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RESUMO 

Sistemas de previsão oceânica tem o papel fundamental na sociedade, pois fornecem 

informações sobre o estado do oceano que são relevantes para diversas finalidades. 

A evolução operacional desses sistemas tem sido extremamente significativa nos 

últimos anos. A Rede de Modelagem e Observação Oceanográfica (REMO) 

desenvolveu o Sistema de Assimilação de Dados da REMO (RODAS), que emprega 

o método da Interpolação ótima por conjuntos (EnOI) aplicado ao modelo HYCOM na 

porção oeste do Oceano Atlântico Sul. Este estudo visa investigar a previsibilidade 

estendida do sistema HYCOM+RODAS. A análise produzida pelo RODAS foi utilizada 

como condição inicial para 48 integrações de 30 dias do modelo livre (hindcasts), que 

foram comparadas com a persistência (condição inicial fixa em toda a janela de 

previsão) e com uma rodada livre do modelo inicializada sem assimilação. Os 

hindcasts tiveram o menor desvio quadrático médio (RMSD) e maior correlação de 

temperatura da superfície do mar (TSM) e anomalia da altura do nível do mar (AANM) 

com relação às análises do RODAS em toda a janela de 30 dias. O RMSD da 

persistência aumentou de 0°C para 1.09°C no último dia e de 0 m para 0.08 m no 

mesmo período, para TSM e AANM respectivamente. O RMSD do hindcast atingiu 

valores máximos de 0.46°C e 0.05 m. O RMSD (correlação) da rodada livre foi sempre 

maior (menor) que o do hindcast, com uma média de 0.88°C e 0.13 m. Na coluna 

d’água, o aumento de RMSD do hindcast foi ainda menor. Os resultados indicam que 

a capacidade do sistema HYCOM+RODAS em prever o estado do oceano se estende 

por mais de um mês e o estado termohalino do oceano melhorou de forma substancial 

quando comparado à rodada livre. Um estudo de caso de um evento de ressurgência 

costeira na costa sudeste do Brasil demonstrou que o HYCOM+RODAS foi 

eficientemente capaz de reproduzir este fenômeno de circulação.  

Palavras-chave: Assimilação de dados oceânicos; HYCOM; Oceano Atlântico Sul 
 

 

 
 
 
 
 
 
 



6 
 

Assessing the extended-range predictability of HYCOM with the REMO Ocean 

Data Assimilation System (RODAS) in the South Atlantic Ocean 

 

Abstract 

Ocean forecasting systems (OFS) have a fundamental role to deliver ocean services 

to society and their operational evolution has been extremely significant over the last 

years. The Brazilian Oceanographic Modelling and Observation Network (REMO) has 

developed the REMO Ocean Data Assimilation System (RODAS), which is based on 

an Ensemble Optimal Interpotalion (EnOI) scheme applied into HYCOM over the 

western South Atlantic Ocean. This study aims to investigate the extended-range 

forecast skills of the HYCOM+RODAS system. The analysis produced by RODAS are 

used as initial condition for 48 HYCOM 30-day simulations, which are then compared 

to persistence (no change from the initial condition) and to a model free run initialized 

with no assimilation. The model hindcasts had the lowest root mean square difference 

(RMSD) and highest correlation of sea surface temperature (SST) and sea level 

anomaly (SLA) with respect to RODAS analysis at all lead times. Persistence RMSD 

increased from 0°C to 1.09°C by the 30th day and from 0 m to 0.08 m in the same 

period for SST and SLA, respectively, while the hindcast RMSD increased to 0.46°C 

and 0.05 m. The free run RMSD (correlation) was always higher (lower) than that of 

the hindcast with an average of 0.88°C and 0.13 m. In the subsurface, hindcast RMSD 

increase was even lower. The results suggest that HYCOM+RODAS predictive skill 

extends for more than a month and the thermohaline state of the ocean was 

consistently improved. A case study on a coastal upwelling event in the southeast 

coast of Brazil demonstrated that the HYCOM+RODAS system was efficiently able to 

reproduce this ocean feature.  

 
Keywords: Ocean data assimilation; HYCOM; South Atlantic Ocean. 
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1.  Introduction 

Ocean forecasting systems (OFS) have a fundamental role to deliver ocean services 

to society. Monitoring and forecasting the behaviour of the ocean is essential for the 

sustained development of the marine environment and to provide relevant information 

for many users such as stakeholders dealing with fisheries, oil and gas industries, 

maritime safety, climate change and coastal management (Schiller et al. 2015). 

Operational evolution of OFS has been extremely significant over the last years and 

real-time ocean analysis, forecasts and reanalysis products are routinely delivered to 

users in high quality (Dombrowsky et al. 2009). 

An eddy-resolving ocean model is a key component for ocean prediction at the 

mesoscale (Hurlburt et al. 2009). The Hybrid Coordinate Ocean Model (HYCOM) is a 

sophisticated model, which incorporates numerical techniques that are optimal for 

dynamically different regions of the ocean. Isopycnic layers are used in the open 

stratified ocean, pressure-level coordinates in the surface mixed layer and terrain-

following coordinates in shallow coastal regions. However, model forecasts are likely 

to have errors due to limitations in the numerical methods, physical parameterizations, 

grid resolution, atmospheric forcing and initial and boundary conditions (Bleck 2002; 

Chassignet at al. 2007; Chassignet et al. 2009). 

Observational data can be effectively used to minimize these errors and they are 

fundamental to operational OFS. They constrain ocean models with data assimilation 

systems and are employed to validate them and assess the OFS skills. A global ocean 

observing system has been implemented, providing valuable information from a large 

set of data (Oke at al. 2015a; Oke at al. 2015b). Satellites collect real time, global, high 

space-time resolution observations of key ocean variables such as sea surface 

temperature (SST), sea surface height (SSH), sea level anomaly (SLA), sea surface 

salinity (SSS) and ocean colour (Le Traon et al. 2015). These measurements, 

however, are restricted to the surface and are insufficient to represent the subsurface 

variability (Chassignet et al. 2009). Therefore, a secure supply of in situ ocean data is 

important to represent the ocean interior. Vertical profiles of temperature and salinity 

are collected by XBTs, CTDs and the Argo profilers system. The latter has proved to 

be an effective tool to monitoring the manifold of the ocean, with a large number of 

floats distributed around the world (Legler et al. 2015). Altogether, in situ observations 
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and satellite remote sensing provide a good degree of complementary information (Lea 

et al. 2014). However, given the large size of the ocean and the limitations of the 

measurements, no feasible observation system determines the state of the ocean 

completely. Therefore, models are necessary to complement the basic observations 

by extrapolating the data information in space, time and among different properties 

(Fukumori 2006; Zaron 2011).  

Data assimilation comprises a set of techniques for estimating the oceanic state by 

combining model predictions with observed data in an optimal manner. As a result, 

data assimilation produces an objective analysis in order to represent the most 

accurate description of the past and best initial condition for the forecast. Given that 

ocean model forecasts are highly sensitive to the initial condition, initializing the model 

with conditions that represent as accurately as possible the actual state of the ocean 

at eddy-resolving resolution can lead to a gain in predictability and produce more 

reliable predictions (Brasseur 2006; Chassignet et al. 2007). 

The Global Ocean Data Assimilation Experiment (GODAE) and its continuation, 

GODAE Ocean View (GOV), have provided a firm base for the development of global 

and regional analysis and forecasting systems (Bell et al. 2015). Since the beginning 

of the 1990s, many systems have been developed in several countries based on 

different ocean models and data assimilation methods (Tonani et al. 2015). These 

methods range from relatively simple schemes, such as Analysis Correction and 

Optimal Interpolation, to more sophisticated schemes, such as variational and 

ensemble technique (Cummings et al. 2009).  

In Brazil, oceanographic information is highly demanded for application in the 

petroleum industry and for military activities. In 2007, the Brazilian Oceanographic 

Modelling and Observation Network (REMO) was created with the main goal of 

developing numerical ocean models with assimilative skills for the western South 

Atlantic Ocean. REMO brings together different institutions, including the Federal 

University of Bahia (UFBA), Federal University of Rio de Janeiro (UFRJ), the Brazilian 

Navy’s Hydrographic Center (CHM) and Centro de Pesquisas Leopoldo Américo 

Miguez de Mello from Petrobras (CENPES). The scientific results and products 

developed by REMO may reach a broad variety of scientists, students and general 
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users of oceanographic information so that other applications can become feasible to 

promote benefits to the Brazilian society (Lima et al. 2013). 

In collaboration with GOV and the Institute of Atmospheric Physics by the Chinese 

Academy of Sciences (IAP/CAS), the REMO Ocean Data Assimilation System 

(RODAS) was developed at UFBA. It employs HYCOM in a nested grid system with 

1/24o, 1/12° and 1/4o horizontal resolution and 21 hybrid layers in the vertical over the 

Atlantic Ocean with focus on the southwest Atlantic. RODAS is based on the Ensemble 

Optimal Interpolation (EnOI) scheme and it assimilates SST, sea level anomaly (SLA) 

and T/S profiles into the model (Tanajura et al. 2014; Costa and Tanajura 2015; Mignac 

et al. 2015). RODAS is able to constrain the ocean model towards observation using 

a set of different model states to estimate the model errors. It is computationally 

efficient and therefore, suitable for operational purposes (Xie and Zhu 2010; Tanajura 

et al 2014; Mignac et al. 2015). The model domain employed in the present work 

encompasses the Atlantic Metarea V (from 36°S to 7°N and from 20°W up to the coast 

of Brazil), which is an area of high interest to the Brazilian Navy and has high economic 

and environmental relevance due to petroleum extraction. 

Surface circulation in Metarea V is highly influenced by the Subtropical Gyre. The 

South Equatorial Current flows westward and branches in North Brazil Current and 

Brazil Current (BC) (Petreson and Stramma 1991). The BC is a western boundary 

current that flows southward along the Brazilian coast until the confluence with the 

Malvinas Current. Then both currents separate from the coast and their seaward 

extension is the South Atlantic Current (Peterson and Stramma, 1991). The water 

masses in the upper layers of Metarea V include the Tropical Water (TW) (T>20°C and 

S>36,0) as the surface mixed layer and the South Atlantic Central Water (SACW) 

(5°C<T<20°C and 34.3<S<36), located underneath (Stramma and England, 1999).    

High resolution operational oceanography requires accurate depiction of mesoscale 

ocean features such as eddies and upwelling events, which are frequently observed 

within Metarea V. Upwelling has a remarkable importance due to its influence on local 

marine ecosystems and ocean dynamics. The region around Cabo Frio (CF, 23°S) is 

characterized by a robust coastal upwelling system, which has received large scientific 

attention (Campos et al. 2000; Rodrigues and Lorenzzeti 2001; Castelao and Barth 

2006; Calado et al. 2010; Castelao 2012; Soutelino and Miranda 2013; Aguiar et al. 
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2014; Palóczy at al. 2014). Upwelling events can be identified by a sharp SST gradient 

due to an intrusion of SACW into the continental shelf, possibly reaching the surface 

near the coast. They have a strong seasonal signal and are more likely to develop in 

spring and summer, when prevailing winds blow from northeast. Some current-driven 

mechanisms such as cyclonic eddies and interaction of the Brazil Current with bottom 

topography are also important contributors to the development of this coastal upwelling 

system (Calado et al. 2010; Rodrigues and Lorenzzeti 2001; Aguiar et al. 2014; 

Palóczy at al. 2014).  

The present work aims at contributing to the permanent development of RODAS in 

order to better represent the state and circulation of the South Atlantic Ocean and 

serve as a component of a forecasting system. More specifically, it aims at 

investigating the extended-range forecast skills of the HYCOM+RODAS system. The 

analysis produced by RODAS are used as initial condition for 48 HYCOM 30-day 

simulations, which are then compared to persistence (no change from the initial 

condition) and to a model free run initialized with no assimilation. The simulations were 

forced by reanalysis fields produced by Climate Forecast System Reanalysis (CFSR) 

of the National Centers for Environmental Prediction (NCEP/NOAA). Forcing the model 

with reanalysis allows us to minimize the impacts of errors in the atmospheric forcing 

and to examine the performance of the ocean model and its data assimilation scheme 

(Zhu 2011). The atmospheric reanalysis can also be seen as the best possible 

atmospheric forcing the ocean forecasting system could use. Therefore, the 30-day 

HYCOM simulations could be considered forecasts in which the atmospheric 

reanalysis would lead to the lowest bound of the ocean model errors considering all 

possible atmospheric forcings. Lastly, HYCOM+RODAS predictive skill was assessed 

over the south and southeast coast of Brazil, with a focus on the upwelling system, and 

a case study was investigated. The HYCOM+RODAS predictability is put to proof with 

respect to this feature that evolves in the scale of days and is strongly dominated by 

the atmospheric forcing and not so much by the initial condition. 

Section 2 presents the methodology, and it includes a brief description of the ocean 

model, some details of the data assimilation scheme, the numerical experiments and 

the metrics employed to assess the hindcast skills. Section 3 presents the results, and 

Section 4 the conclusions. 
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2. Methodology 

2.1. The ocean model 

HYCOM is a primitive equation general circulation model, which has freedom to adjust 

the vertical spacing of the generalized coordinate layers, simplifying the numerical 

implementation of several processes (Bleck 2002). In the open stratified ocean, 

isopycnic layers are used, but they make a smooth transition to terrain-following 

coordinates in shallow coastal regions and to fixed depth (z) coordinates in the surface 

mixed layer. The model is formulated in terms of target densities and the vertical 

coordinate distribution is chosen at every time step and in every grid column 

individually, allowing the model to optimally simulate coastal and open-ocean 

circulation features (Chassignet et al. 2009). 

In the present work, HYCOM was configured with a horizontal resolution of 1/12° for 

the domain 45°S-10°N, 68°W-18°W, which contains Metarea V. It corresponds to 601 

and 733 grid points in the zonal and meridional directions, respectively. The model was 

nested in another HYCOM configuration with horizontal resolution of 1/4° for the 

domain 78°S-50°N, 98°W-20°E, excluding the Mediterranean Sea and the Pacific 

Ocean. The horizontal resolution remains constant in longitude but varies in latitude. 

The vertical domain for both grids was discretized in 21 vertical layers. The chosen 

target potential densities are shown on Table 1. The first layers have a few light target 

density values that ensure a good vertical resolution in the mixed layer. 

The 1/12° model bathymetry was interpolated from the Earth Topography 2 (ETOPO2) 

and then adjusted with bathymetric information from the Brazilian Navy. In the 1/4° 

grid, bathymetry was interpolated from General Bathymetric Chart of the Oceans 

(GEBCO), with 2 min resolution. 

On the lateral boundaries of the 1/12° grid, interpolated fields of velocities, 

temperature, salinity and layer thicknesses from the 1/4° run were applied. Relaxation 

to climatological SST and SSS were added considering a timescale of 90 days. In the 

case of the lower resolution model run, relaxation to monthly climatological 

temperature, salinity and layer thicknesses from World Ocean Atlas (WOA) was 

applied on the lateral boundaries. On the eastern and western boundaries (South of 

Africa and Drake Passage, respectively), an open boundary condition was added to 
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the barotropic velocity. This strategy considers the Antarctic Circumpolar Current, 

which is necessary to realistically represent currents and water masses in the South 

Atlantic Ocean. Barotropic fluxes were determined as 110 Sv eastward in the Drake 

Passage, 10 Sv westward in 10 grid points south of South Africa along 20°E to 

represent Agulhas eddy and 120 Sv eastward further south to Antarctica representing 

the Antarctic Circumpolar Current.      

 

Table 1. Potencial Densities of the model. To obtain the volumetric density in kg m-3, 

1000 should be added to each target density. 

Layer Potential 

Density 

Layer Potential 

Density 

Layer Potential 

Density 

1 19.50 8 24.70 15 27.22 

2 20.25 9 25.28 16 27.38 

3 21.00 10 25.70 17 27.52 

4 21.75 11 26.18 18 27.64 

5 22.50 12 26.52 19 27.74 

6 23.25 13 26.80 20 27.82 

7 24.00 14 27.03 21 27.88 

 

The surface atmospheric forcing employed here were the 6-hourly reanalysis synoptic 

fields produced by CFSR with 1/4° spatial resolution. It was composed by wind stress 

at 10 m, air temperature and mixing ratio at 2 m, precipitation, shortwave and longwave 

fluxes. Latent and sensible heat fluxes were calculated by the model from bulk formulas 

from CFSR fields and model SST.  

Mass flux at the surface was calculated by subtracting precipitation from evaporation 

and adding a relaxation term to monthly climatological salinity from WOA with a 

timescale of 30 days. In this case, precipitation is given and evaporation is calculated 

by the model bulk formulas. Freshwater fluxes from the main rivers were considered 

using the same approach of precipitation minus evaporation. 
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The 1/4° HYCOM run was initialized with a climatological mass field from WOA and 

zero velocities. It was forced by climatological atmospheric fields from the 

Comprehensive Ocean Atmosphere Data Set (COADS) for 20 years. The result of this 

spin-up run was taken as initial condition for a forced run in which NCEP/NCAR 

reanalysis I was employed. On 1 January 1995, the 1/12° HYCOM was initialized by 

the interpolated HYCOM 1/4o output. From 1995 to 2006, both domains were forced 

by atmospheric fields from NCEP/NCAR reanalysis I, and from 2006 on, they were 

forced by CFSR. In addition to the model free runs, the assimilation runs in both grids 

were performed after 1 January 1998. 

 

2.2. The ocean data assimilation system 

RODAS employs the EnOI scheme, which is based on the following equation (Evensen 

2003): 

                                                   𝑋𝑎 = 𝑋𝑏 + 𝐾(𝑌 − 𝐻𝑋𝑏)                                          (1) 

where 𝑋𝑎 represents the analysis, 𝑋𝑏 is the model background or prior state, 𝐾 is the 

gain matrix, 𝑌 is the observational vector, and 𝐻𝑋𝑏 is the projection of the prior state 

onto the observational space by the observational operator 𝐻. The term (𝑌 − 𝐻𝑋𝑏) is 

called the innovation vector and the term 𝐾(𝑌 − 𝐻𝑋𝑏) is the analysis increment. The 

gain matrix 𝐾 is calculated from the equation 

                                       𝐾 =  𝛼(𝜎 ∘ 𝐵)𝐻𝑇[𝛼𝐻(𝜎 ∘ 𝐵)𝐻𝑇 + 𝑅]−1                                (2) 

where B denotes the ensemble co-variance matrix of the model error and R denotes 

the diagonal co-variance matrix of the observational error. The term 𝛼 ∈ (0, 1] is a 

scalar that can tune the magnitude of the analysis increment and 𝜎 denotes the 

localization operator applied over B by a Schur product represented by the symbol ∘. 

In the EnOI scheme, B is calculated from the equation 

                                                               𝐵 =  
𝐴′𝐴′𝑇

(𝑁−1)
                                                                     (3)   
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In equation 3, 𝐴′ = [𝐴′1𝐴′2,   .  .  .  , 𝐴′𝑁], 𝐴′𝑚 = (𝑋𝑚 − 
1

𝑁
 ∑ 𝑋𝑛)𝑁

𝑛=1 , where 𝐴′ represents 

the anomalies, 𝑋𝑚 represents the model state vector of the 𝑚th ensemble member 

with 𝑚 varying from 1 to 𝑁, and 𝑁 = 126 is the total number of ensemble members 

used in all assimilation steps in this study.  

In RODAS, the assimilation steps are taken sequentially and independently according 

to equations 1, 2 and 3.  First, SST is assimilated at 00 UTC in order to mostly constrain 

the mixed layer. Three hours later, at 03 UTC, T/S profiles are assimilated aiming to 

correct the model termohaline structure around the observations. Finally, at 06 UTC, 

SLA is assimilated to in order to mainly correct the model mesoscale circulation. This 

assimilation cycle is performed every 3 days. This strategy reduces the computational 

cost and allows the model to better diffuse the analysis increments along the 

integration. 

For SST assimilation, daily gridded fields from the Ocean Sea Surface Temperature 

and Sea Ice Analysis (OSTIA) with 1/20° horizontal resolution were used. These data 

were made available by the Group for High Resolution Sea Surface Temperature 

(GHRSST) OSTIA SST data were only assimilated in regions with depths equal to or 

greater than 30 m.  

Different in situ observations were used to assimilate T/S profiles. Argo system has 

provided measurements down to 2000m depth in different regions of Metarea V. 

Morever, XBT profiles from the NOAA line AX97 associated with the Monitoring the 

Upper Ocean transport Variability in the Western South Atlantic (MOVAR) project were 

assimilated. This is a high-resolution line located between Rio de Janeiro and Trindade 

Island. Finally, CTD data provided by the Brazilian Centro de Pesquisas Leopoldo 

Américo Miguez de Mello from Petrobras (CENPES) were assimilated. They were 

collected along the south and southeast coast of Brazil. A 3-day observational window 

was considered in order to select all valid profiles collected up to 3 days before the 

assimilation day.  

Since HYCOM is formulated with hybrid vertical coordinates, which are not fixed in 

time and space, assimilating T/S profiles is not trivial. In RODAS, the z-level profiles 

are projected into the model vertical space to create pseudo-observed layer 

thicknesses (∆𝑝𝑜𝑏𝑠), following the strategy adopted by Thacker and Esenkov (2002), 
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Xie and Zhu (2010) and Mignac et al. (2015). Thus, each profile is processed as 

follows. Potential density profiles are calculated by an equation of state for seawater 

(Brydon et al. 1999) based on a pair of profiles of potential temperature and salinity. 

The estimated surface density from the observed profile is compared to the top layer 

target density from the model. If the first density of the profile is higher than the density 

of the first model layer, a minimum thickness is assigned to the first pseudo-observed 

layer and temperature and salinity average values are computed. Once water with the 

target density is found, the remainder of the potential density profile can be partitioned 

and the layer averages will correspond to the model target densities down to the 

maximum depth of the profile. The step functions of T, S and ∆𝑝𝑜𝑏𝑠 are the data that 

will be actually assimilated by the EnOI scheme. 

The Argo data were required to step into a data quality control (QC) procedure 

developed by REMO together with the Brazilian Navy. The date, the location and the 

temperature and salinity of each Argo profile previously collected were tested 

according to all criteria stablished by the Global Temperature and Salinity Pilot 

Program from the Intergovernmental Oceanographic Commission (IOC 1990). The 

CTD profiles were carefully analysed by CENPES before assimilation and the MOVAR 

profiles had already passed by a specific data QC realized by National Oceanic and 

Atmospheric Administration (NOAA). 

In the assimilation of SLA, RODAS uses gridded data from the satellites Envisat, 

Jason-1, Jason-2 and Cryosat distributed by the French Archiving, Validation et 

Interpretation des données des Satellites Océanographique (AVISO). The delayed 

time product was chosen, which goes through a better data processing and quality 

control. The spatial resolution of the data is 1/4°. The model SLA was calculated based 

on the mean sea surface height (SSH) from a six-year period (2008 to 2013) and the 

observed SLA is based on the mean SSH from a 20-year period (1993 to 2012). Due 

to this temporal incompatibility, the model SLA presented significant discrepancies with 

respect to the AVISO SLA. Therefore, in each SLA assimilation step, an offset was 

calculated by the difference between the area averaged SLA from AVISO and from the 

background.  This offset was used to level observed SLA according to the model. 

Regions shallower than 300 m were not assimilated owing to altimeters uncertainties.  
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As RODAS is based on a multivariate EnOI scheme, i.e, the variable that is directly 

assimilated in each assimilation step will modify other variables in the model state 

vector. The co-variances between different parameters are calculated from the 

ensemble members. In the SST assimilation,  the analysis update is carried out for the 

state vector (∆pi, Ui, Vi, Ti, Si); i = 1, … , nz, where ∆pi represents layer thickness, Ui 

and Vi represents the zonal and meridional velocities, Ti and  Si are temperature and 

salinity defined in the i-th model layer, and nz is the number of model layers. Therefore, 

assimilation of SST modifies all the baroclinic variables in the model. For T/S profiles, 

the assimilation is carried out in different steps. First, ∆𝑝𝑜𝑏𝑠is assimilated, modifying 

the state vector (∆pi, Ui, Vi); i = 1, … , nz. Next, temperature and salinity are assimilated 

in separate steps and in a univariate way, but with previously adjusted layer 

thicknesses by the assimilation of ∆𝑝𝑜𝑏𝑠, as in Xie and Zhu (2010). The state vector for 

SLA assimilation is (∆pi, Ui, Vi); i = 1, … , nz. In HYCOM, SSH is a diagnosed variable 

which depends on the layer. Barotropic variables were not altered in any assimilation 

step. 

According to Thacker and Esenkov (2002), within the context of HYCOM, when layer 

interfaces are altered, potential density should be kept unchanged, and when density 

is corrected, the layer interfaces should be kept unchanged. Considering that ∆p is 

modified in all assimilation steps, it is necessary to keep the densities unaltered. 

Therefore, T or S are always diagnosed below the mixed layer by the sea water 

equation of state in order to keep the potential density constant in the ocean simulated 

with isopycnal coordinates. For SST assimilation, salinity is diagnosed below the mixed 

layer. The same goes for XBT profiles in the western South Atlantic, given that 

temperature is the only observed variable and salinity is indirectly estimated by 

polynomial functions. In the assimilation of Argo and CTD profiles, temperature was 

chosen to be diagnosed because in the experiments of Xie and Zhu (2010), most of 

the temperature corrections were due to changes in the layer thicknesses by the 

assimilation of ∆𝑝𝑜𝑏𝑠, while salinity correction is more effective when this variable is 

assimilated. In the case of SLA assimilation, T and S are not modified, keeping 

densities unchanged in an isopycnal ocean.  

To avoid the analysed layer thicknesses to occasionally become negative, a 

computationally efficient scheme is performed. If the layer thickness becomes 
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negative, it is reset to zero and the thickness deficit is added to the neighboring layers. 

Finally, the sum of the layer thicknesses should be equal to the local depth. For this, 

the deficit (surplus) is added to (taken from) the last layer of the model.    

In the EnOI scheme, the propagation of the observational information is highly 

dependent on the size and the quality of the ensemble, as the final analysis can be 

regarded as a combination of the ensemble anomalies whose relative weight is 

determined by the co-variances. In this work, assimilation of SST, SLA and T/S profiles 

was performed with 126 ensemble members. They were selected from a long-term 

model run, corresponding to a 6-year period from 01/01/2008 to 31/12/2013 with 

assimilation of Argo profiles and SST. In each assimilation step, a different model co-

variance matrix was calculated by taking 21 members at 00 UTC for each year of the 

6-year period around the date of the corresponding assimilation day, with 3 days 

between each member.  

The localization technique is applied to delete long-distance correlations that may 

appear in the gain matrix. In this work, the localization operator was separated into a 

horizontal component (𝜎ℎ) and a vertical component (𝜎𝑣), and it is defined as 𝜎 =  𝜎ℎ𝜎𝑣. 

In order to define the horizontal correlation matrix 𝜎ℎ, a fifth order function is used: 

𝜎ℎ(𝐼𝑖𝑗, 𝐿) =                                                                                                                               (4) 

{
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In this function, 𝐼𝑖𝑗 is defined as the Euclidean distance between any two arbitrary 

points in the horizontal space and 𝐿 is the horizontal scale of influence. Equation 4 can 

be considered as a quasi-Gaussian function, forcing the model error co-variance matrix 

to decrease to zero when the distance  𝐼𝑖𝑗 reaches 2𝐿, which corresponds to the radius 

of localization. In the assimilation of SST and SLA, the radius of localization is 30 km, 

in the case of Argo and CTD profiles it is 150 km and for XBT data, it is 50 km. 
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In this first version of RODAS, vertical localization is only applied in the assimilation of 

T/S profiles and only ∆𝑝 is localized according to Mignac et al. (2015).The correlation 

matrix 𝜎𝑣 is defined by the function 

𝜎𝑣(𝑖,𝑗) = 𝑒𝑥𝑝 [−(∆𝜌(𝑖,𝑗)/𝐿𝜌)
2
]                                                 (5)     

where ∆𝜌(𝑖,𝑗) is the density difference between two layers 𝑖 and 𝑗 and 𝐿𝜌 is a vertical 

scale factor defined as 0.5 kg m-3, 

The diagonal co-variance matrix of the observational error (𝑅) in equation 2 depends 

on the observation type. The SST and SLA data comes with an observational error 

field. This data is squared to generate the variances in 𝑅. In the case of T/S profiles, 

the observational errors of 𝑇 and 𝑆 in the model layers are calculated as a function of 

the depth 𝐷 in meters, respectively, by the following equations (Thacker e Esenkov, 

2002): 

𝑆𝐷𝑇(𝐷) = 0.05 + 0.45 exp(−0.002𝐷)                                      (6) 

𝑆𝐷𝑆(𝐷) = 0.02 + 0.10 exp(−0.008𝐷)                                      (7) 

The standard deviations of the observational errors of 𝑇 vary in the vertical from 0.5 °C 

on the surface to 0.05 °C in the deep ocean. For 𝑆, they vary from 0.12 to 0.02. In the 

case of layer thickness, the standard deviation of ∆𝑝𝑜𝑏𝑠 is calculated depending on the 

oceanic region. For instance, in the mixed layer, the layer thickness is assigned to the 

minimum layer thickness allowed by the model configuration, and the standard 

deviation is defined as 0.05 ∆𝑝𝑘 where ∆𝑝𝑘 represents the layer thickness at the 𝑘th 

layer calculated from the observed profiles. In the isopycnal layers, the standard 

deviation is defined by the formula proposed by Thacker and Esenkov (2002): 

𝑆𝐷(𝐷𝑃𝑘) = 𝑚𝑎𝑥 {0.5𝛿𝑝𝑘, 𝑚𝑎𝑥 [0.05𝐷𝑃𝑘, 𝐷𝑃𝑘 (0.05 + (0.5 − 0.05)
𝑠𝑑𝜎(𝑘)

𝑆𝐷𝜎(𝑘)
)]}              (8) 

Where 𝛿𝑝𝑘 is the minimum layer thickness specified by the model configuration for the 

𝑘th layer, 𝑠𝑑𝜎(𝑘) is the minimum standard deviation of the potential density defined as 

0.001 kg m-3, and 𝑆𝐷𝜎(𝑘) is the standard deviation of the potential density from 

observations. The latter should be small when the potential density from the observed 
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layer thickness has values close to its target density. 𝑆𝐷(𝐷𝑃𝑘), 𝑆𝐷𝑇(𝐷) and 𝑆𝐷𝑆(𝐷) are 

squared to generate the co-variances in R. 

Concerning the 𝛼 term in equation 2, sensitivity tests were performed in each 

assimilation step. The highest value (𝛼=1) was stablished for SLA assimilation in order 

to avoid 𝐾 producing too much weight on the background, since the observational error 

can be ten times higher than the instrumentation error (~0.03 m) in some regions. For 

assimilation of SST and XBT profiles, 𝛼=0.3 and for the remaining T/S profiles, 𝛼=0.5. 

 

2.3. Numerical experiments and evaluation metrics 

In order to investigate the impact of RODAS on the quality of the forecast, two 

integrations were performed from 1 January 2011 to 31 December 2012. The first one 

was a control run without assimilation, hereafter called free run, and the second one 

was an assimilation run using RODAS. The experiments were objectively evaluated by 

the root mean square deviation (RMSD) and correlation based on observational data 

from OSTIA, AVISO and Argo.  

After that, an assessment of the extended-range predictive skill of the system was 

carried out considering three different experiments on the same 1/12° grid. They were: 

i) 48 HYCOM 30-day hindcasts initialized from RODAS analysed fields. The initial 

condition was taken from the assimilation run described above, at 06 UTC right after 

assimilation and the model was integrated for 30 days with no assimilation. From 1 

January 2011 to 11 December 2012, a new 30-day hindcast was performed every 15 

days, totalizing 48 cycles (i.e.: from 01/01/2011 to 31/01/2011; from 16/01/2011 to 

15/02/2011 and so on); ii) the free run described above, which had no assimilation at 

all; and iii) persistence, which represents a forecast of no change from the initial 

condition of the hindcasts. It was included because it enables us to assess whether, 

given the initial conditions, the model adds any skill during the following 30 days. 

The 2-year RODAS assimilation run was used as reference to evaluate the three 

experiments. They were compared against the analysed fields that are valid for each 

day of the 30-day cycle and the RMSD and correlation between these fields were 

calculated. The average of the 48 cycles was plotted as a function of lead time.  
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To compare the hindcast and persistence, a skill metric was used, whereby the 

hindcast provides useful skill if the skill score is positive. 

Skill score = 1 – (RMSEhindcast/RMSEpersistence) 

We must take into account that the RODAS analysis errors were not included in the 

evaluation. Therefore, these statistics do not give the overall magnitude of the errors, 

but they can give a bound on the expected accuracy of the hindcast and provide 

information about the evolution of errors in time, as in Chassignet et al. (2009), Hurlburt 

et al. (2009), Martin (2011) and Hernandez et al. (2015). 

Lastly, in order to assess the model skill in predicting mesoscale circulation features in 

Metarea V, a focus on coastal upwelling was given. A subregion encompassing the 

upwelling area near CF (19°S to 28°S and 36°W up to the Brazilian coast) was 

evaluated with respect to OSTIA SST in spring and summer months (September to 

March), when coastal upwelling is more likely to occur. The hindcast, persistence and 

free run RMSD and correlation were calculated over the 30-day cycles initialized in the 

upwelling-favourable months of 2011 and 2012. The average of 26 cycles was plotted 

against lead time. After that, a case study was carried out in order to assess the 

hindcast skill in a qualitative manner. A well-developed upwelling event was chosen 

based on OSTIA SST fields and the overall structure of the event was investigated in 

the hindcast and free run.  

 

3. Results and discussion 

3.1. Quantitative assessment 

The assimilation impact was evaluated by calculating the RMSD of SST with respect 

to OSTIA and the SSH RMSD and SLA correlation with respect to AVISO over Metarea 

V. Figure 1 shows the average of RODAS analysis and free run from 1 January 2011 

to 31 December 2012. A substantial reduction of the SST RMSD is observed in the 

analysis when compared to the free run in almost all Metarea V. The area averaged 

RMSD was 0.88°C and 0.43°C in the free run and in the RODAS run, respectively. In 

some regions, such as around the Brazil-Malvinas Confluence (BMC), the RMSD was 

reduced by more than 75%, from 1.63°C to 0.38°C. In the northern region of the 
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domain, the free run produced large errors. This is possibly associated with a model 

temperature warm bias, which is more pronounced near the Equator. RODAS was able 

to effectively constrain the temperature in this region, so that the RMSD reduction 

corresponded to 79%, from 1.90°C to 0.39°C. Near the coast, the analysis obtained 

the highest RMSD values, probably due to the lack of assimilation over small depths. 

However, RODAS was still able to reduce the error by more than 25% in most of the 

area along the coast, which indicates that the model is able to extrapolate assimilation 

information.  

Concerning the SSH RMSD, Figures 1.c and 1.d show that overall RODAS attained a 

smaller error than the free run, reducing the mean RMSD from 0.07 m to 0.05 m. For 

instance, near the BMC, the RMSD reduction was approximately 76%, from 0.18 m to 

0.04 m, and north of 3°N the error was reduced by about 70%, from 0.14 m to 0.04 m. 

Near the coast, the error was relatively high in both experiments. Around river mouths, 

the analysis RMSD was greater than 0.25 m. However, it must be taken into account 

that due to altimeters uncertainties, no altimetric data is assimilated in regions 

shallower than 300 m. 

The SLA correlation map shows that assimilation had a significant impact in the 

analysis, increasing the overall correlation from 0.44 in the free run to 0.77 in the 

RODAS run [Figure 1 (e) and (f)]. Free run correlation is fairly low and sometimes 

negative. Only in areas of low variability, free run correlation is higher than 0.6, 

indicating that the model by itself is unable to reproduce mesoscale circulation at the 

surface. When RODAS was applied, SLA correlation substantially increased. It is 

greater than 0.6 in most of Metarea V and in some regions it is close to 1. Near the 

coast, correlation remains relatively low, which can be associated with the lack of data 

assimilation in shallow regions. In addition, the region around the BMC also obtained 

small analysis correlation values, since this is an area of high variability and remains a 

challenge to RODAS. Still, the analysis correlation was much higher than the free run 

correlation, evidencing that this lower skill did not compromise the substantial positive 

impact of the assimilation in representing SLA variability. 
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Figure 1. SST RMSD (oC) with respect to OSTIA [(a) and (b)], SSH RMSD (m) with 

respect to AVISO [(c) and (d)] and SLA correlation with respect to AVISO [(e) and (f)] 

for RODAS analysis and the free run from 1 January 2011 to 31 December 2012. The 

black contour represents 0.6 correlation  



 

 
 

To assess the assimilation impact in the subsurface temperature and salinity, the 

vertical mean profile of RMSD with respect to Argo T/S data was calculated for RODAS 

and the free run from 1 January 2011 to 31 December 2012 (Figure 2). The average 

temperature RMSD in the profile decreased from 1.03°C in the free run to 0.73°C in 

the analysis. This indicates a positive assimilation impact in the subsurface, which was 

more pronounced in the top 200 m. The largest RMSD decrease was around 75 m 

depth, where the error was reduced by 39%, from 2.39°C in the free run to 1.46°C in 

RODAS. This is also where the highest RMSD was observed in both experiments. It is 

associated with the thermocline regions of sharp vertical gradients, which models have 

difficulties to represent (Xie and Zhu 2010; Costa and Tanajura 2015; Mignac et al. 

2015), particularly the present HYCOM configuration with only 21 layers. Below 1750 

m the RMSD was 20% higher in the analysis than in the free run. This increase might 

be due to the smaller amount of data at this depth, the absence of data below 2000 m 

and uncertainties in the calculated ∆𝑝𝑜𝑏𝑠.     

In the subsurface salinity, the analysis RMSD was reduced in the whole profile 

compared to the free run. The mean RMSD was 0.18 and 0.13 in the free run and 

RODAS, respectively. The biggest impact was around 150 m, where the RMSD 

reduction corresponded to 29%, from 0.32 in the free run to 0.22 in the analysis. As 

mentioned above, models have difficulties in reproducing sharp gradients and this is 

also associated with the halocline. Differently from the temperature, there is no 

assimilation of sea surface salinity. Therefore, there is a high analysis error at the 

surface and down to 150 m, where it oscillates between 0.22 and 0.24. The free run 

RMSD oscillates between 0.28 and 0.32 at the same depth range. Below that, the 

RMSD gradually decreases in both experiments down to 900 m depth, where RODAS 

reaches 0.05 and the free run reaches 0.10. RODAS surface salinity might decrease 

even more if SSS from SMOS and Aquarius satellites are assimilated. Overall, data 

assimilation effectively constrains the model towards observation and it has been 

demonstrated that RODAS has a relatively good skill in reproducing the ocean 

thermohaline state. 
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Figure 2. Vertical mean profiles of RMSD with respect to Argo T/S data from 1 January 

2011 to 31 December 2012 for (a) temperature (oC) and (b) salinity over Metarea V. 

 

3.2 Assessment of the extended-range predictive skill 

To provide an estimate of the decrease of the HYCOM+RODAS extended forecast 

skill, Figure 3 shows the RMSD and correlation of SST and SLA averaged over all 48 

30-day hindcasts with respect to the RODAS run over Metarea V. It also shows the 

skill of persistence and of the free run. For both SST and SLA, the model hindcast had 

the lowest RMSD and the highest correlation throughout the 30-day windows. The 

evolution of SST RMSD shows that the hindcast slowly degrades, while persistence 

does it much more quickly, reaching the free run values by the 22nd day. By the 30th 

day, the persistence error reaches 1.09°C, while the hindcast RMSD is 0.46°C. The 

free run error is almost constant and the RMSD values are about 0.88°C at all lead 

times. The hindcast SST correlation remains high until the last day, ranging from 1 to 

0.94 and persistence correlation rapidly decreases from 1 to 0.75, taking up 11 days 

to reach the free run values. In the latter, average correlation is 0.89. Thus, the 

HYCOM+RODAS hindcast typically provides a reliable SST estimate over a 30-day 

window. 

In the case of SLA, the sharpest RMSD increase was in the first 24h, when the hindcast 

value grew up to 0.02 m and the persistence error increased to 0.05 m. Thereafter, the 

RMSDs increased at a similar rate, reaching 0.05 m in the hindcast and 0.08 m in 

persistence by the 30th day. The free run had the highest RMSD at all lead times, with 
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an average of 0.13 m. The hindcast SLA correlation is consistently higher than 

persistence correlation, ranging from 1 to 0.79, while the latter ranges from 1 to 0.41. 

Once again, persistence degrades fairly quickly in the first 24 h, when SLA correlation 

reaches 0.84, but it keeps degrading faster than the hindcast until the end of the cycle. 

By the 16th day, persistence SLA correlation is less than 60% and by the 29th day, it is 

less than the free run correlation. The latter in turn, oscillates between 0.44 and 0.48. 

In general, the SLA errors grow more quickly than the SST errors. Although different 

assimilation systems and ocean models might have very different results, previous 

studies have had similar results, such as in Oke et al. (2015a), where observations are 

withheld from the forecast system to provide an estimate of the decrease in analysis 

and forecast skill. 

Since the hindcast was better than persistence at all lead times, the results suggest 

that the model adds some skill to the initialised state over a 30-day forecast. Also, the 

errors of the SST and SLA hindcasts are smaller than the errors of the free run. As 

expected, it demonstrates the benefit of data assimilation on the forecast skill and 

shows that an accurate initial condition considerably enhances predictability. 

Moreover, it gives an indication of the system tolerance to observation dropouts, as 

the hindcast error takes more than a month to saturate and reach the free run values. 

However, it must not be forgetten that the model was forced by atmospheric reanalysis 

fields. Therefore, it is not expected that the quality of these fields degrade over each 

forecast cycle as they would if the atmospheric forcing was a true weather forecast.      
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Figure 3. RMSD [(a) and (b)] and correlation [(c) and (d)] of SST and SLA with respect 

to RODAS analysis over 48 30-day cycles averaged over Metarea V.  

Predictability was also assessed using a skill score calculated for SST and SLA over 

Metarea V (Figure 4). The hindcast has a strong positive skill against persistence for 

SST. Even for 30-day lead time, the hindcast performs better than persistence in most 

part of Metarea V and fails only in the north of the equator. This is the area where the 

model has a stronger temperature bias, but RODAS efficiently corrects it [Figure 1(a)]. 

As the lead time increases, the bias becomes more evident, increasing the hindcast 

RMSD and consequently, reducing its skill compared to persistence. Nonetheless, in 

10-day lead time, the area with negative skill score is very small and even in the 30th 

day, the average skill score is positive. Thus, SST hindcast initialized with RODAS is 

both highly accurate and skilful.  

The SLA skill score is positive overall, but some differences are observed when looking 

at specific regions. For instance, in day 10 the skill score is slightly negative in small 

areas east of 32°W and in day 30 the negative values are also observed around the 

BMC. In this region, the hindcast RMSD is not lower than that of persistence due to 

the fact that the flow is dominated by mesoscale flow instabilities, rather than by 
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atmospheric forcing. As explained above, this region has high variability and 

represents a challenge for the model. However, as shown in Figure 1, RODAS is able 

substantially reduce the error around the BMC, and the hindcast retains some skill out 

to at least 10 days after initialization. Near the south and southeast coast of Brazil, a 

highly positive skill was obtained at all lead times. As observed in previous studies, in 

shallow waters and in the surface mixed layer, the ocean state is very sensitive to 

atmospheric forcing, rather than to the initial condition, therefore persistence quickly 

loses skill (Zhu 2011; Martin 2011; Hurlburt et al. 2009). 

 

 

Figure 4. Skill score comparing hindcast and persistence RMSD statistics against 

RODAS analysis for SST [(a), (b) and (c)] and SLA [(d), (e) and (f)] in 10-, 20- and 30-

day lead times. 

 

Figure 5 represents the evolution of the temperature and salinity RMSD in the 

subsurface for hindcast and persistence. The larger errors were in the upper ocean 

associated with both the mixed layer and the thermocline/halocline, and there is a 

gradual decrease in errors with depth, in line with a decrease in variability in the deeper 
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ocean. This behaviour is in accordance with previous studies (Divakaran et al. 2015). 

As expected, persistence degrades much more quickly than hindcast near the surface. 

Around 10 m depth, persistence had the highest temperature RMSD values and 

reached 0.76°C in day 30, when the hindcast RMSD reached 0.16°C. It is evident that 

persistence rapidly loses skill near the surface, corroborating with earlier results. 

Around 100 m depth the hindcast had the largest errors, reaching 0.19°C in day 28. 

This is associated with the thermocline and is in accordance with what was shown in 

Figure 2. Persistence took up 17 days to reach the same RMSD value at this depth, 

indicating a positive hindcast skill even in the thermocline. In the deep ocean, the 

temperature RMSD decreases very slowly in both experiments. In 1000 m depth, 

persistence RMSD took up 8 days to reach 0.01°C and the hindcast took up 13 days 

to reach the same value (not shown). As described by Hurlburt et al. (2009), the deep 

ocean variability is non-deterministic with respect to atmospheric forcing, and the time 

scale for predictive skill depends mostly on the quality of the initial state, the accuracy 

of the model dynamics and the flow instability. In this region, the flow is dominated by 

the termohaline circulation, which evolves on longer time scales. The free run in turn 

kept the RMSD values almost constant throughout the 30 days, with the highest values 

(1.81°C) around 100 m depth, near the thermocline. At all depths the free run error 

was higher than those of the hindcast, with an average of 0.63°C at 10 m depth and 

0.25°C at 1000 m depth (not shown). Thus, HYCOM+RODAS skill in predicting 

temperature is not restricted to the surface, but extends to the deep ocean as well. 

Similarly to the temperature, salinity RMSD in persistence was highest near the 

surface, where the values reached 0.06 in 30-day lead time. In the hindcast the error 

was not higher than 0.01 in any lead time at the surface. Between 150 m and 200 m 

depth, hindcast produced the largest error reaching 0.02 in the 26th day and 

persistence reached the same value in the 17th day. This depth is associated with the 

halocline and, as for the temperature, this is in agreement with what was observed in 

Figure 2. Below this depth, the error was fairly small in both experiments. At 500 m 

depth, both hindcast and persistence RMSD took up 16 days to reach 0.01. In the free 

run, salinity RMSD was almost constant through time, but varied with depth, ranging 

from 0.01 at 5000 m to 0.11 at 300 m (not shown). These are reasonable results as 

salinity is a tracer quantity, which evolves on longer timescales than temperature in 

large parts of the ocean (Ryan et al. 2015). 



 

34 
 

 

 

Figure 5. RMSD of the subsurface temperature (oC) [(a) and (b)] and salinity [(c) and 

(d)] with respect to RODAS over 48 30-day cycles averaged in Metarea V. 

 

3.3. Assessment of HYCOM+RODAS in the coastal upwelling subregion and 
case study 

Daily OSTIA SST fields were analysed from 01 January 2011 to 31 December 2012 in 

the upwelling subregion.  During spring and summer months, coastal upwelling was 

frequently observed, in either intense and long-lived events or just ephemeral ones 

(not shown). Figure 6 shows the average SST RMSD and correlation of 26 30-day 

cycles initialized in the upwelling-favourable months (September to March) with 

respect to OSTIA over the upwelling subregion. Hindcast and persistence start with a 

RMSD of 0.51°C in the initial condition, while the free run starts with a RMSD of 1.08°C. 

During the first 17 days, persistence and hindcast RMSDs remain close, but after that 

the rate of RMSD increase by the hindcast diminishes. After 30 days, hindcast and 

persistence RMSD reach 0.94°C and 1.09°C, respectively. The free run RMSD 

remains nearly constant around 1.04oC. For the SST correlation, hindcast and 

persistence start at 0.97 and after 30 days it decreases to 0.94 and 0.86, respectively. 

From the 5th day on, the hindcast correlation is higher than that of persistence and it 

takes up 13 days for persistence to reach free run values. The latter corresponded to 

0.94 on average. Persistence correlation quickly decreases as it is unable to represent 

the development and evolution of the upwelling processes that occurred during the 

spring and summer. 
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Since coastal upwelling is primarily induced by wind-driven mechanisms, the model 

representation of these events is strongly dependent on atmospheric forcing. 

Northeasterly winds are highly favourable for the occurrence of upwelling in this region 

and consequently cause SST variations (Rodrigues and Lorenzzetti 2001; Palóczy et 

al. 2010; Aguiar et al. 2014). Thus, both hindcast and free run have good correlation 

values (higher than 0.9) and they vary in a very similar way. This is a good indication 

that overall the model is capable of capturing and reproducing coastal upwelling events 

at the surface. There is a decrease in RMSD from the hindcast to the free run, 

suggesting that the first is more efficient than the latter.  

 

 

Figure 6. SST RMSD (oC) (a) and correlation (b) with respect to OSTIA over the 

upwelling subregion for the hindcast, persistence and free run initialized in spring and 

summer months of 2011 and 2012. 

 

For a more detailed and qualitative assessment, a specific coastal upwelling event that 

occurred on 23 February 2011 was investigated. Figure 7 shows the SST fields from 

OSTIA, free run and two hindcasts, one initialized on 15 February 2011 and the other 

on 31 January 2011, corresponding to 8-day and 23-day lead time, respectively. 

Generally, the modelled SST fields compare well with the observation as they all 

capture a conspicuous surface signal of the event. The upwelling plume in OSTIA 

roughly follows the shelf break and extends to approximately 45°W, with a minimum 

temperature of 24.28°C. In the model fields, the event is more intense, with minimum 

temperatures of 20.34°C in the 8-day hindcast, 19.51°C in the 23-day hindcast and 
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19.22°C in free run. This might suggest that the model possibly overestimates the 

upwelling event, with temperatures colder than the observed ones. However, in situ 

data provided by the Brazilian National Buoy Program (Programa Nacional de Bóias - 

PNBOIA) between 13 March 2012 and 26 February 2013 were analysed. The data 

was collected by the buoy located near CF, at 22.98°S, 42.10°W. Figure 8 shows the 

3-day mean SST of the buoy, OSTIA, free run and RODAS assimilation run in the same 

location and period. OSTIA SST was on average 2.76°C higher than in situ 

measurements. Therefore, it is reasonable to assume that OSTIA satellites are often 

unable to capture the real magnitude of the upwelling events at that location. In 

addition, as the wind is the primary forcing of coastal upwelling, the event is well 

developed in the modelled SST fields. Recall that the model was forced by reanalysis 

fields. Therefore these simulations represent the best possible predictions, considering 

all available atmospheric forcings. The importance of the ocean initial condition is 

associated with a good representation of the themohaline structure to produce an 

accurate temperature of the subsurface water that would be upwelled. 

Furthermore, free run shows an event with larger horizontal dimension than OSTIA 

while in the hindcasts, the shape of the plume is more constrained towards 

observation. As expected, the upwelling plume in the 23-day hindcast is slightly larger 

and colder than it is in the 8-day hindcast. However, the 23-day hindcast is still closer 

to the observation than the free run, suggesting that the model is able to retain some 

skill for more than 23 days. In addition, both hindcasts present an offshore stretched 

cold water filament at 40°W, which indicates a cyclonic circulation pattern. In AVISO 

SLA field, a cyclonic eddy is present at the same location [Figure 7(e)]. The hindcasts 

were able to capture a signal of this feature, in both SST and SLA fields, while free run 

did not capture it at all. It is well established in the literature that coastal and oceanic 

systems do interact and the presence of cyclonic meanders/eddies can cause or 

enhance coastal upwelling (Campos et al. 2000; Calado et al. 2010; Aguiar et al. 2014; 

Palóczy et al. 2014). It is also of note the clear warm bias the model develops, since 

the model SST in the 23-day lead time between 36o and 39oW is higher than in the 8-

day lead time and the model free run is much higher than both hindcasts and 

observations. 
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Figure 7. SST (oC) [(a) to (d)] and SLA (m) [(e) to (h)] fields during the upwelling case 

study on 23 February 2011. The solid black line represents the position of the vertical 

section. The black dashed lines represent the 100 m and 1000 m isobaths. 

 

 

Figure 8. 3-day mean SST (°C) at the buoy location (22.98°S, 42.10°W) 

  



 

38 
 

In the subsurface, the model simulations show slope water intrusions in the continental 

shelf, as the 20°C isotherm - an indication of the upper limit of SACW - is uplifted to 

depths shallower than 50 m (Figure 9). This suggests that shelf-break upwelling was 

taking place. According to Aguiar et al. (2014), this is a permanent feature throughout 

the year in the region and it is an important current-driven upwelling mechanism. The 

interaction between the BC and the continental shelf enhances shelf-ocean exchange 

and preconditions the isotherms as a complementary part of the coastal upwelling 

process (Aguiar et al. 2014, Palóczy et al. 2014). Moreover, cyclonic eddies also 

contribute to this process as they raise the isotherms, through upward Ekman pumping 

due to surface divergence (Campos et al. 2000; Calado et al. 2010; Aguiar et al. 2014; 

Palóczy et al. 2014). 

In the vertical sections of both hindcasts, 16°C temperatures are observed at 50 m 

depth, suggesting that SACW was highly available at the continental shelf. 

Furthermore, the cyclonic eddy is evident from the uplift of the isotherms near 40°W, 

matching the position in AVISO SLA field [Figure 7(d)]. In the 23-day hindcast the eddy 

is about 0.3o further west than in the 8-day hindcast. Still, both sections are very similar, 

reinforcing that the hindcast has a longer predictive skill in the subsurface. In the free 

run section, the 18°C isotherm barely reaches the shelf and the 16°C isotherm is only 

raised to 150 m depth. Once again, this simulation did not capture the cyclonic eddy. 

Moreover, in the free run the mixed layer depth is deeper and the thermocline is much 

more diffuse than in the hindcasts. As indicated above by the vertical profiles of 

temperature RMSDs in the free run and in the HYCOM+RODAS run (Figure 2), the 

assimilation system consistently improves the termohaline state of the ocean and in 

Figure 9 its impact on the quality of the hindcast is evident.  

Even though free run is capable of reproducing coastal upwelling at the surface, it is 

not very efficient at the subsurface, leaving out some important current-driven 

mechanisms. In contrast, the hindcast has a good representation of oceanic and 

coastal processes acting together during a coastal upwelling event. Similar results 

were obtained when investigating other upwelling events in the region, such as the 

ones on 24 February 2012, 27 October 2012 and 29 November 2012 (not shown). 

Therefore, it can be concluded that overall the hindcasts initialized by RODAS are 
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efficiently able to reproduce coastal upwelling as a whole, and the upwelling predictive 

skill for the HYCOM+RODAS system in this region extends up to a month. 

 

Figure 9. Vertical sections of temperature (oC) during the case study upwelling event 

on 23 February 2011. The location of the section is shown in Figure 7. 

4. Conclusion 

HYCOM+RODAS system was quantitatively assessed and compared to free run over 

the Atlantic Ocean Metarea V in 2011 and 2012. The results showed that overall data 

assimilation had a positive impact in the representation of the ocean state, reducing 

the RMSD of SST and SSH with respect to observations by 48% and 13%, 

respectively, and increasing the overall SLA correlation by 65%. A large improvement 

was obtained around the BMC, which is an area of high variability, hence large forecast 

errors. In addition, a substantial positive impact was attained in the northern region of 

the domain, due to a model temperature bias, which RODAS was able to correct. Near 

the coast, the analysis obtained the highest RMSD and lowest correlation values, and 

this is probably associated with the lack of assimilated data in shallow regions. 

Nevertheless, RODAS was still able to reduce the SST error and increase the SLA 
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correlation in coastal regions compared to the free run, suggesting that the assimilation 

system is able to extrapolate observation information. The vertical profiles showed that 

down to 2000 m depth the average RMSD of temperature and salinity was reduced by 

29% and 28%, respectively, from the free run to the analysis. The largest errors, as 

well as the largest corrections were at the thermocline and halocline regions. Overall, 

it has been demonstrated that HYCOM+RODAS system was able to efficiently 

reproduce the ocean state over Metarea V. 

The predictive skill of 30-day hindcasts initialized with RODAS analysis was evaluated 

against the analysed fields and compared to persistence and free run. The results 

revealed that for SST and SLA, the model hindcast had the lowest RMSD and highest 

correlation throughout the 30 days. It was observed that persistence degrades much 

more quickly than the hindcast, with a RMSD increase of 1.09°C for SST and 0.08 m 

for SLA over 30 days, while the hindcast had an increase of 0.46°C and 0.05 m over 

the same period. This suggests that the model typically adds some skill to the initialised 

state over a 30-day forecast. The free run RMSD (correlation) was always higher 

(lower) than that of the hindcast, demonstrating that an accurate initial condition 

considerably enhances predictability and the hindcast error takes more than a month 

to saturate.  

The subsurface temperature and salinity RMSD have shown that in small depths 

persistence RMSD rapidly increases to 0.76°C and 0.06 over 30 days, while hindcast 

RMSD increases to 0.16°C and 0.01. In contrast, the deep ocean temperature and 

salinity error was fairly low, reaching a RMSD of 0.01°C and 0.01 after 30 days in both 

simulations. These results are in good agreement with previous studies, which point 

out that in shallow waters and in the surface mixed layer, the ocean state is very 

sensitive to atmospheric forcing, therefore persistence quickly loses skill. However, in 

the deep ocean the time scale for predictive skill is not so dependent on atmospheric 

forcing, but rather on the quality of the initial state, the accuracy of the model dynamics 

and the time scale of the flow instability (Zhu 2011; Martin 2011; Hurlburt et al. 2009). 

Overall, we conclude that the HYCOM hindcast initialized with RODAS analysis 

typically provides a good quantitative estimate of the ocean state over a 30-day 

window. 
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When investigating the upwelling subregion off the Brazilian southeast coast in spring 

and summer, it was observed that the hindcast and free run have high SST correlation 

(>0.9) with respect to OSTIA. Since coastal upwelling is primarily induced by the wind, 

atmospheric forcing provides the model a good skill in reproducing these events, 

whereas persistence is unable to reproduce their development. The SST RMSD was 

reduced from the free run to the hindcast by 0.57°C in the initial condition and by 

0.14°C in 30-day lead time, demonstrating the positive impact of data assimilation also 

in this specific application. 

The case study has shown that, due to atmospheric forcing, free run is able to 

consistently reproduce the coastal upwelling event at the surface. However, it is well 

stablished in literature that coastal upwelling usually results from the combination of 

wind-driven and current-driven mechanisms. When looking at the subsurface, the 

event is very subtle in the free run. In contrast, both 8- and 23- day hindcasts represent 

a well-developed event in the surface and subsurface, and capture a signal of a 

cyclonic eddy, which is in accordance with AVISO SLA field. In the hindcasts, the 

termohaline state of the ocean was consistently improved and the interaction of coastal 

and oceanic processes during the event is clear. It demonstrates that 

HYCOM+RODAS system efficiently reproduces coastal upwelling as a whole and it 

has a good predictive skill. However, these simulations represent the lowest bound of 

the ocean model errors considering all possible atmospheric forcings. For a real 

predictability assessment, true weather forecasts should be employed instead of 

reanalysis fields.  
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