material crustal.

Os valores de ɛNd calculados para diferentes idades, decrescem progressivamente indicando uma contaminação crustal cada vez maior ao longo do tempo.

Os Corpos Norte e Leste foram classificados como uma intrusão diferenciada de pequeno porte, já que apesar de apresentarem características geoquímicas e petrográficas compatíveis com intrusões estratiformes, não foi

possível observar nos dados de campo a gradação textural/litológica típica destes corpos.

REFERÊNCIAS

ABRAM, M. B. 1993. O corpo máfico-ultramáfico da Fazenda Mirabela, Ipiaú-BA: caracterização petrográfica, geoquímica, tipologia e implicações metalogenéticas. Tese Mestrado, Inst. de Geociências, Universidade Federal da Bahia, Salvador, p. 137.

ALMEIDA, F. F. M. 1977. O Cráton do São Francisco. Revista Brasileira de Geociências, v. 7(4), p. 349-364.

BARBOSA, J.S.F. 1986. Constitution lithologique et metamorphique de la region granulitique du Sul de Bahia – Brésil. Paris: Université Pierre et Marie Curie, v., Tese Doutorado - Académie de Paris. Paris, Université Pierre et Marie Curie, 401p., il. mapa anexo.

BARBOSA, J.S.F. & FONTEILLES, M. 1989. Caracterização dos protólitos da região granulítica do sul da Bahia - Brasil. Rev. Bras. Geoc., v. 19 (1), 3-16.

BARBOSA, J.S.F. & SABATÉ, P. 2004. Archean and Paleoproterozoic crust of the São Francisco Cráton, Bahia, Brazil: geodynamic features. Prec. Res., v. 133, 1-27.

BARBOSA, J.; MASCARENHAS, J.; GOMES, L.C.C. (Org.). 2012. Geologia da Bahia. Pesquisa e Atualização. 1ed.Salvador: Companhia Baiana de Pesquisa Mineral - CBPM, v. 1, p. 443-483.

BARNES, S.J.; OSBORNE, G.A.; COOK, D.; BARNES, L.; MAIER, W.D.; GODEL, B. 2011. The Santa Rita Nickel Sulfide Deposit in the Fazenda Mirabela Intrusion, Bahia, Brazil: Geology, Sulfide Geochemistry, and Genesis. Society of Economic Geologists, Inc. Economic Geology, v. 106, 1083–1110.

BASTOS LEAL, L.R. 1998. Geocronologia U/Pb (Shrimp), ²⁰⁷Pb/²⁰⁶Pb, Rb-Sr, Sm-Nd e K-Ar dos Terrenos Granito-Greenstone do Bloco do Gavião: Implicações para Evolução arqueana e proterozoica do Cráton do São Francisco, Brasil. Tese de Doutoramento, Instituto de Geociências, Universidade Estado de São Paulo, 178p.

BATES, R.L.; AND JACKSON, J.A.J. (EDS.), 1987, Glossary of Geology: 3rd. Edition, American Geological Institute, Alexandria, USA.

BÉDARD, J.H. 1994. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem. Geol., 118:143-153.

BEGG, G. C. et al. 2010. Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits. Society of Economic Geologists, Inc. Economic Geology, v. 105, p. 1057–1070.

BERGER, E., AND VANNIER, M., 1978, Un gothermomètre reposant sur le partage du nickel et du magntsium entre olivine et orthopyroxene: application à l'étude des peridotites: C. R. Acad. SC. Paris, v. 286, s. D, no. 10, p. 733-736.

BESWICK, A.E. & SOUCIE, G. 1978. A correction procedure for metasomatism in an Archean greenstone belt. Prec. Res., 6235-245.

BIZZI, L.A., SCHOBBENHAUS, C., GONÇALVES, J.H., BAARS, F.J., DELGADO, I.M., ABRAM, M.B., LEÃO NETO, R., MATOS, G.M.M., SANTOS, J.O.S. 2001. Geologia, Tectônica e Recursos Minerais do Brasil. Sistema de Informações Geográficas – SIG e Mapas na Escala 1:2.500.000. 4 CD-ROMs.

BREY, G. P., AND KOHLER, T., 1990, Geothermobarometry in four phase Iherzolites, part II: new thermobarometers, and practical assessment of existing thermobarometers: Jour. Petrology, v. 31, no. 6, p. 1353-1378.

BRITO, R. S. C. Geologia e petrologia do *sill* máfico ultramáfico do Rio Jacaré -Bahia e estudo das mineralizações de Fe-Ti-V e platinóides associadas. 2000. 325 f. Tese (Doutorado em Geologia) –Instituto de Geociências, Universidade de Brasília, DF, Brasília, DF, 2000.

CARVALHO, C. M. B. de. Contribuição ao estudo dos maciços gabro-anortosíticos do sul da Bahia, Brasil: mecanismos de deformação e orientação preferencial cristalográfica do plagioclásio. 2005. 213 f. Tese (Doutorado em Geologia) -Instituto de Geociências, Universidade Federal da Bahia, Salvador, 2005.

CULLERS, R.L. & GRAF, J.L.1984.Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In: HENDERSON, P. ed. Rare earth element geochemistry. Amsterdam, Elsevier. p .237-274

CUNHA, J. C., BARBOSA, J. S. F., MASCARENHAS, J. F. 2012. Greenstone Belts e Sequências Similares. In: BARBOSA, J.S.F. (Coordenação Geral). Geologia da Bahia. Pesquisa e Atualização. Volume 1, pag. 203-326.

DEER, W.A.; HOWIE, R.A.; ZUSSMAN, J. 1992. An introduction to the rock-forming minerals. 2nd ed. Longman, London, 696p.

DE LA ROCHE, H., LETERRIER, P., GRANDCLAUDE, P., MARCHAL, M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major elements analysis. Chem. Geol, 28,183-210.

GOOGLE MAPS. 2011. Gerenciador de mapas. Disponível em: br/>http://maps.google.com.br/>br/>http://maps.google.com.br/>br/>http://maps.google.com.br/>br/>http://maps.google.com.br/>http://maps.google.co

GREEN, D.H.; EDGAR, A.D.; BEASLEY, P.; KISS, E. AND WARE, N.G. 1974. Upper mantle source for some hawaiites, mugearites and benmoreites. Contríb. Mineral. Petrol., 48:33-43

HOLLISTER, L.S.; GRISSOM, G.C.; PETERS, E.K-; STOWELL, H.H. & SISSON, V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231-239.

HUTCHISON, C.S. 1972. Alpine-type chromite in North Borneo, with special reference to Darvel Bay. American Mineralogist. v. 57, 5-6, 835-856.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). 2006. Base de Cartográfica. Disponível em: http://www.ibge.gov.br. Acessado em: 20 de abril de 2011.

IRVINE, T.N. & BARAGAR, W.R.A. 1971. A guide to the chemical classification of common rocks. Canadian Journal Earth Science, 8: 523-548.

IRVINE, T.N. 1982. Terminology for layered intrusions. Journal of Petrol., 23, Part II, 127-162.

JACKSON, E.D. & THAYER, T.P. 1972. Some criteria for distinguishing between stratiform, concentric and Alpine peridotite-gabbro complexes. 24th Int. Geol. Congr., 2, 289-96

JANOUSEK, V., FARROW, C., M, ERBAN, V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J. Petrology, 47, 1255–1259.

JAQUES, A.L. & GREEN, D.H. 1980. Anhydrous melting of peridotite at 0---15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287-310.

JENSEN, L.S. 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Div. of Mines, Miscellaneous Paper 66. 22 p.

KERR, P.F. 1959. Optical Mineralogy. Mcgraw-Hill Book Co. 3. Ed., New York. 442p.

KLEIN, C. & HURLBUT, C.S., Jr. 1993. Manual of Mineralogy, 21st Edition: New York, John Wiley and Sons, 681p.

KRETZ, R. 1982. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. *Geochim. Cosmochim. Acta, 46,* 411-21.

KRETZ, R. 1983. Symbols for rock-forming minerals. *Am. Min.*, 68: 277-279. KUDO, A.M. & WEILL, D.F. 1970. An igneous plagioclase geotermometer. Contributions to Mineralogy and Petrology, Berlin, v. 25, p. 52-65.

LEAKE, B.E.; GARDA, G.M.; ATENCIO, D. 1991. Nomenclatura de anfibólios. Revista Brasileira de Geociências, v. 21, n. 3, 285-297.

LIMA, T. M. 1997. Geologia, Estratigrafia e Petrologia da Porção Sul do Complexo Máfico-Ultramáfico de Cana Brava, Goiás. Dissertação (Mestrado) - Instituto de Geociências, Universidade de Brasília, Brasília (DF), 300 p.

MacDONALD, G.A. & KATSURA, T. 1964. Chemical composition of Hawaiian Lavas. J. Petrology, 5: 82-133.

MAIER, W.D.; LI, C.S.; DE WAAL, S.A. 2001. Why are there no major Ni-Cu sulfide deposits in large layered mafic-ultramafic intrusions? The Canadian Mineralogist, 39 (2), pp. 547-556.

MARINHO, M.M.; SILVA, E.F.A. da; SOARES, J.V. & COSTA, P.H. 1979. Projeto Contendas-Mirante. Companhia Baiana de Pesquisa Mineral. Convenio CPBM/SME Bahia, Salvador, Relatório Final, Vol. 1.

MARINHO, M.M., COSTA, P.H.O., SILVA, E.F.A. da, TORQUATO, J.R. F. 2009. A sequência vulcanossedimentar de Contendas-Mirante; uma estrutura do tipo Greenstone Belt? – Salvador: CBPM, 68p.:il.; 2 mapas – (Série Arquivos Abertos, 32).

MARTIN H., SABATÉ P., PEUCAT J.J., CUNHA J.C. 1991. Un segment de croute continentale d'age Archéean ancien (~3.4 milliards d'années): le Massif de Sete Voltas (Bahia-Brésil). C R. Acad Sci Paris. 313 (Serie II): 531-538.

MASCARENHAS, J.F. de; PEDREIRA, A.J. de C.L.; GIL, C.A.A.; NEVES, J.P. das; OLIVEIRA, J.E. de; SILVA FILHO, M.M. da & MARINHO, M.M. 1979. Geologia da região centro-oriental da Bahia – Projetos Bahia - Bahia II - Sul da Bahia, Relatório Integrado. Brasília, MME/DNPM, Geologia Básica n°8, 128 p.

MATHEZ, E.A. 1973. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks. Contributions to Mineralogy and Petrology, Berlin, v. 41, 61-72p.

MCCALLUM, I.S., 1996. The Stillwater Complex. In: Cawthorn, R.G. (ed.). Layered intrusions, Amsterdam, Elsevier Science, 441-483.

MCDONOUGH, W.F. & SUN, S.-s. 1995. The composition of the Earth. Chemical Geology 120, 223-253.

MELO, C.S.B; SILVA, E. F.A.; VILAS BOAS, A.; BARBOSA, E.P.; LOPES, G.A.; VASCONCELLOS, H.G.; VIEIRA, I.A.; PAMPONET, L.T. C.; RIBEIRO, W.; SOUTO, P.G. 1977. Projeto Rochas Básicas e Ultrabásicas de Vitória da Conquista. Salvador: CBPM, 42 v. il. Convênio SUDENE - SME - CBPM.

MEYER C. & HEMLEY J.J. 1967. Wall Rock Alteration. Pp. 166-235 in: Geochemistry of Hydrothermal Ore Deposits (H. L. Barnes, editor). Holt Rinehart and Winston, New York.

MORIMOTO, N.; GARDA, G.M.; ATENCIO, D. 1990. Nomenclatura de piroxênios. Revista Brasileira de Geociências, v. 20, n. 1-4, 318-328.

NALDRETT, A. J. 1969. A portion of the system Fe-S-O between 900 and 1080°C and its application to ore magmas. Journal of Petrology, 10:171-201.

NALDRETT, A. J. 2004. Magmatic sulfide deposits – geology, geochemistry and exploration. Springer, 724pp.

OLIVEIRA, E. P. et al. Contrasting copper and chromium metallogenic evolution of terranes in the Palaeoproterozoic Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil: new zircon (SHRIMP) and Sm-Nd (model) ages and their significance

for orogen-parallel escape tectonics. Precambrian Research, Amsterdam, v. 128, n. 1-2, p. 143165, 2004.

PEARCE, T.H.1970. Chemical variations in the Palisades sill. J. Petrol. 11, 15-23.

PEARCE, J.A., NORRY, M. J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations Volcanic Rocks. Contrib. Mineral. Petrol, 69,33-47.

PIRAJNO, F. 2009. Hydrothermal Processes and Mineral Systems, Geological Survey of Western Australia, Springer Science Business Media B., 1250p.

POLDERVAART, A. & HESS, H.H. 1951. Pyroxenes in the crystallization of basaltic magma: Jota. Geol.,59i 472-489.

POVDIN, P., 1988, Ni-Mg partitioning between synthetic olivines and orthopyroxenes: application to geothermometry: Am. Mineral., v. 73, no. 3/4, p. 274-280.

POWELL, M., AND POWELL, R., 1974, An olivine-clinopyroxene geothermometer: Contrib. Mineral. Petrol., v. 48, no. 4, p. 249-263.

RAMDOHR, P. 1980. The Ore Minerals and Their Intergrowths (2^a ed.). Vol I e II. Pergamon Press, Oxford, 440 p.

RICHARD, L.R. 1995. Minpet Software. Mineralogical and Petrological data processing system. Versão 2.02. Copyright (1988-1995).

RODEN M.F., FREY F.A., FRANCIS D.M. 1984. An example of consequent mantle metasomatism in peridotite inclusions from Nunivak Island, Alaska. J. Petrol., 25:546-577

SÁ, J.H.S; GARRIDO, I.A.A.; CRUZ, M.J.M. 2010. Depósitos de Ferro e Titânio na Região Sul da Bahia – Salvador: CBPM. 72p.: 1 mapa color – (Série Arquivos Abertos; 35).

SANTOS, M.C.P. 2013. Geologia, Petrografia, Química Mineral, Litogeoquímica, e Potencial metalogenético do Corpo Máfico-Ultramáfico de Catingal, Distrito de Manoel Vitorino, Bahia.2013. 164p. Dissertação (Mestrado em Geologia). Instituto de Geociências da Bahia, Universidade Federal da Bahia. Salvador.

SANTOS, R.A. & SOUZA, J.D. 1985. Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais: Folha SD.24-Y-A - Vitória da Conquista, escala 1:250.000. Região Nordeste. Brasília: CPRM, 1 pasta (texto e mapas).

SHERVAIS, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolites lavas. Earth, Planetary Science Letters, 59, 101-118.

SILVA, J.M., 2014. O depósito sulfetado Ni-Cu-(PGE) de Limoeiro: metalogênese, magmatismo máfico e metamorfismo no leste da Província Borborema. xxv, 278 f., il. Tese (Doutorado em Geologia) —Universidade de Brasília, Brasília.

SOTO, J. I., 1993, PTMAFIC: software for thermobarometry and activity calculations with mafic and ultramafic assemblages: Am. Mineral., v. 78, no. 7/8, p. 840-844.

SOTO, J.I. & SOTO, V.M., 1995. PTMafic (v. 2.0): Software package for thermometry, barometry, and activity calculations in mafic rocks using an IBM or compatible computer. Computers & Geosciences 21, 619-652.

SPEAR, F. S. 1993. Metamorphic Phase Equilibria and Pres-sure-Temperature-Time Paths. Mineral. Soc. Am. Mono-graph 1. MSA, Washington, D.C.

STRECKEISEN, A. L., 1976. To each plutonic rock its proper name. Earth Science Reviews, 12, 1-33.

TEIXEIRA, W., SABATÉ, P., BARBOSA, J., NOCE, C.M., AND CARNEIRO, M.A., 2000, Archean and Paleoproterozoic tectonic evolution of the São Francisco craton: International Geological Congress, 31st, Rio de Janeiro, Brazil, August 6–17, 2000, Proceedings, p.101–137.

THOMPSON, A.J.B., & THOMPSON, J.F.H. (editors), 1996: *Atlas of alteration: A field and petrographic guide to hydrothermal alteration minerals.* Alpine Press Limited, Vancouver, British Columbia, 119 p.

TINDLE, A. 2010. Free Structural Formula Calculators (In Excel Format). Disponível em http://www.open.ac.uk/earthresearch/tindle/AGT/AGT_Home_2010/Microprobe-2.html. Acesso em 20 de junho de 2015.

WELLS, P.R.A. 1977. Pyroxene thermometry in simple and complex systems. *Contrib. Mineral. Petrol.* 62, 129-39.

WERNICK, E. 2004. Rochas Magmáticas: Conceitos Fundamentais e Classificação Modal, Química, Termodinâmica e Tectônica. São Paulo-SP, Ed. Unesp. 655 p.

WINTER, J.D. 2009. An Introduction to Igneous and Metamorphic Petrology Prentice-Hall Inc., Upper Saddle River, New Jersey, USA, 697p.

WITT-EICKSCHEN, G., AND SEEK, H. A., 1991, Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer: Con- trib. Mineral. Petrol., v. 106, no. 4, p. 431-439.

WOOD, B.J & BANNO, S. 1973. Garnet-orthopyroxene and orthopyroxeneclinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology, 42, 109-124.

ANEXOS

Unidade	nidade Grupo Nome		Тіро	Código Lâmina	QR	MEV	MSE
		Mata Wabatarita	LD	AM-24	-	-	-
	hC	weta-websterito	LD	AM-25-B	-	-	-
	DC	Ortonirovanita	LD	Docksystem QR MEV MS Lâmina QR MEV MS D AM-24 - - - D AM-25-B - - - D NE-005 - - - D NL-010 x - - D NL-010 x - - D NL-011 x - - D NL-017 x - - D NL-018 x - - D NLP-002 x - x P NLP-003 x x x P NLP-012 x - x D NE-027 x - -		-	
		Onopiroxenito	LD	ZJ-767	JO QR MEV MSE 24 - - - 25-B - - - 05 - - - 05 - - - 07 - - - 10 x - - 11 x - - 11 x - - 11 x - - 11 x - - 12 x - x 002 x - x 003 x x x 007 x - - 12 x - - 07 x - - 12 x - - 04 x - - 12 x - - 005 x x -		
		Olivina websterito	LD	NL-010	х	-	-
			LD	NL-009	х	-	-
			LD	NL-011	х	-	-
			LD	NL-017	х	-	-
	obC1		LD	NL-018	х	-	-
	1 200	Olivina Ortopiroxenito	LD	NL-019	х	-	-
			LDP	NLP-002	х	-	х
			LDP	NLP-003	х	Х	х
			LDP	NLP-007	х	-	-
			LDP	NLP-012	х	-	х
		Meta-Lherzolito	LD	NE-027	х	-	-
			LD	AM-17-A	-	-	-
			LD	AM-22	-	-	-
	obC2		LD	NL-007	х	-	-
um	0002	Meta-Harzburgito	LD	NL-008	х	-	-
um			LD	NL-012	х	-	-
			LDP	NLP-004	х	-	х
			LD	ZJ-328	х	-	-
		Mata Malananahya	LD	NE-025	х	-	-
	pbaC0		LDP	NLP-005	х	Х	-
		Odinalato	LDP	NLP-006	х	Х	-
			LD	NE-018	-	-	-
		Mata Malananahya	LD	NE-019	х	-	-
		Nieta-Ivielanogabro	LD	NE-020	х	-	-
	pbaC1	Odinalato	LD	NL-028	х	-	-
	•		LDP	NLP-017	х	Х	х
		Meta-Melanogabro	LD	NL-003	х	-	-
		Cumulato + Veio de Quartzo	LDP	NLP-001	х	х	-
		Meta-Melanogabro	LD	NE-026	х	-	-
		Cumulato (fino)	LD	NL-014	х	-	-
	pbaC2	Meta-Melanogabro Cumulato (fino) (A) com Granulito máfico anfibolitizado (B)	LD	NL-016	x	-	-

Quadro A.1.1: Relação das lâminas analisadas do Corpo Norte, com as análises realizadas. Siglas: LD - Lâmina delgada; LDP- Lâmina delgada-polida; QR- Análise química de rocha total; MEV-Microscopia Eletrônica por Varredura; MSE - Microssonda eletrônica.

Quadro A.1.2: Relação das lâminas analisadas do Corpo Leste, com as análises realizadas. Siglas: LD - Lâmina delgada; LDP- Lâmina delgada-polida; QR- Análise química de rocha total; MEV-Microscopia Eletrônica por Varredura; MSE - Microssonda eletrônica.

Unidade	Grupo	Nome	Тіро	Código Lâmina	QR	MEV	MSE	Isótopos Rb-Sr Sm-Nd
			LDP	Mv10	х	-	х	-
			LDP	Mv11	х	-	х	Х
			LD	Mv26	х	-	-	х
		Metagabronorito	LD	Mv30	х	-	-	-
m	Máficos		LD	Mv32	х	-	-	-
111	IVIAIICas		LD	LD NE-023		-	-	-
			LD	VR-130	-	-	-	-
			LDP	Ma15	-	-	х	-
		Metagabro	LDP	NLP-008	х	-	-	х
			LDP	NLP-009	х	Х	-	х
	۲ <u></u>	Meta-Websterito	LD	Mv14	х	-	-	-
		cumulato	LD	Mv34	х	-	-	-
			LDP	Ma12	х	-	Х	-
			LDP	Ma14	х	-	х	-
		Meta-Olivina	LDP	Ma22	х	-	х	-
		cumulato	LDP	Mv17	х	-	х	-
	abC1	Carrialate	LD	Mv21	х	-	-	-
um	10001		LD	Mv22	х	-	-	-
um			LDP	Ma21	х	-	-	-
		Meta-Olivina	LD	Mv07	х	-	-	-
		Cumulato	LD	ZJ-155A	-	-	-	-
		odindiato	LD	ZJ-155C	-	-	-	-
		Mota I barzalita	LDP	Mv23	х	-	-	-
	obC2		LD	NE-024	х	-	-	-
	0002	Meta-Harzburgito	LD	ZJ-1037	-	-	-	-
		Serpentinito	LDP	Mv41	х	-	Х	-

Quadro A.1.3: Rela	ação das lâminas analisa	adas das encaixantes granu	líticas e rochas associadas,
com as análises rea	alizadas. Siglas: LD - Lâm	<u>nina delgada; LDP- Lâmina d</u>	<u>elg</u> ada-polida.

Unidade	Grupo	Nome	Tipo	Código Lâmina
			LD	Ma18B
			LDP	Mv16
		Granulito máfico	LD	NE-021
			LD	NL-025
			LDP	NLP-016
	Grapulitos		LD	NL-027
	Máficos	Granulito máfico	LD	NL-029
	manooo	anfibolitizado	LD	NL-036
			LD	ZJ-673
			LDP	NLP-011
		Antidolito	LDP	NLP-013
		Granulito máfico (com antipertita - Jutonito)	LD	NL-022
		Quartzo Diorito (Leucossoma)	LD	NL-004
pEed	Migmatitos	Granodiorito (Leucossoma)	LD	NL-005
		Granulito máfico (Melanossoma)	LD	NL-031
		Granulito Enderbítico silicificado	LD	NL-002
	Enderbitos	Enderbito anfibolitizado/silicificado	LD	NL-013
		Enderbito	LD	NL-032
		Granulito Enderbítico	LD	ZJ-674
		Granodioritos	LD	NL-015
			LD	NL-020
		Quartzo-diorito	LD	NL-024
	TTO	Monzogranitos	LD	NL-026
	ПG	Sienogranitos/Álcali- Granito com Opx	LD	NL-030
		Granodioritos	LD	NL-035
		Sienogranitos/Álcali- Granito	LD	ZJ-080

Quadro A.1.3 (Continuação): Relação das lâminas analisadas das encaixantes granulíticas e rochas associadas, com as análises realizadas. Siglas: LD - Lâmina delgada; LDP- Lâmina delgada-polida.

Unidade	Grupo	Nome	Tipo	Código Lâmina
		Diabásio cloritizado (Corpo Norte)	LD	AM-26
Diques	Diques	Disk (sis (Osma	LD	Ma18.1
	Maticos	Diabasio (Corpo	LD	Mv38
		LUSIC	LD	VR-131
nEala		Sionito	LD	ZJ-671
pEalc		Sieniito	LD	ZJ-1027
			LD	NL-006
			LD	NL-021
			LD	NL-033
		Kinzigito	LD	VR-129
kz	Kinzigitos		LD	ZJ-129
			LD	ZJ-158
			LD	ZJ-327
		Kinzigito	LD	NL-023
		sericitizado/pinitizado	LD	NL-034
		Charnockito Gnaisse	LD	Ma11A
	Hornblenda	Charnockito	LD	ZJ-1152
	granulitos	Charnockito	LD	ZJ-160
pEnch	Charnockiticos	Granulito Charnockítico	LD	ZJ-153
	Rochas anfibolitizadas	Anfibolito	LD	ZJ-154
		Hornblenda Granodiorito Gnaisse	LD	NL-001
pEhgt	Hornblenda granoblastitos	Biotita-Hornblenda- Granoblastito	LD	ZJ-078
		Hornblenda- Granoblastito	LD	ZJ-555/ZJ- 1047

Corpo	Litotipos	LD	LDP	Total de Lâminas	QR	MEV	MSE	Isótopos Rb-Sr Sm-Nd
	máf	5	5	10	8	1	3	4
	bC	2	-	2	2	-	-	-
Leste	obC1	5	5	10	8	-	4	4
	obC2	2	2	4	3	-	1	-
	Total	14	12	26	21	1	8	8
	bC	4	-	4	-	-	-	-
	obC1	6	4	10	10	1	3	3
	obC2	7	1	8	6	-	1	-
Norte	pbaC0	1	2	3	3	2	-	-
	pbaC1	5	2	7	6	2	1	1
	pbaC2	3	-	3	3	-	-	-
	Total	26	9	35	28	5	5	4
	Dique Máfico (Corpo Leste)	3	-	3	-	-	-	-
	Dique Máfico (Corpo Norte)	1	-	1	-	-	-	-
S	Granulito Máfico	5	2	7	-	-		-
ada	Anfibolito	2	2	4	-	-	-	-
ssocia	Granulito Máfico +Antipertita	1	-	1	-	-	-	-
S Å:	Enderbito	4	-	4	-	-	-	-
has	Migmatito - Leucossoma	2	-	2	-	-	-	-
200	Migmatito - Melanossoma	1	-	1	-	-	-	-
e l	Hornblenda granoblastitos (pEhgt)	3	-	3	-	-	-	-
kante	Hornblenda granulitos charnockíticos (pEhch)	4	-	4	-	-	-	-
Encai	Hornblenda granulitos charnockíticos (pEhch) anfibolitizado	1	-	1	-	-	-	-
	TTG	7	-	7	-	-	-	-
	Kinzigito	9	-	9	-	-	-	-
	Sienito (pEalc)	2	-	2	-	-	-	-
	Total	45	4	49	-	-	-	
	Total estudado	85	25	110	49	6	13	12

Quadro A.1.4: Resumo com as análises realizadas. Siglas: LD - Lâmina delgada; LDP- Lâmina delgada; delgada-polida; QR- Análise química de rocha total; MEV- Microscopia Eletrônica por Varredura; MSE - Microssonda eletrônica.

Corpo							Lest	te							
				Ma12-c1-	Ma12-c1-	Ma12-	Ma12-	Ma12-	Ma12-		Ma12-	Ma12-	Ma22-c1-	Ma22-c2-	Ma22-c2-
Amostra	Ma12-c1-14	Ma12-c1-15	Ma12-c1-16	17	18	c1-19	c2-32	c4-10	c4-11	Ma12-c4-7	c4-8	c4-9	123	127	128
Litotipo							obC	:1							
SiO ₂	40,943	41,145	40,996	41,074	41,346	40,885	40,791	40,725	41,037	39,169	40,910	40,901	40,109	40,529	40,325
TiO ₂	0,066	0,020	0,007	0,000	0,000	0,000	0,050	0,048	0,000	0,000	0,000	0,048	0,022	0,000	0,000
Al ₂ O ₃	0,000	0,006	0,000	0,011	0,000	0,002	0,007	0,000	0,026	0,009	0,000	0,012	0,001	0,003	0,000
Cr ₂ O ₃	0,000	0,000	0,000	0,000	0,051	0,000	0,004	0,019	0,000	0,017	0,000	0,077	0,000	0,000	0,000
FeO	11,272	11,270	11,286	10,967	11,289	11,307	10,973	11,096	10,834	10,878	11,105	11,063	14,260	14,276	14,468
MnO	0,167	0,211	0,197	0,238	0,198	0,205	0,096	0,174	0,189	0,181	0,163	0,175	0,202	0,256	0,247
MgO	47,661	48,182	47,776	47,901	48,766	47,883	48,191	48,027	48,195	46,965	48,313	48,045	45,108	45,338	45,200
CaO	0,000	0,000	0,000	0,000	0,011	0,016	0,023	0,000	0,000	0,000	0,000	0,005	0,032	0,005	0,013
Na₂O	0,000	0,000	0,000	0,026	0,000	0,004	0,019	0,000	0,023	0,010	0,000	0,000	0,028	0,000	0,000
K₂O	0,000	0,011	0,000	0,010	0,014	0,000	0,019	0,006	0,000	0,021	0,000	0,032	0,038	0,000	0,036
NiO	0,272	0,274	0,203	0,275	0,278	0,284	0,243	0,284	0,270	0,275	0,298	0,249	0,409	0,509	0,499
Total	100,38	101,12	100,47	100,50	101,95	100,59	100,42	100,38	100,57	97,53	100,79	100,61	100,21	100,92	100,79
Formula Estrut	ural calculada	na base de 4 d	oxigênios												
Si	1,006	1,004	1,006	1,007	1,000	1,003	1,001	1,001	1,004	0,992	1,001	1,002	1,003	1,006	1,003
Ti	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000
AIT	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Fe2	0,232	0,230	0,232	0,225	0,228	0,232	0,225	0,228	0,222	0,230	0,227	0,227	0,298	0,296	0,301
Mn	0,003	0,004	0,004	0,005	0,004	0,004	0,002	0,004	0,004	0,004	0,003	0,004	0,004	0,005	0,005
Mg	1,746	1,752	1,748	1,750	1,759	1,751	1,763	1,759	1,759	1,774	1,762	1,755	1,681	1,677	1,676
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Na	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000
K	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,001	0,001	0,000	0,001
Ni	0,005	0,005	0,004	0,005	0,005	0,006	0,005	0,006	0,005	0,006	0,006	0,005	0,008	0,010	0,010
∑Cátions	2,99	3,00	2,99	2,99	3,00	3,00	3,00	3,00	3,00	3,01	3,00	3,00	3,00	2,99	3,00
Componentes I	Moleculares														
#Fe	11,7	11,6	11,7	11,4	11,5	11,7	11,3	11,5	11,2	11,5	11,4	11,4	15,1	15,0	15,2
#Mg	88,3	88,4	88,3	88,6	88,5	88,3	88,7	88,5	88,8	88,5	88,6	88,6	84,9	85,0	84,8
Nomenclatura	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita

Quadro A 1: Análise química da olivina

Corpo	Norte													
	NLP002_	NLP002_	NLP002_	NLP002_	NLP002_	NLP002_	NLP002_	NLP002_	NLP003_	NLP003_	NLP003_	NLP003_	NLP003_	NLP003_
Amostra	C1_01	C1_02	C1_03	C1_04	C2_01	C2_02	C2_03	C2_04	C1_01	C1_02	C1_03	C2_01	C2_02	C2_03
Litotipo		(a. a=a		(0.000			000			<u> </u>	(0.070	10.000		(0.107
SiO ₂	40,420	40,078	40,301	40,062	40,112	39,778	39,864	40,468	40,559	40,742	40,976	42,308	40,814	40,407
TiO ₂	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Al ₂ O ₃	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,013	0,000	0,000	0,040	0,000	0,000
Cr ₂ O ₃	0,000	0,021	0,033	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,005	0,021	0,000
FeO	12,779	12,757	12,877	12,209	12,588	12,851	12,808	12,515	12,959	13,318	13,073	11,425	13,514	13,441
MnO	0,000	0,000	0,000	0,008	0,000	0,013	0,012	0,005	0,000	0,000	0,013	0,006	0,000	0,010
MgO	45,262	45,137	45,387	44,942	44,870	44,965	44,878	45,172	45,246	45,588	45,694	44,813	45,395	44,980
CaO	0,002	0,000	0,002	0,000	0,007	0,002	0,003	0,002	0,000	0,007	0,000	0,004	0,013	0,007
Na₂O	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
K₂O	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NiO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000
Total	98,46	98,00	98,60	97,22	97,58	97,61	97,57	98,16	98,78	99,66	99,76	98,60	99,76	98,85
Formula Estrut	ural calculada	na base de 4 c	oxigênios	1				1	1		1		1	
Si	1,017	1,014	1,013	1,018	1,018	1,011	1,013	1,020	1,018	1,015	1,018	1,051	1,016	1,016
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ΑΙ _τ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Cr	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe2	0,269	0,270	0,271	0,260	0,267	0,273	0,272	0,264	0,272	0,277	0,272	0,237	0,281	0,283
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	1,697	1,702	1,701	1,703	1,697	1,704	1,701	1,697	1,692	1,693	1,692	1,659	1,685	1,686
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
к	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
∑Cátions	2,98	2,99	2,99	2,98	2,98	2,99	2,99	2,98	2,98	2,99	2,98	2,95	2,98	2,98
Componentes	Moleculares													
#Fe	13,7	13,7	13,7	13,2	13,6	13,8	13,8	13,4	13,8	14,1	13,8	12,5	14,3	14,4
#Mg	86,3	86,3	86,3	86,8	86,4	86,2	86,2	86,6	86,2	85,9	86,2	87,5	85,7	85,6
Nomenclatura	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita

Quadro A1: Análise química da olivina (continuação)

Corpo	Norte											
	NLP012_C1	NLP012_C1	NLP012_C1	NLP012_C2	NLP012_C2	NLP012_C2	NLP004_C1	NLP004_C1	NLP004_C1	NLP004_C2	NLP004_C2	NLP004_C2
Amostra	_01	_02	_03	_01	_02	_03	_01	_02	_03	_01	_02	_03
Litotipo			ob	DC1					ob	C2		
SiO ₂	40,572	40,244	40,282	40,262	40,349	40,039	40,102	40,114	40,282	39,936	39,914	39,824
TiO ₂	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Al ₂ O ₃	0,000	0,000	0,001	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000
Cr ₂ O ₃	0,015	0,000	0,021	0,000	0,000	0,000	0,000	0,000	0,015	0,006	0,013	0,033
FeO	13,852	14,096	13,705	13,863	14,100	14,224	16,070	15,557	15,458	15,823	15,963	15,915
MnO	0,012	0,011	0,000	0,000	0,000	0,012	0,000	0,009	0,000	0,000	0,006	0,002
MgO	44,854	44,464	44,635	44,271	44,446	44,588	43,841	43,584	43,710	43,418	43,117	43,210
CaO	0,000	0,000	0,009	0,000	0,000	0,007	0,001	0,009	0,009	0,000	0,000	0,000
Na₂O	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
K₂O	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NiO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Total	99,31	98,82	98,65	98,40	98,90	98,87	100,02	99,27	99,47	99,18	99,01	98,98
Formula Estrutura	l calculada na k	oase de 4 oxig	gênios									
Si	1,017	1,015	1,016	1,019	1,017	1,011	1,009	1,014	1,015	1,012	1,014	1,012
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AIT	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Fe2	0,290	0,297	0,289	0,293	0,297	0,300	0,338	0,329	0,326	0,335	0,339	0,338
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	1,676	1,672	1,678	1,670	1,670	1,678	1,644	1,643	1,643	1,640	1,633	1,637
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
к	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ni	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
∑Cátions	2,98	2,98	2,98	2,98	2,98	2,99	2,99	2,99	2,98	2,99	2,99	2,99
Componentes Mol	eculares											
#Fe	14,8	15,1	14,7	14,9	15,1	15,2	17,1	16,7	16,6	17,0	17,2	17,1
#Mg	85,2	84,9	85,3	85,1	84,9	84,8	82,9	83,3	83,4	83,0	82,8	82,9
Nomenclatura	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita	Crisolita

Quadro A1: Análise química da olivina (continuação)

Litotipo	Amostra	0	Si	Mg	Fe	AI	Са	Mn	С
	NLP-001-S1 (28_3)	36,98	19,89	7,33	3,78	0,41	11,12	0,2	20,29
mbaC1	NLP-001-S1 (25_3)	41,65	18,99	7,31	3,48	0,47	9,87	0,19	18,05
ppaci	NLP-001-S1 (24_3)	44,02	25,14	8,92	5,73	0,58	15,31	0,31	-
	NLP-001-S1 (23_3)	52,33	23,67	9,6	3,1	0,59	10,5	0,2	-
mbaC0	NLP-006-S1 (14_3)	49,7	24,21	9,24	4,33	0,73	11,61	0,18	-
ppaco	NLP-006-S5 (05_1)	55,83	22,43	9,59	2,39	0,64	9,11	-	-

Quadro A 2: Análise por microscopia eletrônica de varredura (MEV) dos cristais de Augita (Corpo Norte).

Corpo	Leste												
Amostra	Ma15-	Ma15-	Ma15-	Ma15-	Ma15-	Ma15-	MV10-						
Litotipo		01 12	02 20	02 21	00 1	04 21	máf	01 12	01 10		01 10	01 10	0120
SiO ₂	48,66	49,12	48,70	51,12	51,96	28,82	50.95	51,08	50.63	50,32	48,82	51,21	50.08
TiO₂	2,09	1,90	1,98	1,10	1,16	7,17	0,92	1,13	1,17	1,30	1,73	0,70	1,25
Al ₂ O ₃	4,07	4,14	4,21	2,09	2,06	13,73	1,99	2,37	2,25	3,00	4,36	1,34	2,55
FeO	9,59	9,30	9,74	9,53	9,42	26,67	10,17	9,53	9,46	8,80	9,08	11,69	10,20
Fe ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,03	0,03	0,00	0,00	0,02	0,04	0,00	0,00	0,02	0,11	0,12	0,01	0,01
MnO	0,18	0,20	0,23	0,26	0,30	0,11	0,34	0,35	0,34	0,29	0,24	0,49	0,32
NiO	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,06	0,01	0,02	0,02	0,00	0,04
MgO	13,71	13,53	13,91	15,09	15,17	8,51	14,66	14,51	14,79	14,99	13,90	13,59	13,76
CaO	20,29	20,80	20,13	19,33	19,59	5,10	19,67	19,90	19,37	19,97	20,45	19,58	19,98
Na₂O	0,43	0,39	0,47	0,31	0,31	0,00	0,32	0,32	0,33	0,33	0,37	0,27	0,34
K ₂ O	0,01	0,01	0,02	0,03	0,00	1,53	0,00	0,02	0,00	0,00	0,00	0,00	0,03
Total	99,05	99,43	99,38	98,85	99,99	91,68	99,03	99,27	98,38	99,13	99,11	98,88	98,54
Formula Estrut	ural calc	ulada na	a base d	e 6 oxigê	nios		1		1				•
TSi	1,83	1,84	1,83	1,92	1,93	1,24	1,92	1,92	1,91	1,88	1,83	1,95	1,90
Tal	0,17	0,16	0,18	0,08	0,07	0,70	0,08	0,08	0,09	0,12	0,17	0,05	0,10
TFe3	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1AI	0,01	0,03	0,01	0,01	0,02	0,00	0,00	0,02	0,01	0,02	0,03	0,01	0,01
M1Ti	0,06	0,05	0,06	0,03	0,03	0,23	0,03	0,03	0,03	0,04	0,05	0,02	0,04
M1Fe3	0,07	0,05	0,09	0,03	0,00	0,38	0,05	0,02	0,03	0,05	0,07	0,03	0,04
M1Fe2	0,09	0,11	0,07	0,08	0,10	0,00	0,10	0,11	0,09	0,06	0,08	0,18	0,13
M1Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Mg	0,77	0,76	0,78	0,85	0,84	0,39	0,82	0,81	0,83	0,84	0,78	0,77	0,78
M1Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,00	0,00	0,00	0,00	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2Fe2	0,14	0,13	0,15	0,19	0,19	0,52	0,17	0,17	0,18	0,17	0,14	0,17	0,15
M2Mn	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,02	0,01
M2Ca	0,82	0,84	0,81	0,78	0,78	0,24	0,79	0,80	0,79	0,80	0,82	0,80	0,81
M2Na	0,03	0,03	0,03	0,02	0,02	0,00	0,02	0,02	0,02	0,02	0,03	0,02	0,03
M2K	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
∑Cations	4,00	4,00	4,00	4,00	4,00	3,92	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Componentes	violecula	ares				[1		1		1		<u>r</u>
CFIS1	2,65	2,66	3,40	0,84	0,18	17,45	1,65	1,04	1,04	2,34	3,71	0,74	1,53
01751	3,19	2,88	3,03	1,63	1,68	13,85	1,36	1,67	1,73	1,94	2,64	1,03	1,87
CATST	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Q 	1,82	1,83	1,81	1,90	1,91	1,30	1,88	1,89	1,89	1,86	1,82	1,91	1,87
J	0,06	0,06	0,07	0,05	0,05	0,00	0,05	0,05	0,05	0,05	0,05	0,04	0,05
	43,18	44,22	42,59	40,30	40,58	13,47	40,74	41,62	40,69	41,66	43,45	40,80	42,20
EN	40,60	40,02	40,94	43,77	43,70	31,28	42,25	42,23	43,23	43,53	41,09	39,39	40,44
r3 WEF	16,22	15,77	16,47	15,93	15,73	55,25	17,01	16,15	16,08	14,81	15,46	19,81	17,36
	96,66	96,98	96,37	97,70	97,71	100,00	97,59	97,62	97,49	97,48	97,11	97,95	97,42
30 AF	0,53	0,98	0,42	0,78	1,94	0,00	0,20	1,13	0,79	0,56	0,82	0,35	0,62
Nomenclatura	2,82	2,04	3,21	1,52	0,35	0,00	2,22	1,25	1,/2	1,96	2,07	1,/1	1,96
au	Audita	Audita	Audita	Audita	Audità	rideonita	Audita						

Quadro A 3: Análise química dos piroxênios.

Corpo							Leste						
A	MV10	MV10-	MV10-	MV10	MV10	MV10	MV10-	MV10	MV10	MV10	MV10	MV10	MV10
Amostra	-c1- 21	c1-22	c1-23	-c1-27	28	29	c1-3	-c1-4	-c1-5	-c1-6	-c1-7	-c1-8	-62-
Litotipo	= 1 00			= 4 4 6			máf	= 4 0 0	= 4 4 6	- 4 0 0		=	
SIO ₂	51,32	51,31	50,83	51,48	50,66	51,17	50,48	51,06	51,19	51,06	50,51	50,38	51,06
TiO₂	0,86	0,92	0,80	0,16	0,19	0,08	1,24	0,80	0,84	1,07	1,46	1,14	1,03
Al ₂ O ₃	2,01	1,85	1,80	0,86	1,17	1,34	2,49	1,78	1,64	2,20	2,54	2,46	2,01
FeO	10,21	10,09	11,58	25,04	25,94	25,27	9,79	10,84	11,06	10,18	10,02	10,33	9,77
Fe ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,07	0,00	0,00	0,00
MnO	0,35	0,41	0,45	0,55	0,60	0,52	0,34	0,44	0,43	0,28	0,27	0,37	0,34
NiO	0,00	0,00	0,04	0,00	0,00	0,00	0,01	0,01	0,00	0,04	0,02	0,00	0,00
MgO	14,34	14,30	13,33	7,25	6,14	7,45	14,07	13,97	13,78	14,24	14,61	13,70	14,28
CaO	19,86	19,89	19,60	11,81	11,64	11,77	20,16	19,87	19,60	19,92	19,59	19,97	19,96
Na ₂ O	0,28	0,31	0,32	0,15	0,22	0,14	0,26	0,31	0,31	0,33	0,29	0,33	0,27
K₂O	0,02	0,01	0,00	0,11	0,07	0,11	0,04	0,02	0,02	0,01	0,03	0,00	0,00
Total	99,24	99,12	98,75	97,42	96,64	97,85	98,88	99,13	98,85	99,40	99,33	98,68	98,73
Formula E	strutural	calculada	na base o	de 6 oxigé	ènios								<u> </u>
TSi	1,93	1,93	1,93	2,10	2,10	2,08	1,91	1,93	1,94	1,92	1,90	1,91	1,93
Tal	0,07	0,07	0,07	0,00	0,00	0,00	0,09	0,07	0,06	0,08	0,10	0,09	0,07
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,00	2,00	2,00	2,10	2,10	2,08	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1AI	0,02	0,01	0,01	0,04	0,06	0,06	0,02	0,01	0,01	0,02	0,01	0,02	0,02
M1Ti	0,02	0,03	0,02	0,01	0,01	0,00	0,04	0,02	0,02	0,03	0,04	0,03	0,03
M1Fe3	0,02	0,02	0,03	0,00	0,00	0,00	0,03	0,04	0,02	0,03	0,04	0,03	0,01
M1Fe2	0,13	0,13	0,18	0,51	0,56	0,48	0,13	0,14	0,16	0,13	0,10	0,14	0,14
M1Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Mg	0,80	0,80	0,76	0,44	0,38	0,45	0,79	0,79	0,78	0,80	0,82	0,77	0,81
M1Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2Fe2	0,17	0,16	0,16	0,34	0,34	0,38	0,15	0,16	0,17	0,17	0,18	0,15	0,16
M2Mn	0,01	0,01	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01
M2Ca	0,80	0,80	0,80	0,52	0,52	0,51	0,82	0,80	0,80	0,80	0,79	0,81	0,81
M2Na	0,02	0,02	0,02	0,01	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02
M2K	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M2	1,00	1,00	1,00	0,90	0,90	0,92	1,00	1,00	1,00	1,00	1,00	1,00	1,00
∑Cátions	4,00	4,00	4,00	3,99	4,00	3,99	4,00	4,00	4,00	4,00	4,00	4,00	4,00
- Componen	tes Mole	culares											<u>i </u>
CFTS1	1,11	0,82	1,06	0,00	0,00	0,00	1,24	1,41	0,60	1,13	1,15	1,33	0,61
CTTS1	1,27	1,35	1,19	0,00	0,00	0,00	1,84	1,19	1,24	1,58	2,16	1,71	1,52
CATS1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Q	1,90	1,90	1,89	1,81	1,80	1,82	1,89	1,89	1,90	1,89	1,88	1,88	1,91
J	0,04	0,05	0,05	0,02	0,04	0,02	0,04	0,05	0,05	0,05	0,04	0,05	0,04
WO	41,33	41,44	41,24	28,19	28,46	27,85	42,31	41,30	41,06	41,58	40.85	42,15	41,82
EN	41.51	41.47	39.01	24.10	20.89	24.52	41.09	40.40	40.16	41.36	42.40	40.24	41.64
FS	17.16	17.10	19.75	47.71	50.65	47.63	16.61	18.31	18.78	17.06	16.75	17.62	16.54
WEF	97,90	97.70	97.56	98.70	98.13	98.79	98.04	97.70	97.71	97.54	97.84	97.48	97.98
JD	0.93	0.85	0.79	1.30	1.87	1.21	0.71	0.30	0.90	0.82	0.39	0.96	1.21
AE	1,17	1.46	1.65	0.00	0.00	0.00	1.26	2,00	1,39	1.64	1.77	1.56	0.81
Nomencla	Aunita	Augite	Augita	Augita	Aunita	Augusta	Augita	Aunita	etinuA	etinuA	Aunite	Aunita	Aunite
tura	лиуна	Augita	Augita	Augita	лиуна	лиуна	Augita	лиуна	лиуна	лиуна	Augita	лиуна	лиуна

Quadro A3: Análise química dos piroxênios (continuação).

Corpo	Leste											
Amostra	MV10-	MV10-	MV10-	MV10-	MV10-	MV10-	MV10-	MV11-	MV11-	MV11-	MV11-	MV11-
Litotipo	02-32	CZ-37	02-38	02-39	C3-41	<u>c3-42</u> m	C3-44 áf	C1-72	01-73	CI-74	01-75	CI-76
SiO ₂	40.36	50.82	50.10	50.68	49.40	51.04	51 10	48.25	50.44	50.42	40.08	51 30
TiO ₂	49,30	0.08	1 55	1 25	49,40	1.06	1 1 1	40,23	1 38	1 20	49,90	1 00
Al ₂ O ₃	3.53	1 00	3 11	2.50	3.36	2 /1	2.21	3 1 2	3 11	2.57	3.26	2.02
FeO	0.74	0.06	0.57	10.46	0.75	0.27	0.17	9.55	9.55	0.12	0 11	2,02
Fe ₂ O ₃	9,74	9,90	9,57	0.00	9,75	9,27	9,17	0,00	0,00	9,13	0,11	9,95
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,02	0,00	0.35	0,01	0.24	0.32	0.24	0,00	0,00	0,00	0,12	0,07
NiO	0,32	0,37	0,35	0,33	0,24	0,32	0,24	0,19	0,18	0,20	0,22	0,35
MaO	14.05	14 14	1/ 13	13.65	13 //	14.82	15.08	13 77	14 74	14 78	14 44	14 47
CaO	20.22	10.91	20.20	20.22	20.40	20.20	10.01	20.27	20.47	20.46	20.02	10.09
Na ₂ O	20,23	0.21	20,20	20,22	20,40	20,30	0.22	20,37	20,47	20,40	20,92	0.22
K ₂ O	0,30	0,31	0,37	0,30	0,40	0,35	0,32	0,30	0,33	0,37	0,33	0,33
Total	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,02	0,02
Formula Estrut	99,42 ural calc	90,30 ulada na	base de	6 oxidêni	90,70 05	99,59	99,24	90,07	99,27	99,20	90,03	99,47
TSi	1 95	1 02	1 00	1 01	1 07	1.00	1.02	1.07	1.90	1.90	1 00	1.02
Tal	1,00	1,93	1,00	1,91	1,07	1,90	1,92	1,07	1,09	1,09	1,00	1,92
TFe3	0,15	0,07	0,12	0,09	0,13	0,10	0,09	0,13	0,12	0,11	0,12	0,08
77	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
 	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1Ti	0,01	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,02	0,00	0,02	0,01
M1Fe3	0,05	0,03	0,04	0,04	0,05	0,03	0,03	0,04	0,04	0,04	0,04	0,03
M1Fe2	0,07	0,02	0,05	0,02	0,04	0,05	0,03	0,07	0,04	0,07	0,04	0,03
M1Cr	0,09	0,13	0,10	0,16	0,13	0,08	0,08	0,08	0,08	0,07	0,08	0,12
M1Mg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Ni	0,79	0,80	0,79	0,77	0,76	0,82	0,84	0,79	0,82	0,82	0,81	0,81
ΣM1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
M2Mg	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Fe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2Mn	0,15	0,10	0,15	0,15	0,14	0,15	0,17	0,12	0,15	0,15	0,13	0,10
M2Ca	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
M2Na	0,01	0,01	0,01	0,02	0,03	0,01	0,00	0,04	0,02	0,02	0,04	0,00
M2K	0,03	0,02	0,03	0,02	0,03	0,03	0,02	0,03	0,02	0,03	0,02	0,02
ΣM2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ΣCátions	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Componentes	4,00 Molecula	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
CFTS1	2.62	0.92	1.96	1.04	1.60	1.02	1 10	0.71	1.07	2.20	2.24	1.09
CTTS1	2,03	1.46	1,00	1,04	2,66	1,93	1,19	2,71	2.04	1.02	2,24	1,00
CATS1	2,00	0.00	2,00	0.00	2,00	0.00	0.00	2,20	2,04	0.00	2,13	0.00
Q	1.94	1.00	1 95	1 90	1 95	1 97	1 90	1.94	1 97	1.96	1.96	1 80
L L	0.05	0.05	0.05	0.04	0.06	0.05	0.05	0.06	0.05	0.05	0.05	0.05
WO	12 17	11 67	12 12	12 15	12 10	11 Q/	11 07	12 05	12.84	42.32	44.02	41 50
EN	41 0 <i>/</i>	<u>41 37</u>	<u>41 20</u>	30 RF	30 88	42 50	43.50	<u>41</u> 2/	42 04	42 52	42.28	41.50
FS	16 50	16.07	16.28	17 70	16.62	15 /12	15.02	1/ 71	1/ 26	15 16	13 60	16 67
WEF	0,00	97.6/	07 20	97.76	96.07	07 27	07.62	07 12	07.50	07 19	07.52	97.52
JD	0.20	1 01	0.67	1 08	0.06	0 12	0 62	0 20	0.02	0.00	0.78	0 67
AE	0,29 2 10	1 26	2 11	1 16	2 07	2 22	1 76	256	1 50	2 0,00	1 60	1 01
Nomenclatura	2,40 Augita	Augita		Augita							Augita	Δugita
	nugita	nugita	nugita	nugita	rayita	<i>i</i> lugita	, agita	nagita	nagita	ruyita	<i>i</i> ayita	nagita

Quadro A3: Análise química dos piroxênios (continuação).

Corpo						Le	este						
Amostra	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma14-	Ma14-	Ma14-
Litotipo	01-23	C1-24	02-20	02-27	CZ-29	0	04-2 0C1	C4-3	C4-5	C4-0	C1-144	C1-148	c2-154
SiO ₂	55 16	55 21	55.94	55.67	55.92	55 50	47.66	47.52	55 42	46 79	52.01	54.26	46 70
TiO ₂	0.02	0.05	0.03	0.06	0.05	0.04	0.51	0.58	0.03	40,78	0.07	0 11	0.02
Al ₂ O ₃	3 50	3 43	3 31	3 40	3 41	3 34	10.96	11 53	3 41	12 21	3 44	3 43	11 35
FeO	8.89	8 99	9.03	8.83	8.83	8 92	5 72	6.09	8 78	6.58	11 /5	12 01	6.64
Fe ₂ O ₃	0,00	0,00	0.00	0,00	0,00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00
Cr ₂ O ₃	0.07	0.13	0.06	0.06	0.12	0.17	0.33	0.30	0.08	0.40	0.13	0.08	0.28
MnO	0.21	0.21	0.29	0.21	0.22	0.21	0.08	0.08	0.22	0.08	0.29	0.27	0.06
NiO	0.03	0.00	0.04	0.04	0.04	0.08	0.03	0.08	0.03	0.06	0.09	0.07	0.13
MgO	32.37	31.85	32.39	32.40	32.21	32.28	18.11	18.05	32.35	17.68	29.78	29.78	17.09
CaO	0.30	0.40	0.37	0.36	0.48	0.37	12.35	12.57	0.30	12.23	0.40	0.46	12.49
Na ₂ O	0.02	0.00	0.00	0.00	0.00	0.00	1.10	1.23	0.00	1.23	0.01	0.00	0.87
K ₂ O	0,02	0,03	0,02	0,01	0,00	0,00	0,30	0,30	0,01	0,29	0,00	0,01	0,26
Total	100,58	100,38	101,38	101,03	101,19	100,90	97,14	98,33	100,64	98,19	99,45	100,57	96,87
Formula Estr	utural calc	ulada na	a base de 6	6 oxigênic	os	/	- 1	/	/ -	/ -	, .	/ -	/ -
TSi	1,91	1,92	1,92	1,92	1,92	1,92	1,75	1,73	1,92	1,70	1,91	1,91	1,74
Tal	0,09	0,08	0,08	0,08	0,08	0,08	0,25	0,27	0,08	0,30	0,09	0,09	0,26
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1AI	0,05	0,06	0,05	0,06	0,06	0,05	0,23	0,22	0,06	0,23	0,05	0,05	0,24
M1Ti	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,02	0,00	0,00	0,03
M1Fe3	0,04	0,01	0,02	0,02	0,01	0,02	0,08	0,12	0,02	0,12	0,03	0,03	0,04
M1Fe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Cr	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,00	0,01	0,00	0,00	0,01
M1Mg	0,91	0,92	0,92	0,92	0,92	0,92	0,67	0,64	0,92	0,62	0,91	0,91	0,69
M1Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,76	0,73	0,74	0,75	0,73	0,75	0,32	0,34	0,75	0,34	0,67	0,65	0,26
M2Fe2	0,22	0,25	0,24	0,24	0,25	0,23	0,10	0,07	0,23	0,08	0,31	0,33	0,17
M2Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,01	0,01	0,00
M2Ca	0,01	0,02	0,01	0,01	0,02	0,01	0,49	0,49	0,01	0,48	0,02	0,02	0,50
M2Na	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,09	0,00	0,09	0,00	0,00	0,06
M2K	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,00	0,00	0,01
∑M2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
∑Cátions	4,00	4,00	4,00	4,00	4,00	4,00	3,99	3,99	4,00	3,99	4,00	4,00	3,99
Componente	s Molecula	ares											
CFIS1	2,07	0,72	1,29	1,05	0,60	1,41	5,12	7,53	1,25	8,12	1,72	1,51	2,87
	0,03	0,06	0,04	0,08	0,07	0,05	0,84	0,96	0,04	1,09	0,09	0,15	1,52
CAISI	2,48	3,08	2,67	2,86	3,12	2,67	7,98	7,21	2,81	7,89	2,67	2,67	9,52
Q	1,90	1,92	1,91	1,91	1,92	1,91	1,58	1,54	1,91	1,52	1,90	1,90	1,61
J	0,00	0,00	0,00	0,00	0,00	0,00	0,16	0,17	0,00	0,17	0,00	0,00	0,13
WO	0,57	0,76	0,70	0,68	0,91	0,70	29,36	29,58	0,58	29,10	0,78	0,88	30,09
EN	85,89	85,40	85,49	85,89	85,59	85,70	59,89	59,09	86,00	58,53	81,25	80,49	57,30
F3 WEE	13,54	13,84	13,81	13,44	13,50	13,59	10,76	11,33	13,43	12,37	17,97	18,62	12,60
	99,89	100,00	99,99	100,00	100,00	100,00	90,98	89,85	100,00	89,73	99,95	100,00	92,80
	0,06	0,00	0,01	0,00	0,00	0,00	6,75	6,66	0,00	6,73	0,03	0,00	6,15
Nomonolotura	0,05	0,00	0,00	0,00	0,00	0,00	2,27	3,49	0,00	3,54	0,02	0,00	1,05
Homenciatura	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Augita	Augita	Enstatita	Augita	Enstatita	Enstatita	Augita

Quadro A3: Análise química dos piroxênios (continuação).

Corpo	Leste												
Amostra	Ma14-	Ma14- c2-157	Ma14-	Ma14-	Ma14- c2- 160	Ma14- c2- 161	Ma14- c2- 162	Ma14- c2- 163	Ma14-	Ma14-	Ma14-	Ma22-	Ma22- c1-118
Litotipo	02 100	02 101	02.00	02 100			obC1		00 100	00 110			01 110
SiO ₂	54,45	54,17	54,19	54,49	48,72	48,52	52,31	47,01	54,75	54,62	54,61	56,12	56,30
TiO ₂	0,07	0,12	0,09	0,06	0,52	0,70	0,49	0,86	0,12	0,10	0,09	0,11	0,07
Al ₂ O ₃	3,39	3,35	3,18	3,20	8,47	9,59	6,61	11,19	2,95	3,22	3,05	2,39	2,39
FeO	12,00	11,82	11,81	11,55	5,36	6,14	5,18	6,51	11,70	11,74	11,78	9,69	9,68
Fe ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,09	0,10	0,03	0,06	0,19	0,24	0,07	0,34	0,12	0,06	0,12	0,15	0,15
MnO	0,36	0,34	0,25	0,37	0,07	0,15	0,10	0,10	0,36	0,31	0,33	0,29	0,30
NiO	0,07	0,09	0,08	0,15	0,12	0,13	0,10	0,09	0,07	0,06	0,04	0,08	0,12
MgO	29,67	29,64	30,20	29,79	19,98	17,45	19,89	16,95	30,01	29,69	29,66	31,83	31,85
CaO	0,36	0,41	0,44	0,31	10,98	12,58	12,80	12,59	0,32	0,47	0,33	0,16	0,28
Na ₂ O	0,00	0,01	0,00	0,00	0,50	0,67	0,46	0,79	0,00	0,00	0,01	0,03	0,00
K ₂ O	0,03	0,00	0,01	0,00	0,22	0,21	0,15	0,29	0,02	0,00	0,00	0,01	0,02
Iotal	100,48	100,04	100,28	99,97	95,13	96,37	98,15	96,72	100,41	100,27	100,01	100,84	101,15
Formula Estrut	ural calc	ulada na	base de	6 oxigeni	os				-	1		-	
Tal	1,92	1,92	1,91	1,93	1,83	1,82	1,91	1,75	1,93	1,93	1,93	1,95	1,95
	0,08	0,09	0,09	0,07	0,17	0,19	0,09	0,25	0,07	0,07	0,07	0,05	0,05
IFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
 	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1Ti	0,06	0,05	0,04	0,06	0,20	0,24	0,20	0,24	0,05	0,06	0,06	0,05	0,05
M1Fe3	0,00	0,00	0,00	0,00	0,02	0,02	0,01	0,02	0,00	0,00	0,00	0,00	0,00
M1Fe2	0,02	0,02	0,05	0,01	0,00	0,00	0,00	0,02	0,02	0,01	0,00	0,00	0,00
M1Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Mg	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00
M1Ni	0,92	0,92	0,91	0,92	0,78	0,73	0,79	0,70	0,93	0,93	0,93	0,95	0,94
Σ M 1	1 00	1 00	1 00	1 00	1 00	1 00	1.00	1.00	1 00	1 00	1.00	1 00	1 00
M2Mg	0.64	0.65	0.68	0.65	0.34	0.24	0.30	0.24	0.65	0.63	0.63	0.70	0.70
M2Fe2	0.33	0.33	0.30	0.33	0.17	0.19	0.16	0.19	0.33	0.34	0.35	0.28	0.28
M2Mn	0,01	0,01	0.01	0.01	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0.01	0,01
M2Ca	0,01	0,02	0,02	0,01	0,44	0,50	0,50	0,50	0,01	0,02	0,01	0,01	0,01
M2Na	0,00	0,00	0,00	0,00	0,04	0,05	0,03	0,06	0,00	0,00	0,00	0,00	0,00
M2K	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00
∑M2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
∑Cátions	4,00	4,00	4,00	4,00	3,99	3,99	3,99	3,99	4,00	4,00	4,00	4,00	4,00
Componentes	Molecula	res			-	-	-	-					
CFTS1	1,16	1,27	2,56	0,62	0,31	0,42	0,11	1,60	0,91	0,41	0,35	0,20	0,20
CTTS1	0,10	0,17	0,11	0,08	0,83	1,14	0,75	1,42	0,16	0,14	0,12	0,14	0,10
CATS1	2,83	2,71	1,93	2,98	8,68	9,58	4,22	10,09	2,45	3,04	2,88	2,22	2,31
Q	1,90	1,90	1,90	1,91	1,73	1,67	1,74	1,63	1,92	1,92	1,92	1,93	1,93
J	0,00	0,00	0,00	0,00	0,07	0,10	0,07	0,12	0,00	0,00	0,00	0,00	0,00
wo	0,70	0,79	0,84	0,61	25,53	30,12	28,71	30,46	0,62	0,91	0,65	0,31	0,53
EN	80,48	80,64	81,00	81,16	64,62	58,13	62,06	57,06	81,10	80,71	80,84	84,78	84,60
FS	18,81	18,56	18,16	18,23	9,85	11,76	9,23	12,49	18,28	18,38	18,51	14,92	14,87
WEF	99,97	99,94	100,00	100,00	95,93	94,49	96,41	93,43	100,00	100,00	99,91	99,80	100,00
JD ^E	0,02	0,05	0,00	0,00	4,07	5,51	3,59	6,13	0,00	0,00	0,09	0,20	0,00
Nomenclatura	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,01	0,00	0,00
Inomenciatura	Enstatita	Enstatita	Enstatita	Enstatita	Augita	Augita	Augita	Augita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita

Quadro A3: Análise química dos piroxênios (continuação).

	D Leste									
Amostra Ma22- c1-122 Ma22- c1-125 Ma22- c2-126 Ma22- c2-130 Ma22- c2-131 Ma22- c2-132 Ma22- c3-135 Ma22- c3-136 Ma22- c3-137 Ma22- c3-138	la22- Ma22- 3-140 c3-141	22- 41								
Litotipo obC1										
SiO ₂ 30,36 55,93 43,81 56,12 56,28 56,18 57,01 55,39 55,98 53,52 55,71	55,77 55,2	55,27								
TiO2 0,00 0,10 1,58 0,11 0,08 0,09 0,00 0,09 0,04 0,07 0,07	0,09 0,	0,12								
Al ₂ O ₃ 19,65 2,75 14,17 2,62 2,48 2,57 0,32 2,32 2,34 2,24 2,55	2,23 2,2	2,29								
FeO 1,91 9,62 5,40 10,06 9,79 9,29 10,31 10,22 9,53 7,58 9,72	9,97 9,7	9,79								
Fe ₂ O ₃ 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,0	0,00								
Cr ₂ O ₃ 0,03 0,14 0,67 0,07 0,09 0,14 0,00 0,10 0,19 0,14 0,14	0,15 0,	0,15								
MnO 0,08 0,33 0,15 0,32 0,36 0,31 0,38 0,28 0,29 0,25 0,21	0,31 0,3	0,31								
NIO 0,31 0,06 0,07 0,09 0,09 0,06 0,04 0,08 0,07 0,09 0,08	0,06 0,0	0,07								
MgO 32,47 31,71 16,63 31,83 31,83 31,63 31,53 31,21 31,61 33,08 31,52	31,54 31,2	31,20								
CaO 0,02 0,30 12,70 0,36 0,34 0,58 0,07 0,25 0,31 0,27 0,39	0,31 0,3	0,30								
Na2O 0,02 0,00 1,87 0,04 0,00 0,01 0,00 0,02 0,02 0,01 0,00	0,02 0,0	0,00								
K2O 0,00 0,00 0,60 0,00 0,00 0,02 0,03 0,00 0,01 0,02	0,00 0,0	0,01								
Total 84,87 100,93 97,64 101,61 101,34 100,86 99,67 99,99 100,37 97,25 100,40	100,44 99,5	99,50								
Formula Estrutural calculada na base de 6 oxigênios										
TSi 1,17 1,94 1,60 1,94 1,95 1,95 2,01 1,94 1,95 1,94	1,95 1,9	1,95								
Tal 0,83 0,06 0,40 0,07 0,05 0,05 0,00 0,06 0,05 0,09 0,06	0,05 0,0	0,05								
TFe3 0,00 <th< th=""><th>0,00 0,0</th><th>0,00</th></th<>	0,00 0,0	0,00								
ΣT 2,00 2,00 2,00 2,00 2,00 2,00 2,01 2,00 2,00	2,00 2,0	2,00								
M1AI 0,06 0,05 0,21 0,04 0,05 0,06 0,01 0,04 0,05 0,00 0,05	0,04 0,0	0,04								
M1Ti 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,0	0,00 0,0	0,00								
M1Fe3 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,0	0,01 0,0	0,00								
M1Fe2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,0	0,00								
M1Cr 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,0	0,00 0,0	0,00								
M1Mg 0,93 0,94 0,73 0,93 0,95 0,94 0,99 0,94 0,94 0,90 0,94	0,95 0,9	0,95								
M1Ni 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,0	0,00								
ΣM1 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,	1,00 1,0	1,00								
M2Mg 0,93 0,70 0,18 0,70 0,70 0,70 0,67 0,69 0,70 0,85 0,70	0,70 0,6	0,69								
M2Fe2 0,06 0,28 0,17 0,27 0,28 0,27 0,30 0,29 0,28 0,13 0,28	0,28 0,2	0,29								
M2Mn 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,0	0,01 0,0	0,01								
M2Ca 0,00 0,01 0,50 0,01 0,01 0,02 0,00 0,01 0,01 0,01 0,0	0,01 0,0	0,01								
M2Na 0,00 0,00 0,13 0,00 0,00 0,00 0,00 0,00	0,00 0,0	0,00								
M2K 0,00 0,00 0,03 0,00 0,00 0,00 0,00 0,0	0,00 0,0	0,00								
∑M2 1,00 1,00 1,00 1,00 1,00 1,00 0,99 1,00 1,00	1,00 1,0	1,00								
Cations 4,00 4,00 3,97 4,00	4,00 4,0	4,00								
CTTS1 0,05 0,20 1,12 1,00 0,18 0,20 0,00 0,73 0,27 4,76 0,31	0,66 0,2	0,22								
CATS1 0,01 0,14 2,51 0,14 0,10 0,12 0,00 0,12 0,05 0,10 0,09	0,12 0,1	0,17								
	1,82 2,0	2,09								
	1,94 1,9	1,94								
WO 0.00 0.00 0.01 0.00 0		0,00								
EN 00.00 04.54 57.04 00.05 04.00 04.00 00.04 00.09 0,52 0,75	0,60 0,5	0,57								
FS 2.24 44.00 40.70 45.27 45.00 44.00 45.00 45.00 44.77 44.07 45.00	84,03 84,	54,13								
WEF 00.82 100.00 95.58 00.75 00.00 00.05 400.00 00.92 00.07 00.02 00.07 00.02 00.07 00.02 00.07 00.02 00.07 00.02 00.07 00.02 <th< th=""><th>15,37 15,3</th><th>0,30</th></th<>	15,37 15,3	0,30								
JD 0.17 0.00 14.43 0.48 0.04 0.04 0.00 0.44 0.42 0.00 0.00	<u>99,03</u> 014	0 02								
AE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.0	0,03								
Nomenclatura Enstatita	nstatita Enstati	0,00 tatita								

Quadro A3: Análise química dos piroxênios (continuação).

Corno		Lasta						NL	orto				
Corpo	M\/17-	MV/17-	M\/17-	NI P02-	NI P02-	NI P02-	NI P02-	NI P03-					
Amostra	c3-53	c3-60	c3-61	C1-01	C1-02	C1-03	C1-04	C1-01	C1-02	C1-A-02	C1-03	C2-01	C2-02
Litotipo		obC1			I	I	I	ot	oC1	F	I		
SiO ₂	56,29	45,71	44,76	54,94	54,94	54,68	51,12	55,26	54,82	39,22	55,15	54,33	55,57
TiO ₂	0,00	0,74	0,67	0,07	0,07	0,29	0,53	0,04	0,04	0,08	0,05	0,05	0,05
Al ₂ O ₃	2,90	12,44	12,27	2,81	2,64	3,70	8,26	2,42	2,52	4,02	2,14	2,43	2,13
FeO	1,74	5,50	6,41	8,47	8,44	3,18	3,68	9,16	9,08	11,96	8,99	9,23	8,92
Fe ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,12	0,37	0,43	0,13	0,12	0,24	0,36	0,14	0,16	0,00	0,12	0,17	0,11
MnO	0,00	0,04	0,07	0,14	0,13	0,06	0,06	0,00	0,01	0,05	0,01	0,00	0,00
NiO	0,17	0,10	0,12	0,02	0,00	0,03	0,01	0,00	0,00	0,00	0,01	0,00	0,00
MgO	32,67	17,70	17,16	32,43	32,44	22,13	19,88	32,94	33,23	30,88	33,01	32,34	33,09
CaO	0,06	12,85	12,86	0,31	0,20	12,60	12,42	0,23	0,29	2,37	0,35	0,21	0,15
Na ₂ O	0,04	1,60	1,61	0,00	0,00	0,01	0,01	0,00	0,00	0,05	0,00	0,00	0,00
K ₂ O	0,08	0,30	0,33	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00
Total	94,05	97,34	96,68	99,32	98,97	96,91	96,33	100,20	100,16	88,68	99,83	98,76	100,03
Formula Est	rutural calo	culada na	base de 6	oxigênios									
TSi	2,04	1,67	1,65	1,92	1,93	2,01	1,90	1,92	1,90	1,53	1,92	1,91	1,93
Tal	0,00	0,33	0,35	0,08	0,07	0,00	0,10	0,08	0,10	0,18	0,08	0,09	0,07
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,04	2,00	2,00	2,00	2,00	2,01	2,00	2,00	2,00	1,71	2,00	2,00	2,00
M1AI	0,12	0,20	0,18	0,04	0,04	0,16	0,26	0,02	0,00	0,00	0,01	0,02	0,02
M1Ti	0,00	0,02	0,02	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,00
M1Fe3	0,00	0,00	0,00	0,03	0,03	0,00	0,00	0,06	0,09	0,00	0,07	0,06	0,05
M1Fe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Cr	0,00	0,01	0,01	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00
M1Mg	0,87	0,76	0,78	0,92	0,93	0,82	0,71	0,92	0,90	1,00	0,92	0,92	0,93
M1Ni	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,90	0,20	0,16	0,77	0,77	0,39	0,39	0,79	0,82	0,79	0,79	0,78	0,78
M2Fe2	0,05	0,17	0,20	0,22	0,22	0,10	0,11	0,21	0,17	0,39	0,19	0,21	0,21
M2Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2Ca	0,00	0,50	0,51	0,01	0,01	0,50	0,50	0,01	0,01	0,10	0,01	0,01	0,01
M2Na	0,00	0,11	0,12	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2K	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M2	0,96	1,00	1,00	1,00	1,00	0,99	1,00	1,00	1,00	1,29	1,00	1,00	1,00
∑Cátions	4,00	3,99	3,99	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Componente	es Molecula	ares											
CFTS1	0,19	0,61	0,71	1,74	1,44	0,39	0,62	3,18	4,76	0,00	3,56	3,39	2,47
CTTS1	0,00	1,15	1,05	0,10	0,10	0,00	0,87	0,05	0,06	0,10	0,06	0,07	0,07
CATS1	0,00	4,35	2,97	1,94	1,92	0,00	5,00	0,83	0,14	0,00	0,36	0,75	0,87
Q	1,82	1,63	1,65	1,92	1,93	1,81	1,71	1,92	1,90	2,28	1,92	1,92	1,93
J	0,01	0,23	0,23	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
wo	0,13	30,74	30,78	0,59	0,39	27,45	28,88	0,44	0,54	4,33	0,66	0,40	0,29
EN	96,99	58,91	57,14	86,52	86,76	67,05	64,33	86,12	86,22	78,53	86,17	85,85	86,62
FS	2,89	10,35	12,09	12,89	12,85	5,50	6,79	13,45	13,24	17,14	13,17	13,75	13,09
WEF	99,73	87,81	87,76	100,00	100,00	99,95	99,91	100,00	99,99	99,70	100,00	99,98	100,00
JD	0,27	12,19	12,24	0,00	0,00	0,05	0,09	0,00	0,00	0,00	0,00	0,00	0,00
AE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,02	0,00
Nomen- clatura	Enstatita	Augita	Augita	Enstatita	Enstatita	Augita	Augita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita

Quadro A3: Análise química dos piroxênios (continuação).

Corpo	rpo Norte											
Amostra	NLP03- C2-03	NLP12- C1-01	NLP12-	NLP12- C1-03	NLP12- C2-01	NLP12-	NLP12- C2-03	NLP04-	NLP04-	NLP04-	NLP04-	NLP04-
Litotipo	02.00	0101	0102	obC1	02 01	02 02	02 00		0102	obC2	02 01	02 02
SiO ₂	55.41	55.14	54,91	54.92	55.54	55.48	55.22	54.30	54.08	54.16	54.19	54.16
TiO₂	0.05	0.04	0.03	0.04	0.02	0.03	0.04	0.10	0.10	0.11	0.11	0.10
Al ₂ O ₃	2.50	2.62	2.76	2.78	2.17	1.86	2.51	3.19	3.20	3.30	3.26	3.27
FeO	9,19	9.55	9.28	9.14	9,19	9.26	9.26	10.72	10.42	10.58	10.96	10.55
Fe ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr ₂ O ₃	0,16	0,15	0,12	0,11	0,10	0.07	0,07	0,05	0,06	0,06	0.07	0,08
MnO	0,00	0,01	0,01	0,02	0,01	0,01	0,00	0,00	0,01	0,02	0,00	0,02
NiO	0,05	0,01	0,02	0,02	0,02	0,00	0,02	0,00	0,01	0,00	0,00	0,01
MgO	33,45	32,74	32,49	32,35	32,88	32,96	32,91	31,64	31,69	31,67	31,42	31,46
CaO	0,11	0,17	0,34	0,33	0,15	0,28	0,10	0,11	0,15	0,24	0,20	0,31
Na₂O	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00
K₂O	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	100,92	100,42	99,95	99,69	100,08	99,96	100,13	100,12	99,71	100,14	100,20	99,96
Formula Es	trutural ca	alculada na	base de 6	oxigênios	6							
TSi	1,91	1,91	1,91	1,92	1,93	1,93	1,92	1,90	1,90	1,89	1,90	1,90
Tal	0,09	0,09	0,09	0,08	0,07	0,07	0,08	0,10	0,10	0,11	0,11	0,10
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1AI	0,01	0,02	0,03	0,03	0,02	0,01	0,02	0,03	0,03	0,03	0,03	0,03
M1Ti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Fe3	0,08	0,06	0,06	0,05	0,05	0,06	0,06	0,07	0,07	0,07	0,07	0,06
M1Fe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M1Mg	0,91	0,91	0,91	0,92	0,93	0,93	0,92	0,90	0,90	0,90	0,90	0,90
M1Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,81	0,78	0,77	0,77	0,77	0,78	0,79	0,75	0,76	0,75	0,74	0,74
M2Fe2	0,19	0,21	0,21	0,22	0,22	0,21	0,21	0,25	0,24	0,24	0,25	0,25
M2Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2Ca	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,01	0,01	0,01
M2Na	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2K	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
∑Cátions	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Component	es Molecu	llares	[[[[
CF151	4,11	3,36	3,05	2,41	2,44	3,08	3,03	3,39	3,54	3,72	3,48	3,35
01704	0,07	0,05	0,04	0,06	0,03	0,05	0,05	0,13	0,13	0,15	0,14	0,14
CATST	0,41	0,95	1,27	1,60	0,98	0,32	0,99	1,45	1,39	1,39	1,48	1,57
Q	1,91	1,91	1,91	1,92	1,93	1,93	1,92	1,90	1,90	1,89	1,90	1,90
J	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
WO	0,20	0,32	0,65	0,63	0,28	0,53	0,19	0,21	0,29	0,45	0,37	0,59
EN	86,46	85,66	85,62	85,76	86,20	85,92	86,20	83,85	84,17	83,83	83,32	83,64
ro WEE	13,34	14,02	13,73	13,61	13,53	13,55	13,61	15,94	15,55	15,73	16,31	15,77
	100,00	100,00	100,00	100,00	100,00	99,96	100,00	99,96	100,00	99,98	100,00	99,98
30	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,01
Nomen-	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,03	0,00	0,02	0,00	0,01
clatura	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita	Enstatita

Quadro A3: Análise química dos piroxênios (continuação).

Corpo	Norte													
Amostra	NLP04- C2-A- 02	NLP04- C2-03	NLP04- C2-03	NLP17- C1-01	NLP17- C1-02	NLP17- C1-03	NLP17- C1-04	NLP17- C2-01	NLP17- C2-02	NLP17- C2-03	NLP17- C2-04	NLP17- C1-A-02	NLP17- C1-A- 03	NLP17- C1-A- 04
Litotipo		obC2			r				pbaC1					
SiO ₂	56,85	54,86	55,17	51,24	51,41	51,36	51,34	51,35	51,31	50,97	51,35	29,90	27,56	29,06
TiO ₂	0,03	0,08	0,09	0,22	0,21	0,18	0,20	0,18	0,18	0,21	0,19	0,04	0,11	1,28
Al ₂ O ₃	0,23	2,50	2,50	1,51	1,38	1,33	1,44	1,34	1,41	1,35	1,30	19,63	17,13	15,58
FeO	11,32	10,46	11,10	9,96	10,15	9,45	10,04	10,27	10,19	9,90	10,17	18,49	23,25	22,81
Fe ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,00	0,05	0,00	0,30	0,18	0,32	0,20	0,15	0,15	0,23	0,16	0,00	0,00	0,00
MnO	0,13	0,02	0,13	0,60	0,57	0,55	0,58	0,55	0,57	0,55	0,58	0,20	0,34	0,27
NiO	0,00	0,01	0,00	0,03	0,00	0,00	0,05	0,03	0,01	0,00	0,01	0,00	0,00	0,00
MgO	31,17	31,87	30,04	12,35	12,40	12,32	12,45	12,28	12,22	12,27	12,32	12,09	16,13	15,90
CaO	0,02	0,11	0,06	22,55	22,54	22,73	22,54	22,61	22,45	22,28	22,74	5,52	0,09	1,68
Na ₂ O	0,02	0,00	0,01	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,00	0,01	0,03
K₂O	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,01	0,04
Total	99,77	99,96	99,11	98,76	98,87	98,26	98,86	98,77	98,51	97,76	98,85	85,87	84,63	86,65
Formula	Estrutur	al calcula	ada na ba	ase de 6 o	oxigênios	5	-	-	1	-	-	r		r
TSi	2,01	1,92	1,96	1,95	1,96	1,97	1,96	1,96	1,96	1,96	1,96	1,29	1,20	1,25
Tal	0,00	0,08	0,04	0,05	0,04	0,03	0,05	0,04	0,04	0,04	0,04	0,71	0,80	0,75
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	2,01	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
M1AI	0,01	0,02	0,07	0,02	0,02	0,03	0,02	0,02	0,03	0,03	0,02	0,29	0,08	0,03
M1Ti	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,04
M1Fe3	0,00	0,05	0,00	0,00	0,01	0,00	0,01	0,01	0,00	0,00	0,01	0,42	0,71	0,64
M1Fe2	0,00	0,00	0,00	0,26	0,26	0,26	0,25	0,26	0,27	0,26	0,26	0,00	0,00	0,00
M1Cr	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,00	0,00	0,00
M1Mg	0,99	0,92	0,93	0,70	0,70	0,70	0,71	0,70	0,70	0,71	0,70	0,29	0,21	0,29
M1Ni	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
M2Mg	0,65	0,74	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,48	0,84	0,73
M2Fe2	0,33	0,25	0,33	0,06	0,06	0,05	0,06	0,06	0,06	0,06	0,05	0,25	0,14	0,18
M2Mn	0,00	0,00	0,00	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01
M2Ca	0,00	0,00	0,00	0,92	0,92	0,93	0,92	0,92	0,92	0,92	0,93	0,26	0,00	0,08
M2Na	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
M2K	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑M2 ∑Cátion	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
s	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Compon	entes Mo	oleculare	s											
CFTS1	0,00	2,65	0,00	0,65	0,60	0,49	0,75	0,59	0,23	0,36	0,83	23,90	35,71	33,61
CTTS1	0,00	0,11	0,12	0,32	0,30	0,26	0,29	0,26	0,27	0,31	0,29	0,07	0,18	2,16
CATS1	0,00	1,15	1,79	1,05	0,92	1,33	0,96	0,96	1,29	1,21	0,77	16,61	4,06	1,47
Q	1,98	1,92	1,93	1,94	1,94	1,94	1,94	1,94	1,94	1,94	1,94	1,29	1,19	1,27
J	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01
wo	0,04	0,22	0,12	47,00	46,81	47,66	46,81	46,96	46,93	46,90	47,10	14,95	0,23	4,02
EN	82,88	84,25	82,55	35,82	35,82	35,96	35,98	35,48	35,52	35,93	35,51	45,54	54,81	52,90
FS	17,08	15,54	17,33	17,18	17,37	16,38	17,22	17,56	17,55	17,17	17,39	39,51	44,96	43,08
WEF	99,87	100,00	99,94	99,83	99,74	99,86	99,85	99,89	99,82	99,86	99,89	100,00	99,85	99,60
JD	0,13	0,00	0,06	0,15	0,20	0,14	0,11	0,08	0,18	0,15	0,07	0,00	0,02	0,02
AE Nomen-	0,00	0,00	0,00	0,02	0,06	0,00	0,05	0,03	0,00	0,00	0,05	0,00	0,14	0,38
clatura	Enstatita	Enstatita	Enstatita	Diopsídio	Pigeonita	Enstatita	Enstatita							

Quadro A3: Análise química dos piroxênios (continuação).

Corpo	Litotipo	Amostras	0	Si	Fe	AI	Ca	К	С	Na
		NLP-009-	46,95	25,65	0,39	15,4	7,57	0,31	-	3,73
Losto	móf	S1 (05_3)								
Lesie	mai	NLP-009-	47,97	27,55	0,29	13,52	4,44	0,53	-	5,7
		S2 (10_3)								
		NLP-006-	44,11	19,45	-	15,94	9,35	-	9,71	1,44
		S1 (16_3)								
	pbaC0	NLP-006-	47,08	22,73	-	17,92	10,61	-	-	1,67
		S1 (12_3)								
Norte		NLP-006-	48,14	22,45	-	17,79	9,83	-	-	1,8
None		S2 (18_3)								
		NLP-001-	45,05	22,32	-	18,74	12,74	-	-	1,15
	pbaC1	S2 (32_3)								
		NLP-001-	45,94	22,16	-	18,74	12,01	-	-	1,15
		S2 (31_3)								

Quadro A 4: Análise por microscopia eletrônica de varredura (MEV) dos cristais de Labradorita.

Corpo	Norte NLP17-C1- NLP17-C1- NLP17-C2- NLP17-C2-										
Amostra	NLP17-C1-	NLP17-C1-	NLP17-C1-	NLP17-C2-	NLP17-C2-	NLP17-	NLP17-C2-				
	02	03	04	01	02	C2-03	04				
Litotipo			r	pbaC							
SiO ₂	49,709	47,811	47,503	48,232	47,873	48,087	48,637				
TiO₂	0	0	0	0	0	0	0				
Al ₂ O ₃	28,061	32,557	32,883	31,845	32,396	32,375	31,706				
FeO	0,012	0,002	0,015	0	0,004	0,007	0,007				
MnO	0	0	0	0	0	0	0				
MgO	0	0	0	0	0	0	0				
CaO	14,42	15,907	16,246	14,727	15,909	15,543	15,295				
Na₂O	3,156	2,393	2,252	2,543	2,461	2,44	2,664				
K ₂ O	1,186	0,093	0,073	0,261	0,055	0,072	0,215				
Cr ₂ O ₃	0	0	0	0	0	0	0				
NiO	0	0	0	0	0	0	0				
Total	96,54	98,76	98,97	97,61	98,70	98,52	98,52				
Formula Estrutural	calculada	na base d	le 32 oxigé	ènios							
Si	9,451	8,864	8,797	9,016	8,881	8,921	9,025				
AI	6,288	7,114	7,178	7,017	7,084	7,080	6,935				
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
Fe2	0,002	0,000	0,002	0,000	0,001	0,001	0,001				
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
Са	2,938	3,160	3,224	2,950	3,162	3,090	3,041				
Na	1,163	0,860	0,809	0,922	0,885	0,878	0,959				
К	0,288	0,022	0,017	0,062	0,013	0,017	0,051				
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
Ni	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
∑Cátions	20,130	20,020	20,027	19,967	20,026	19,986	20,012				
Componentes Mole	eculares										
X	15,74	15,98	15,98	16,03	15,97	16,00	15,96				
Y	4,39	4,04	4,05	3,93	4,06	3,99	4,05				
Or	6,554	0,544	0,426	1,582	0,321	0,428	1,256				
Ab	26,510	21,282	19,969	23,432	21,801	22,029	23,664				
An	66,936	78,174	79,605	74,986	77,879	77,544	75,079				
Nomenclatura	Bitonita	Bitonita	Bitonita	Bitonita	Bitonita	Bitonita	Bitonita				

Quadro A 5: Análise química do plagioclásio.

Corpo			Leste		
Amostra	MV10-c1-2	MV10-c1-24	MV10-c1-25	MV10-c1-30	MV10-c3-43
Litotipo			máf		
SiO ₂	55,8434	57,2718	55,4704	55,4064	51,5891
TiO ₂	0,0132	0,0603	0,0509	0,0548	0,1043
Al ₂ O ₃	26,5428	26,019	26,739	26,7827	29,638
FeO	0,4564	0,4709	0,4815	0,3709	0,7599
MnO	0	0,0184	0	0	0
MgO	0,0543	0,0501	0,0542	0,0856	0,0954
CaO	9,1783	8,5925	9,7871	9,9098	13,1129
Na ₂ O	5,7484	6,1625	5,4636	5,4712	3,6136
K ₂ O	0,4851	0,5498	0,4638	0,4113	0,2663
Cr ₂ O ₃	0	0	0	0,0174	0,0175
NiO	0	0	0,0109	0,0191	0,0027
Total	98,32	99,20	98,52	98,53	99,20
Formula Estrut	ural calculad	a na base de 3	2 oxigênios		
Si	10,222	10,375	10,151	10,137	9,473
AI	5,727	5,555	5,768	5,776	6,415
Ti	0,002	0,008	0,007	0,008	0,014
Fe2	0,070	0,071	0,074	0,057	0,117
Mn	0,000	0,003	0,000	0,000	0,000
Mg	0,015	0,014	0,015	0,023	0,026
Са	1,800	1,668	1,919	1,943	2,580
Na	2,040	2,165	1,939	1,941	1,287
К	0,113	0,127	0,108	0,096	0,062
Cr	0,000	0,000	0,000	0,003	0,003
Ni	0,000	0,000	0,002	0,003	0,000
∑Cátions	19,989	19,985	19,982	19,985	19,978
Componentes	Moleculares				
X	16,02	16,01	16,00	15,98	16,02
Y	4,04	4,05	4,06	4,07	4,07
Or	2,865	3,208	2,730	2,412	1,587
Ab	51,604	54,669	48,882	48,772	32,747
An	45,531	42,123	48,388	48,816	65,666
Nomenclatura	Andesina	Andesina	Andesina	Andesina	Labradorita

Quadro A5: Análise química do plagioclásio (continuação).

Corpo	Litotipo	Amostra	Mineral	0	Si	Mg	Fe	AI	Ca	К	Ti	Cr	Mn	CI	С	Na
		NLP-009- S2 (08_3)		37,6	19,77	7,56	5,96	2,3	10,84	-	0,53	-	0,21	-	15,24	-
Lasta	móf	NLP-009- S2 (09_3)		44,87	24,65	9,58	6,44	0,95	12,77	-	0,52	-	0,21	-	-	-
Leste	mai	NLP-009- S1 (02_3)		45,58	24,36	9,8	5,23	1,61	12,74	-	0,67	-	-	-	-	-
		NLP-009- S2 (07_3)		50,45	23,2	9,75	4,12	1,6	10,36	-	0,53	-	-	-	-	-
		NLP-006- S2 (20_3)	da	44,04	21,64	8,32	9,07	5,39	7,64	0,96	1,19	0,26	-	0,17	-	1,31
	pbaC0	NLP-006- S2 (22_3)	plend	52,31	20,45	8,14	5,11	5,55	5,63	0,66	0,81	-	-	0,12	-	1,23
	NLP-006- S1 (15_3)	Horr	55,76	19,53	8,18	3,41	5,36	4,79	0,61	0,66	0,2	-	0,12	-	1,37	
	NLP-001- S2 (30_3)			41,77	25,62	8,74	6,73	0,54	16,27	-	-	-	0,34	-	-	-
Norto	phoC1	NLP-001- S1 (26_3)		44,64	23,76	9,34	7,99	4,16	8,16	0,59	0,76	0,47	-	0,13	-	-
None	pbaci	NLP-001- S2 (33_3)		50,47	22,05	9,44	5,29	4,43	6,44	0,49	0,58	0,42	0,22	0,15	-	-
		NLP-001- S2 (29_3)	-	52,28	22,03	9,85	4,35	4,25	5,85	0,5	0,57	0,31	-	-	-	-
pbaC0		NLP-006- S2 (19_3)	itofilita	53,43	23,36	13,13	9,24	0,35	0,29	-	-	-	0,2	-	-	-
	pbaC0	NLP-006- S1 (13_3)		54,97	15,66	9,58	4,27	0,29	0,17	-	-	-	-	-	15,06	-
	NLP-006- S6 (06_1)	An	59,19	21,55	13,17	5,25	0,46	0,23	-	-	-	0,15	-	-	-	

Quadro A 6: Análise por microscopia eletrônica de varredura (MEV) dos cristais de anfibólio.

Corpo				annoone		Leste					
	Ma 22-	Ma12-	Ma14-	Ma14-	Ma14-						
Amostra	c2-129	c2-30	c3-46	c3-47	c3-48	c3-49	c3-50	c3-51	c1-145	c1-147	c2-164
Litotipo						obC1			1		
SiO ₂	46,32	47,31	46,89	47,05	46,31	46,39	46,39	46,97	46,62	46,47	47,86
TiO ₂	0,84	0,63	0,60	0,64	0,68	0,62	0,57	0,68	1,02	0,87	0,77
Al ₂ O ₃	11,47	11,79	11,52	11,55	11,72	11,93	11,93	11,65	11,14	11,61	9,77
FeO	4,83	5,73	6,12	6,15	6,31	6,14	6,28	6,33	6,70	6,80	6,46
Cr ₂ O ₃	0,66	0,39	0,30	0,32	0,23	0,26	0,36	0,30	0,29	0,24	0,28
MnO	0,12	0,09	0,04	0,12	0,08	0,08	0,04	0,11	0,12	0,09	0,09
MgO	17,98	17,95	17,65	17,98	17,48	17,67	17,56	17,81	17,01	16,74	17,93
CaO	12,58	12,66	12,32	12,59	12,09	12,44	12,37	12,42	12,58	12,58	12,72
Na₂O	1,72	1,13	1,10	1,11	1,23	1,18	1,18	1,20	0,85	0,86	0,75
K₂O	0,63	0,30	0,32	0,31	0,35	0,29	0,34	0,29	0,32	0,26	0,21
NiO	0,14	0,08	0,05	0,08	0,08	0,10	0,06	0,07	0,09	0,07	0,18
Total	96,49	97,58	96,55	97,49	96,26	96,74	96,66	97,46	96,35	96,28	96,56
Formula Est	trutural c	alculada	na base d	le 23 oxig	ênios						
TSi	6,54	6,57	6,58	6,55	6,53	6,51	6,51	6,54	6,60	6,58	6,72
TAI	1,46	1,43	1,42	1,45	1,47	1,49	1,49	1,46	1,40	1,42	1,28
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TTi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00
CAI	0,45	0,49	0,48	0,44	0,48	0,48	0,48	0,45	0,45	0,52	0,34
CCr	0,07	0,04	0,03	0,04	0,03	0,03	0,04	0,03	0,03	0,03	0,03
CFe3	0,37	0,65	0,72	0,72	0,74	0,72	0,74	0,74	0,59	0,58	0,67
СТі	0,09	0,07	0,06	0,07	0,07	0,07	0,06	0,07	0,11	0,09	0,08
CMg	3,79	3,71	3,69	3,73	3,67	3,70	3,67	3,70	3,59	3,54	3,76
CFe2	0,20	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,20	0,22	0,09
CMn	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
CCa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CNi	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02
∑C	5,00	5,00	5,00	5,01	5,01	5,01	5,00	5,01	5,00	5,00	5,00
BMg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BFe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BMn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BCa	1,90	1,88	1,85	1,88	1,83	1,87	1,86	1,85	1,91	1,91	1,92
BNa	0,10	0,12	0,15	0,11	0,16	0,12	0,14	0,14	0,09	0,09	0,08
∑B	2,00	2,00	2,00	1,99	1,99	1,99	2,00	1,99	2,00	2,00	2,00
ACa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ANa	0,37	0,18	0,15	0,19	0,18	0,20	0,19	0,19	0,14	0,15	0,12
AK	0,11	0,05	0,06	0,05	0,06	0,05	0,06	0,05	0,06	0,05	0,04
ΣA	0,49	0,24	0,21	0,24	0,24	0,25	0,25	0,24	0,20	0,19	0,16
∑Cátions	17,49	17,24	17,21	17,24	17,24	17,25	17,25	17,24	17,20	17,19	17,16
Nomenclatura	Mg- Hornble	Mg- Horpblen	Mg- Hornblen	Mg- Hornblen	Mg- Hornblen	Mg- Hornblen	Mg- Hornblen	Mg- Hornblen	Mg- Horpblen	Mg- Hornblen	
	nda	da	Mg- Hornblenda								

Quadro A 7: Análise química dos anfibólios.

Corpo	Leste										
	Ma14-	Ma14-	MV17-	MV17-	MV17-	MV17-	MV17-	MV17-	MV17-c3-	MV17-	MV17-
Amostra	c3-168	c3-169	c2-45	c2-46	c3-47	c3-49	c3-50	c3-52	56	c3-57	c3-58
Litotipo						obC1					
SiO ₂	46,86	46,89	45,76	45,16	44,91	44,82	45,39	45,37	45,62	45,56	44,01
TiO ₂	0,88	0,92	0,70	0,76	0,86	0,72	0,84	0,72	0,58	0,71	0,65
Al ₂ O ₃	11,45	11,16	12,89	12,54	12,55	12,69	12,31	12,67	12,56	12,45	11,93
FeO	6,70	6,94	5,94	6,09	6,03	6,37	6,59	6,46	6,32	6,31	7,99
Cr ₂ O ₃	0,22	0,36	0,34	0,35	0,36	0,41	0,36	0,44	0,44	0,35	0,44
MnO	0,13	0,11	0,05	0,03	0,06	0,13	0,03	0,05	0,00	0,05	0,03
MgO	17,08	16,74	17,35	16,86	17,17	17,11	16,63	16,97	16,95	17,60	16,92
CaO	12,31	12,32	12,78	13,26	12,98	12,62	12,33	12,68	12,58	12,91	12,30
Na₂O	0,91	0,78	1,68	1,60	1,66	1,67	1,56	1,65	1,69	1,66	1,54
K ₂ O	0,25	0,29	0,27	0,24	0,29	0,30	0,34	0,32	0,35	0,30	0,30
NiO	0,10	0,16	0,12	0,11	0,08	0,08	0,14	0,08	0,09	0,09	0,13
Total	96,57	96,15	97,41	96,52	96,50	96,43	96,01	96,88	96,64	97,55	95,65
Formula Est	trutural c	alculada	na base d	e 23 oxig	ênios			•			
TSi	6,59	6,62	6,42	6,44	6,39	6,36	6,47	6,41	6,46	6,39	6,29
TAI	1,41	1,38	1,58	1,56	1,61	1,64	1,53	1,59	1,54	1,61	1,71
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TTi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00
CAI	0,49	0,48	0,55	0,55	0,49	0,48	0,53	0,52	0,55	0,45	0,30
CCr	0,02	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,05	0,04	0,05
CFe3	0,71	0,66	0,51	0,27	0,43	0,61	0,52	0,52	0,47	0,59	0,96
СТі	0,09	0,10	0,07	0,08	0,09	0,08	0,09	0,08	0,06	0,08	0,07
CMg	3,58	3,53	3,63	3,58	3,64	3,62	3,53	3,58	3,58	3,68	3,61
CFe2	0,08	0,16	0,19	0,46	0,29	0,14	0,26	0,25	0,28	0,15	0,00
CMn	0,02	0,01	0,01	0,00	0,01	0,02	0,00	0,01	0,00	0,01	0,00
CCa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CNi	0,01	0,02	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,02
∑c	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
BMg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BFe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BMn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BCa	1,85	1,87	1,92	2,03	1,98	1,92	1,88	1,92	1,91	1,94	1,88
BNa	0,15	0,13	0,08	0,44	0,02	0,08	0,12	0,08	0,09	0,06	0,11
∑B	2,00	2,00	2,00	2,47	2,00	2,00	2,00	2,00	2,00	2,00	2,00
ACa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ANa	0,10	0,08	0,37	0,44	0,43	0,38	0,31	0,37	0,37	0,39	0,31
AK	0,05	0,05	0,05	0,04	0,05	0,05	0,06	0,06	0,06	0,05	0,05
∑A	0,15	0,13	0,42	0,48	0,49	0,43	0,37	0,43	0,44	0,44	0,37
∑Cátions	17,15	17,13	17,42	17,95	17,49	17,43	17,37	17,43	17,44	17,44	17,37
Nomenclatura	Mg- Horphle	Mg- Horpblen	Tsc- Horphlen	Tsc- Horphlen	Tsc- Horphlen	Tsc- Homblen	Tsc- Homblen	Tsc- Horphlen	Ter-	Tsc- Homblen	
a	nda	da	da	da	da	da	da	da	Hornblenda	da	Fe-Tsc- Hornblenda

Quadro A7: Análise química dos anfibólios (continuação).

Corpo	Norte											
	NLP02	NLP02-	NLP02-	NLP02-	NLP03-	NLP03-	NLP03-	NLP03-	NLP03-	NLP12-		
Amostra	-C1-01	C1-02	C1-03	C1-04	C1-01	C1-03	C2-01	C2-02	C2-03	C1-01		
Litotipo	obC1											
SiO ₂	52,64	51,72	51,80	52,41	52,42	52,13	48,24	52,34	52,62	51,30		
TiO ₂	0,62	0,53	0,56	0,58	0,35	0,33	0,33	0,29	0,33	0,36		
Al ₂ O ₃	6,73	7,27	7,17	7,10	6,92	6,52	6,32	6,48	6,85	7,98		
FeO	3,12	3,98	4,09	3,12	2,78	2,99	5,51	2,75	2,90	2,91		
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
MnO	0,07	0,07	0,08	0,10	0,03	0,07	0,04	0,05	0,02	0,02		
MgO	19,53	18,99	19,81	19,33	19,13	19,30	18,22	19,14	19,18	18,75		
CaO	12,96	12,73	12,47	12,70	12,82	12,87	11,44	12,68	12,91	12,60		
Na₂O	0,17	0,18	0,18	0,10	0,18	0,22	0,30	0,25	0,16	0,45		
K ₂ O	0,09	0,09	0,08	0,08	0,10	0,11	0,18	0,11	0,10	0,15		
NiO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Total	95,94	95,55	96,23	95,50	94,73	94,54	90,59	94,10	95,06	94,52		
Formula Est	Formula Estrutural calculada na base de 23 oxigênios											
TSi	7,37	7,28	7,20	7,35	7,42	7,41	7,16	7,46	7,43	7,30		
TAI	0,63	0,72	0,80	0,65	0,58	0,59	0,84	0,54	0,57	0,70		
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
TTi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00		
CAI	0,48	0,48	0,38	0,52	0,58	0,51	0,27	0,55	0,57	0,64		
CCr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
CFe3	0,06	0,23	0,48	0,15	0,00	0,01	0,68	0,00	0,00	0,00		
СТі	0,07	0,06	0,06	0,06	0,04	0,04	0,04	0,03	0,04	0,04		
CMg	4,08	3,98	4,11	4,04	4,04	4,09	4,03	4,07	4,04	3,98		
CFe2	0,30	0,24	0,00	0,22	0,33	0,35	0,00	0,33	0,34	0,35		
CMn	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,00		
CCa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
CNi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
∑c	5,00	5,00	5,03	5,00	4,99	5,00	5,03	4,98	4,98	5,00		
BMg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
BFe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
BMn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
BCa	1,95	1,92	1,86	1,91	1,94	1,96	1,82	1,94	1,95	1,92		
BNa	0,05	0,05	0,05	0,03	0,05	0,04	0,09	0,06	0,04	0,08		
∑B	1,99	1,97	1,91	1,94	1,99	2,00	1,91	2,00	2,00	2,00		
ACa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
ANa	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,05		
AK	0,02	0,02	0,01	0,01	0,02	0,02	0,03	0,02	0,02	0,03		
∑A	0,02	0,02	0,01	0,01	0,02	0,04	0,03	0,03	0,02	0,07		
∑Cátions	17,01	16,98	16,95	16,95	17,00	17,04	16,97	17,01	17,00	17,07		
	Tr-	Tr-	Mg-	Tr-	Tr-	Tr-	Mg-	Tr-	Tr-	Tr-		
Nomenclatura	Hornble	Hornblen	Hornblen	Hornblen	Hornble	Hornblend	Hornblen	Hornble	Hornblen	Hornblend		
	nda	da	da	da	nda	а	aa	nda	da	а		

Quadro A7: Análise química dos anfibólios (continuação).

Corpo	Norte											
	NLP12-	NLP12-	NLP12-	NLP12-	NLP12-	NLP04-	NLP04-	NLP04	NLP04	NLP17	NLP17	NLP17
Amostra	C1 -02	C1-03	C2-01	C2-02	C2-03	C1-01	C1-02	-C1-03	-C2-01	-C2-01	-C1-01	-C2-02
SiO2					47.07	obC:	2	10.05	pbaC1			
5102	51,10	51,04	48,67	51,83	51,30	47,65	49,24	48,32	48,35	43,35	35,50	37,63
1102	0,32	0,40	0,30	0,32	0,30	1,07	0,84	1,01	1,01	1,96	0,16	0,30
AI2O3	8,37	8,54	7,90	7,74	8,17	10,80	9,39	10,15	10,04	9,97	22,49	23,76
FeO	3,24	3,12	6,54	4,72	3,06	6,03	5,98	6,20	6,04	15,35	7,57	2,09
Cr2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,04	0,06	0,29	0,02	0,05	0,06	0,05	0,03	0,03	0,30	0,13	0,07
MgO	18,77	18,78	18,61	19,05	18,81	17,37	17,87	17,44	17,45	10,16	7,73	2,83
CaO	12,53	12,71	12,07	12,36	12,51	12,43	12,44	12,60	12,54	11,96	17,07	23,58
Na2O	0,46	0,45	0,42	0,45	0,43	0,63	0,54	0,62	0,54	1,10	0,02	0,03
K2O	0,14	0,14	0,12	0,13	0,14	0,31	0,22	0,30	0,29	1,27	0,02	0,00
NiO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Total	94,96	95,22	94,92	96,61	94,76	96,34	96,57	96,65	96,27	95,44	90,69	90,29
Formula Estru	utural calcu	ılada na ba	se de 23 d	oxigênios	I		I					
TSi	7,23	7,21	6,94	7,20	7,27	6,72	6,91	6,81	6,83	6,64	5,54	5,81
TAI	0,77	0,79	1,06	0,80	0,73	1,28	1,09	1,19	1,17	1,36	2,46	2,19
TFe3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TTi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00
CAI	0,62	0,63	0,26	0,47	0,63	0,52	0,46	0,50	0,50	0,44	1,68	2,13
CCr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CFe3	0,13	0,08	0,78	0,44	0,10	0,55	0,52	0,45	0,46	0,00	0,00	0,00
СТі	0,03	0,04	0,03	0,03	0,03	0,11	0,09	0,11	0,11	0,23	0,02	0,03
CMg	3,96	3,95	3,95	3,95	3,97	3,65	3,74	3,66	3,68	2,32	1,80	0,65
CFe2	0,25	0,28	0,00	0,11	0,26	0,16	0,18	0,28	0,25	1,97	0,99	0,27
CMn	0,00	0,01	0,04	0,00	0,01	0,01	0,01	0,00	0,00	0,04	0,02	0,01
CCa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CNi	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
∑C	5,00	5,00	5,07	5,00	5,00	5,00	5,00	5,00	5,00	4,99	4,51	3,09
BMg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BFe2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BMn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BCa	1,90	1,92	1,84	1,84	1,90	1,88	1,87	1,90	1,90	1,96	2,86	3,90
BNa	0,10	0,08	0,09	0,12	0,10	0,12	0,13	0,10	0,10	0,04	0,01	0,01
∑B	2,00	2,00	1,93	1,96	2,00	2,00	2,00	2,00	2,00	2,00	2,86	3,91
ACa	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ANa	0,03	0,05	0,02	0,00	0,02	0,05	0,02	0,07	0,05	0,29	0,01	0,01
AK	0,03	0,02	0,02	0,02	0,03	0,06	0,04	0,05	0,05	0,25	0,00	0,00
ΣA	0,05	0,07	0,05	0,02	0,04	0,11	0,06	0,13	0,10	0,54	0,01	0,01
∑Cátions	17,05	17,07	17,05	16,98	17,04	17,11	17,06	17,13	17,10	17,53	17,38	17,01
			Fe-Ma-	Ma-	Tr-		Ma-	Ma-	Ma-	Hornble nda	Al- SubSi-	
Nomenclatura	Mg-	Mg-	Hornblen	Hornblen	Hornblen	Mg-	Hornblen	Hornble	Hornble	Endeníti	Tscher	AI- Tscherm
	Hornblenda	Hornblenda	da	da	da	Hornblenda	da	nda	nda	ca	maquita	aquita

Quadro A7: Análise química dos anfibólios (continuação).

Corpo			Norte								
	MV41-c2-	MV41-c2-	MV41-c2-	MV41-c2-	MV41-c2-	NLP02-	NLP02-				
Amostra	62	63	64	65	66	C1-01	C1-02				
Litotipo			obC2		obC1						
SiO ₂	30,56	30,68	30,05	31,26	30,48	28,94	28,54				
TiO ₂	0,11	0,16	0,13	0,10	0,13	0,09	0,10				
Al ₂ O ₃	20,08	20,54	19,80	19,76	19,79	18,32	18,98				
FeO	3,35	3,31	3,20	3,38	3,31	1,94	1,97				
MnO	0,02	0,01	0,03	0,00	0,00	0,01	0,02				
MgO	31,55	31,94	30,96	30,65	31,51	31,82	31,70				
CaO	0,00	0,00	0,00	0,01	0,02	0,02	0,00				
Na ₂ O	0,00	0,00	0,01	0,00	0,00	0,00	0,00				
K ₂ O	0,00	0,00	0,03	0,00	0,01	0,00	0,01				
Cr ₂ O ₃	0,44	0,53	0,55	0,58	0,34	0,16	0,20				
NiO	0,25	0,26	0,27	0,28	0,23	0,09	0,05				
Total	86,37	87,43	85,05	86,02	85,81	81,36	81,57				
Formula Estrutural calculada na base de 28 oxigênios											
Si	5,80	5,75	5,79	5,93	5,82	5,80	5,70				
AI	2,20	2,25	2,21	2,07	2,18	2,20	2,30				
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00				
AI	2,29	2,29	2,29	2,36	2,27	2,12	2,18				
Ti	0,02	0,02	0,02	0,01	0,02	0,01	0,01				
Cr	0,07	0,08	0,08	0,09	0,05	0,03	0,03				
Fe ³	0,10	0,09	0,11	0,23	0,10	0,00	0,00				
Fe ²	0,43	0,42	0,41	0,31	0,43	0,34	0,35				
Mn	0,00	0,00	0,01	0,00	0,00	0,00	0,00				
Mg	8,92	8,92	8,89	8,66	8,96	9,50	9,44				
Ni	0,04	0,04	0,04	0,04	0,03	0,01	0,01				
Са	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
Na	0,00	0,00	0,01	0,00	0,00	0,00	0,00				
K	0,00	0,00	0,01	0,00	0,01	0,00	0,00				
ОН	16,00	16,00	16,00	16,00	16,00	16,00	16,00				
∑Cátions	35,87	35,88	35,87	35,71	35,88	36,02	36,04				
Mg_FeMg	0,94	0,95	0,95	0,94	0,94	0,97	0,96				
Fe_FeMg	0,06	0,05	0,05	0,06	0,06	0,03	0,04				
Nomenclatura	Clinocloro										

Quadro A 8: Análise química das cloritas.
Corpo			(Norte			
	NLP02-	NLP12-	NLP12-	NLP12-	NLP04-	NLP04-	NLP04-
Amostra	C2-01	C2-01	C2-02	C2-03	C2-01	C2-02	C2-03
Litotipo		ob	C1			obC2	
SiO ₂	28,65	29,03	29,46	29,24	28,73	28,69	28,80
TiO ₂	0,10	0,00	0,00	0,00	0,00	0,01	0,00
Al ₂ O ₃	19,42	19,14	19,39	18,77	19,59	19,28	19,49
FeO	1,95	2,58	2,57	2,47	2,90	4,74	4,43
MnO	0,02	0,01	0,02	0,02	0,00	0,02	0,02
MgO	30,84	31,07	30,93	31,72	29,92	31,12	30,84
CaO	0,02	0,01	0,01	0,00	0,00	0,00	0,01
Na₂O	0,00	0,00	0,04	0,02	0,00	0,01	0,00
K₂O	0,00	0,00	0,00	0,01	0,00	0,01	0,01
Cr ₂ O ₃	0,16	0,43	0,37	0,38	0,16	0,29	0,22
NiO	0,00	0,04	0,04	0,03	0,01	0,05	0,06
Total	81,15	82,31	82,83	82,65	81,33	84,21	83,87
Formula Estrut	ural calcul	ada na bas	e de 28 oxi	gênios			
Si	5,74	5,76	5,80	5,78	5,76	5,63	5,67
AI	2,26	2,24	2,20	2,22	2,24	2,37	2,33
∑T	8,00	8,00	8,00	8,00	8,00	8,00	8,00
AI ^{VI}	2,33	2,25	2,31	2,16	2,40	2,10	2,19
Ti	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Cr	0,03	0,07	0,06	0,06	0,03	0,05	0,03
Fe ³	0,07	0,04	0,08	0,00	0,11	0,00	0,00
Fe ²	0,26	0,38	0,34	0,41	0,38	0,87	0,77
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mg	9,21	9,19	9,08	9,35	8,95	9,10	9,05
Ni	0,00	0,01	0,01	0,00	0,00	0,01	0,01
Са	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,00	0,00	0,03	0,02	0,00	0,01	0,00
К	0,00	0,00	0,00	0,00	0,00	0,00	0,01
ОН	16,00	16,00	16,00	16,00	16,00	16,00	16,00
∑Cátions	35,91	35,95	35,90	36,01	35,87	36,14	36,07
Mg_FeMg	0,97	0,96	0,96	0,96	0,95	0,91	0,92
Fe_FeMg	0,03	0,04	0,04	0,04	0,05	0,09	0,08
Nomenclatura	Clinocloro	Clinocloro	Clinocloro	Clinocloro	Clinocloro	Clinocloro	Clinocloro

Quadro A8: Análise química das cloritas (continuação).

Corpo	Leste										
	Ma12-	Ma 12-	Ma 12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma 12-	Ma 12-	Ma 12-	Ma 12-
Amostra	c1-12	c1-25	c2-28	c2-33	c3-34	c3-35	c3-36	c3-37	c3-38	c3-39	c3-40
Litotipo						obC1					
TiO2	0,030	0,082	0,082	0,089	0,021	0,005	0,000	0,050	0,000	0,030	0,000
AI2O3	58,014	0,321	0,344	58,744	57,961	0,261	55,753	57,731	60,870	57,648	57,035
Cr2O3	5,809	3,691	4,178	5,640	5,512	3,581	5,414	5,885	5,957	5,789	5,691
Fe2O3	3,113	64,264	63,765	3,953	4,544	64,387	8,472	5,338	2,812	4,553	7,916
FeO	13,059	30,119	30,115	12,387	12,625	29,922	12,787	12,613	12,289	12,828	12,701
MnO	0,185	0,081	0,176	0,106	0,168	0,104	0,175	0,205	0,163	0,141	0,169
NiO	0,260	0,429	0,429	0,323	0,327	0,599	0,317	0,331	0,353	0,388	0,326
MgO	17,718	0,235	0,195	18,620	18,188	0,141	18,169	18,408	19,174	18,016	18,656
ZnO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Total	98,189	99,222	99,284	99,861	99,345	98,998	101,087	100,560	101,617	99,393	102,494
Formula Estrut	ural calcu	ilada na ba	ase de 4 c	xigênios							
XFe2 (A)	0,289	0,971	0,970	0,268	0,277	0,970	0,280	0,274	0,262	0,282	0,273
XMg (A)	0,701	0,014	0,011	0,723	0,712	0,008	0,709	0,715	0,728	0,707	0,716
XMn (A)	0,004	0,003	0,006	0,002	0,004	0,003	0,004	0,005	0,004	0,003	0,004
XZn (A)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
XNi (A)	0,006	0,013	0,013	0,007	0,007	0,019	0,007	0,007	0,007	0,008	0,007
XAI (B)	0,907	0,007	0,008	0,901	0,897	0,006	0,860	0,886	0,913	0,894	0,865
XFe3 (B)	0,031	0,934	0,926	0,039	0,045	0,939	0,083	0,052	0,027	0,045	0,077
XCr (B)	0,061	0,056	0,064	0,058	0,057	0,055	0,056	0,061	0,060	0,060	0,058
XFe2 (B)	0,000	0,001	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
XTi (B)	0,000	0,001	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg/(Mg+Fe2)	0,707	0,014	0,011	0,728	0,720	0,008	0,717	0,722	0,736	0,715	0,724
Fe2/(Fe2+Fe3)	0,823	0,342	0,344	0,777	0,755	0,341	0,627	0,724	0,829	0,758	0,641
Al/(Al+Fe3+Cr)	0,908	0,007	0,008	0,903	0,898	0,006	0,860	0,887	0,913	0,895	0,865
Cr/(Cr+Al)	0,063	0,885	0,891	0,061	0,060	0,902	0,061	0,064	0,062	0,063	0,063
Membros Finais	5										
Espinélio	0,701	0,014	0,011	0,723	0,712	0,008	0,709	0,715	0,728	0,707	0,716
Hercinita	0,197	-0,022	-0,023	0,169	0,174	-0,024	0,141	0,160	0,175	0,176	0,139
Galaxita	0,004	0,003	0,006	0,002	0,004	0,003	0,004	0,005	0,004	0,003	0,004
Ganita	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Trevorita	0,006	0,013	0,013	0,007	0,007	0,019	0,007	0,007	0,007	0,008	0,007
Magnetita	0,031	0,934	0,926	0,039	0,045	0,939	0,083	0,052	0,027	0,045	0,077
Cromita	0,061	0,056	0,064	0,058	0,057	0,055	0,056	0,061	0,060	0,060	0,058
Ulvoespinélio	0,001	0,002	0,002	0,002	0,000	0,000	0,000	0,001	0,000	0,001	0,000
	Spl	Mt	Mt	Spl	Spl	Mt	Spl	Spl	Spl	Spl	Spl

Quadro A 9: Análise química dos espinélios.

Corpo	Leste											
Amostra	Ma 12-	Ma 12-	Ma 12-	Ma12-	Ma12-	Ma12-	Ma12-	Ma 14-	Ma 14-	Ma 14-	Ma 22-	Ma 22-
Amostra	c3-41	c3-42	c3-43	c3-44	c3-45	c3-53	c4-4	c2-155	c3-165	c3-167	c1-119	c1-121
Litotipo						ob(C1					
TiO2	0,070	0,002	0,000	0,064	0,000	0,180	0,023	0,043	0,000	0,005	0,033	0,046
AI2O3	16,702	59,813	57,358	0,204	58,048	0,348	58,543	0,282	0,253	54,827	56,223	55,870
Cr2O3	3,332	5,981	6,072	4,374	5,052	4,184	5,366	0,053	0,472	5,908	8,045	8,614
Fe2O3	16,453	2,748	3,593	64,073	4,997	64,226	3,244	68,878	68,276	5,179	2,670	2,346
FeO	22,453	12,052	12,290	30,490	12,923	30,590	12,575	30,728	30,644	18,108	15,460	15,783
MnO	0,252	0,172	0,136	0,109	0,160	0,129	0,185	0,053	0,006	0,198	0,138	0,214
NiO	0,214	0,292	0,279	0,405	0,403	0,410	0,322	0,176	0,363	0,662	0,530	0,402
MgO	9,550	18,909	18,068	0,092	17,989	0,184	18,073	0,191	0,068	13,923	16,029	15,815
ZnO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Total	77,092	99,969	97,795	99,811	99,571	100,252	98,331	100,40	100,08	98,81	99,13	99,09
Formula Estrut	ural calcu	lada na b	ase de 4	oxigênio	s							
XFe2 (A)	0,737	0,261	0,274	0,979	0,284	0,973	0,277	0,982	0,985	0,414	0,346	0,353
XMg (A)	0,560	0,729	0,717	0,005	0,704	0,011	0,712	0,011	0,004	0,567	0,640	0,633
XMn (A)	0,008	0,004	0,003	0,004	0,004	0,004	0,004	0,002	0,000	0,005	0,003	0,005
XZn (A)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
XNi (A)	0,007	0,006	0,006	0,013	0,009	0,013	0,007	0,005	0,011	0,015	0,011	0,009
XAI (B)	0,387	0,912	0,900	0,005	0,898	0,008	0,911	0,006	0,006	0,883	0,887	0,884
XFe3 (B)	0,244	0,027	0,036	0,927	0,049	0,924	0,032	0,992	0,987	0,053	0,027	0,024
XCr (B)	0,052	0,061	0,064	0,066	0,052	0,063	0,056	0,001	0,007	0,064	0,085	0,091
XFe2 (B)	0,001	0,000	0,000	0,001	0,000	0,003	0,000	0,001	0,000	0,000	0,000	0,000
XTi (B)	0,001	0,000	0,000	0,001	0,000	0,003	0,000	0,001	0,000	0,000	0,000	0,000
Mg/(Mg+Fe2)	0,431	0,737	0,724	0,005	0,713	0,011	0,719	0,011	0,004	0,578	0,649	0,641
Fe2/(Fe2+Fe3)	0,603	0,830	0,792	0,346	0,742	0,346	0,812	0,331	0,333	0,795	0,865	0,882
Al/(Al+Fe3+Cr)	0,567	0,912	0,900	0,005	0,898	0,008	0,912	0,006	0,006	0,883	0,888	0,885
Cr/(Cr+Al)	0,118	0,063	0,066	0,935	0,055	0,890	0,058	0,143	0,538	0,067	0,088	0,094
Membros Finais	5											
Espinélio	0,560	0,729	0,717	0,005	0,704	0,011	0,712	0,011	0,004	0,567	0,640	0,633
Hercinita	0,439	0,173	0,174	-0,017	0,182	-0,019	0,189	-0,012	-0,010	0,297	0,233	0,237
Galaxita	0,008	0,004	0,003	0,004	0,004	0,004	0,004	0,002	0,000	0,005	0,003	0,005
Ganita	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Trevorita	0,007	0,006	0,006	0,013	0,009	0,013	0,007	0,005	0,011	0,015	0,011	0,009
Magnetita	0,244	0,027	0,036	0,927	0,049	0,924	0,032	0,992	0,987	0,053	0,027	0,024
Cromita	0,052	0,061	0,064	0,066	0,052	0,063	0,056	0,001	0,007	0,064	0,085	0,091
Ulvoespinélio	0,002	0,000	0,000	0,002	0,000	0,005	0,000	0,001	0,000	0,000	0,001	0,001
	Spl/Her	Spl	Spl	Mt	Spl	Mt	Spl	Mt	Mt	Spl	Spl	Spl

Quadro A 9: Análise química dos espinélios (continuação).

Corpo	Leste								
	Ma 22-	Ma14-	MV10-	MV17-	MV17-	MV17-	MV17-	MV41-	MV41-
Amostra	c3-133	c1-143	c2-33	c3-48	c3-54	c3-55	c3-59	c2-67	c2-68
Litotipo	ob	C1	Máf		obO	C1		ob	C2
TiO2	0,047	0,032	16,819	0,000	0,072	0,000	0,021	0,332	0,209
AI2O3	53,773	58,135	0,221	0,199	0,307	0,507	0,384	6,251	1,060
Cr2O3	10,073	4,943	0,276	5,129	5,132	5,708	6,023	18,165	9,711
Fe2O3	2,022	3,051	34,098	62,539	62,021	61,400	61,300	39,064	55,418
FeO	17,935	17,167	44,805	29,879	29,761	29,669	29,778	26,324	28,274
MnO	0,192	0,187	1,003	0,269	0,375	0,494	0,490	2,495	1,283
NiO	0,428	0,653	0,000	0,442	0,437	0,404	0,395	0,672	0,760
MgO	14,084	15,004	0,035	0,071	0,064	0,069	0,045	0,935	0,191
ZnO	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Total	98,554	99,171	97,255	98,529	98,170	98,251	98,436	94,238	96,905
Formula Estru	itural ca	lculada	na bas	e de 4 o	xigênio	S			
XFe2 (A)	0,410	0,383	0,965	0,973	0,970	0,967	0,969	0,843	0,922
XMg (A)	0,576	0,598	0,002	0,004	0,004	0,004	0,003	0,054	0,011
XMn (A)	0,004	0,004	0,033	0,009	0,012	0,016	0,016	0,082	0,043
XZn (A)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
XNi (A)	0,009	0,014	0,000	0,014	0,014	0,013	0,012	0,021	0,024
XAI (B)	0,869	0,916	0,005	0,005	0,007	0,012	0,009	0,143	0,025
XFe3 (B)	0,021	0,031	0,499	0,916	0,912	0,900	0,898	0,569	0,819
XCr (B)	0,109	0,052	0,004	0,079	0,079	0,088	0,093	0,278	0,151
XFe2 (B)	0,000	0,000	0,246	0,000	0,001	0,000	0,000	0,005	0,003
XTi (B)	0,000	0,000	0,246	0,000	0,001	0,000	0,000	0,005	0,003
Mg/(Mg+Fe2)	0,583	0,609	0,001	0,004	0,004	0,004	0,003	0,060	0,012
Fe2/(Fe2+Fe3)	0,908	0,862	0,594	0,347	0,348	0,349	0,351	0,428	0,362
Al/(Al+Fe3+Cr)	0,870	0,917	0,010	0,005	0,007	0,012	0,009	0,144	0,025
Cr/(Cr+Al)	0,112	0,054	0,456	0,945	0,918	0,883	0,913	0,661	0,860
Membros Finais	8								-
Espinélio	0,576	0,598	0,002	0,004	0,004	0,004	0,003	0,054	0,011
Hercinita	0,279	0,300	-0,030	-0,022	-0,023	-0,021	-0,022	-0,014	-0,053
Galaxita	0,004	0,004	0,033	0,009	0,012	0,016	0,016	0,082	0,043
Ganita	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Trevorita	0,009	0,014	0,000	0,014	0,014	0,013	0,012	0,021	0,024
Magnetita	0,021	0,031	0,499	0,916	0,912	0,900	0,898	0,569	0,819
Cromita	0,109	0,052	0,004	0,079	0,079	0,088	0,093	0,278	0,151
Ulvoespinélio	0,001	0,001	0,492	0,000	0,002	0,000	0,001	0,010	0,006
	Spl	Spl	martita	Mt	Mt	Mt	Mt	Mt	Mt

Quadro A 9: Análise química dos espinélios (continuação).

CORPO				Le	ste			
Amostra	Ma15- c1-10	Ma15- c1-9	Ma15- c4-23	Ma15- c4-24	MV10- c1-9	MV10- c2-34	MV10- c2-35	MV10- c2-36
Litotipo				Μ	áf			
SiO ₂	0,002	0,027	0,032	0,016	0,000	0,000	0,045	0,045
TiO ₂	49,802	49,258	49,366	49,831	49,309	48,986	49,425	48,849
AI_2O_3	0,018	0,041	0,032	0,002	0,018	0,015	0,042	0,000
Cr_2O_3	0,000	0,017	0,007	0,056	0,070	0,064	0,020	0,000
FeO	47,032	47,674	46,473	46,536	46,449	47,216	46,943	46,910
MnO	2,512	2,362	2,577	2,475	2,560	2,314	2,212	2,291
MgO	0,072	0,047	0,039	0,006	0,014	0,025	0,066	0,027
CaO	0,066	0,033	0,033	0,000	0,105	0,000	0,000	0,019
Na ₂ O	0,016	0,022	0,007	0,004	0,000	0,000	0,000	0,016
K ₂ O	0,022	0,025	0,032	0,007	0,000	0,009	0,000	0,015
NiO	0,000	0,000	0,000	0,000	0,000	0,028	0,023	0,000
Total	99,541	99,507	98,598	98,933	98,525	98,655	98,777	98,171

Quadro A 10: Análise química das ilmenitas.

Quadro A 11: Análise	por microscop	ia eletrônica de varredura	(MEV) dos cristais de óxidos.
----------------------	---------------	----------------------------	------	---------------------------

Litotipo	Amostra	Mineral	0	Fe	Ti	С	Ni	Mn	Si	AI	Cu	S	V	N	Cr	CI	Mg	Na	Ca
pbaC0	NLP-005- S6 (19_2)	Ilmenita	32,48	32,22	28,75	1,77	-	1,05	-	-	-	-	0,23	3,50	-	-	-	-	-
obC1(CN)	NLP-003- S3 (15_1)	Magnetita	24,77	71,57	-	-	0,46	-	0,82		0,52	0,44	-	-	-	-	1,42	-	-
máf	NLP-009- S1 (01_3)	Titano-	19,36	55,46	8,6	13,34	-	0,63	0,38	0,77	-	-	0,41	-	0,29	-	-	0,51	0,25
	NLP-009- S2 (06_3)	magnetita	26,8	60,94	9,93	-	-	0,84	-	1,15	-	-	0,34	-	-	-	-	-	-

Quadro A 12: Análise por microscopia eletrônica de varredura (MEV) dos cristais de sulfetos de cobre.

Litotipo	Amostra	Mineral	Cu	S	Fe	0	С	Si	Са	AI	Ni	Ti	Tb	Br	Hg
pbaC1	NLP-001- S4 (13_2)	Calcopirita	32,03	36,15	29,26	-	-	-	0,24	-	-	-	-	-	2,32
obC1N	NLP-003- S1 (13_1)	Calcocita	69,96	17,61	1,15	-	11,28	-	-	-	-	-	-	-	-

Quadro	A 13: Análise	por microscopia	a eletrônica	de varredura	(MEV) dos	cristais de	sulfetos de ferro.
--------	---------------	-----------------	--------------	--------------	-----------	-------------	--------------------

Litotipo	Amostra	Mineral	S	Fe	С	Ni	0	Hg	Si	AI	Ca	Na
	NLP-006- S2 (21_3)	Dirrotito	17,49	28,45	46,22	0,24	6,04	0,91		-	-	0,66
nhaC0	NLP-006- S3 (03_1)	Finolila	41,55	58,45	-	-	-	-	-	-	-	-
pbaC0 NLP-005- S6 (18_2)	Dirito	37,43	50,14	9,76	0,52	-	2,15	-	-	-	-	
	NLP-006- S1 (01_1)	Filld	54,01	43,36	-	-	-	2,63	-	-	-	-

Litotipo	Amostra	S	Ni	Fe	Hg	Со	Si	AI	Са	С	0	F	Cu
pbaC0	NLP-006-S2 (02_1)	28,58	27,49	24,36	1,69	2,38	-	-	-	11,50	1,63	2,36	-
obC1N	NLP-003-S2 (14_1)	26,28	26,25	19,79	1,32	10,83	-	-	-	11,54	2,12	1,39	0,48

Quadro A 14: Análise por microscopia eletrônica de varredura (MEV) dos cristais de pentlandita.

Quadro A 15: Análise por microscopia eletrônica de varredura (MEV) dos cristais de arsenietos.

Litotipo	Amostra	Mineral	As	Ni	S	Со	Fe	CI	Са	С	0	Si
	NLP-017- S1 (07_1)	Nicolita	53,8 3	43,6 4	1,48	-	-	0,4 3	0,1 9	-	-	0,4 3
phoC1	NLP-017- S2 (08_1)	Co- Gersdorfita	46,5 5	32,3 0	17,5 8	2,44	0,8 7	-	0,2 7	-	-	-
ppact	NLP-001- S4 (15_2)	Gersdorfita	46,4 9	34,6 6	18,0 9	-	0,4 2	0,3 4	-	-	-	-
	NLP-001- S5 (16 2)	Ni- Cobaltita	41,9 4	12,4 9	15,2 5	11,7 2	7,0 7	-	-	7,7 9	3,7 4	-

Quadro A 16: Análise por microscopia eletrônica de varredura (MEV) da paragênese de alteração Ni-As-O.

Litotipo	Amostra	Ni	As	0	CI	K	Са	Fe	S
pbaC1	NLP-001-S5 (17_2)	33,54	36,48	22,54	7,44	-	-	-	-
	NLP-001-S4 (14_2)	37,52	26,32	16,81	16,39	1,61	0,68	0,42	0,26